]> wimlib.net Git - wimlib/commitdiff
Compression updates
authorEric Biggers <ebiggers3@gmail.com>
Sun, 14 Sep 2014 05:14:07 +0000 (00:14 -0500)
committerEric Biggers <ebiggers3@gmail.com>
Sun, 14 Sep 2014 05:37:31 +0000 (00:37 -0500)
- Faster searching for repeat offset matches
- Lazy updates of adaptive state in near-optimal parsing
- Faster LZX near-optimal parsing
- Better LZX lazy parsing
- Faster XPRESS near-optimal parsing
- Faster LZMS near-optimal parsing
- Faster LZMS match/literal output
- Slightly faster LZMS decompression
- Cleanups

15 files changed:
Makefile.am
NEWS
README
include/wimlib/lz_repsearch.h
include/wimlib/lzms.h
include/wimlib/lzms_constants.h [new file with mode: 0644]
include/wimlib/lzx.h
include/wimlib/lzx_constants.h
src/lzms-common.c
src/lzms-compress.c
src/lzms-decompress.c
src/lzx-common.c
src/lzx-compress.c
src/lzx-decompress.c
src/xpress-compress.c

index cff4aa8993c060d56446ebe8f7be6d30a1b61fdd..8f6277dbdcd5992241e46ac68417378227ebe3c0 100644 (file)
@@ -110,6 +110,7 @@ libwim_la_SOURCES =         \
        include/wimlib/lz_repsearch.h   \
        include/wimlib/lz_suffix_array_utils.h  \
        include/wimlib/lzms.h           \
+       include/wimlib/lzms_constants.h \
        include/wimlib/lzx.h            \
        include/wimlib/lzx_constants.h  \
        include/wimlib/metadata.h       \
diff --git a/NEWS b/NEWS
index 70ebfb4f99594cae81478888fee0f80721d30569..1c13bfafe8895b0e9d27b6b7b3289fe621fd66df 100644 (file)
--- a/NEWS
+++ b/NEWS
@@ -1,5 +1,5 @@
 Version 1.7.2-BETA:
-       More compression performance improvements.
+       Made more improvements to the XPRESS, LZX, and LZMS compressors.
 
        Fixes for setting short names on Windows.
 
diff --git a/README b/README
index 95f990d9cf0d5a9e1c5f0ac811b8e58eade35b51..419c3da6d6cd81e6a464cd59da8a8eab378b1c3b 100644 (file)
--- a/README
+++ b/README
@@ -78,18 +78,18 @@ create the file.  When applicable, the results with the equivalent Microsoft
 implementation in WIMGAPI is included.
 
   =============================================================================
-  | Compression            ||  wimlib (v1.7.2-BETA)  |  WIMGAPI (Windows 8.1) |
+  | Compression            ||  wimlib (v1.7.2)       |  WIMGAPI (Windows 8.1) |
   =============================================================================
-  | None             [1]   ||  361,404,682 in 3.4s   |  361,364,994 in 4.2s   |
-  | XPRESS           [2]   ||  138,398,747 in 4.2s   |  140,468,002 in 5.1s   |
-  | XPRESS (slow)    [3]   ||  135,284,950 in 10.3s  |  N/A                   |
-  | LZX (quick)      [4]   ||  131,861,913 in 4.7s   |  N/A                   |
-  | LZX (normal)     [5]   ||  126,855,247 in 14.9s  |  127,301,774 in 18.2s  |
-  | LZX (slow)       [6]   ||  126,245,561 in 32.1s  |  N/A                   |
-  | LZMS (non-solid) [7]   ||  122,126,328 in 16.4s  |  N/A                   |
-  | LZMS (solid)     [8]   ||  93,795,440  in 47.4s  |  88,789,426 in 96.8s   |
-  | "WIMBoot"        [9]   ||  167,121,495 in 5.3s   |  169,124,968 in 9.3s   |
-  | "WIMBoot" (slow) [10]  ||  165,219,818 in 9.4s   |  N/A                   |
+  | None             [1]   ||  361,314,224 in 3.4s   |  361,315,338 in 4.5s   |
+  | XPRESS           [2]   ||  138,380,918 in 4.2s   |  140,457,487 in 6.3s   |
+  | XPRESS (slow)    [3]   ||  135,269,627 in 11.1s  |  N/A                   |
+  | LZX (quick)      [4]   ||  130,332,081 in 4.7s   |  N/A                   |
+  | LZX (normal)     [5]   ||  126,714,941 in 12.9s  |  127,293,240 in 19.2s  |
+  | LZX (slow)       [6]   ||  126,150,725 in 23.4s  |  N/A                   |
+  | LZMS (non-solid) [7]   ||  121,909,750 in 13.3s  |  N/A                   |
+  | LZMS (solid)     [8]   ||  93,650,894  in 44.4s  |  88,771,192 in 109.2   |
+  | "WIMBoot"        [9]   ||  167,095,369 in 6.4s   |  169,109,650 in 10.7s  |
+  | "WIMBoot" (slow) [10]  ||  165,195,668 in 9.5s   |  N/A                   |
   =============================================================================
 
 Notes:
@@ -139,36 +139,39 @@ Testing environment:
 
 The compression ratio provided by wimlib is also competitive with commonly used
 archive formats.  Below are file sizes that result when the Canterbury corpus is
-compressed with wimlib (v1.7.0), WIMGAPI (Windows 8), and some other
+compressed with wimlib (v1.7.2), WIMGAPI (Windows 8.1), and some other
 formats/programs:
 
-     =================================================
-     | Format                         | Size (bytes) |
-     =================================================
-     | tar                            | 2,826,240    |
-     | WIM (WIMGAPI, None)            | 2,814,278    |
-     | WIM (wimlib, None)             | 2,813,856    |
-     | WIM (WIMGAPI, XPRESS)          | 825,410      |
-     | WIM (wimlib, XPRESS)           | 792,024      |
-     | tar.gz (gzip, default)         | 738,796      |
-     | ZIP (Info-ZIP, default)        | 735,334      |
-     | tar.gz (gzip, -9)              | 733,971      |
-     | ZIP (Info-ZIP, -9)             | 732,297      |
-     | WIM (wimlib, LZX quick)        | 722,196      |
-     | WIM (WIMGAPI, LZX)             | 651,766      |
-     | WIM (wimlib, LZX normal)       | 649,204      |
-     | WIM (wimlib, LZX slow)         | 639,618      |
-     | WIM (wimlib, LZMS non-solid)   | 592,136      |
-     | tar.bz2 (bzip, default)        | 565,008      |
-     | tar.bz2 (bzip, -9)             | 565,008      |
-     | WIM (wimlib, LZMS solid)       | 525,270      |
-     | WIM (wimlib, LZMS solid, slow) | 521,700      |
-     | WIM (WIMGAPI, LZMS solid)      | 521,232      |
-     | tar.xz (xz, default)           | 486,916      |
-     | tar.xz (xz, -9)                | 486,904      |
-     | 7z  (7-zip, default)           | 484,700      |
-     | 7z  (7-zip, -9)                | 483,239      |
-     =================================================
+     =====================================================
+     | Format                             | Size (bytes) |
+     =====================================================
+     | tar                                | 2,826,240    |
+     | WIM (WIMGAPI, None)                | 2,814,254    |
+     | WIM (wimlib, None)                 | 2,814,216    |
+     | WIM (WIMGAPI, XPRESS)              | 825,536      |
+     | WIM (wimlib, XPRESS)               | 790,016      |
+     | tar.gz (gzip, default)             | 738,796      |
+     | ZIP (Info-ZIP, default)            | 735,334      |
+     | tar.gz (gzip, -9)                  | 733,971      |
+     | ZIP (Info-ZIP, -9)                 | 732,297      |
+     | WIM (wimlib, LZX quick)            | 704,006      |
+     | WIM (WIMGAPI, LZX)                 | 651,866      |
+     | WIM (wimlib, LZX normal)           | 632,614      |
+     | WIM (wimlib, LZX slow)             | 625,050      |
+     | WIM (wimlib, LZMS non-solid)       | 581,960      |
+     | tar.bz2 (bzip, default)            | 565,008      |
+     | tar.bz2 (bzip, -9)                 | 565,008      |
+     | WIM (wimlib, LZX solid)            | 532,700      |
+     | WIM (wimlib, LZMS solid)           | 525,990      |
+     | WIM (wimlib, LZX solid, slow)      | 525,140      |
+     | WIM (wimlib, LZMS solid, slow)     | 523,728      |
+     | WIM (WIMGAPI, LZMS solid)          | 521,366      |
+     | WIM (wimlib, LZX solid, very slow) | 520,832      |
+     | tar.xz (xz, default)               | 486,916      |
+     | tar.xz (xz, -9)                    | 486,904      |
+     | 7z  (7-zip, default)               | 484,700      |
+     | 7z  (7-zip, -9)                    | 483,239      |
+     =====================================================
 
 Note: WIM does even better on directory trees containing duplicate files, which
 the Canterbury corpus doesn't have.
index fe59558bdb46d29047d8d0657347a8b601cf6445..6883bf624a8eb66be6b5b77b6070ad1b85163a9b 100644 (file)
 #define _LZ_REPSEARCH_H
 
 #include "wimlib/lz_extend.h"
-#include "wimlib/util.h"
 
 extern u32
 lz_extend_repmatch(const u8 *strptr, const u8 *matchptr, u32 max_len);
 
 /*
- * Find the longest repeat offset match.
+ * Given a pointer to the current string and a queue of 3 recent match offsets,
+ * find the longest repeat offset match.
  *
  * If no match of at least 2 bytes is found, then return 0.
  *
  * If a match of at least 2 bytes is found, then return its length and set
- * *slot_ret to the index of its offset in @queue.
- */
+ * *rep_max_idx_ret to the index of its offset in @recent_offsets.
+*/
 static inline u32
-lz_repsearch(const u8 * const strptr, const u32 bytes_remaining,
-            const u32 max_match_len, const u32 repeat_offsets[],
-            const unsigned num_repeat_offsets, unsigned *slot_ret)
+lz_repsearch3(const u8 * const strptr, const u32 max_len,
+             const u32 recent_offsets[3], unsigned *rep_max_idx_ret)
 {
-       u32 best_len = 0;
-
-       if (likely(bytes_remaining >= 2)) {
-               const u32 max_len = min(max_match_len, bytes_remaining);
-               const u16 str = *(const u16 *)strptr;
-
-               for (unsigned i = 0; i < num_repeat_offsets; i++) {
-                       const u8 * const matchptr = strptr - repeat_offsets[i];
-
-                       /* Check the first two bytes.  If they match, then
-                        * extend the match to its full length.  */
-                       if (*(const u16 *)matchptr == str) {
-                               const u32 len = lz_extend_repmatch(strptr, matchptr, max_len);
-                               if (len > best_len) {
-                                       best_len = len;
-                                       *slot_ret = i;
-                               }
-                       }
+       unsigned rep_max_idx;
+       u32 rep_len;
+       u32 rep_max_len;
+       const u16 str = *(const u16 *)strptr;
+       const u8 *matchptr;
+
+       matchptr = strptr - recent_offsets[0];
+       if (*(const u16 *)matchptr == str)
+               rep_max_len = lz_extend_repmatch(strptr, matchptr, max_len);
+       else
+               rep_max_len = 0;
+       rep_max_idx = 0;
+
+       matchptr = strptr - recent_offsets[1];
+       if (*(const u16 *)matchptr == str) {
+               rep_len = lz_extend_repmatch(strptr, matchptr, max_len);
+               if (rep_len > rep_max_len) {
+                       rep_max_len = rep_len;
+                       rep_max_idx = 1;
                }
        }
-       return best_len;
+
+       matchptr = strptr - recent_offsets[2];
+       if (*(const u16 *)matchptr == str) {
+               rep_len = lz_extend_repmatch(strptr, matchptr, max_len);
+               if (rep_len > rep_max_len) {
+                       rep_max_len = rep_len;
+                       rep_max_idx = 2;
+               }
+       }
+
+       *rep_max_idx_ret = rep_max_idx;
+       return rep_max_len;
 }
 
 #endif /* _LZ_REPSEARCH_H */
index 76381a416829de89773d65de795d788cd7b06b7f..94bcba826f772e1af34a15ca35638964588a5aab 100644 (file)
@@ -1,8 +1,14 @@
+/*
+ * lzms.h
+ *
+ * Declarations shared between LZMS compression and decompression.
+ */
+
 #ifndef _WIMLIB_LZMS_H
 #define _WIMLIB_LZMS_H
 
-/* Constants for the LZMS data compression format.  See the comments in
- * lzms-decompress.c for more information about this format.  */
+#include "wimlib/lzms_constants.h"
+#include "wimlib/util.h"
 
 //#define ENABLE_LZMS_DEBUG
 #ifdef ENABLE_LZMS_DEBUG
 #      define LZMS_ASSERT(...)
 #endif
 
-#define LZMS_NUM_RECENT_OFFSETS                        3
-#define LZMS_MAX_INIT_RECENT_OFFSET            (LZMS_NUM_RECENT_OFFSETS + 1)
-
-#define LZMS_PROBABILITY_BITS                  6
-#define LZMS_PROBABILITY_MAX                   (1U << LZMS_PROBABILITY_BITS)
-#define LZMS_INITIAL_PROBABILITY               48
-#define LZMS_INITIAL_RECENT_BITS               0x0000000055555555ULL
-
-#define LZMS_NUM_MAIN_STATES                   16
-#define LZMS_NUM_MATCH_STATES                  32
-#define LZMS_NUM_LZ_MATCH_STATES               64
-#define LZMS_NUM_LZ_REPEAT_MATCH_STATES                64
-#define LZMS_NUM_DELTA_MATCH_STATES            64
-#define LZMS_NUM_DELTA_REPEAT_MATCH_STATES     64
-#define LZMS_MAX_NUM_STATES                    64
-
-#define LZMS_NUM_LITERAL_SYMS                  256
-#define LZMS_NUM_LEN_SYMS                      54
-#define LZMS_NUM_DELTA_POWER_SYMS              8
-#define LZMS_MAX_NUM_OFFSET_SYMS               799
-#define LZMS_MAX_NUM_SYMS                      799
-
-#define LZMS_MAX_CODEWORD_LEN                  15
-
-#define LZMS_LITERAL_CODE_REBUILD_FREQ         1024
-#define LZMS_LZ_OFFSET_CODE_REBUILD_FREQ       1024
-#define LZMS_LENGTH_CODE_REBUILD_FREQ          512
-#define LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ    1024
-#define LZMS_DELTA_POWER_CODE_REBUILD_FREQ     512
-
-#define LZMS_X86_MAX_GOOD_TARGET_OFFSET                65535
-#define LZMS_X86_MAX_TRANSLATION_OFFSET                1023
-
-/* Code shared between the LZMS decompressor and compressor.  */
-
-#include <wimlib/util.h>
-
 extern void
 lzms_x86_filter(u8 data[], s32 size, s32 last_target_usages[], bool undo);
 
@@ -60,9 +29,9 @@ struct lzms_probability_entry {
 
        /* Number of zeroes in the most recent LZMS_PROBABILITY_MAX bits that
         * have been coded using this probability entry.  This is a cached value
-        * because it can be computed as LZMS_PROBABILITY_MAX minus the Hamming
-        * weight of the low-order LZMS_PROBABILITY_MAX bits of @recent_bits.
-        * */
+        * because it can be computed as LZMS_PROBABILITY_MAX minus the number
+        * of bits set in the low-order LZMS_PROBABILITY_MAX bits of
+        * @recent_bits.  */
        u32 num_recent_zero_bits;
 
        /* The most recent LZMS_PROBABILITY_MAX bits that have been coded using
@@ -104,61 +73,45 @@ struct lzms_lru_queues {
         struct lzms_delta_lru_queues delta;
 };
 
-extern u32 lzms_position_slot_base[LZMS_MAX_NUM_OFFSET_SYMS + 1];
-
-extern u8 lzms_extra_position_bits[LZMS_MAX_NUM_OFFSET_SYMS];
-
-extern u16 lzms_order_to_position_slot_bounds[30][2];
+/* Offset slot tables  */
+extern u32 lzms_offset_slot_base[LZMS_MAX_NUM_OFFSET_SYMS + 1];
+extern u8 lzms_extra_offset_bits[LZMS_MAX_NUM_OFFSET_SYMS];
 
+/* Length slot tables  */
 extern u32 lzms_length_slot_base[LZMS_NUM_LEN_SYMS + 1];
-
-#define LZMS_NUM_FAST_LENGTHS 1024
-extern u8 lzms_length_slot_fast[LZMS_NUM_FAST_LENGTHS];
-
 extern u8 lzms_extra_length_bits[LZMS_NUM_LEN_SYMS];
 
 extern void
 lzms_init_slots(void);
 
-/* Return the slot for the specified value.  */
-extern u32
-lzms_get_slot(u32 value, const u32 slot_base_tab[], u32 num_slots);
+extern unsigned
+lzms_get_slot(u32 value, const u32 slot_base_tab[], unsigned num_slots);
 
-static inline u32
-lzms_get_position_slot(u32 position)
+/* Return the offset slot for the specified offset  */
+static inline unsigned
+lzms_get_offset_slot(u32 offset)
 {
-       u32 order = bsr32(position);
-       u32 l = lzms_order_to_position_slot_bounds[order][0];
-       u32 r = lzms_order_to_position_slot_bounds[order][1];
-
-       for (;;) {
-               u32 slot = (l + r) / 2;
-               if (position >= lzms_position_slot_base[slot]) {
-                       if (position < lzms_position_slot_base[slot + 1])
-                               return slot;
-                       else
-                               l = slot + 1;
-               } else {
-                       r = slot - 1;
-               }
-       }
+       return lzms_get_slot(offset, lzms_offset_slot_base, LZMS_MAX_NUM_OFFSET_SYMS);
 }
 
-static inline u32
+/* Return the length slot for the specified length  */
+static inline unsigned
 lzms_get_length_slot(u32 length)
 {
-       if (likely(length < LZMS_NUM_FAST_LENGTHS))
-               return lzms_length_slot_fast[length];
-       else
-               return lzms_get_slot(length, lzms_length_slot_base,
-                                    LZMS_NUM_LEN_SYMS);
+       return lzms_get_slot(length, lzms_length_slot_base, LZMS_NUM_LEN_SYMS);
 }
 
+extern void
+lzms_init_lz_lru_queues(struct lzms_lz_lru_queues *lz);
+
+extern void
+lzms_init_delta_lru_queues(struct lzms_delta_lru_queues *delta);
+
 extern void
 lzms_init_lru_queues(struct lzms_lru_queues *lru);
 
 extern void
-lzms_update_lz_lru_queues(struct lzms_lz_lru_queues *lz);
+lzms_update_lz_lru_queue(struct lzms_lz_lru_queues *lz);
 
 extern void
 lzms_update_delta_lru_queues(struct lzms_delta_lru_queues *delta);
@@ -166,4 +119,36 @@ lzms_update_delta_lru_queues(struct lzms_delta_lru_queues *delta);
 extern void
 lzms_update_lru_queues(struct lzms_lru_queues *lru);
 
+/* Given a decoded bit, update the probability entry.  */
+static inline void
+lzms_update_probability_entry(struct lzms_probability_entry *prob_entry, int bit)
+{
+       s32 delta_zero_bits;
+
+       BUILD_BUG_ON(LZMS_PROBABILITY_MAX != sizeof(prob_entry->recent_bits) * 8);
+
+       delta_zero_bits = (s32)(prob_entry->recent_bits >> (LZMS_PROBABILITY_MAX - 1)) - bit;
+
+       prob_entry->num_recent_zero_bits += delta_zero_bits;
+       prob_entry->recent_bits <<= 1;
+       prob_entry->recent_bits |= bit;
+}
+
+/* Given a probability entry, return the chance out of LZMS_PROBABILITY_MAX that
+ * the next decoded bit will be a 0.  */
+static inline u32
+lzms_get_probability(const struct lzms_probability_entry *prob_entry)
+{
+       u32 prob;
+
+       prob = prob_entry->num_recent_zero_bits;
+
+       /* 0% and 100% probabilities aren't allowed.  */
+       if (prob == 0)
+               prob++;
+       if (prob == LZMS_PROBABILITY_MAX)
+               prob--;
+       return prob;
+}
+
 #endif /* _WIMLIB_LZMS_H  */
diff --git a/include/wimlib/lzms_constants.h b/include/wimlib/lzms_constants.h
new file mode 100644 (file)
index 0000000..3bc5761
--- /dev/null
@@ -0,0 +1,44 @@
+/*
+ * lzms_constants.h
+ *
+ * Constants for the LZMS compression format.
+ */
+
+#ifndef _LZMS_CONSTANTS_H
+#define _LZMS_CONSTANTS_H
+
+#define LZMS_NUM_RECENT_OFFSETS                        3
+#define LZMS_MAX_INIT_RECENT_OFFSET            (LZMS_NUM_RECENT_OFFSETS + 1)
+#define LZMS_OFFSET_OFFSET                     (LZMS_NUM_RECENT_OFFSETS - 1)
+
+#define LZMS_PROBABILITY_BITS                  6
+#define LZMS_PROBABILITY_MAX                   (1U << LZMS_PROBABILITY_BITS)
+#define LZMS_INITIAL_PROBABILITY               48
+#define LZMS_INITIAL_RECENT_BITS               0x0000000055555555ULL
+
+#define LZMS_NUM_MAIN_STATES                   16
+#define LZMS_NUM_MATCH_STATES                  32
+#define LZMS_NUM_LZ_MATCH_STATES               64
+#define LZMS_NUM_LZ_REPEAT_MATCH_STATES                64
+#define LZMS_NUM_DELTA_MATCH_STATES            64
+#define LZMS_NUM_DELTA_REPEAT_MATCH_STATES     64
+#define LZMS_MAX_NUM_STATES                    64
+
+#define LZMS_NUM_LITERAL_SYMS                  256
+#define LZMS_NUM_LEN_SYMS                      54
+#define LZMS_NUM_DELTA_POWER_SYMS              8
+#define LZMS_MAX_NUM_OFFSET_SYMS               799
+#define LZMS_MAX_NUM_SYMS                      799
+
+#define LZMS_MAX_CODEWORD_LEN                  15
+
+#define LZMS_LITERAL_CODE_REBUILD_FREQ         1024
+#define LZMS_LZ_OFFSET_CODE_REBUILD_FREQ       1024
+#define LZMS_LENGTH_CODE_REBUILD_FREQ          512
+#define LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ    1024
+#define LZMS_DELTA_POWER_CODE_REBUILD_FREQ     512
+
+#define LZMS_X86_MAX_GOOD_TARGET_OFFSET                65535
+#define LZMS_X86_MAX_TRANSLATION_OFFSET                1023
+
+#endif /* _LZMS_CONSTANTS_H */
index 97d4a691c62ab46f13de4a66840af687a8b99d58..da0c55143c4bc9a569bdc5550b51c0e16c16d80b 100644 (file)
 #      define LZX_ASSERT(...)
 #endif
 
-#define USE_LZX_EXTRA_BITS_ARRAY
+extern const u32 lzx_offset_slot_base[LZX_MAX_OFFSET_SLOTS];
 
-#ifdef USE_LZX_EXTRA_BITS_ARRAY
-extern const u8 lzx_extra_bits[LZX_MAX_POSITION_SLOTS];
-#endif
-
-/* Given the number of an LZX position slot, return the number of extra bits that
- * are needed to encode the match offset. */
-static inline unsigned
-lzx_get_num_extra_bits(unsigned position_slot)
-{
-#ifdef USE_LZX_EXTRA_BITS_ARRAY
-       /* Use a table */
-       return lzx_extra_bits[position_slot];
-#else
-       /* Calculate directly using a shift and subtraction. */
-       LZX_ASSERT(position_slot >= 2 && position_slot <= 37);
-       return (position_slot >> 1) - 1;
-#endif
-}
-
-extern const u32 lzx_position_base[LZX_MAX_POSITION_SLOTS];
+extern const u8 lzx_extra_offset_bits[LZX_MAX_OFFSET_SLOTS];
 
-/* Returns the LZX position slot that corresponds to a given formatted offset.
+/* Returns the LZX offset slot that corresponds to a given adjusted offset.
  *
  * Logically, this returns the smallest i such that
- * formatted_offset >= lzx_position_base[i].
+ * adjusted_offset >= lzx_offset_slot_base[i].
  *
  * The actual implementation below takes advantage of the regularity of the
- * numbers in the lzx_position_base array to calculate the slot directly from
- * the formatted offset without actually looking at the array.
+ * numbers in the lzx_offset_slot_base array to calculate the slot directly from
+ * the adjusted offset without actually looking at the array.
  */
 static inline unsigned
-lzx_get_position_slot_raw(u32 formatted_offset)
+lzx_get_offset_slot_raw(u32 adjusted_offset)
 {
-       if (formatted_offset >= 196608) {
-               return (formatted_offset >> 17) + 34;
+       if (adjusted_offset >= 196608) {
+               return (adjusted_offset >> 17) + 34;
        } else {
-               LZX_ASSERT(2 <= formatted_offset && formatted_offset < 655360);
-               unsigned mssb_idx = bsr32(formatted_offset);
+               LZX_ASSERT(2 <= adjusted_offset && adjusted_offset < 655360);
+               unsigned mssb_idx = bsr32(adjusted_offset);
                return (mssb_idx << 1) |
-                       ((formatted_offset >> (mssb_idx - 1)) & 1);
+                       ((adjusted_offset >> (mssb_idx - 1)) & 1);
        }
 }
 
@@ -72,13 +53,7 @@ extern unsigned lzx_get_num_main_syms(unsigned window_order);
 /* Least-recently used queue for match offsets.  */
 struct lzx_lru_queue {
        u32 R[LZX_NUM_RECENT_OFFSETS];
-}
-#ifdef __x86_64__
-_aligned_attribute(8)  /* Improves performance of LZX compression by 1% - 2%;
-                         specifically, this speeds up
-                         lzx_choose_near_optimal_item().  */
-#endif
-;
+} _aligned_attribute(sizeof(unsigned long));
 
 /* Initialize the LZX least-recently-used match offset queue at the beginning of
  * a new window for either decompression or compression.  */
index 36e812d8b80090c1054fd11a7a2a1cfe5f60a2c2..49cf8fafe4b59e471e31af0ac32e2a0a75c91a9e 100644 (file)
@@ -24,9 +24,9 @@
  * + LZX_MIN_MATCH_LEN, and a length symbol follows.  */
 #define LZX_NUM_PRIMARY_LENS         7
 
-/* Maximum number of position slots.  The actual number of position slots will
+/* Maximum number of offset slots.  The actual number of offset slots will
  * depend on the window size.  */
-#define LZX_MAX_POSITION_SLOTS 51
+#define LZX_MAX_OFFSET_SLOTS   51
 
 #define LZX_MIN_WINDOW_ORDER   15
 #define LZX_MAX_WINDOW_ORDER   21
@@ -35,7 +35,7 @@
 
 /* Maximum number of symbols in the main code.  The actual number of symbols in
  * the main code will depend on the window size.  */
-#define LZX_MAINCODE_MAX_NUM_SYMBOLS   (LZX_NUM_CHARS + (LZX_MAX_POSITION_SLOTS << 3))
+#define LZX_MAINCODE_MAX_NUM_SYMBOLS   (LZX_NUM_CHARS + (LZX_MAX_OFFSET_SLOTS << 3))
 
 /* Number of symbols in the length code.  */
 #define LZX_LENCODE_NUM_SYMBOLS                249
index e274c6ba6bc2bc54e1f20fceddeabdc8bbdc89de..4363623a4b1fba1e7267d6881f4e8f97501d28be 100644 (file)
@@ -6,7 +6,7 @@
  */
 
 /*
- * Copyright (C) 2013 Eric Biggers
+ * Copyright (C) 2013, 2014 Eric Biggers
  *
  * This file is part of wimlib, a library for working with WIM files.
  *
  * Constant tables initialized by lzms_compute_slots():        *
  ***************************************************************/
 
-/* Table: position slot => position slot base value  */
-u32 lzms_position_slot_base[LZMS_MAX_NUM_OFFSET_SYMS + 1];
+/* Table: offset slot => offset slot base value  */
+u32 lzms_offset_slot_base[LZMS_MAX_NUM_OFFSET_SYMS + 1];
 
-/* Table: position slot => number of extra position bits  */
-u8 lzms_extra_position_bits[LZMS_MAX_NUM_OFFSET_SYMS];
-
-/* Table: log2(position) => [lower bound, upper bound] on position slot  */
-u16 lzms_order_to_position_slot_bounds[30][2];
+/* Table: offset slot => number of extra offset bits  */
+u8 lzms_extra_offset_bits[LZMS_MAX_NUM_OFFSET_SYMS];
 
 /* Table: length slot => length slot base value  */
 u32 lzms_length_slot_base[LZMS_NUM_LEN_SYMS + 1];
@@ -53,17 +50,14 @@ u32 lzms_length_slot_base[LZMS_NUM_LEN_SYMS + 1];
 /* Table: length slot => number of extra length bits  */
 u8 lzms_extra_length_bits[LZMS_NUM_LEN_SYMS];
 
-/* Table: length (< LZMS_NUM_FAST_LENGTHS only) => length slot  */
-u8 lzms_length_slot_fast[LZMS_NUM_FAST_LENGTHS];
-
-u32
+unsigned
 lzms_get_slot(u32 value, const u32 slot_base_tab[], unsigned num_slots)
 {
-       u32 l = 0;
-       u32 r = num_slots - 1;
+       unsigned l = 0;
+       unsigned r = num_slots - 1;
        for (;;) {
                LZMS_ASSERT(r >= l);
-               u32 slot = (l + r) / 2;
+               unsigned slot = (l + r) / 2;
                if (value >= slot_base_tab[slot]) {
                        if (value < slot_base_tab[slot + 1])
                                return slot;
@@ -79,16 +73,16 @@ static void
 lzms_decode_delta_rle_slot_bases(u32 slot_bases[],
                                 u8 extra_bits[],
                                 const u8 delta_run_lens[],
-                                u32 num_run_lens,
+                                unsigned num_run_lens,
                                 u32 final,
-                                u32 expected_num_slots)
+                                unsigned expected_num_slots)
 {
-       u32 order = 0;
+       unsigned order = 0;
        u32 delta = 1;
        u32 base = 0;
-       u32 slot = 0;
-       for (u32 i = 0; i < num_run_lens; i++) {
-               u8 run_len = delta_run_lens[i];
+       unsigned slot = 0;
+       for (unsigned i = 0; i < num_run_lens; i++) {
+               unsigned run_len = delta_run_lens[i];
                while (run_len--) {
                        base += delta;
                        if (slot > 0)
@@ -105,17 +99,17 @@ lzms_decode_delta_rle_slot_bases(u32 slot_bases[],
        extra_bits[slot - 1] = bsr32(slot_bases[slot] - slot_bases[slot - 1]);
 }
 
-/* Initialize the global position and length slot tables.  */
+/* Initialize the global offset and length slot tables.  */
 static void
 lzms_compute_slots(void)
 {
-       /* If an explicit formula that maps LZMS position and length slots to
-        * slot bases exists, then it could be used here.  But until one is
-        * found, the following code fills in the slots using the observation
-        * that the increase from one slot base to the next is an increasing
-        * power of 2.  Therefore, run-length encoding of the delta of adjacent
-        * entries can be used.  */
-       static const u8 position_slot_delta_run_lens[] = {
+       /* If an explicit formula that maps LZMS offset and length slots to slot
+        * bases exists, then it could be used here.  But until one is found,
+        * the following code fills in the slots using the observation that the
+        * increase from one slot base to the next is an increasing power of 2.
+        * Therefore, run-length encoding of the delta of adjacent entries can
+        * be used.  */
+       static const u8 offset_slot_delta_run_lens[] = {
                9,   0,   9,   7,   10,  15,  15,  20,
                20,  30,  33,  40,  42,  45,  60,  73,
                80,  85,  95,  105, 6,
@@ -127,23 +121,14 @@ lzms_compute_slots(void)
                1,
        };
 
-       /* Position slots  */
-       lzms_decode_delta_rle_slot_bases(lzms_position_slot_base,
-                                        lzms_extra_position_bits,
-                                        position_slot_delta_run_lens,
-                                        ARRAY_LEN(position_slot_delta_run_lens),
+       /* Offset slots  */
+       lzms_decode_delta_rle_slot_bases(lzms_offset_slot_base,
+                                        lzms_extra_offset_bits,
+                                        offset_slot_delta_run_lens,
+                                        ARRAY_LEN(offset_slot_delta_run_lens),
                                         0x7fffffff,
                                         LZMS_MAX_NUM_OFFSET_SYMS);
 
-       for (u32 order = 0; order < 30; order++) {
-               lzms_order_to_position_slot_bounds[order][0] =
-                       lzms_get_slot(1U << order, lzms_position_slot_base,
-                                     LZMS_MAX_NUM_OFFSET_SYMS);
-               lzms_order_to_position_slot_bounds[order][1] =
-                       lzms_get_slot((1U << (order + 1)) - 1, lzms_position_slot_base,
-                                     LZMS_MAX_NUM_OFFSET_SYMS);
-       }
-
        /* Length slots  */
        lzms_decode_delta_rle_slot_bases(lzms_length_slot_base,
                                         lzms_extra_length_bits,
@@ -151,17 +136,9 @@ lzms_compute_slots(void)
                                         ARRAY_LEN(length_slot_delta_run_lens),
                                         0x400108ab,
                                         LZMS_NUM_LEN_SYMS);
-
-       /* Create table mapping short lengths to length slots.  */
-       for (u32 slot = 0, i = 0; i < LZMS_NUM_FAST_LENGTHS; i++) {
-               if (i >= lzms_length_slot_base[slot + 1])
-                       slot++;
-               lzms_length_slot_fast[i] = slot;
-       }
 }
 
-/* Initialize the global position and length slot tables if not done so already.
- * */
+/* Initialize the global offset and length slot tables if not already done.  */
 void
 lzms_init_slots(void)
 {
@@ -337,7 +314,7 @@ lzms_x86_filter(u8 data[restrict], s32 size,
        }
 }
 
-static void
+void
 lzms_init_lz_lru_queues(struct lzms_lz_lru_queues *lz)
 {
        /* Recent offsets for LZ matches  */
@@ -348,7 +325,7 @@ lzms_init_lz_lru_queues(struct lzms_lz_lru_queues *lz)
        lz->upcoming_offset = 0;
 }
 
-static void
+void
 lzms_init_delta_lru_queues(struct lzms_delta_lru_queues *delta)
 {
        /* Recent offsets and powers for LZ matches  */
@@ -371,7 +348,7 @@ lzms_init_lru_queues(struct lzms_lru_queues *lru)
 }
 
 void
-lzms_update_lz_lru_queues(struct lzms_lz_lru_queues *lz)
+lzms_update_lz_lru_queue(struct lzms_lz_lru_queues *lz)
 {
        if (lz->prev_offset != 0) {
                for (int i = LZMS_NUM_RECENT_OFFSETS - 1; i >= 0; i--)
@@ -400,6 +377,6 @@ lzms_update_delta_lru_queues(struct lzms_delta_lru_queues *delta)
 void
 lzms_update_lru_queues(struct lzms_lru_queues *lru)
 {
-       lzms_update_lz_lru_queues(&lru->lz);
+       lzms_update_lz_lru_queue(&lru->lz);
        lzms_update_delta_lru_queues(&lru->delta);
 }
index 8ad19bc0d1cb2820524d4cde3b6f680b3bb45326..fb1f777ac6b5c3adeb69c1a8bf7508e603baf92f 100644 (file)
@@ -1,5 +1,7 @@
 /*
  * lzms-compress.c
+ *
+ * A compressor that produces output compatible with the LZMS compression format.
  */
 
 /*
  * along with wimlib; if not, see http://www.gnu.org/licenses/.
  */
 
-/* This a compressor for the LZMS compression format.  More details about this
- * format can be found in lzms-decompress.c.
- *
- * Also see lzx-compress.c for general information about match-finding and
- * match-choosing that also applies to this LZMS compressor.
- *
- * NOTE: this compressor currently does not code any delta matches.
- */
-
 #ifdef HAVE_CONFIG_H
 #  include "config.h"
 #endif
 
-#include "wimlib/assert.h"
-#include "wimlib/compiler.h"
-#include "wimlib/compressor_ops.h"
 #include "wimlib/compress_common.h"
+#include "wimlib/compressor_ops.h"
 #include "wimlib/endianness.h"
 #include "wimlib/error.h"
 #include "wimlib/lz_mf.h"
 #include <limits.h>
 #include <pthread.h>
 
-/* Stucture used for writing raw bits to the end of the LZMS-compressed data as
- * a series of 16-bit little endian coding units.  */
+/* Stucture used for writing raw bits as a series of 16-bit little endian coding
+ * units.  This starts at the *end* of the compressed data buffer and proceeds
+ * backwards.  */
 struct lzms_output_bitstream {
-       /* Buffer variable containing zero or more bits that have been logically
-        * written to the bitstream but not yet written to memory.  This must be
-        * at least as large as the coding unit size.  */
-       u16 bitbuf;
 
-       /* Number of bits in @bitbuf that are valid.  */
-       unsigned num_free_bits;
+       /* Bits that haven't yet been written to the output buffer.  */
+       u64 bitbuf;
+
+       /* Number of bits currently held in @bitbuf.  */
+       unsigned bitcount;
 
        /* Pointer to one past the next position in the compressed data buffer
         * at which to output a 16-bit coding unit.  */
-       le16 *out;
+       le16 *next;
 
-       /* Maximum number of 16-bit coding units that can still be output to
-        * the compressed data buffer.  */
-       size_t num_le16_remaining;
-
-       /* Set to %true if not all coding units could be output due to
-        * insufficient space.  */
-       bool overrun;
+       /* Pointer to the beginning of the output buffer.  (The "end" when
+        * writing backwards!)  */
+       le16 *begin;
 };
 
-/* Stucture used for range encoding (raw version).  */
+/* Stucture used for range encoding (raw version).  This starts at the
+ * *beginning* of the compressed data buffer and proceeds forward.  */
 struct lzms_range_encoder_raw {
 
        /* A 33-bit variable that holds the low boundary of the current range.
@@ -91,25 +79,21 @@ struct lzms_range_encoder_raw {
         * subsequent such coding units are 0xffff.  */
        u32 cache_size;
 
-       /* Pointer to the next position in the compressed data buffer at which
-        * to output a 16-bit coding unit.  */
-       le16 *out;
-
-       /* Maximum number of 16-bit coding units that can still be output to
-        * the compressed data buffer.  */
-       size_t num_le16_remaining;
+       /* Pointer to the beginning of the output buffer.  */
+       le16 *begin;
 
-       /* %true when the very first coding unit has not yet been output.  */
-       bool first;
+       /* Pointer to the position in the output buffer at which the next coding
+        * unit must be written.  */
+       le16 *next;
 
-       /* Set to %true if not all coding units could be output due to
-        * insufficient space.  */
-       bool overrun;
+       /* Pointer just past the end of the output buffer.  */
+       le16 *end;
 };
 
 /* Structure used for range encoding.  This wraps around `struct
  * lzms_range_encoder_raw' to use and maintain probability entries.  */
 struct lzms_range_encoder {
+
        /* Pointer to the raw range encoder, which has no persistent knowledge
         * of probabilities.  Multiple lzms_range_encoder's share the same
         * lzms_range_encoder_raw.  */
@@ -157,6 +141,7 @@ struct lzms_huffman_encoder {
        u32 codewords[LZMS_MAX_NUM_SYMS];
 };
 
+/* Internal compression parameters  */
 struct lzms_compressor_params {
        u32 min_match_length;
        u32 nice_match_length;
@@ -164,44 +149,35 @@ struct lzms_compressor_params {
        u32 optim_array_length;
 };
 
-/* State of the LZMS compressor.  */
+/* State of the LZMS compressor  */
 struct lzms_compressor {
-       /* Pointer to a buffer holding the preprocessed data to compress.  */
-       u8 *window;
 
-       /* Current position in @buffer.  */
-       u32 cur_window_pos;
+       /* Internal compression parameters  */
+       struct lzms_compressor_params params;
 
-       /* Size of the data in @buffer.  */
-       u32 window_size;
+       /* Data currently being compressed  */
+       u8 *cur_window;
+       u32 cur_window_size;
 
-       /* Lempel-Ziv match-finder.  */
+       /* Lempel-Ziv match-finder  */
        struct lz_mf *mf;
 
-       /* Temporary space to store found matches.  */
+       /* Temporary space to store found matches  */
        struct lz_match *matches;
 
-       /* Match-chooser data.  */
+       /* Per-position data for near-optimal parsing  */
        struct lzms_mc_pos_data *optimum;
-       unsigned optimum_cur_idx;
-       unsigned optimum_end_idx;
-
-       /* Maximum block size this compressor instantiation allows.  This is the
-        * allocated size of @window.  */
-       u32 max_block_size;
-
-       /* Compression parameters.  */
-       struct lzms_compressor_params params;
+       struct lzms_mc_pos_data *optimum_end;
 
        /* Raw range encoder which outputs to the beginning of the compressed
-        * data buffer, proceeding forwards.  */
+        * data buffer, proceeding forwards  */
        struct lzms_range_encoder_raw rc;
 
        /* Bitstream which outputs to the end of the compressed data buffer,
-        * proceeding backwards.  */
+        * proceeding backwards  */
        struct lzms_output_bitstream os;
 
-       /* Range encoders.  */
+       /* Range encoders  */
        struct lzms_range_encoder main_range_encoder;
        struct lzms_range_encoder match_range_encoder;
        struct lzms_range_encoder lz_match_range_encoder;
@@ -209,33 +185,79 @@ struct lzms_compressor {
        struct lzms_range_encoder delta_match_range_encoder;
        struct lzms_range_encoder delta_repeat_match_range_encoders[LZMS_NUM_RECENT_OFFSETS - 1];
 
-       /* Huffman encoders.  */
+       /* Huffman encoders  */
        struct lzms_huffman_encoder literal_encoder;
        struct lzms_huffman_encoder lz_offset_encoder;
        struct lzms_huffman_encoder length_encoder;
        struct lzms_huffman_encoder delta_power_encoder;
        struct lzms_huffman_encoder delta_offset_encoder;
 
-       /* LRU (least-recently-used) queues for match information.  */
-       struct lzms_lru_queues lru;
-
-       /* Used for preprocessing.  */
+       /* Used for preprocessing  */
        s32 last_target_usages[65536];
+
+#define LZMS_NUM_FAST_LENGTHS 256
+       /* Table: length => length slot for small lengths  */
+       u8 length_slot_fast[LZMS_NUM_FAST_LENGTHS];
+
+       /* Table: length => current cost for small match lengths  */
+       u32 length_cost_fast[LZMS_NUM_FAST_LENGTHS];
+
+#define LZMS_NUM_FAST_OFFSETS 32768
+       /* Table: offset => offset slot for small offsets  */
+       u8 offset_slot_fast[LZMS_NUM_FAST_OFFSETS];
 };
 
+/*
+ * Match chooser position data:
+ *
+ * An array of these structures is used during the near-optimal match-choosing
+ * algorithm.  They correspond to consecutive positions in the window and are
+ * used to keep track of the cost to reach each position, and the match/literal
+ * choices that need to be chosen to reach that position.
+ */
 struct lzms_mc_pos_data {
+
+       /* The cost, in bits, of the lowest-cost path that has been found to
+        * reach this position.  This can change as progressively lower cost
+        * paths are found to reach this position.  */
        u32 cost;
-#define MC_INFINITE_COST ((u32)~0UL)
-       union {
-               struct {
-                       u32 link;
-                       u32 match_offset;
-               } prev;
-               struct {
-                       u32 link;
-                       u32 match_offset;
-               } next;
-       };
+#define MC_INFINITE_COST UINT32_MAX
+
+       /* The match or literal that was taken to reach this position.  This can
+        * change as progressively lower cost paths are found to reach this
+        * position.
+        *
+        * This variable is divided into two bitfields.
+        *
+        * Literals:
+        *      Low bits are 1, high bits are the literal.
+        *
+        * Explicit offset matches:
+        *      Low bits are the match length, high bits are the offset plus 2.
+        *
+        * Repeat offset matches:
+        *      Low bits are the match length, high bits are the queue index.
+        */
+       u64 mc_item_data;
+#define MC_OFFSET_SHIFT 32
+#define MC_LEN_MASK (((u64)1 << MC_OFFSET_SHIFT) - 1)
+
+       /* The LZMS adaptive state that exists at this position.  This is filled
+        * in lazily, only after the minimum-cost path to this position is
+        * found.
+        *
+        * Note: the way we handle this adaptive state in the "minimum-cost"
+        * parse is actually only an approximation.  It's possible for the
+        * globally optimal, minimum cost path to contain a prefix, ending at a
+        * position, where that path prefix is *not* the minimum cost path to
+        * that position.  This can happen if such a path prefix results in a
+        * different adaptive state which results in lower costs later.  We do
+        * not solve this problem; we only consider the lowest cost to reach
+        * each position, which seems to be an acceptable approximation.
+        *
+        * Note: this adaptive state also does not include the probability
+        * entries or current Huffman codewords.  Those aren't maintained
+        * per-position and are only updated occassionally.  */
        struct lzms_adaptive_state {
                struct lzms_lz_lru_queues lru;
                u8 main_state;
@@ -245,60 +267,110 @@ struct lzms_mc_pos_data {
        } state;
 };
 
-/* Initialize the output bitstream @os to write forwards to the specified
+static void
+lzms_init_fast_slots(struct lzms_compressor *c)
+{
+       /* Create table mapping small lengths to length slots.  */
+       for (unsigned slot = 0, i = 0; i < LZMS_NUM_FAST_LENGTHS; i++) {
+               while (i >= lzms_length_slot_base[slot + 1])
+                       slot++;
+               c->length_slot_fast[i] = slot;
+       }
+
+       /* Create table mapping small offsets to offset slots.  */
+       for (unsigned slot = 0, i = 0; i < LZMS_NUM_FAST_OFFSETS; i++) {
+               while (i >= lzms_offset_slot_base[slot + 1])
+                       slot++;
+               c->offset_slot_fast[i] = slot;
+       }
+}
+
+static inline unsigned
+lzms_get_length_slot_fast(const struct lzms_compressor *c, u32 length)
+{
+       if (likely(length < LZMS_NUM_FAST_LENGTHS))
+               return c->length_slot_fast[length];
+       else
+               return lzms_get_length_slot(length);
+}
+
+static inline unsigned
+lzms_get_offset_slot_fast(const struct lzms_compressor *c, u32 offset)
+{
+       if (offset < LZMS_NUM_FAST_OFFSETS)
+               return c->offset_slot_fast[offset];
+       else
+               return lzms_get_offset_slot(offset);
+}
+
+/* Initialize the output bitstream @os to write backwards to the specified
  * compressed data buffer @out that is @out_limit 16-bit integers long.  */
 static void
 lzms_output_bitstream_init(struct lzms_output_bitstream *os,
                           le16 *out, size_t out_limit)
 {
        os->bitbuf = 0;
-       os->num_free_bits = 16;
-       os->out = out + out_limit;
-       os->num_le16_remaining = out_limit;
-       os->overrun = false;
+       os->bitcount = 0;
+       os->next = out + out_limit;
+       os->begin = out;
 }
 
-/* Write @num_bits bits, contained in the low @num_bits bits of @bits (ordered
- * from high-order to low-order), to the output bitstream @os.  */
-static void
-lzms_output_bitstream_put_bits(struct lzms_output_bitstream *os,
-                              u32 bits, unsigned num_bits)
+/*
+ * Write some bits, contained in the low @num_bits bits of @bits (ordered from
+ * high-order to low-order), to the output bitstream @os.
+ *
+ * @max_num_bits is a compile-time constant that specifies the maximum number of
+ * bits that can ever be written at this call site.
+ */
+static inline void
+lzms_output_bitstream_put_varbits(struct lzms_output_bitstream *os,
+                                 u32 bits, unsigned num_bits,
+                                 unsigned max_num_bits)
 {
-       bits &= (1U << num_bits) - 1;
+       LZMS_ASSERT(num_bits <= 48);
 
-       while (num_bits > os->num_free_bits) {
+       /* Add the bits to the bit buffer variable.  */
+       os->bitcount += num_bits;
+       os->bitbuf = (os->bitbuf << num_bits) | bits;
 
-               if (unlikely(os->num_le16_remaining == 0)) {
-                       os->overrun = true;
-                       return;
-               }
+       /* Check whether any coding units need to be written.  */
+       while (os->bitcount >= 16) {
 
-               unsigned num_fill_bits = os->num_free_bits;
+               os->bitcount -= 16;
 
-               os->bitbuf <<= num_fill_bits;
-               os->bitbuf |= bits >> (num_bits - num_fill_bits);
+               /* Write a coding unit, unless it would underflow the buffer. */
+               if (os->next != os->begin)
+                       *--os->next = cpu_to_le16(os->bitbuf >> os->bitcount);
 
-               *--os->out = cpu_to_le16(os->bitbuf);
-               --os->num_le16_remaining;
-
-               os->num_free_bits = 16;
-               num_bits -= num_fill_bits;
-               bits &= (1U << num_bits) - 1;
+               /* Optimization for call sites that never write more than 16
+                * bits at once.  */
+               if (max_num_bits <= 16)
+                       break;
        }
-       os->bitbuf <<= num_bits;
-       os->bitbuf |= bits;
-       os->num_free_bits -= num_bits;
+}
+
+/* Use when @num_bits is a compile-time constant.  Otherwise use
+ * lzms_output_bitstream_put_bits().  */
+static inline void
+lzms_output_bitstream_put_bits(struct lzms_output_bitstream *os,
+                              u32 bits, unsigned num_bits)
+{
+       lzms_output_bitstream_put_varbits(os, bits, num_bits, num_bits);
 }
 
 /* Flush the output bitstream, ensuring that all bits written to it have been
- * written to memory.  Returns %true if all bits were output successfully, or
- * %false if an overrun occurred.  */
+ * written to memory.  Returns %true if all bits have been output successfully,
+ * or %false if an overrun occurred.  */
 static bool
 lzms_output_bitstream_flush(struct lzms_output_bitstream *os)
 {
-       if (os->num_free_bits != 16)
-               lzms_output_bitstream_put_bits(os, 0, os->num_free_bits + 1);
-       return !os->overrun;
+       if (os->next == os->begin)
+               return false;
+
+       if (os->bitcount != 0)
+               *--os->next = cpu_to_le16(os->bitbuf << (16 - os->bitcount));
+
+       return true;
 }
 
 /* Initialize the range encoder @rc to write forwards to the specified
@@ -311,10 +383,9 @@ lzms_range_encoder_raw_init(struct lzms_range_encoder_raw *rc,
        rc->range = 0xffffffff;
        rc->cache = 0;
        rc->cache_size = 1;
-       rc->out = out;
-       rc->num_le16_remaining = out_limit;
-       rc->first = true;
-       rc->overrun = false;
+       rc->begin = out;
+       rc->next = out - 1;
+       rc->end = out + out_limit;
 }
 
 /*
@@ -334,26 +405,19 @@ lzms_range_encoder_raw_init(struct lzms_range_encoder_raw *rc,
 static void
 lzms_range_encoder_raw_shift_low(struct lzms_range_encoder_raw *rc)
 {
-       LZMS_DEBUG("low=%"PRIx64", cache=%"PRIx64", cache_size=%u",
-                  rc->low, rc->cache, rc->cache_size);
        if ((u32)(rc->low) < 0xffff0000 ||
            (u32)(rc->low >> 32) != 0)
        {
                /* Carry not needed (rc->low < 0xffff0000), or carry occurred
                 * ((rc->low >> 32) != 0, a.k.a. the carry bit is 1).  */
                do {
-                       if (!rc->first) {
-                               if (rc->num_le16_remaining == 0) {
-                                       rc->overrun = true;
-                                       return;
-                               }
-                               *rc->out++ = cpu_to_le16(rc->cache +
-                                                        (u16)(rc->low >> 32));
-                               --rc->num_le16_remaining;
+                       if (likely(rc->next >= rc->begin)) {
+                               if (rc->next != rc->end)
+                                       *rc->next++ = cpu_to_le16(rc->cache +
+                                                                 (u16)(rc->low >> 32));
                        } else {
-                               rc->first = false;
+                               rc->next++;
                        }
-
                        rc->cache = 0xffff;
                } while (--rc->cache_size != 0);
 
@@ -377,15 +441,15 @@ lzms_range_encoder_raw_flush(struct lzms_range_encoder_raw *rc)
 {
        for (unsigned i = 0; i < 4; i++)
                lzms_range_encoder_raw_shift_low(rc);
-       return !rc->overrun;
+       return rc->next != rc->end;
 }
 
 /* Encode the next bit using the range encoder (raw version).
  *
  * @prob is the chance out of LZMS_PROBABILITY_MAX that the next bit is 0.  */
-static void
-lzms_range_encoder_raw_encode_bit(struct lzms_range_encoder_raw *rc, int bit,
-                                 u32 prob)
+static inline void
+lzms_range_encoder_raw_encode_bit(struct lzms_range_encoder_raw *rc,
+                                 int bit, u32 prob)
 {
        lzms_range_encoder_raw_normalize(rc);
 
@@ -400,7 +464,7 @@ lzms_range_encoder_raw_encode_bit(struct lzms_range_encoder_raw *rc, int bit,
 
 /* Encode a bit using the specified range encoder. This wraps around
  * lzms_range_encoder_raw_encode_bit() to handle using and updating the
- * appropriate probability table.  */
+ * appropriate state and probability entry.  */
 static void
 lzms_range_encode_bit(struct lzms_range_encoder *enc, int bit)
 {
@@ -410,207 +474,197 @@ lzms_range_encode_bit(struct lzms_range_encoder *enc, int bit)
        /* Load the probability entry corresponding to the current state.  */
        prob_entry = &enc->prob_entries[enc->state];
 
-       /* Treat the number of zero bits in the most recently encoded
-        * LZMS_PROBABILITY_MAX bits with this probability entry as the chance,
-        * out of LZMS_PROBABILITY_MAX, that the next bit will be a 0.  However,
-        * don't allow 0% or 100% probabilities.  */
-       prob = prob_entry->num_recent_zero_bits;
-       if (prob == 0)
-               prob = 1;
-       else if (prob == LZMS_PROBABILITY_MAX)
-               prob = LZMS_PROBABILITY_MAX - 1;
-
-       /* Encode the next bit.  */
+       /* Update the state based on the next bit.  */
+       enc->state = ((enc->state << 1) | bit) & enc->mask;
+
+       /* Get the probability that the bit is 0.  */
+       prob = lzms_get_probability(prob_entry);
+
+       /* Update the probability entry.  */
+       lzms_update_probability_entry(prob_entry, bit);
+
+       /* Encode the bit.  */
        lzms_range_encoder_raw_encode_bit(enc->rc, bit, prob);
+}
 
-       /* Update the state based on the newly encoded bit.  */
-       enc->state = ((enc->state << 1) | bit) & enc->mask;
+/* Called when an adaptive Huffman code needs to be rebuilt.  */
+static void
+lzms_rebuild_huffman_code(struct lzms_huffman_encoder *enc)
+{
+       make_canonical_huffman_code(enc->num_syms,
+                                   LZMS_MAX_CODEWORD_LEN,
+                                   enc->sym_freqs,
+                                   enc->lens,
+                                   enc->codewords);
 
-       /* Update the recent bits, including the cached count of 0's.  */
-       BUILD_BUG_ON(LZMS_PROBABILITY_MAX > sizeof(prob_entry->recent_bits) * 8);
-       if (bit == 0) {
-               if (prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1))) {
-                       /* Replacing 1 bit with 0 bit; increment the zero count.
-                        */
-                       prob_entry->num_recent_zero_bits++;
-               }
-       } else {
-               if (!(prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1)))) {
-                       /* Replacing 0 bit with 1 bit; decrement the zero count.
-                        */
-                       prob_entry->num_recent_zero_bits--;
-               }
+       /* Dilute the frequencies.  */
+       for (unsigned i = 0; i < enc->num_syms; i++) {
+               enc->sym_freqs[i] >>= 1;
+               enc->sym_freqs[i] += 1;
        }
-       prob_entry->recent_bits = (prob_entry->recent_bits << 1) | bit;
+       enc->num_syms_written = 0;
 }
 
 /* Encode a symbol using the specified Huffman encoder.  */
-static void
-lzms_huffman_encode_symbol(struct lzms_huffman_encoder *enc, u32 sym)
+static inline void
+lzms_huffman_encode_symbol(struct lzms_huffman_encoder *enc, unsigned sym)
 {
-       LZMS_ASSERT(sym < enc->num_syms);
-       lzms_output_bitstream_put_bits(enc->os,
-                                      enc->codewords[sym],
-                                      enc->lens[sym]);
+       lzms_output_bitstream_put_varbits(enc->os,
+                                         enc->codewords[sym],
+                                         enc->lens[sym],
+                                         LZMS_MAX_CODEWORD_LEN);
        ++enc->sym_freqs[sym];
-       if (++enc->num_syms_written == enc->rebuild_freq) {
-               /* Adaptive code needs to be rebuilt.  */
-               LZMS_DEBUG("Rebuilding code (num_syms=%u)", enc->num_syms);
-               make_canonical_huffman_code(enc->num_syms,
-                                           LZMS_MAX_CODEWORD_LEN,
-                                           enc->sym_freqs,
-                                           enc->lens,
-                                           enc->codewords);
-
-               /* Dilute the frequencies.  */
-               for (unsigned i = 0; i < enc->num_syms; i++) {
-                       enc->sym_freqs[i] >>= 1;
-                       enc->sym_freqs[i] += 1;
-               }
-               enc->num_syms_written = 0;
-       }
+       if (++enc->num_syms_written == enc->rebuild_freq)
+               lzms_rebuild_huffman_code(enc);
 }
 
 static void
-lzms_encode_length(struct lzms_huffman_encoder *enc, u32 length)
+lzms_update_fast_length_costs(struct lzms_compressor *c);
+
+/* Encode a match length.  */
+static void
+lzms_encode_length(struct lzms_compressor *c, u32 length)
 {
        unsigned slot;
        unsigned num_extra_bits;
        u32 extra_bits;
 
-       slot = lzms_get_length_slot(length);
+       slot = lzms_get_length_slot_fast(c, length);
 
+       extra_bits = length - lzms_length_slot_base[slot];
        num_extra_bits = lzms_extra_length_bits[slot];
 
-       extra_bits = length - lzms_length_slot_base[slot];
+       lzms_huffman_encode_symbol(&c->length_encoder, slot);
+       if (c->length_encoder.num_syms_written == 0)
+               lzms_update_fast_length_costs(c);
 
-       lzms_huffman_encode_symbol(enc, slot);
-       lzms_output_bitstream_put_bits(enc->os, extra_bits, num_extra_bits);
+       lzms_output_bitstream_put_varbits(c->length_encoder.os,
+                                         extra_bits, num_extra_bits, 30);
 }
 
+/* Encode an LZ match offset.  */
 static void
-lzms_encode_offset(struct lzms_huffman_encoder *enc, u32 offset)
+lzms_encode_lz_offset(struct lzms_compressor *c, u32 offset)
 {
        unsigned slot;
        unsigned num_extra_bits;
        u32 extra_bits;
 
-       slot = lzms_get_position_slot(offset);
-
-       num_extra_bits = lzms_extra_position_bits[slot];
+       slot = lzms_get_offset_slot_fast(c, offset);
 
-       extra_bits = offset - lzms_position_slot_base[slot];
+       extra_bits = offset - lzms_offset_slot_base[slot];
+       num_extra_bits = lzms_extra_offset_bits[slot];
 
-       lzms_huffman_encode_symbol(enc, slot);
-       lzms_output_bitstream_put_bits(enc->os, extra_bits, num_extra_bits);
-}
-
-static void
-lzms_begin_encode_item(struct lzms_compressor *ctx)
-{
-       ctx->lru.lz.upcoming_offset = 0;
-       ctx->lru.delta.upcoming_offset = 0;
-       ctx->lru.delta.upcoming_power = 0;
-}
-
-static void
-lzms_end_encode_item(struct lzms_compressor *ctx, u32 length)
-{
-       LZMS_ASSERT(ctx->window_size - ctx->cur_window_pos >= length);
-       ctx->cur_window_pos += length;
-       lzms_update_lru_queues(&ctx->lru);
+       lzms_huffman_encode_symbol(&c->lz_offset_encoder, slot);
+       lzms_output_bitstream_put_varbits(c->lz_offset_encoder.os,
+                                         extra_bits, num_extra_bits, 30);
 }
 
 /* Encode a literal byte.  */
 static void
-lzms_encode_literal(struct lzms_compressor *ctx, u8 literal)
+lzms_encode_literal(struct lzms_compressor *c, unsigned literal)
 {
-       LZMS_DEBUG("Position %u: Encoding literal 0x%02x ('%c')",
-                  ctx->cur_window_pos, literal, literal);
-
-       lzms_begin_encode_item(ctx);
-
        /* Main bit: 0 = a literal, not a match.  */
-       lzms_range_encode_bit(&ctx->main_range_encoder, 0);
+       lzms_range_encode_bit(&c->main_range_encoder, 0);
 
        /* Encode the literal using the current literal Huffman code.  */
-       lzms_huffman_encode_symbol(&ctx->literal_encoder, literal);
-
-       lzms_end_encode_item(ctx, 1);
+       lzms_huffman_encode_symbol(&c->literal_encoder, literal);
 }
 
-/* Encode a (length, offset) pair (LZ match).  */
+/* Encode an LZ repeat offset match.  */
 static void
-lzms_encode_lz_match(struct lzms_compressor *ctx, u32 length, u32 offset)
+lzms_encode_lz_repeat_offset_match(struct lzms_compressor *c,
+                                  u32 length, unsigned rep_index)
 {
-       int recent_offset_idx;
-
-       LZMS_DEBUG("Position %u: Encoding LZ match {length=%u, offset=%u}",
-                  ctx->cur_window_pos, length, offset);
-
-       LZMS_ASSERT(length <= ctx->window_size - ctx->cur_window_pos);
-       LZMS_ASSERT(offset <= ctx->cur_window_pos);
-       LZMS_ASSERT(!memcmp(&ctx->window[ctx->cur_window_pos],
-                           &ctx->window[ctx->cur_window_pos - offset],
-                           length));
-
-       lzms_begin_encode_item(ctx);
+       unsigned i;
 
        /* Main bit: 1 = a match, not a literal.  */
-       lzms_range_encode_bit(&ctx->main_range_encoder, 1);
+       lzms_range_encode_bit(&c->main_range_encoder, 1);
 
        /* Match bit: 0 = an LZ match, not a delta match.  */
-       lzms_range_encode_bit(&ctx->match_range_encoder, 0);
+       lzms_range_encode_bit(&c->match_range_encoder, 0);
 
-       /* Determine if the offset can be represented as a recent offset.  */
-       for (recent_offset_idx = 0;
-            recent_offset_idx < LZMS_NUM_RECENT_OFFSETS;
-            recent_offset_idx++)
-               if (offset == ctx->lru.lz.recent_offsets[recent_offset_idx])
-                       break;
+       /* LZ match bit: 1 = repeat offset, not an explicit offset.  */
+       lzms_range_encode_bit(&c->lz_match_range_encoder, 1);
 
-       if (recent_offset_idx == LZMS_NUM_RECENT_OFFSETS) {
-               /* Explicit offset.  */
+       /* Encode the repeat offset index.  A 1 bit is encoded for each index
+        * passed up.  This sequence of 1 bits is terminated by a 0 bit, or
+        * automatically when (LZMS_NUM_RECENT_OFFSETS - 1) 1 bits have been
+        * encoded.  */
+       for (i = 0; i < rep_index; i++)
+               lzms_range_encode_bit(&c->lz_repeat_match_range_encoders[i], 1);
 
-               /* LZ match bit: 0 = explicit offset, not a recent offset.  */
-               lzms_range_encode_bit(&ctx->lz_match_range_encoder, 0);
+       if (i < LZMS_NUM_RECENT_OFFSETS - 1)
+               lzms_range_encode_bit(&c->lz_repeat_match_range_encoders[i], 0);
 
-               /* Encode the match offset.  */
-               lzms_encode_offset(&ctx->lz_offset_encoder, offset);
-       } else {
-               int i;
-
-               /* Recent offset.  */
+       /* Encode the match length.  */
+       lzms_encode_length(c, length);
+}
 
-               /* LZ match bit: 1 = recent offset, not an explicit offset.  */
-               lzms_range_encode_bit(&ctx->lz_match_range_encoder, 1);
+/* Encode an LZ explicit offset match.  */
+static void
+lzms_encode_lz_explicit_offset_match(struct lzms_compressor *c,
+                                    u32 length, u32 offset)
+{
+       /* Main bit: 1 = a match, not a literal.  */
+       lzms_range_encode_bit(&c->main_range_encoder, 1);
 
-               /* Encode the recent offset index.  A 1 bit is encoded for each
-                * index passed up.  This sequence of 1 bits is terminated by a
-                * 0 bit, or automatically when (LZMS_NUM_RECENT_OFFSETS - 1) 1
-                * bits have been encoded.  */
-               for (i = 0; i < recent_offset_idx; i++)
-                       lzms_range_encode_bit(&ctx->lz_repeat_match_range_encoders[i], 1);
+       /* Match bit: 0 = an LZ match, not a delta match.  */
+       lzms_range_encode_bit(&c->match_range_encoder, 0);
 
-               if (i < LZMS_NUM_RECENT_OFFSETS - 1)
-                       lzms_range_encode_bit(&ctx->lz_repeat_match_range_encoders[i], 0);
+       /* LZ match bit: 0 = explicit offset, not a repeat offset.  */
+       lzms_range_encode_bit(&c->lz_match_range_encoder, 0);
 
-               /* Initial update of the LZ match offset LRU queue.  */
-               for (; i < LZMS_NUM_RECENT_OFFSETS; i++)
-                       ctx->lru.lz.recent_offsets[i] = ctx->lru.lz.recent_offsets[i + 1];
-       }
+       /* Encode the match offset.  */
+       lzms_encode_lz_offset(c, offset);
 
        /* Encode the match length.  */
-       lzms_encode_length(&ctx->length_encoder, length);
+       lzms_encode_length(c, length);
+}
 
-       /* Save the match offset for later insertion at the front of the LZ
-        * match offset LRU queue.  */
-       ctx->lru.lz.upcoming_offset = offset;
+static void
+lzms_encode_item(struct lzms_compressor *c, u64 mc_item_data)
+{
+       u32 len = mc_item_data & MC_LEN_MASK;
+       u32 offset_data = mc_item_data >> MC_OFFSET_SHIFT;
 
-       lzms_end_encode_item(ctx, length);
+       if (len == 1)
+               lzms_encode_literal(c, offset_data);
+       else if (offset_data < LZMS_NUM_RECENT_OFFSETS)
+               lzms_encode_lz_repeat_offset_match(c, len, offset_data);
+       else
+               lzms_encode_lz_explicit_offset_match(c, len, offset_data - LZMS_OFFSET_OFFSET);
 }
 
-#define LZMS_COST_SHIFT 5
+/* Encode a list of matches and literals chosen by the parsing algorithm.  */
+static void
+lzms_encode_item_list(struct lzms_compressor *c,
+                     struct lzms_mc_pos_data *cur_optimum_ptr)
+{
+       struct lzms_mc_pos_data *end_optimum_ptr;
+       u64 saved_item;
+       u64 item;
+
+       /* The list is currently in reverse order (last item to first item).
+        * Reverse it.  */
+       end_optimum_ptr = cur_optimum_ptr;
+       saved_item = cur_optimum_ptr->mc_item_data;
+       do {
+               item = saved_item;
+               cur_optimum_ptr -= item & MC_LEN_MASK;
+               saved_item = cur_optimum_ptr->mc_item_data;
+               cur_optimum_ptr->mc_item_data = item;
+       } while (cur_optimum_ptr != c->optimum);
+
+       /* Walk the list of items from beginning to end, encoding each item.  */
+       do {
+               lzms_encode_item(c, cur_optimum_ptr->mc_item_data);
+               cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK;
+       } while (cur_optimum_ptr != end_optimum_ptr);
+}
+
+/* Each bit costs 1 << LZMS_COST_SHIFT units.  */
+#define LZMS_COST_SHIFT 6
 
 /*#define LZMS_RC_COSTS_USE_FLOATING_POINT*/
 
@@ -681,24 +735,14 @@ lzms_init_rc_costs(void)
        pthread_once(&once, lzms_do_init_rc_costs);
 }
 
-/*
- * Return the cost to range-encode the specified bit when in the specified
- * state.
- *
- * @enc                The range encoder to use.
- * @cur_state  Current state, which indicates the probability entry to choose.
- *             Updated by this function.
- * @bit                The bit to encode (0 or 1).
- */
-static u32
-lzms_rc_bit_cost(const struct lzms_range_encoder *enc, u8 *cur_state, int bit)
+/* Return the cost to range-encode the specified bit from the specified state.*/
+static inline u32
+lzms_rc_bit_cost(const struct lzms_range_encoder *enc, u8 cur_state, int bit)
 {
        u32 prob_zero;
        u32 prob_correct;
 
-       prob_zero = enc->prob_entries[*cur_state & enc->mask].num_recent_zero_bits;
-
-       *cur_state = (*cur_state << 1) | bit;
+       prob_zero = enc->prob_entries[cur_state].num_recent_zero_bits;
 
        if (bit == 0)
                prob_correct = prob_zero;
@@ -708,444 +752,487 @@ lzms_rc_bit_cost(const struct lzms_range_encoder *enc, u8 *cur_state, int bit)
        return lzms_rc_costs[prob_correct];
 }
 
-static u32
-lzms_huffman_symbol_cost(const struct lzms_huffman_encoder *enc, u32 sym)
+/* Return the cost to Huffman-encode the specified symbol.  */
+static inline u32
+lzms_huffman_symbol_cost(const struct lzms_huffman_encoder *enc, unsigned sym)
 {
-       return enc->lens[sym] << LZMS_COST_SHIFT;
+       return (u32)enc->lens[sym] << LZMS_COST_SHIFT;
 }
 
-static u32
-lzms_offset_cost(const struct lzms_huffman_encoder *enc, u32 offset)
+/* Return the cost to encode the specified literal byte.  */
+static inline u32
+lzms_literal_cost(const struct lzms_compressor *c, unsigned literal,
+                 const struct lzms_adaptive_state *state)
 {
-       u32 slot;
-       u32 num_extra_bits;
-       u32 cost = 0;
-
-       slot = lzms_get_position_slot(offset);
-
-       cost += lzms_huffman_symbol_cost(enc, slot);
-
-       num_extra_bits = lzms_extra_position_bits[slot];
-
-       cost += num_extra_bits << LZMS_COST_SHIFT;
-
-       return cost;
+       return lzms_rc_bit_cost(&c->main_range_encoder, state->main_state, 0) +
+              lzms_huffman_symbol_cost(&c->literal_encoder, literal);
 }
 
-static u32
-lzms_get_length_cost(const struct lzms_huffman_encoder *enc, u32 length)
+/* Update the table that directly provides the costs for small lengths.  */
+static void
+lzms_update_fast_length_costs(struct lzms_compressor *c)
 {
-       u32 slot;
-       u32 num_extra_bits;
+       u32 len;
+       int slot = -1;
        u32 cost = 0;
 
-       slot = lzms_get_length_slot(length);
+       for (len = 1; len < LZMS_NUM_FAST_LENGTHS; len++) {
 
-       cost += lzms_huffman_symbol_cost(enc, slot);
-
-       num_extra_bits = lzms_extra_length_bits[slot];
-
-       cost += num_extra_bits << LZMS_COST_SHIFT;
+               while (len >= lzms_length_slot_base[slot + 1]) {
+                       slot++;
+                       cost = (u32)(c->length_encoder.lens[slot] +
+                                    lzms_extra_length_bits[slot]) << LZMS_COST_SHIFT;
+               }
 
-       return cost;
+               c->length_cost_fast[len] = cost;
+       }
 }
 
-static u32
-lzms_get_matches(struct lzms_compressor *ctx, struct lz_match **matches_ret)
+/* Return the cost to encode the specified match length, which must be less than
+ * LZMS_NUM_FAST_LENGTHS.  */
+static inline u32
+lzms_fast_length_cost(const struct lzms_compressor *c, u32 length)
 {
-       *matches_ret = ctx->matches;
-       return lz_mf_get_matches(ctx->mf, ctx->matches);
+       LZMS_ASSERT(length < LZMS_NUM_FAST_LENGTHS);
+       return c->length_cost_fast[length];
 }
 
-static void
-lzms_skip_bytes(struct lzms_compressor *ctx, u32 n)
+/* Return the cost to encode the specified LZ match offset.  */
+static inline u32
+lzms_lz_offset_cost(const struct lzms_compressor *c, u32 offset)
 {
-       lz_mf_skip_positions(ctx->mf, n);
+       unsigned slot = lzms_get_offset_slot_fast(c, offset);
+
+       return (u32)(c->lz_offset_encoder.lens[slot] +
+                    lzms_extra_offset_bits[slot]) << LZMS_COST_SHIFT;
 }
 
-static u32
-lzms_get_literal_cost(struct lzms_compressor *ctx,
-                     struct lzms_adaptive_state *state, u8 literal)
+/*
+ * Consider coding the match at repeat offset index @rep_idx.  Consider each
+ * length from the minimum (2) to the full match length (@rep_len).
+ */
+static inline void
+lzms_consider_lz_repeat_offset_match(const struct lzms_compressor *c,
+                                    struct lzms_mc_pos_data *cur_optimum_ptr,
+                                    u32 rep_len, unsigned rep_idx)
 {
-       u32 cost = 0;
-
-       state->lru.upcoming_offset = 0;
-       lzms_update_lz_lru_queues(&state->lru);
+       u32 len;
+       u32 base_cost;
+       u32 cost;
+       unsigned i;
 
-       cost += lzms_rc_bit_cost(&ctx->main_range_encoder,
-                                &state->main_state, 0);
+       base_cost = cur_optimum_ptr->cost;
 
-       cost += lzms_huffman_symbol_cost(&ctx->literal_encoder, literal);
+       base_cost += lzms_rc_bit_cost(&c->main_range_encoder,
+                                     cur_optimum_ptr->state.main_state, 1);
 
-       return cost;
-}
+       base_cost += lzms_rc_bit_cost(&c->match_range_encoder,
+                                     cur_optimum_ptr->state.match_state, 0);
 
-static u32
-lzms_get_lz_match_cost_nolen(struct lzms_compressor *ctx,
-                            struct lzms_adaptive_state *state, u32 offset)
-{
-       u32 cost = 0;
-       int recent_offset_idx;
+       base_cost += lzms_rc_bit_cost(&c->lz_match_range_encoder,
+                                     cur_optimum_ptr->state.lz_match_state, 1);
 
-       cost += lzms_rc_bit_cost(&ctx->main_range_encoder,
-                                &state->main_state, 1);
-       cost += lzms_rc_bit_cost(&ctx->match_range_encoder,
-                                &state->match_state, 0);
+       for (i = 0; i < rep_idx; i++)
+               base_cost += lzms_rc_bit_cost(&c->lz_repeat_match_range_encoders[i],
+                                             cur_optimum_ptr->state.lz_repeat_match_state[i], 1);
 
-       for (recent_offset_idx = 0;
-            recent_offset_idx < LZMS_NUM_RECENT_OFFSETS;
-            recent_offset_idx++)
-               if (offset == state->lru.recent_offsets[recent_offset_idx])
-                       break;
+       if (i < LZMS_NUM_RECENT_OFFSETS - 1)
+               base_cost += lzms_rc_bit_cost(&c->lz_repeat_match_range_encoders[i],
+                                             cur_optimum_ptr->state.lz_repeat_match_state[i], 0);
 
-       if (recent_offset_idx == LZMS_NUM_RECENT_OFFSETS) {
-               /* Explicit offset.  */
-               cost += lzms_rc_bit_cost(&ctx->lz_match_range_encoder,
-                                        &state->lz_match_state, 0);
+       len = 2;
+       do {
+               cost = base_cost + lzms_fast_length_cost(c, len);
+               if (cost < (cur_optimum_ptr + len)->cost) {
+                       (cur_optimum_ptr + len)->mc_item_data =
+                               ((u64)rep_idx << MC_OFFSET_SHIFT) | len;
+                       (cur_optimum_ptr + len)->cost = cost;
+               }
+       } while (++len <= rep_len);
+}
 
-               cost += lzms_offset_cost(&ctx->lz_offset_encoder, offset);
-       } else {
-               int i;
+/*
+ * Consider coding each match in @matches as an explicit offset match.
+ *
+ * @matches must be sorted by strictly increasing length and strictly increasing
+ * offset.  This is guaranteed by the match-finder.
+ *
+ * We consider each length from the minimum (2) to the longest
+ * (matches[num_matches - 1].len).  For each length, we consider only the
+ * smallest offset for which that length is available.  Although this is not
+ * guaranteed to be optimal due to the possibility of a larger offset costing
+ * less than a smaller offset to code, this is a very useful heuristic.
+ */
+static inline void
+lzms_consider_lz_explicit_offset_matches(const struct lzms_compressor *c,
+                                        struct lzms_mc_pos_data *cur_optimum_ptr,
+                                        const struct lz_match matches[],
+                                        u32 num_matches)
+{
+       u32 len;
+       u32 i;
+       u32 base_cost;
+       u32 position_cost;
+       u32 cost;
 
-               /* Recent offset.  */
-               cost += lzms_rc_bit_cost(&ctx->lz_match_range_encoder,
-                                        &state->lz_match_state, 1);
+       base_cost = cur_optimum_ptr->cost;
 
-               for (i = 0; i < recent_offset_idx; i++)
-                       cost += lzms_rc_bit_cost(&ctx->lz_repeat_match_range_encoders[i],
-                                                &state->lz_repeat_match_state[i], 0);
+       base_cost += lzms_rc_bit_cost(&c->main_range_encoder,
+                                     cur_optimum_ptr->state.main_state, 1);
 
-               if (i < LZMS_NUM_RECENT_OFFSETS - 1)
-                       cost += lzms_rc_bit_cost(&ctx->lz_repeat_match_range_encoders[i],
-                                                &state->lz_repeat_match_state[i], 1);
+       base_cost += lzms_rc_bit_cost(&c->match_range_encoder,
+                                     cur_optimum_ptr->state.match_state, 0);
 
+       base_cost += lzms_rc_bit_cost(&c->lz_match_range_encoder,
+                                     cur_optimum_ptr->state.lz_match_state, 0);
+       len = 2;
+       i = 0;
+       do {
+               position_cost = base_cost + lzms_lz_offset_cost(c,
+                                                               matches[i].offset);
+               do {
+                       cost = position_cost + lzms_fast_length_cost(c, len);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       ((u64)(matches[i].offset + LZMS_OFFSET_OFFSET)
+                                               << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len <= matches[i].len);
+       } while (++i != num_matches);
+}
 
-               /* Initial update of the LZ match offset LRU queue.  */
-               for (; i < LZMS_NUM_RECENT_OFFSETS; i++)
-                       state->lru.recent_offsets[i] = state->lru.recent_offsets[i + 1];
-       }
+static void
+lzms_init_adaptive_state(struct lzms_adaptive_state *state)
+{
+       unsigned i;
+
+       lzms_init_lz_lru_queues(&state->lru);
+       state->main_state = 0;
+       state->match_state = 0;
+       state->lz_match_state = 0;
+       for (i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++)
+               state->lz_repeat_match_state[i] = 0;
+}
 
+static inline void
+lzms_update_main_state(struct lzms_adaptive_state *state, int is_match)
+{
+       state->main_state = ((state->main_state << 1) | is_match) % LZMS_NUM_MAIN_STATES;
+}
 
-       state->lru.upcoming_offset = offset;
-       lzms_update_lz_lru_queues(&state->lru);
+static inline void
+lzms_update_match_state(struct lzms_adaptive_state *state, int is_delta)
+{
+       state->match_state = ((state->match_state << 1) | is_delta) % LZMS_NUM_MATCH_STATES;
+}
 
-       return cost;
+static inline void
+lzms_update_lz_match_state(struct lzms_adaptive_state *state, int is_repeat_offset)
+{
+       state->lz_match_state = ((state->lz_match_state << 1) | is_repeat_offset) % LZMS_NUM_LZ_MATCH_STATES;
 }
 
-static u32
-lzms_get_lz_match_cost(struct lzms_compressor *ctx,
-                      struct lzms_adaptive_state *state,
-                      u32 length, u32 offset)
+static inline void
+lzms_update_lz_repeat_match_state(struct lzms_adaptive_state *state, int rep_idx)
 {
-       return lzms_get_lz_match_cost_nolen(ctx, state, offset) +
-              lzms_get_length_cost(&ctx->length_encoder, length);
+       int i;
+
+       for (i = 0; i < rep_idx; i++)
+               state->lz_repeat_match_state[i] =
+                       ((state->lz_repeat_match_state[i] << 1) | 1) %
+                               LZMS_NUM_LZ_REPEAT_MATCH_STATES;
+
+       if (i < LZMS_NUM_RECENT_OFFSETS - 1)
+               state->lz_repeat_match_state[i] =
+                       ((state->lz_repeat_match_state[i] << 1) | 0) %
+                               LZMS_NUM_LZ_REPEAT_MATCH_STATES;
 }
 
-static inline u32
-lzms_repsearch(const u8 * const strptr, const u32 bytes_remaining,
-              const struct lzms_lz_lru_queues *queue, u32 *offset_ret)
+/*
+ * The main near-optimal parsing routine.
+ *
+ * Briefly, the algorithm does an approximate minimum-cost path search to find a
+ * "near-optimal" sequence of matches and literals to output, based on the
+ * current cost model.  The algorithm steps forward, position by position (byte
+ * by byte), and updates the minimum cost path to reach each later position that
+ * can be reached using a match or literal from the current position.  This is
+ * essentially Dijkstra's algorithm in disguise: the graph nodes are positions,
+ * the graph edges are possible matches/literals to code, and the cost of each
+ * edge is the estimated number of bits that will be required to output the
+ * corresponding match or literal.  But one difference is that we actually
+ * compute the lowest-cost path in pieces, where each piece is terminated when
+ * there are no choices to be made.
+ *
+ * Notes:
+ *
+ * - This does not output any delta matches.
+ *
+ * - The costs of literals and matches are estimated using the range encoder
+ *   states and the semi-adaptive Huffman codes.  Except for range encoding
+ *   states, costs are assumed to be constant throughout a single run of the
+ *   parsing algorithm, which can parse up to @optim_array_length bytes of data.
+ *   This introduces a source of inaccuracy because the probabilities and
+ *   Huffman codes can change over this part of the data.
+ */
+static void
+lzms_near_optimal_parse(struct lzms_compressor *c)
 {
+       const u8 *window_ptr;
+       const u8 *window_end;
+       struct lzms_mc_pos_data *cur_optimum_ptr;
+       struct lzms_mc_pos_data *end_optimum_ptr;
+       u32 num_matches;
+       u32 longest_len;
+       u32 rep_max_len;
+       unsigned rep_max_idx;
+       unsigned literal;
+       unsigned i;
+       u32 cost;
        u32 len;
-       unsigned slot = 0;
+       u32 offset_data;
 
-       len = lz_repsearch(strptr, bytes_remaining, UINT32_MAX,
-                          queue->recent_offsets, LZMS_NUM_RECENT_OFFSETS, &slot);
-       *offset_ret = queue->recent_offsets[slot];
-       return len;
-}
+       window_ptr = c->cur_window;
+       window_end = window_ptr + c->cur_window_size;
 
+       lzms_init_adaptive_state(&c->optimum[0].state);
 
-static struct lz_match
-lzms_match_chooser_reverse_list(struct lzms_compressor *ctx, unsigned cur_pos)
-{
-       unsigned prev_link, saved_prev_link;
-       unsigned prev_match_offset, saved_prev_match_offset;
+begin:
+       /* Start building a new list of items, which will correspond to the next
+        * piece of the overall minimum-cost path.  */
 
-       ctx->optimum_end_idx = cur_pos;
+       cur_optimum_ptr = c->optimum;
+       cur_optimum_ptr->cost = 0;
+       end_optimum_ptr = cur_optimum_ptr;
 
-       saved_prev_link = ctx->optimum[cur_pos].prev.link;
-       saved_prev_match_offset = ctx->optimum[cur_pos].prev.match_offset;
+       /* States should currently be consistent with the encoders.  */
+       LZMS_ASSERT(cur_optimum_ptr->state.main_state == c->main_range_encoder.state);
+       LZMS_ASSERT(cur_optimum_ptr->state.match_state == c->match_range_encoder.state);
+       LZMS_ASSERT(cur_optimum_ptr->state.lz_match_state == c->lz_match_range_encoder.state);
+       for (i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++)
+               LZMS_ASSERT(cur_optimum_ptr->state.lz_repeat_match_state[i] ==
+                           c->lz_repeat_match_range_encoders[i].state);
 
-       do {
-               prev_link = saved_prev_link;
-               prev_match_offset = saved_prev_match_offset;
+       if (window_ptr == window_end)
+               return;
 
-               saved_prev_link = ctx->optimum[prev_link].prev.link;
-               saved_prev_match_offset = ctx->optimum[prev_link].prev.match_offset;
+       /* The following loop runs once for each per byte in the window, except
+        * in a couple shortcut cases.  */
+       for (;;) {
 
-               ctx->optimum[prev_link].next.link = cur_pos;
-               ctx->optimum[prev_link].next.match_offset = prev_match_offset;
+               /* Find explicit offset matches with the current position.  */
+               num_matches = lz_mf_get_matches(c->mf, c->matches);
 
-               cur_pos = prev_link;
-       } while (cur_pos != 0);
+               if (num_matches) {
+                       /*
+                        * Find the longest repeat offset match with the current
+                        * position.
+                        *
+                        * Heuristics:
+                        *
+                        * - Only search for repeat offset matches if the
+                        *   match-finder already found at least one match.
+                        *
+                        * - Only consider the longest repeat offset match.  It
+                        *   seems to be rare for the optimal parse to include a
+                        *   repeat offset match that doesn't have the longest
+                        *   length (allowing for the possibility that not all
+                        *   of that length is actually used).
+                        */
+                       if (likely(window_ptr - c->cur_window >= LZMS_MAX_INIT_RECENT_OFFSET)) {
+                               BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
+                               rep_max_len = lz_repsearch3(window_ptr,
+                                                           window_end - window_ptr,
+                                                           cur_optimum_ptr->state.lru.recent_offsets,
+                                                           &rep_max_idx);
+                       } else {
+                               rep_max_len = 0;
+                       }
 
-       ctx->optimum_cur_idx = ctx->optimum[0].next.link;
+                       if (rep_max_len) {
+                               /* If there's a very long repeat offset match,
+                                * choose it immediately.  */
+                               if (rep_max_len >= c->params.nice_match_length) {
 
-       return (struct lz_match)
-               { .len = ctx->optimum_cur_idx,
-                 .offset = ctx->optimum[0].next.match_offset,
-               };
-}
+                                       lz_mf_skip_positions(c->mf, rep_max_len - 1);
+                                       window_ptr += rep_max_len;
 
-/* This is similar to lzx_choose_near_optimal_item() in lzx-compress.c.
- * Read that one if you want to understand it.  */
-static struct lz_match
-lzms_get_near_optimal_item(struct lzms_compressor *ctx)
-{
-       u32 num_matches;
-       struct lz_match *matches;
-       struct lz_match match;
-       u32 longest_len;
-       u32 longest_rep_len;
-       u32 longest_rep_offset;
-       unsigned cur_pos;
-       unsigned end_pos;
-       struct lzms_adaptive_state initial_state;
-
-       if (ctx->optimum_cur_idx != ctx->optimum_end_idx) {
-               match.len = ctx->optimum[ctx->optimum_cur_idx].next.link -
-                                   ctx->optimum_cur_idx;
-               match.offset = ctx->optimum[ctx->optimum_cur_idx].next.match_offset;
-
-               ctx->optimum_cur_idx = ctx->optimum[ctx->optimum_cur_idx].next.link;
-               return match;
-       }
+                                       if (cur_optimum_ptr != c->optimum)
+                                               lzms_encode_item_list(c, cur_optimum_ptr);
 
-       ctx->optimum_cur_idx = 0;
-       ctx->optimum_end_idx = 0;
+                                       lzms_encode_lz_repeat_offset_match(c, rep_max_len,
+                                                                          rep_max_idx);
 
-       if (lz_mf_get_position(ctx->mf) >= LZMS_MAX_INIT_RECENT_OFFSET) {
-               longest_rep_len = lzms_repsearch(lz_mf_get_window_ptr(ctx->mf),
-                                                lz_mf_get_bytes_remaining(ctx->mf),
-                                                &ctx->lru.lz, &longest_rep_offset);
-       } else {
-               longest_rep_len = 0;
-       }
+                                       c->optimum[0].state = cur_optimum_ptr->state;
 
-       if (longest_rep_len >= ctx->params.nice_match_length) {
-               lzms_skip_bytes(ctx, longest_rep_len);
-               return (struct lz_match) {
-                       .len = longest_rep_len,
-                       .offset = longest_rep_offset,
-               };
-       }
+                                       lzms_update_main_state(&c->optimum[0].state, 1);
+                                       lzms_update_match_state(&c->optimum[0].state, 0);
+                                       lzms_update_lz_match_state(&c->optimum[0].state, 1);
+                                       lzms_update_lz_repeat_match_state(&c->optimum[0].state,
+                                                                         rep_max_idx);
 
-       num_matches = lzms_get_matches(ctx, &matches);
+                                       c->optimum[0].state.lru.upcoming_offset =
+                                               c->optimum[0].state.lru.recent_offsets[rep_max_idx];
 
-       if (num_matches) {
-               longest_len = matches[num_matches - 1].len;
-               if (longest_len >= ctx->params.nice_match_length) {
-                       lzms_skip_bytes(ctx, longest_len - 1);
-                       return matches[num_matches - 1];
-               }
-       } else {
-               longest_len = 1;
-       }
+                                       for (i = rep_max_idx; i < LZMS_NUM_RECENT_OFFSETS; i++)
+                                               c->optimum[0].state.lru.recent_offsets[i] =
+                                                       c->optimum[0].state.lru.recent_offsets[i + 1];
 
-       initial_state.lru = ctx->lru.lz;
-       initial_state.main_state = ctx->main_range_encoder.state;
-       initial_state.match_state = ctx->match_range_encoder.state;
-       initial_state.lz_match_state = ctx->lz_match_range_encoder.state;
-       for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++)
-               initial_state.lz_repeat_match_state[i] = ctx->lz_repeat_match_range_encoders[i].state;
+                                       lzms_update_lz_lru_queue(&c->optimum[0].state.lru);
+                                       goto begin;
+                               }
 
-       ctx->optimum[1].state = initial_state;
-       ctx->optimum[1].cost = lzms_get_literal_cost(ctx,
-                                                    &ctx->optimum[1].state,
-                                                    *(lz_mf_get_window_ptr(ctx->mf) - 1));
-       ctx->optimum[1].prev.link = 0;
+                               /* If reaching any positions for the first time,
+                                * initialize their costs to "infinity".  */
+                               while (end_optimum_ptr < cur_optimum_ptr + rep_max_len)
+                                       (++end_optimum_ptr)->cost = MC_INFINITE_COST;
 
-       for (u32 i = 0, len = 2; i < num_matches; i++) {
-               u32 offset = matches[i].offset;
-               struct lzms_adaptive_state state;
-               u32 position_cost;
+                               /* Consider coding a repeat offset match.  */
+                               lzms_consider_lz_repeat_offset_match(c, cur_optimum_ptr,
+                                                                    rep_max_len, rep_max_idx);
+                       }
 
-               state = initial_state;
-               position_cost = 0;
-               position_cost += lzms_get_lz_match_cost_nolen(ctx, &state, offset);
+                       longest_len = c->matches[num_matches - 1].len;
 
-               do {
-                       u32 cost;
+                       /* If there's a very long explicit offset match, choose
+                        * it immediately.  */
+                       if (longest_len >= c->params.nice_match_length) {
 
-                       cost = position_cost;
-                       cost += lzms_get_length_cost(&ctx->length_encoder, len);
+                               lz_mf_skip_positions(c->mf, longest_len - 1);
+                               window_ptr += longest_len;
 
-                       ctx->optimum[len].state = state;
-                       ctx->optimum[len].prev.link = 0;
-                       ctx->optimum[len].prev.match_offset = offset;
-                       ctx->optimum[len].cost = cost;
-               } while (++len <= matches[i].len);
-       }
-       end_pos = longest_len;
-
-       if (longest_rep_len) {
-               struct lzms_adaptive_state state;
-               u32 cost;
-
-               while (end_pos < longest_rep_len)
-                       ctx->optimum[++end_pos].cost = MC_INFINITE_COST;
-
-               state = initial_state;
-               cost = lzms_get_lz_match_cost(ctx,
-                                             &state,
-                                             longest_rep_len,
-                                             longest_rep_offset);
-               if (cost <= ctx->optimum[longest_rep_len].cost) {
-                       ctx->optimum[longest_rep_len].state = state;
-                       ctx->optimum[longest_rep_len].prev.link = 0;
-                       ctx->optimum[longest_rep_len].prev.match_offset = longest_rep_offset;
-                       ctx->optimum[longest_rep_len].cost = cost;
-               }
-       }
+                               if (cur_optimum_ptr != c->optimum)
+                                       lzms_encode_item_list(c, cur_optimum_ptr);
 
-       cur_pos = 0;
-       for (;;) {
-               u32 cost;
-               struct lzms_adaptive_state state;
+                               lzms_encode_lz_explicit_offset_match(c, longest_len,
+                                                                    c->matches[num_matches - 1].offset);
 
-               cur_pos++;
+                               c->optimum[0].state = cur_optimum_ptr->state;
 
-               if (cur_pos == end_pos || cur_pos == ctx->params.optim_array_length)
-                       return lzms_match_chooser_reverse_list(ctx, cur_pos);
+                               lzms_update_main_state(&c->optimum[0].state, 1);
+                               lzms_update_match_state(&c->optimum[0].state, 0);
+                               lzms_update_lz_match_state(&c->optimum[0].state, 0);
 
-               if (lz_mf_get_position(ctx->mf) >= LZMS_MAX_INIT_RECENT_OFFSET) {
-                       longest_rep_len = lzms_repsearch(lz_mf_get_window_ptr(ctx->mf),
-                                                        lz_mf_get_bytes_remaining(ctx->mf),
-                                                        &ctx->optimum[cur_pos].state.lru,
-                                                        &longest_rep_offset);
-               } else {
-                       longest_rep_len = 0;
-               }
+                               c->optimum[0].state.lru.upcoming_offset =
+                                       c->matches[num_matches - 1].offset;
 
-               if (longest_rep_len >= ctx->params.nice_match_length) {
-                       match = lzms_match_chooser_reverse_list(ctx, cur_pos);
+                               lzms_update_lz_lru_queue(&c->optimum[0].state.lru);
+                               goto begin;
+                       }
 
-                       ctx->optimum[cur_pos].next.match_offset = longest_rep_offset;
-                       ctx->optimum[cur_pos].next.link = cur_pos + longest_rep_len;
-                       ctx->optimum_end_idx = cur_pos + longest_rep_len;
+                       /* If reaching any positions for the first time,
+                        * initialize their costs to "infinity".  */
+                       while (end_optimum_ptr < cur_optimum_ptr + longest_len)
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
 
-                       lzms_skip_bytes(ctx, longest_rep_len);
+                       /* Consider coding an explicit offset match.  */
+                       lzms_consider_lz_explicit_offset_matches(c, cur_optimum_ptr,
+                                                                c->matches, num_matches);
+               } else {
+                       /* No matches found.  The only choice at this position
+                        * is to code a literal.  */
 
-                       return match;
+                       if (end_optimum_ptr == cur_optimum_ptr)
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
                }
 
-               num_matches = lzms_get_matches(ctx, &matches);
+               /* Consider coding a literal.
 
-               if (num_matches) {
-                       longest_len = matches[num_matches - 1].len;
-                       if (longest_len >= ctx->params.nice_match_length) {
-                               match = lzms_match_chooser_reverse_list(ctx, cur_pos);
+                * To avoid an extra unpredictable brench, actually checking the
+                * preferability of coding a literal is integrated into the
+                * adaptive state update code below.  */
+               literal = *window_ptr++;
+               cost = cur_optimum_ptr->cost +
+                      lzms_literal_cost(c, literal, &cur_optimum_ptr->state);
 
-                               ctx->optimum[cur_pos].next.match_offset =
-                                       matches[num_matches - 1].offset;
-                               ctx->optimum[cur_pos].next.link = cur_pos + longest_len;
-                               ctx->optimum_end_idx = cur_pos + longest_len;
+               /* Advance to the next position.  */
+               cur_optimum_ptr++;
 
-                               lzms_skip_bytes(ctx, longest_len - 1);
+               /* The lowest-cost path to the current position is now known.
+                * Finalize the adaptive state that results from taking this
+                * lowest-cost path.  */
 
-                               return match;
-                       }
-               } else {
-                       longest_len = 1;
-               }
+               if (cost < cur_optimum_ptr->cost) {
+                       /* Literal  */
+                       cur_optimum_ptr->cost = cost;
+                       cur_optimum_ptr->mc_item_data = ((u64)literal << MC_OFFSET_SHIFT) | 1;
 
-               while (end_pos < cur_pos + longest_len)
-                       ctx->optimum[++end_pos].cost = MC_INFINITE_COST;
-
-               state = ctx->optimum[cur_pos].state;
-               cost = ctx->optimum[cur_pos].cost +
-                       lzms_get_literal_cost(ctx,
-                                             &state,
-                                             *(lz_mf_get_window_ptr(ctx->mf) - 1));
-               if (cost < ctx->optimum[cur_pos + 1].cost) {
-                       ctx->optimum[cur_pos + 1].state = state;
-                       ctx->optimum[cur_pos + 1].cost = cost;
-                       ctx->optimum[cur_pos + 1].prev.link = cur_pos;
-               }
+                       cur_optimum_ptr->state = (cur_optimum_ptr - 1)->state;
 
-               for (u32 i = 0, len = 2; i < num_matches; i++) {
-                       u32 offset = matches[i].offset;
-                       struct lzms_adaptive_state state;
-                       u32 position_cost;
+                       lzms_update_main_state(&cur_optimum_ptr->state, 0);
 
-                       state = ctx->optimum[cur_pos].state;
-                       position_cost = ctx->optimum[cur_pos].cost;
-                       position_cost += lzms_get_lz_match_cost_nolen(ctx, &state, offset);
+                       cur_optimum_ptr->state.lru.upcoming_offset = 0;
+               } else {
+                       /* LZ match  */
+                       len = cur_optimum_ptr->mc_item_data & MC_LEN_MASK;
+                       offset_data = cur_optimum_ptr->mc_item_data >> MC_OFFSET_SHIFT;
 
-                       do {
-                               u32 cost;
+                       cur_optimum_ptr->state = (cur_optimum_ptr - len)->state;
 
-                               cost = position_cost;
-                               cost += lzms_get_length_cost(&ctx->length_encoder, len);
+                       lzms_update_main_state(&cur_optimum_ptr->state, 1);
+                       lzms_update_match_state(&cur_optimum_ptr->state, 0);
 
-                               if (cost < ctx->optimum[cur_pos + len].cost) {
-                                       ctx->optimum[cur_pos + len].state = state;
-                                       ctx->optimum[cur_pos + len].prev.link = cur_pos;
-                                       ctx->optimum[cur_pos + len].prev.match_offset = offset;
-                                       ctx->optimum[cur_pos + len].cost = cost;
-                               }
-                       } while (++len <= matches[i].len);
-               }
+                       if (offset_data >= LZMS_NUM_RECENT_OFFSETS) {
 
-               if (longest_rep_len >= ctx->params.min_match_length) {
-
-                       while (end_pos < cur_pos + longest_rep_len)
-                               ctx->optimum[++end_pos].cost = MC_INFINITE_COST;
-
-                       state = ctx->optimum[cur_pos].state;
-
-                       cost = ctx->optimum[cur_pos].cost +
-                               lzms_get_lz_match_cost(ctx,
-                                                      &state,
-                                                      longest_rep_len,
-                                                      longest_rep_offset);
-                       if (cost <= ctx->optimum[cur_pos + longest_rep_len].cost) {
-                               ctx->optimum[cur_pos + longest_rep_len].state =
-                                       state;
-                               ctx->optimum[cur_pos + longest_rep_len].prev.link =
-                                       cur_pos;
-                               ctx->optimum[cur_pos + longest_rep_len].prev.match_offset =
-                                       longest_rep_offset;
-                               ctx->optimum[cur_pos + longest_rep_len].cost =
-                                       cost;
-                       }
-               }
-       }
-}
+                               /* Explicit offset LZ match  */
 
-/*
- * The main loop for the LZMS compressor.
- *
- * Notes:
- *
- * - This does not output any delta matches.
- *
- * - The costs of literals and matches are estimated using the range encoder
- *   states and the semi-adaptive Huffman codes.  Except for range encoding
- *   states, costs are assumed to be constant throughout a single run of the
- *   parsing algorithm, which can parse up to @optim_array_length bytes of data.
- *   This introduces a source of inaccuracy because the probabilities and
- *   Huffman codes can change over this part of the data.
- */
-static void
-lzms_encode(struct lzms_compressor *ctx)
-{
-       struct lz_match item;
+                               lzms_update_lz_match_state(&cur_optimum_ptr->state, 0);
+
+                               cur_optimum_ptr->state.lru.upcoming_offset =
+                                       offset_data - LZMS_OFFSET_OFFSET;
+                       } else {
+                               /* Repeat offset LZ match  */
 
-       /* Load window into the match-finder.  */
-       lz_mf_load_window(ctx->mf, ctx->window, ctx->window_size);
+                               lzms_update_lz_match_state(&cur_optimum_ptr->state, 1);
+                               lzms_update_lz_repeat_match_state(&cur_optimum_ptr->state,
+                                                                 offset_data);
 
-       /* Reset the match-chooser.  */
-       ctx->optimum_cur_idx = 0;
-       ctx->optimum_end_idx = 0;
+                               cur_optimum_ptr->state.lru.upcoming_offset =
+                                       cur_optimum_ptr->state.lru.recent_offsets[offset_data];
 
-       while (ctx->cur_window_pos != ctx->window_size) {
-               item = lzms_get_near_optimal_item(ctx);
-               if (item.len <= 1)
-                       lzms_encode_literal(ctx, ctx->window[ctx->cur_window_pos]);
-               else
-                       lzms_encode_lz_match(ctx, item.len, item.offset);
+                               for (i = offset_data; i < LZMS_NUM_RECENT_OFFSETS; i++)
+                                       cur_optimum_ptr->state.lru.recent_offsets[i] =
+                                               cur_optimum_ptr->state.lru.recent_offsets[i + 1];
+                       }
+               }
+
+               lzms_update_lz_lru_queue(&cur_optimum_ptr->state.lru);
+
+               /*
+                * This loop will terminate when either of the following
+                * conditions is true:
+                *
+                * (1) cur_optimum_ptr == end_optimum_ptr
+                *
+                *      There are no paths that extend beyond the current
+                *      position.  In this case, any path to a later position
+                *      must pass through the current position, so we can go
+                *      ahead and choose the list of items that led to this
+                *      position.
+                *
+                * (2) cur_optimum_ptr == c->optimum_end
+                *
+                *      This bounds the number of times the algorithm can step
+                *      forward before it is guaranteed to start choosing items.
+                *      This limits the memory usage.  It also guarantees that
+                *      the parser will not go too long without updating the
+                *      probability tables.
+                *
+                * Note: no check for end-of-block is needed because
+                * end-of-block will trigger condition (1).
+                */
+               if (cur_optimum_ptr == end_optimum_ptr ||
+                   cur_optimum_ptr == c->optimum_end)
+               {
+                       c->optimum[0].state = cur_optimum_ptr->state;
+                       break;
+               }
        }
+
+       /* Output the current list of items that constitute the minimum-cost
+        * path to the current position.  */
+       lzms_encode_item_list(c, cur_optimum_ptr);
+       goto begin;
 }
 
 static void
@@ -1154,6 +1241,7 @@ lzms_init_range_encoder(struct lzms_range_encoder *enc,
 {
        enc->rc = rc;
        enc->state = 0;
+       LZMS_ASSERT(is_power_of_2(num_states));
        enc->mask = num_states - 1;
        for (u32 i = 0; i < num_states; i++) {
                enc->prob_entries[i].num_recent_zero_bits = LZMS_INITIAL_PROBABILITY;
@@ -1181,77 +1269,72 @@ lzms_init_huffman_encoder(struct lzms_huffman_encoder *enc,
                                    enc->codewords);
 }
 
-/* Initialize the LZMS compressor.  */
+/* Prepare the LZMS compressor for compressing a block of data.  */
 static void
-lzms_init_compressor(struct lzms_compressor *ctx, const u8 *udata, u32 ulen,
-                    le16 *cdata, u32 clen16)
+lzms_prepare_compressor(struct lzms_compressor *c, const u8 *udata, u32 ulen,
+                       le16 *cdata, u32 clen16)
 {
-       unsigned num_position_slots;
+       unsigned num_offset_slots;
 
-       /* Copy the uncompressed data into the @ctx->window buffer.  */
-       memcpy(ctx->window, udata, ulen);
-       ctx->cur_window_pos = 0;
-       ctx->window_size = ulen;
+       /* Copy the uncompressed data into the @c->cur_window buffer.  */
+       memcpy(c->cur_window, udata, ulen);
+       c->cur_window_size = ulen;
 
        /* Initialize the raw range encoder (writing forwards).  */
-       lzms_range_encoder_raw_init(&ctx->rc, cdata, clen16);
+       lzms_range_encoder_raw_init(&c->rc, cdata, clen16);
 
        /* Initialize the output bitstream for Huffman symbols and verbatim bits
         * (writing backwards).  */
-       lzms_output_bitstream_init(&ctx->os, cdata, clen16);
-
-       /* Calculate the number of position slots needed for this compressed
-        * block.  */
-       num_position_slots = lzms_get_position_slot(ulen - 1) + 1;
+       lzms_output_bitstream_init(&c->os, cdata, clen16);
 
-       LZMS_DEBUG("Using %u position slots", num_position_slots);
+       /* Calculate the number of offset slots required.  */
+       num_offset_slots = lzms_get_offset_slot(ulen - 1) + 1;
 
-       /* Initialize Huffman encoders for each alphabet used in the compressed
-        * representation.  */
-       lzms_init_huffman_encoder(&ctx->literal_encoder, &ctx->os,
+       /* Initialize a Huffman encoder for each alphabet.  */
+       lzms_init_huffman_encoder(&c->literal_encoder, &c->os,
                                  LZMS_NUM_LITERAL_SYMS,
                                  LZMS_LITERAL_CODE_REBUILD_FREQ);
 
-       lzms_init_huffman_encoder(&ctx->lz_offset_encoder, &ctx->os,
-                                 num_position_slots,
+       lzms_init_huffman_encoder(&c->lz_offset_encoder, &c->os,
+                                 num_offset_slots,
                                  LZMS_LZ_OFFSET_CODE_REBUILD_FREQ);
 
-       lzms_init_huffman_encoder(&ctx->length_encoder, &ctx->os,
+       lzms_init_huffman_encoder(&c->length_encoder, &c->os,
                                  LZMS_NUM_LEN_SYMS,
                                  LZMS_LENGTH_CODE_REBUILD_FREQ);
 
-       lzms_init_huffman_encoder(&ctx->delta_offset_encoder, &ctx->os,
-                                 num_position_slots,
+       lzms_init_huffman_encoder(&c->delta_offset_encoder, &c->os,
+                                 num_offset_slots,
                                  LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ);
 
-       lzms_init_huffman_encoder(&ctx->delta_power_encoder, &ctx->os,
+       lzms_init_huffman_encoder(&c->delta_power_encoder, &c->os,
                                  LZMS_NUM_DELTA_POWER_SYMS,
                                  LZMS_DELTA_POWER_CODE_REBUILD_FREQ);
 
        /* Initialize range encoders, all of which wrap around the same
         * lzms_range_encoder_raw.  */
-       lzms_init_range_encoder(&ctx->main_range_encoder,
-                               &ctx->rc, LZMS_NUM_MAIN_STATES);
+       lzms_init_range_encoder(&c->main_range_encoder,
+                               &c->rc, LZMS_NUM_MAIN_STATES);
 
-       lzms_init_range_encoder(&ctx->match_range_encoder,
-                               &ctx->rc, LZMS_NUM_MATCH_STATES);
+       lzms_init_range_encoder(&c->match_range_encoder,
+                               &c->rc, LZMS_NUM_MATCH_STATES);
 
-       lzms_init_range_encoder(&ctx->lz_match_range_encoder,
-                               &ctx->rc, LZMS_NUM_LZ_MATCH_STATES);
+       lzms_init_range_encoder(&c->lz_match_range_encoder,
+                               &c->rc, LZMS_NUM_LZ_MATCH_STATES);
 
-       for (size_t i = 0; i < ARRAY_LEN(ctx->lz_repeat_match_range_encoders); i++)
-               lzms_init_range_encoder(&ctx->lz_repeat_match_range_encoders[i],
-                                       &ctx->rc, LZMS_NUM_LZ_REPEAT_MATCH_STATES);
+       for (unsigned i = 0; i < ARRAY_LEN(c->lz_repeat_match_range_encoders); i++)
+               lzms_init_range_encoder(&c->lz_repeat_match_range_encoders[i],
+                                       &c->rc, LZMS_NUM_LZ_REPEAT_MATCH_STATES);
 
-       lzms_init_range_encoder(&ctx->delta_match_range_encoder,
-                               &ctx->rc, LZMS_NUM_DELTA_MATCH_STATES);
+       lzms_init_range_encoder(&c->delta_match_range_encoder,
+                               &c->rc, LZMS_NUM_DELTA_MATCH_STATES);
 
-       for (size_t i = 0; i < ARRAY_LEN(ctx->delta_repeat_match_range_encoders); i++)
-               lzms_init_range_encoder(&ctx->delta_repeat_match_range_encoders[i],
-                                       &ctx->rc, LZMS_NUM_DELTA_REPEAT_MATCH_STATES);
+       for (unsigned i = 0; i < ARRAY_LEN(c->delta_repeat_match_range_encoders); i++)
+               lzms_init_range_encoder(&c->delta_repeat_match_range_encoders[i],
+                                       &c->rc, LZMS_NUM_DELTA_REPEAT_MATCH_STATES);
 
-       /* Initialize LRU match information.  */
-       lzms_init_lru_queues(&ctx->lru);
+       /* Set initial length costs for lengths < LZMS_NUM_FAST_LENGTHS.  */
+       lzms_update_fast_length_costs(c);
 }
 
 /* Flush the output streams, prepare the final compressed data, and return its
@@ -1260,66 +1343,77 @@ lzms_init_compressor(struct lzms_compressor *ctx, const u8 *udata, u32 ulen,
  * A return value of 0 indicates that the data could not be compressed to fit in
  * the available space.  */
 static size_t
-lzms_finalize(struct lzms_compressor *ctx, u8 *cdata, size_t csize_avail)
+lzms_finalize(struct lzms_compressor *c, u8 *cdata, size_t csize_avail)
 {
        size_t num_forwards_bytes;
        size_t num_backwards_bytes;
-       size_t compressed_size;
 
        /* Flush both the forwards and backwards streams, and make sure they
         * didn't cross each other and start overwriting each other's data.  */
-       if (!lzms_output_bitstream_flush(&ctx->os)) {
-               LZMS_DEBUG("Backwards bitstream overrun.");
+       if (!lzms_output_bitstream_flush(&c->os))
                return 0;
-       }
 
-       if (!lzms_range_encoder_raw_flush(&ctx->rc)) {
-               LZMS_DEBUG("Forwards bitstream overrun.");
+       if (!lzms_range_encoder_raw_flush(&c->rc))
                return 0;
-       }
 
-       if (ctx->rc.out > ctx->os.out) {
-               LZMS_DEBUG("Two bitstreams crossed.");
+       if (c->rc.next > c->os.next)
                return 0;
-       }
 
        /* Now the compressed buffer contains the data output by the forwards
         * bitstream, then empty space, then data output by the backwards
         * bitstream.  Move the data output by the backwards bitstream to be
         * adjacent to the data output by the forward bitstream, and calculate
         * the compressed size that this results in.  */
-       num_forwards_bytes = (u8*)ctx->rc.out - (u8*)cdata;
-       num_backwards_bytes = ((u8*)cdata + csize_avail) - (u8*)ctx->os.out;
+       num_forwards_bytes = (u8*)c->rc.next - (u8*)cdata;
+       num_backwards_bytes = ((u8*)cdata + csize_avail) - (u8*)c->os.next;
 
-       memmove(cdata + num_forwards_bytes, ctx->os.out, num_backwards_bytes);
+       memmove(cdata + num_forwards_bytes, c->os.next, num_backwards_bytes);
 
-       compressed_size = num_forwards_bytes + num_backwards_bytes;
-       LZMS_DEBUG("num_forwards_bytes=%zu, num_backwards_bytes=%zu, "
-                  "compressed_size=%zu",
-                  num_forwards_bytes, num_backwards_bytes, compressed_size);
-       LZMS_ASSERT(compressed_size % 2 == 0);
-       return compressed_size;
+       return num_forwards_bytes + num_backwards_bytes;
 }
 
-
+/* Set internal compression parameters for the specified compression level and
+ * maximum window size.  */
 static void
 lzms_build_params(unsigned int compression_level,
                  struct lzms_compressor_params *lzms_params)
 {
-       lzms_params->min_match_length  = (compression_level >= 50) ? 2 : 3;
-       lzms_params->nice_match_length = max(((u64)compression_level * 32) / 50,
-                                            lzms_params->min_match_length);
-       lzms_params->max_search_depth  = ((u64)compression_level * 50) / 50;
-       lzms_params->optim_array_length = 224 + compression_level * 16;
+       /* Allow length 2 matches if the compression level is sufficiently high.
+        */
+       if (compression_level >= 45)
+               lzms_params->min_match_length = 2;
+       else
+               lzms_params->min_match_length = 3;
+
+       /* Scale nice_match_length and max_search_depth with the compression
+        * level.  But to allow an optimization on length cost calculations,
+        * don't allow nice_match_length to exceed LZMS_NUM_FAST_LENGTH.  */
+       lzms_params->nice_match_length = ((u64)compression_level * 32) / 50;
+       if (lzms_params->nice_match_length < lzms_params->min_match_length)
+               lzms_params->nice_match_length = lzms_params->min_match_length;
+       if (lzms_params->nice_match_length > LZMS_NUM_FAST_LENGTHS)
+               lzms_params->nice_match_length = LZMS_NUM_FAST_LENGTHS;
+       lzms_params->max_search_depth = compression_level;
+
+       lzms_params->optim_array_length = 1024;
 }
 
+/* Given the internal compression parameters and maximum window size, build the
+ * Lempel-Ziv match-finder parameters.  */
 static void
 lzms_build_mf_params(const struct lzms_compressor_params *lzms_params,
                     u32 max_window_size, struct lz_mf_params *mf_params)
 {
        memset(mf_params, 0, sizeof(*mf_params));
 
-       mf_params->algorithm = LZ_MF_DEFAULT;
+       /* Choose an appropriate match-finding algorithm.  */
+       if (max_window_size <= 2097152)
+               mf_params->algorithm = LZ_MF_BINARY_TREES;
+       else if (max_window_size <= 33554432)
+               mf_params->algorithm = LZ_MF_LCP_INTERVAL_TREE;
+       else
+               mf_params->algorithm = LZ_MF_LINKED_SUFFIX_ARRAY;
+
        mf_params->max_window_size = max_window_size;
        mf_params->min_match_len = lzms_params->min_match_length;
        mf_params->max_search_depth = lzms_params->max_search_depth;
@@ -1327,23 +1421,34 @@ lzms_build_mf_params(const struct lzms_compressor_params *lzms_params,
 }
 
 static void
-lzms_free_compressor(void *_ctx);
+lzms_free_compressor(void *_c);
 
 static u64
 lzms_get_needed_memory(size_t max_block_size, unsigned int compression_level)
 {
        struct lzms_compressor_params params;
+       struct lz_mf_params mf_params;
        u64 size = 0;
 
        if (max_block_size >= INT32_MAX)
                return 0;
 
        lzms_build_params(compression_level, &params);
+       lzms_build_mf_params(&params, max_block_size, &mf_params);
 
        size += sizeof(struct lzms_compressor);
+
+       /* cur_window */
        size += max_block_size;
-       size += lz_mf_get_needed_memory(LZ_MF_DEFAULT, max_block_size);
-       size += params.max_search_depth * sizeof(struct lz_match);
+
+       /* mf */
+       size += lz_mf_get_needed_memory(mf_params.algorithm, max_block_size);
+
+       /* matches */
+       size += min(params.max_search_depth, params.nice_match_length) *
+               sizeof(struct lz_match);
+
+       /* optimum */
        size += (params.optim_array_length + params.nice_match_length) *
                sizeof(struct lzms_mc_pos_data);
 
@@ -1354,7 +1459,7 @@ static int
 lzms_create_compressor(size_t max_block_size, unsigned int compression_level,
                       void **ctx_ret)
 {
-       struct lzms_compressor *ctx;
+       struct lzms_compressor *c;
        struct lzms_compressor_params params;
        struct lz_mf_params mf_params;
 
@@ -1366,60 +1471,56 @@ lzms_create_compressor(size_t max_block_size, unsigned int compression_level,
        if (!lz_mf_params_valid(&mf_params))
                return WIMLIB_ERR_INVALID_PARAM;
 
-       ctx = CALLOC(1, sizeof(struct lzms_compressor));
-       if (!ctx)
+       c = CALLOC(1, sizeof(struct lzms_compressor));
+       if (!c)
                goto oom;
 
-       ctx->params = params;
-       ctx->max_block_size = max_block_size;
+       c->params = params;
 
-       ctx->window = MALLOC(max_block_size);
-       if (!ctx->window)
+       c->cur_window = MALLOC(max_block_size);
+       if (!c->cur_window)
                goto oom;
 
-       ctx->mf = lz_mf_alloc(&mf_params);
-       if (!ctx->mf)
+       c->mf = lz_mf_alloc(&mf_params);
+       if (!c->mf)
                goto oom;
 
-       ctx->matches = MALLOC(params.max_search_depth * sizeof(struct lz_match));
-       if (!ctx->matches)
+       c->matches = MALLOC(min(params.max_search_depth,
+                               params.nice_match_length) *
+                           sizeof(struct lz_match));
+       if (!c->matches)
                goto oom;
 
-       ctx->optimum = MALLOC((params.optim_array_length +
-                              params.nice_match_length) *
-                               sizeof(struct lzms_mc_pos_data));
-       if (!ctx->optimum)
+       c->optimum = MALLOC((params.optim_array_length +
+                            params.nice_match_length) *
+                           sizeof(struct lzms_mc_pos_data));
+       if (!c->optimum)
                goto oom;
+       c->optimum_end = &c->optimum[params.optim_array_length];
 
-       /* Initialize position and length slot data if not done already.  */
        lzms_init_slots();
 
-       /* Initialize range encoding cost table if not done already.  */
        lzms_init_rc_costs();
 
-       *ctx_ret = ctx;
+       lzms_init_fast_slots(c);
+
+       *ctx_ret = c;
        return 0;
 
 oom:
-       lzms_free_compressor(ctx);
+       lzms_free_compressor(c);
        return WIMLIB_ERR_NOMEM;
 }
 
 static size_t
 lzms_compress(const void *uncompressed_data, size_t uncompressed_size,
-             void *compressed_data, size_t compressed_size_avail, void *_ctx)
+             void *compressed_data, size_t compressed_size_avail, void *_c)
 {
-       struct lzms_compressor *ctx = _ctx;
-       size_t compressed_size;
-
-       LZMS_DEBUG("uncompressed_size=%zu, compressed_size_avail=%zu",
-                  uncompressed_size, compressed_size_avail);
+       struct lzms_compressor *c = _c;
 
        /* Don't bother compressing extremely small inputs.  */
-       if (uncompressed_size < 4) {
-               LZMS_DEBUG("Input too small to bother compressing.");
+       if (uncompressed_size < 4)
                return 0;
-       }
 
        /* Cap the available compressed size to a 32-bit integer and round it
         * down to the nearest multiple of 2.  */
@@ -1429,43 +1530,35 @@ lzms_compress(const void *uncompressed_data, size_t uncompressed_size,
                compressed_size_avail--;
 
        /* Initialize the compressor structures.  */
-       lzms_init_compressor(ctx, uncompressed_data, uncompressed_size,
-                            compressed_data, compressed_size_avail / 2);
+       lzms_prepare_compressor(c, uncompressed_data, uncompressed_size,
+                               compressed_data, compressed_size_avail / 2);
 
        /* Preprocess the uncompressed data.  */
-       lzms_x86_filter(ctx->window, ctx->window_size,
-                       ctx->last_target_usages, false);
+       lzms_x86_filter(c->cur_window, c->cur_window_size,
+                       c->last_target_usages, false);
+
+       /* Load the window into the match-finder.  */
+       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
 
        /* Compute and encode a literal/match sequence that decompresses to the
         * preprocessed data.  */
-       lzms_encode(ctx);
-
-       /* Get and return the compressed data size.  */
-       compressed_size = lzms_finalize(ctx, compressed_data,
-                                       compressed_size_avail);
-
-       if (compressed_size == 0) {
-               LZMS_DEBUG("Data did not compress to requested size or less.");
-               return 0;
-       }
-
-       LZMS_DEBUG("Compressed %zu => %zu bytes",
-                  uncompressed_size, compressed_size);
+       lzms_near_optimal_parse(c);
 
-       return compressed_size;
+       /* Return the compressed data size or 0.  */
+       return lzms_finalize(c, compressed_data, compressed_size_avail);
 }
 
 static void
-lzms_free_compressor(void *_ctx)
+lzms_free_compressor(void *_c)
 {
-       struct lzms_compressor *ctx = _ctx;
-
-       if (ctx) {
-               FREE(ctx->window);
-               lz_mf_free(ctx->mf);
-               FREE(ctx->matches);
-               FREE(ctx->optimum);
-               FREE(ctx);
+       struct lzms_compressor *c = _c;
+
+       if (c) {
+               FREE(c->cur_window);
+               lz_mf_free(c->mf);
+               FREE(c->matches);
+               FREE(c->optimum);
+               FREE(c);
        }
 }
 
index 7254091449c052442bae510444f93d7f92b9a9d0..e2037d4488e93858cdb8316568a3c4f246b3d682 100644 (file)
@@ -3,7 +3,7 @@
  */
 
 /*
- * Copyright (C) 2013 Eric Biggers
+ * Copyright (C) 2013, 2014 Eric Biggers
  *
  * This file is part of wimlib, a library for working with WIM files.
  *
  *
  * For LZ matches, up to 3 repeat offsets are allowed, similar to some other
  * LZ-based formats such as LZX and LZMA.  They must updated in an LRU fashion,
- * except for a quirk: updates to the queue must be delayed by one LZMS item,
- * except for the removal of a repeat match.  As a result, 4 entries are
- * actually needed in the queue, even though it is only possible to decode
- * references to the first 3 at any given time.  The queue must be initialized
- * to the offsets {1, 2, 3, 4}.
+ * except for a quirk: inserting anything to the front of the queue must be
+ * delayed by one LZMS item.  The reason for this is presumably that there is
+ * almost no reason to code the same match offset twice in a row, since you
+ * might as well have coded a longer match at that offset.  For this same
+ * reason, it also is a requirement that when an offset in the queue is used,
+ * that offset is removed from the queue immediately (and made pending for
+ * front-insertion after the following decoded item), and everything to the
+ * right is shifted left one queue slot.  This creates a need for an "overflow"
+ * fourth entry in the queue, even though it is only possible to decode
+ * references to the first 3 entries at any given time.  The queue must be
+ * initialized to the offsets {1, 2, 3, 4}.
  *
  * Repeat delta matches are handled similarly, but for them there are two queues
  * updated in lock-step: one for powers and one for raw offsets.  The power
  *    1024 symbols have been decoded with it.
  *
  *  - The LZ offset code, used for decoding the offsets of standard LZ77
- *    matches.  Each symbol represents a position slot, which corresponds to a
+ *    matches.  Each symbol represents an offset slot, which corresponds to a
  *    base value and some number of extra bits which must be read and added to
  *    the base value to reconstitute the full offset.  The number of symbols in
- *    this code is the number of position slots needed to represent all possible
+ *    this code is the number of offset slots needed to represent all possible
  *    offsets in the uncompressed block.  This code must be rebuilt whenever
  *    1024 symbols have been decoded with it.
  *
  *    symbols have been decoded with it.
  *
  *  - The delta offset code, used for decoding the offsets of delta matches.
- *    Each symbol corresponds to a position slot, which corresponds to a base
+ *    Each symbol corresponds to an offset slot, which corresponds to a base
  *    value and some number of extra bits which must be read and added to the
  *    base value to reconstitute the full offset.  The number of symbols in this
  *    code is equal to the number of symbols in the LZ offset code.  This code
@@ -508,38 +514,15 @@ lzms_range_decode_bit(struct lzms_range_decoder *dec)
        /* Load the probability entry corresponding to the current state.  */
        prob_entry = &dec->prob_entries[dec->state];
 
-       /* Treat the number of zero bits in the most recently decoded
-        * LZMS_PROBABILITY_MAX bits with this probability entry as the chance,
-        * out of LZMS_PROBABILITY_MAX, that the next bit will be a 0.  However,
-        * don't allow 0% or 100% probabilities.  */
-       prob = prob_entry->num_recent_zero_bits;
-       if (prob == LZMS_PROBABILITY_MAX)
-               prob = LZMS_PROBABILITY_MAX - 1;
-       else if (prob == 0)
-               prob = 1;
+       /* Get the probability that the next bit is 0.  */
+       prob = lzms_get_probability(prob_entry);
 
        /* Decode the next bit.  */
        bit = lzms_range_decoder_raw_decode_bit(dec->rd, prob);
 
-       /* Update the state based on the newly decoded bit.  */
+       /* Update the state and probability entry based on the decoded bit.  */
        dec->state = (((dec->state << 1) | bit) & dec->mask);
-
-       /* Update the recent bits, including the cached count of 0's.  */
-       BUILD_BUG_ON(LZMS_PROBABILITY_MAX > sizeof(prob_entry->recent_bits) * 8);
-       if (bit == 0) {
-               if (prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1))) {
-                       /* Replacing 1 bit with 0 bit; increment the zero count.
-                        */
-                       prob_entry->num_recent_zero_bits++;
-               }
-       } else {
-               if (!(prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1)))) {
-                       /* Replacing 0 bit with 1 bit; decrement the zero count.
-                        */
-                       prob_entry->num_recent_zero_bits--;
-               }
-       }
-       prob_entry->recent_bits = (prob_entry->recent_bits << 1) | bit;
+       lzms_update_probability_entry(prob_entry, bit);
 
        /* Return the decoded bit.  */
        return bit;
@@ -647,8 +630,8 @@ lzms_decode_value(struct lzms_huffman_decoder *dec)
        LZMS_ASSERT(dec->slot_base_tab != NULL);
        LZMS_ASSERT(dec->extra_bits_tab != NULL);
 
-       /* Read the slot (position slot, length slot, etc.), which is encoded as
-        * Huffman symbol.  */
+       /* Read the slot (offset slot, length slot, etc.), which is encoded as a
+        * Huffman symbol.  */
        slot = lzms_huffman_decode_symbol(dec);
 
        /* Get the number of extra bits needed to represent the range of values
@@ -887,7 +870,7 @@ lzms_init_decompressor(struct lzms_decompressor *ctx,
                       const void *cdata, unsigned clen,
                       void *ubuf, unsigned ulen)
 {
-       unsigned num_position_slots;
+       unsigned num_offset_slots;
 
        LZMS_DEBUG("Initializing decompressor (clen=%u, ulen=%u)", clen, ulen);
 
@@ -903,11 +886,11 @@ lzms_init_decompressor(struct lzms_decompressor *ctx,
         * backwards)  */
        lzms_input_bitstream_init(&ctx->is, cdata, clen / 2);
 
-       /* Calculate the number of position slots needed for this compressed
+       /* Calculate the number of offset slots needed for this compressed
         * block.  */
-       num_position_slots = lzms_get_position_slot(ulen - 1) + 1;
+       num_offset_slots = lzms_get_offset_slot(ulen - 1) + 1;
 
-       LZMS_DEBUG("Using %u position slots", num_position_slots);
+       LZMS_DEBUG("Using %u offset slots", num_offset_slots);
 
        /* Initialize Huffman decoders for each alphabet used in the compressed
         * representation.  */
@@ -916,9 +899,9 @@ lzms_init_decompressor(struct lzms_decompressor *ctx,
                                  LZMS_LITERAL_CODE_REBUILD_FREQ);
 
        lzms_init_huffman_decoder(&ctx->lz_offset_decoder, &ctx->is,
-                                 lzms_position_slot_base,
-                                 lzms_extra_position_bits,
-                                 num_position_slots,
+                                 lzms_offset_slot_base,
+                                 lzms_extra_offset_bits,
+                                 num_offset_slots,
                                  LZMS_LZ_OFFSET_CODE_REBUILD_FREQ);
 
        lzms_init_huffman_decoder(&ctx->length_decoder, &ctx->is,
@@ -928,9 +911,9 @@ lzms_init_decompressor(struct lzms_decompressor *ctx,
                                  LZMS_LENGTH_CODE_REBUILD_FREQ);
 
        lzms_init_huffman_decoder(&ctx->delta_offset_decoder, &ctx->is,
-                                 lzms_position_slot_base,
-                                 lzms_extra_position_bits,
-                                 num_position_slots,
+                                 lzms_offset_slot_base,
+                                 lzms_extra_offset_bits,
+                                 num_offset_slots,
                                  LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ);
 
        lzms_init_huffman_decoder(&ctx->delta_power_decoder, &ctx->is,
@@ -1007,7 +990,7 @@ lzms_decompress(const void *compressed_data, size_t compressed_size,
        }
 
        /* Handle the trivial case where nothing needs to be decompressed.
-        * (Necessary because a window of size 0 does not have a valid position
+        * (Necessary because a window of size 0 does not have a valid offset
         * slot.)  */
        if (uncompressed_size == 0)
                return 0;
@@ -1039,8 +1022,8 @@ lzms_create_decompressor(size_t max_block_size, void **ctx_ret)
        struct lzms_decompressor *ctx;
 
        /* The x86 post-processor requires that the uncompressed length fit into
-        * a signed 32-bit integer.  Also, the position slot table cannot be
-        * searched for a position of INT32_MAX or greater.  */
+        * a signed 32-bit integer.  Also, the offset slot table cannot be
+        * searched for an offset of INT32_MAX or greater.  */
        if (max_block_size >= INT32_MAX)
                return WIMLIB_ERR_INVALID_PARAM;
 
@@ -1049,7 +1032,7 @@ lzms_create_decompressor(size_t max_block_size, void **ctx_ret)
        if (ctx == NULL)
                return WIMLIB_ERR_NOMEM;
 
-       /* Initialize position and length slot data if not done already.  */
+       /* Initialize offset and length slot data if not done already.  */
        lzms_init_slots();
 
        *ctx_ret = ctx;
index 566161c3585abf4130ed265a270aa7e09c8cba8d..827b1b29657d436d0472fae98487b6d2d7f50f5c 100644 (file)
@@ -33,9 +33,9 @@
 #  include <emmintrin.h>
 #endif
 
-/* Mapping: position slot => first match offset that uses that position slot.
+/* Mapping: offset slot => first match offset that uses that offset slot.
  */
-const u32 lzx_position_base[LZX_MAX_POSITION_SLOTS] = {
+const u32 lzx_offset_slot_base[LZX_MAX_OFFSET_SLOTS] = {
        0      , 1      , 2      , 3      , 4      ,    /* 0  --- 4  */
        6      , 8      , 12     , 16     , 24     ,    /* 5  --- 9  */
        32     , 48     , 64     , 96     , 128    ,    /* 10 --- 14 */
@@ -49,10 +49,9 @@ const u32 lzx_position_base[LZX_MAX_POSITION_SLOTS] = {
        2097152                                         /* 50        */
 };
 
-/* Mapping: position slot => how many extra bits must be read and added to the
- * corresponding position base to decode the match offset.  */
-#ifdef USE_LZX_EXTRA_BITS_ARRAY
-const u8 lzx_extra_bits[LZX_MAX_POSITION_SLOTS] = {
+/* Mapping: offset slot => how many extra bits must be read and added to the
+ * corresponding offset slot base to decode the match offset.  */
+const u8 lzx_extra_offset_bits[LZX_MAX_OFFSET_SLOTS] = {
        0 , 0 , 0 , 0 , 1 ,
        1 , 2 , 2 , 3 , 3 ,
        4 , 4 , 5 , 5 , 6 ,
@@ -65,7 +64,6 @@ const u8 lzx_extra_bits[LZX_MAX_POSITION_SLOTS] = {
        17, 17, 17, 17, 17,
        17
 };
-#endif
 
 /* Round the specified compression block size (not LZX block size) up to the
  * next valid LZX window size, and return its order (log2).  Or, if the block
@@ -96,31 +94,31 @@ lzx_get_num_main_syms(unsigned window_order)
        /* NOTE: the calculation *should* be as follows:
         *
         * u32 max_offset = window_size - LZX_MIN_MATCH_LEN;
-        * u32 max_formatted_offset = max_offset + LZX_OFFSET_OFFSET;
-        * u32 num_position_slots = 1 + lzx_get_position_slot_raw(max_formatted_offset);
+        * u32 max_adjusted_offset = max_offset + LZX_OFFSET_OFFSET;
+        * u32 num_offset_slots = 1 + lzx_get_offset_slot_raw(max_adjusted_offset);
         *
         * However since LZX_MIN_MATCH_LEN == LZX_OFFSET_OFFSET, we would get
-        * max_formatted_offset == window_size, which would bump the number of
-        * position slots up by 1 since every valid LZX window size is equal to
-        * a position base value.  The format doesn't do this, and instead
+        * max_adjusted_offset == window_size, which would bump the number of
+        * offset slots up by 1 since every valid LZX window size is equal to a
+        * offset slot base value.  The format doesn't do this, and instead
         * disallows matches with minimum length and maximum offset.  This sets
-        * max_formatted_offset = window_size - 1, so instead we must calculate:
+        * max_adjusted_offset = window_size - 1, so instead we must calculate:
         *
-        * num_position_slots = 1 + lzx_get_position_slot_raw(window_size - 1);
+        * num_offset_slots = 1 + lzx_get_offset_slot_raw(window_size - 1);
         *
         * ... which is the same as
         *
-        * num_position_slots = lzx_get_position_slot_raw(window_size);
+        * num_offset_slots = lzx_get_offset_slot_raw(window_size);
         *
-        * ... since every valid window size is equal to a position base value.
+        * ... since every valid window size is equal to an offset base value.
         */
-       unsigned num_position_slots = lzx_get_position_slot_raw(window_size);
+       unsigned num_offset_slots = lzx_get_offset_slot_raw(window_size);
 
        /* Now calculate the number of main symbols as LZX_NUM_CHARS literal
-        * symbols, plus 8 symbols per position slot (since there are 8 possible
-        * length headers, and we need all (position slot, length header)
+        * symbols, plus 8 symbols per offset slot (since there are 8 possible
+        * length headers, and we need all (offset slot, length header)
         * combinations).  */
-       return LZX_NUM_CHARS + (num_position_slots << 3);
+       return LZX_NUM_CHARS + (num_offset_slots << 3);
 }
 
 static void
index bc50a858bc9b62cf26d9d1b03d7b822591a1eb33..a9745b62c8a74973114e1088a358468d1123d8cc 100644 (file)
 
 
 /*
- * This file contains a compressor for the LZX ("Lempel-Ziv eXtended"?)
- * compression format, as used in the WIM (Windows IMaging) file format.  This
- * code may need some slight modifications to be used outside of the WIM format.
- * In particular, in other situations the LZX block header might be slightly
- * different, and a sliding window rather than a fixed-size window might be
- * required.
+ * This file contains a compressor for the LZX ("Lempel-Ziv eXtended")
+ * compression format, as used in the WIM (Windows IMaging) file format.
  *
- * ----------------------------------------------------------------------------
+ * Two different parsing algorithms are implemented: "near-optimal" and "lazy".
+ * "Near-optimal" is significantly slower than "lazy", but results in a better
+ * compression ratio.  The "near-optimal" algorithm is used at the default
+ * compression level.
  *
- *                              Format Overview
+ * This file may need some slight modifications to be used outside of the WIM
+ * format.  In particular, in other situations the LZX block header might be
+ * slightly different, and a sliding window rather than a fixed-size window
+ * might be required.
  *
- * The primary reference for LZX is the specification released by Microsoft.
- * However, the comments in lzx-decompress.c provide more information about LZX
- * and note some errors in the Microsoft specification.
- *
- * LZX shares many similarities with DEFLATE, the format used by zlib and gzip.
- * Both LZX and DEFLATE use LZ77 matching and Huffman coding.  Certain details
- * are quite similar, such as the method for storing Huffman codes.  However,
- * the main differences are:
+ * Note: LZX is a compression format derived from DEFLATE, the format used by
+ * zlib and gzip.  Both LZX and DEFLATE use LZ77 matching and Huffman coding.
+ * Certain details are quite similar, such as the method for storing Huffman
+ * codes.  However, the main differences are:
  *
  * - LZX preprocesses the data to attempt to make x86 machine code slightly more
  *   compressible before attempting to compress it further.
  *
  * - LZX uses a "main" alphabet which combines literals and matches, with the
  *   match symbols containing a "length header" (giving all or part of the match
- *   length) and a "position slot" (giving, roughly speaking, the order of
+ *   length) and an "offset slot" (giving, roughly speaking, the order of
  *   magnitude of the match offset).
  *
  * - LZX does not have static Huffman blocks (that is, the kind with preset
  *   Huffman codes); however it does have two types of dynamic Huffman blocks
  *   ("verbatim" and "aligned").
  *
- * - LZX has a minimum match length of 2 rather than 3.
- *
- * - In LZX, match offsets 0 through 2 actually represent entries in an LRU
- *   queue of match offsets.  This is very useful for certain types of files,
- *   such as binary files that have repeating records.
- *
- * ----------------------------------------------------------------------------
- *
- *                           Algorithmic Overview
- *
- * At a high level, any implementation of LZX compression must operate as
- * follows:
- *
- * 1. Preprocess the input data to translate the targets of 32-bit x86 call
- *    instructions to absolute offsets.  (Actually, this is required for WIM,
- *    but might not be in other places LZX is used.)
- *
- * 2. Find a sequence of LZ77-style matches and literal bytes that expands to
- *    the preprocessed data.
- *
- * 3. Divide the match/literal sequence into one or more LZX blocks, each of
- *    which may be "uncompressed", "verbatim", or "aligned".
- *
- * 4. Output each LZX block.
- *
- * Step (1) is fairly straightforward.  It requires looking for 0xe8 bytes in
- * the input data and performing a translation on the 4 bytes following each
- * one.
- *
- * Step (4) is complicated, but it is mostly determined by the LZX format.  The
- * only real choice we have is what algorithm to use to build the length-limited
- * canonical Huffman codes.  See lzx_write_all_blocks() for details.
- *
- * That leaves steps (2) and (3) as where all the hard stuff happens.  Focusing
- * on step (2), we need to do LZ77-style parsing on the input data, or "window",
- * to divide it into a sequence of matches and literals.  Each position in the
- * window might have multiple matches associated with it, and we need to choose
- * which one, if any, to actually use.  Therefore, the problem can really be
- * divided into two areas of concern: (a) finding matches at a given position,
- * which we shall call "match-finding", and (b) choosing whether to use a
- * match or a literal at a given position, and if using a match, which one (if
- * there is more than one available).  We shall call this "match-choosing".  We
- * first consider match-finding, then match-choosing.
- *
- * ----------------------------------------------------------------------------
- *
- *                              Match-finding
- *
- * Given a position in the window, we want to find LZ77-style "matches" with
- * that position at previous positions in the window.  With LZX, the minimum
- * match length is 2 and the maximum match length is 257.  The only restriction
- * on offsets is that LZX does not allow the last 2 bytes of the window to match
- * the beginning of the window.
- *
- * There are a number of algorithms that can be used for this, including hash
- * chains, binary trees, and suffix arrays.  Binary trees generally work well
- * for LZX compression since it uses medium-size windows (2^15 to 2^21 bytes).
- * However, when compressing in a fast mode where many positions are skipped
- * (not searched for matches), hash chains are faster.
+ * - LZX has a minimum match length of 2 rather than 3.  Length 2 matches can be
+ *   useful, but generally only if the parser is smart about choosing them.
  *
- * Since the match-finders are not specific to LZX, I will not explain them in
- * detail here.  Instead, see lz_hash_chains.c and lz_binary_trees.c.
- *
- * ----------------------------------------------------------------------------
- *
- *                              Match-choosing
- *
- * Usually, choosing the longest match is best because it encodes the most data
- * in that one item.  However, sometimes the longest match is not optimal
- * because (a) choosing a long match now might prevent using an even longer
- * match later, or (b) more generally, what we actually care about is the number
- * of bits it will ultimately take to output each match or literal, which is
- * actually dependent on the entropy encoding using by the underlying
- * compression format.  Consequently, a longer match usually, but not always,
- * takes fewer bits to encode than multiple shorter matches or literals that
- * cover the same data.
- *
- * This problem of choosing the truly best match/literal sequence is probably
- * impossible to solve efficiently when combined with entropy encoding.  If we
- * knew how many bits it takes to output each match/literal, then we could
- * choose the optimal sequence using shortest-path search a la Dijkstra's
- * algorithm.  However, with entropy encoding, the chosen match/literal sequence
- * affects its own encoding.  Therefore, we can't know how many bits it will
- * take to actually output any one match or literal until we have actually
- * chosen the full sequence of matches and literals.
- *
- * Notwithstanding the entropy encoding problem, we also aren't guaranteed to
- * choose the optimal match/literal sequence unless the match-finder (see
- * section "Match-finder") provides the match-chooser with all possible matches
- * at each position.  However, this is not computationally efficient.  For
- * example, there might be many matches of the same length, and usually (but not
- * always) the best choice is the one with the smallest offset.  So in practice,
- * it's fine to only consider the smallest offset for a given match length at a
- * given position.  (Actually, for LZX, it's also worth considering repeat
- * offsets.)
- *
- * In addition, as mentioned earlier, in LZX we have the choice of using
- * multiple blocks, each of which resets the Huffman codes.  This expands the
- * search space even further.  Therefore, to simplify the problem, we currently
- * we don't attempt to actually choose the LZX blocks based on the data.
- * Instead, we just divide the data into fixed-size blocks of LZX_DIV_BLOCK_SIZE
- * bytes each, and always use verbatim or aligned blocks (never uncompressed).
- * A previous version of this code recursively split the input data into
- * equal-sized blocks, up to a maximum depth, and chose the lowest-cost block
- * divisions.  However, this made compression much slower and did not actually
- * help very much.  It remains an open question whether a sufficiently fast and
- * useful block-splitting algorithm is possible for LZX.  Essentially the same
- * problem also applies to DEFLATE.  The Microsoft LZX compressor seemingly does
- * do block splitting, although I don't know how fast or useful it is,
- * specifically.
- *
- * Now, back to the entropy encoding problem.  The "solution" is to use an
- * iterative approach to compute a good, but not necessarily optimal,
- * match/literal sequence.  Start with a fixed assignment of symbol costs and
- * choose an "optimal" match/literal sequence based on those costs, using
- * shortest-path seach a la Dijkstra's algorithm.  Then, for each iteration of
- * the optimization, update the costs based on the entropy encoding of the
- * current match/literal sequence, then choose a new match/literal sequence
- * based on the updated costs.  Usually, the actual cost to output the current
- * match/literal sequence will decrease in each iteration until it converges on
- * a fixed point.  This result may not be the truly optimal match/literal
- * sequence, but it usually is much better than one chosen by doing a "greedy"
- * parse where we always chooe the longest match.
- *
- * An alternative to both greedy parsing and iterative, near-optimal parsing is
- * "lazy" parsing.  Briefly, "lazy" parsing considers just the longest match at
- * each position, but it waits to choose that match until it has also examined
- * the next position.  This is actually a useful approach; it's used by zlib,
- * for example.  Therefore, for fast compression we combine lazy parsing with
- * the hash chain max-finder.  For normal/high compression we combine
- * near-optimal parsing with the binary tree match-finder.
+ * - In LZX, offset slots 0 through 2 actually represent entries in an LRU queue
+ *   of match offsets.  This is very useful for certain types of files, such as
+ *   binary files that have repeating records.
  */
 
 #ifdef HAVE_CONFIG_H
 #  include "config.h"
 #endif
 
-#include "wimlib/compressor_ops.h"
 #include "wimlib/compress_common.h"
+#include "wimlib/compressor_ops.h"
 #include "wimlib/endianness.h"
 #include "wimlib/error.h"
 #include "wimlib/lz_mf.h"
 #include "wimlib/lz_repsearch.h"
 #include "wimlib/lzx.h"
 #include "wimlib/util.h"
+
 #include <string.h>
+#include <limits.h>
 
 #define LZX_OPTIM_ARRAY_LENGTH 4096
 
 
 #define LZX_CACHE_LEN (LZX_DIV_BLOCK_SIZE * (LZX_CACHE_PER_POS + 1))
 
-/* Codewords for the LZX main, length, and aligned offset Huffman codes  */
+struct lzx_compressor;
+
+/* Codewords for the LZX Huffman codes.  */
 struct lzx_codewords {
        u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
        u32 len[LZX_LENCODE_NUM_SYMBOLS];
        u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* Codeword lengths (in bits) for the LZX main, length, and aligned offset
- * Huffman codes.
- *
- * A 0 length means the codeword has zero frequency.
- */
+/* Codeword lengths (in bits) for the LZX Huffman codes.
+ * A zero length means the corresponding codeword has zero frequency.  */
 struct lzx_lens {
        u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
        u8 len[LZX_LENCODE_NUM_SYMBOLS];
        u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* Costs for the LZX main, length, and aligned offset Huffman symbols.
- *
- * If a codeword has zero frequency, it must still be assigned some nonzero cost
- * --- generally a high cost, since even if it gets used in the next iteration,
- * it probably will not be used very many times.  */
+/* Estimated cost, in bits, to output each symbol in the LZX Huffman codes.  */
 struct lzx_costs {
        u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
        u8 len[LZX_LENCODE_NUM_SYMBOLS];
        u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* The LZX main, length, and aligned offset Huffman codes  */
+/* Codewords and lengths for the LZX Huffman codes.  */
 struct lzx_codes {
        struct lzx_codewords codewords;
        struct lzx_lens lens;
 };
 
-/* Tables for tallying symbol frequencies in the three LZX alphabets  */
+/* Symbol frequency counters for the LZX Huffman codes.  */
 struct lzx_freqs {
        u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
        u32 len[LZX_LENCODE_NUM_SYMBOLS];
        u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* LZX intermediate match/literal format  */
+/* Intermediate LZX match/literal format  */
 struct lzx_item {
-       /* Bit     Description
-        *
-        * 31      1 if a match, 0 if a literal.
-        *
-        * 30-25   position slot.  This can be at most 50, so it will fit in 6
-        *         bits.
-        *
-        * 8-24    position footer.  This is the offset of the real formatted
-        *         offset from the position base.  This can be at most 17 bits
-        *         (since lzx_extra_bits[LZX_MAX_POSITION_SLOTS - 1] is 17).
-        *
-        * 0-7     length of match, minus 2.  This can be at most
-        *         (LZX_MAX_MATCH_LEN - 2) == 255, so it will fit in 8 bits.  */
-       u32 data;
-};
-
-/* Specification for an LZX block.  */
-struct lzx_block_spec {
-
-       /* One of the LZX_BLOCKTYPE_* constants indicating which type of this
-        * block.  */
-       int block_type;
 
-       /* 0-based position in the window at which this block starts.  */
-       u32 window_pos;
-
-       /* The number of bytes of uncompressed data this block represents.  */
-       u32 block_size;
-
-       /* The match/literal sequence for this block.  */
-       struct lzx_item *chosen_items;
-
-       /* The length of the @chosen_items sequence.  */
-       u32 num_chosen_items;
-
-       /* Huffman codes for this block.  */
-       struct lzx_codes codes;
+       /* Bits 0  -  9: Main symbol
+        * Bits 10 - 17: Length symbol
+        * Bits 18 - 22: Number of extra offset bits
+        * Bits 23+    : Extra offset bits  */
+       u64 data;
 };
 
-struct lzx_compressor;
-
+/* Internal compression parameters  */
 struct lzx_compressor_params {
-       struct lz_match (*choose_item_func)(struct lzx_compressor *);
-       enum lz_mf_algo mf_algo;
+       u32 (*choose_items_for_block)(struct lzx_compressor *, u32, u32);
        u32 num_optim_passes;
+       enum lz_mf_algo mf_algo;
        u32 min_match_length;
        u32 nice_match_length;
        u32 max_search_depth;
 };
 
-/* State of the LZX compressor.  */
-struct lzx_compressor {
+/*
+ * Match chooser position data:
+ *
+ * An array of these structures is used during the near-optimal match-choosing
+ * algorithm.  They correspond to consecutive positions in the window and are
+ * used to keep track of the cost to reach each position, and the match/literal
+ * choices that need to be chosen to reach that position.
+ */
+struct lzx_mc_pos_data {
 
-       /* The buffer of data to be compressed.
+       /* The cost, in bits, of the lowest-cost path that has been found to
+        * reach this position.  This can change as progressively lower cost
+        * paths are found to reach this position.  */
+       u32 cost;
+#define MC_INFINITE_COST UINT32_MAX
+
+       /* The match or literal that was taken to reach this position.  This can
+        * change as progressively lower cost paths are found to reach this
+        * position.
+        *
+        * This variable is divided into two bitfields.
         *
-        * 0xe8 byte preprocessing is done directly on the data here before
-        * further compression.
+        * Literals:
+        *      Low bits are 1, high bits are the literal.
+        *
+        * Explicit offset matches:
+        *      Low bits are the match length, high bits are the offset plus 2.
+        *
+        * Repeat offset matches:
+        *      Low bits are the match length, high bits are the queue index.
+        */
+       u32 mc_item_data;
+#define MC_OFFSET_SHIFT 9
+#define MC_LEN_MASK ((1 << MC_OFFSET_SHIFT) - 1)
+
+       /* The state of the LZX recent match offsets queue at this position.
+        * This is filled in lazily, only after the minimum-cost path to this
+        * position is found.
         *
-        * Note that this compressor does *not* use a real sliding window!!!!
-        * It's not needed in the WIM format, since every chunk is compressed
-        * independently.  This is by design, to allow random access to the
-        * chunks.  */
+        * Note: the way we handle this adaptive state in the "minimum-cost"
+        * parse is actually only an approximation.  It's possible for the
+        * globally optimal, minimum cost path to contain a prefix, ending at a
+        * position, where that path prefix is *not* the minimum cost path to
+        * that position.  This can happen if such a path prefix results in a
+        * different adaptive state which results in lower costs later.  We do
+        * not solve this problem; we only consider the lowest cost to reach
+        * each position, which seems to be an acceptable approximation.  */
+       struct lzx_lru_queue queue _aligned_attribute(16);
+
+} _aligned_attribute(16);
+
+/* State of the LZX compressor  */
+struct lzx_compressor {
+
+       /* Internal compression parameters  */
+       struct lzx_compressor_params params;
+
+       /* The preprocessed buffer of data being compressed  */
        u8 *cur_window;
 
        /* Number of bytes of data to be compressed, which is the number of
         * bytes of data in @cur_window that are actually valid.  */
        u32 cur_window_size;
 
-       /* Allocated size of @cur_window.  */
-       u32 max_window_size;
-
        /* log2 order of the LZX window size for LZ match offset encoding
         * purposes.  Will be >= LZX_MIN_WINDOW_ORDER and <=
         * LZX_MAX_WINDOW_ORDER.
         *
-        * Note: 1 << @window_order is normally equal to @max_window_size, but
-        * it will be greater than @max_window_size in the event that the
-        * compressor was created with a non-power-of-2 block size.  (See
-        * lzx_get_window_order().)  */
+        * Note: 1 << @window_order is normally equal to @max_window_size,
+        * a.k.a. the allocated size of @cur_window, but it will be greater than
+        * @max_window_size in the event that the compressor was created with a
+        * non-power-of-2 block size.  (See lzx_get_window_order().)  */
        unsigned window_order;
 
-       /* Compression parameters.  */
-       struct lzx_compressor_params params;
+       /* Number of symbols in the main alphabet.  This depends on
+        * @window_order, since @window_order determines the maximum possible
+        * offset.  It does not, however, depend on the *actual* size of the
+        * current data buffer being processed, which might be less than 1 <<
+        * @window_order.  */
+       unsigned num_main_syms;
 
+       /* Lempel-Ziv match-finder  */
+       struct lz_mf *mf;
+
+       /* Match-finder wrapper functions and data for near-optimal parsing.
+        *
+        * When doing more than one match-choosing pass over the data, matches
+        * found by the match-finder are cached to achieve a slight speedup when
+        * the same matches are needed on subsequent passes.  This is suboptimal
+        * because different matches may be preferred with different cost
+        * models, but it is a very worthwhile speedup.  */
        unsigned (*get_matches_func)(struct lzx_compressor *, const struct lz_match **);
        void (*skip_bytes_func)(struct lzx_compressor *, unsigned n);
+       u32 match_window_pos;
+       u32 match_window_end;
+       struct lz_match *cached_matches;
+       struct lz_match *cache_ptr;
+       struct lz_match *cache_limit;
 
-       /* Number of symbols in the main alphabet (depends on the @window_order
-        * since it determines the maximum allowed offset).  */
-       unsigned num_main_syms;
+       /* Position data for near-optimal parsing.  */
+       struct lzx_mc_pos_data optimum[LZX_OPTIM_ARRAY_LENGTH + LZX_MAX_MATCH_LEN];
+
+       /* The cost model currently being used for near-optimal parsing.  */
+       struct lzx_costs costs;
 
        /* The current match offset LRU queue.  */
        struct lzx_lru_queue queue;
 
-       /* Space for the sequences of matches/literals that were chosen for each
-        * block.  */
-       struct lzx_item *chosen_items;
-
-       /* Information about the LZX blocks the preprocessed input was divided
-        * into.  */
-       struct lzx_block_spec *block_specs;
-
-       /* Number of LZX blocks the input was divided into; a.k.a. the number of
-        * elements of @block_specs that are valid.  */
-       unsigned num_blocks;
-
-       /* This is simply filled in with zeroes and used to avoid special-casing
-        * the output of the first compressed Huffman code, which conceptually
-        * has a delta taken from a code with all symbols having zero-length
-        * codewords.  */
-       struct lzx_codes zero_codes;
-
-       /* The current cost model.  */
-       struct lzx_costs costs;
-
-       /* Lempel-Ziv match-finder.  */
-       struct lz_mf *mf;
+       /* Frequency counters for the current block.  */
+       struct lzx_freqs freqs;
 
-       /* Position in window of next match to return.  */
-       u32 match_window_pos;
+       /* The Huffman codes for the current and previous blocks.  */
+       struct lzx_codes codes[2];
 
-       /* The end-of-block position.  We can't allow any matches to span this
-        * position.  */
-       u32 match_window_end;
+       /* Which 'struct lzx_codes' is being used for the current block.  The
+        * other was used for the previous block (if this isn't the first
+        * block).  */
+       unsigned int codes_index;
 
-       /* When doing more than one match-choosing pass over the data, matches
-        * found by the match-finder are cached in the following array to
-        * achieve a slight speedup when the same matches are needed on
-        * subsequent passes.  This is suboptimal because different matches may
-        * be preferred with different cost models, but seems to be a worthwhile
-        * speedup.  */
-       struct lz_match *cached_matches;
-       struct lz_match *cache_ptr;
-       struct lz_match *cache_limit;
+       /* Dummy lengths that are always 0.  */
+       struct lzx_lens zero_lens;
 
-       /* Match-chooser state, used when doing near-optimal parsing.
-        *
-        * When matches have been chosen, optimum_cur_idx is set to the position
-        * in the window of the next match/literal to return and optimum_end_idx
-        * is set to the position in the window at the end of the last
-        * match/literal to return.  */
-       struct lzx_mc_pos_data *optimum;
-       unsigned optimum_cur_idx;
-       unsigned optimum_end_idx;
-
-       /* Previous match, used when doing lazy parsing.  */
-       struct lz_match prev_match;
-};
+       /* Matches/literals that were chosen for the current block.  */
+       struct lzx_item chosen_items[LZX_DIV_BLOCK_SIZE];
 
-/*
- * Match chooser position data:
- *
- * An array of these structures is used during the match-choosing algorithm.
- * They correspond to consecutive positions in the window and are used to keep
- * track of the cost to reach each position, and the match/literal choices that
- * need to be chosen to reach that position.
- */
-struct lzx_mc_pos_data {
-       /* The approximate minimum cost, in bits, to reach this position in the
-        * window which has been found so far.  */
-       u32 cost;
-#define MC_INFINITE_COST ((u32)~0UL)
-
-       /* The union here is just for clarity, since the fields are used in two
-        * slightly different ways.  Initially, the @prev structure is filled in
-        * first, and links go from later in the window to earlier in the
-        * window.  Later, @next structure is filled in and links go from
-        * earlier in the window to later in the window.  */
-       union {
-               struct {
-                       /* Position of the start of the match or literal that
-                        * was taken to get to this position in the approximate
-                        * minimum-cost parse.  */
-                       u32 link;
-
-                       /* Offset (as in an LZ (length, offset) pair) of the
-                        * match or literal that was taken to get to this
-                        * position in the approximate minimum-cost parse.  */
-                       u32 match_offset;
-               } prev;
-               struct {
-                       /* Position at which the match or literal starting at
-                        * this position ends in the minimum-cost parse.  */
-                       u32 link;
-
-                       /* Offset (as in an LZ (length, offset) pair) of the
-                        * match or literal starting at this position in the
-                        * approximate minimum-cost parse.  */
-                       u32 match_offset;
-               } next;
-       };
-
-       /* Adaptive state that exists after an approximate minimum-cost path to
-        * reach this position is taken.
-        *
-        * Note: we update this whenever we update the pending minimum-cost
-        * path.  This is in contrast to LZMA, which also has an optimal parser
-        * that maintains a repeat offset queue per position, but will only
-        * compute the queue once that position is actually reached in the
-        * parse, meaning that matches are being considered *starting* at that
-        * position.  However, the two methods seem to have approximately the
-        * same performance if appropriate optimizations are used.  Intuitively
-        * the LZMA method seems faster, but it actually suffers from 1-2 extra
-        * hard-to-predict branches at each position.  Probably it works better
-        * for LZMA than LZX because LZMA has a larger adaptive state than LZX,
-        * and the LZMA encoder considers more possibilities.  */
-       struct lzx_lru_queue queue;
+       /* Table mapping match offset => offset slot for small offsets  */
+#define LZX_NUM_FAST_OFFSETS 32768
+       u8 offset_slot_fast[LZX_NUM_FAST_OFFSETS];
 };
 
-
 /*
  * Structure to keep track of the current state of sending bits to the
  * compressed output buffer.
@@ -519,7 +327,7 @@ lzx_init_output(struct lzx_output_bitstream *os, void *buffer, u32 size)
  * The bits are given by the low-order @num_bits bits of @bits.  Higher-order
  * bits in @bits cannot be set.  At most 17 bits can be written at once.
  *
- * @max_bits is a compile-time constant that specifies the maximum number of
+ * @max_num_bits is a compile-time constant that specifies the maximum number of
  * bits that can ever be written at the call site.  Currently, it is used to
  * optimize away the conditional code for writing a second 16-bit coding unit
  * when writing fewer than 17 bits.
@@ -527,7 +335,7 @@ lzx_init_output(struct lzx_output_bitstream *os, void *buffer, u32 size)
  * If the output buffer space is exhausted, then the bits will be ignored, and
  * lzx_flush_output() will return 0 when it gets called.
  */
-static _always_inline_attribute void
+static inline void
 lzx_write_varbits(struct lzx_output_bitstream *os,
                  const u32 bits, const unsigned int num_bits,
                  const unsigned int max_num_bits)
@@ -567,7 +375,7 @@ lzx_write_varbits(struct lzx_output_bitstream *os,
 
 /* Use when @num_bits is a compile-time constant.  Otherwise use
  * lzx_write_varbits().  */
-static _always_inline_attribute void
+static inline void
 lzx_write_bits(struct lzx_output_bitstream *os,
               const u32 bits, const unsigned int num_bits)
 {
@@ -590,49 +398,12 @@ lzx_flush_output(struct lzx_output_bitstream *os)
        return (const u8 *)os->next - (const u8 *)os->start;
 }
 
-/* Returns the LZX position slot that corresponds to a given match offset,
- * taking into account the recent offset queue and updating it if the offset is
- * found in it.  */
-static unsigned
-lzx_get_position_slot(u32 offset, struct lzx_lru_queue *queue)
-{
-       unsigned position_slot;
-
-       /* See if the offset was recently used.  */
-       for (int i = 0; i < LZX_NUM_RECENT_OFFSETS; i++) {
-               if (offset == queue->R[i]) {
-                       /* Found it.  */
-
-                       /* Bring the repeat offset to the front of the
-                        * queue.  Note: this is, in fact, not a real
-                        * LRU queue because repeat matches are simply
-                        * swapped to the front.  */
-                       swap(queue->R[0], queue->R[i]);
-
-                       /* The resulting position slot is simply the first index
-                        * at which the offset was found in the queue.  */
-                       return i;
-               }
-       }
-
-       /* The offset was not recently used; look up its real position slot.  */
-       position_slot = lzx_get_position_slot_raw(offset + LZX_OFFSET_OFFSET);
-
-       /* Bring the new offset to the front of the queue.  */
-       for (int i = LZX_NUM_RECENT_OFFSETS - 1; i > 0; i--)
-               queue->R[i] = queue->R[i - 1];
-       queue->R[0] = offset;
-
-       return position_slot;
-}
-
 /* Build the main, length, and aligned offset Huffman codes used in LZX.
  *
  * This takes as input the frequency tables for each code and produces as output
  * a set of tables that map symbols to codewords and codeword lengths.  */
 static void
-lzx_make_huffman_codes(const struct lzx_freqs *freqs,
-                      struct lzx_codes *codes,
+lzx_make_huffman_codes(const struct lzx_freqs *freqs, struct lzx_codes *codes,
                       unsigned num_main_syms)
 {
        make_canonical_huffman_code(num_main_syms,
@@ -654,100 +425,6 @@ lzx_make_huffman_codes(const struct lzx_freqs *freqs,
                                    codes->codewords.aligned);
 }
 
-/*
- * Output a precomputed LZX match.
- *
- * @os:
- *     The bitstream to which to write the match.
- * @ones_if_aligned
- *     A mask of all ones if the block is of type LZX_BLOCKTYPE_ALIGNED,
- *     otherwise 0.
- * @match:
- *     The match data.
- * @codes:
- *     Pointer to a structure that contains the codewords for the main, length,
- *     and aligned offset Huffman codes for the current LZX compressed block.
- */
-static void
-lzx_write_match(struct lzx_output_bitstream *os, unsigned ones_if_aligned,
-               struct lzx_item match, const struct lzx_codes *codes)
-{
-       unsigned match_len_minus_2 = match.data & 0xff;
-       u32 position_footer = (match.data >> 8) & 0x1ffff;
-       unsigned position_slot = (match.data >> 25) & 0x3f;
-       unsigned len_header;
-       unsigned len_footer;
-       unsigned main_symbol;
-       unsigned num_extra_bits;
-
-       /* If the match length is less than MIN_MATCH_LEN (= 2) +
-        * NUM_PRIMARY_LENS (= 7), the length header contains the match length
-        * minus MIN_MATCH_LEN, and there is no length footer.
-        *
-        * Otherwise, the length header contains NUM_PRIMARY_LENS, and the
-        * length footer contains the match length minus NUM_PRIMARY_LENS minus
-        * MIN_MATCH_LEN. */
-       if (match_len_minus_2 < LZX_NUM_PRIMARY_LENS) {
-               len_header = match_len_minus_2;
-       } else {
-               len_header = LZX_NUM_PRIMARY_LENS;
-               len_footer = match_len_minus_2 - LZX_NUM_PRIMARY_LENS;
-       }
-
-       /* Combine the position slot with the length header into a single symbol
-        * that will be encoded with the main code.
-        *
-        * The actual main symbol is offset by LZX_NUM_CHARS because values
-        * under LZX_NUM_CHARS are used to indicate a literal byte rather than a
-        * match.  */
-       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-
-       /* Output main symbol. */
-       lzx_write_varbits(os, codes->codewords.main[main_symbol],
-                         codes->lens.main[main_symbol],
-                         LZX_MAX_MAIN_CODEWORD_LEN);
-
-       /* If there is a length footer, output it using the
-        * length Huffman code. */
-       if (len_header == LZX_NUM_PRIMARY_LENS) {
-               lzx_write_varbits(os, codes->codewords.len[len_footer],
-                                 codes->lens.len[len_footer],
-                                 LZX_MAX_LEN_CODEWORD_LEN);
-       }
-
-       /* Output the position footer.  */
-
-       num_extra_bits = lzx_get_num_extra_bits(position_slot);
-
-       if ((num_extra_bits & ones_if_aligned) >= 3) {
-
-               /* Aligned offset blocks: The low 3 bits of the position footer
-                * are Huffman-encoded using the aligned offset code.  The
-                * remaining bits are output literally.  */
-
-               lzx_write_varbits(os,
-                                 position_footer >> 3, num_extra_bits - 3, 14);
-
-               lzx_write_varbits(os,
-                                 codes->codewords.aligned[position_footer & 7],
-                                 codes->lens.aligned[position_footer & 7],
-                                 LZX_MAX_ALIGNED_CODEWORD_LEN);
-       } else {
-               /* Verbatim blocks, or fewer than 3 extra bits:  All position
-                * footer bits are output literally.  */
-               lzx_write_varbits(os, position_footer, num_extra_bits, 17);
-       }
-}
-
-/* Output an LZX literal (encoded with the main Huffman code).  */
-static void
-lzx_write_literal(struct lzx_output_bitstream *os, unsigned literal,
-                 const struct lzx_codes *codes)
-{
-       lzx_write_varbits(os, codes->codewords.main[literal],
-                         codes->lens.main[literal], LZX_MAX_MAIN_CODEWORD_LEN);
-}
-
 static unsigned
 lzx_compute_precode_items(const u8 lens[restrict],
                          const u8 prev_lens[restrict],
@@ -925,6 +602,59 @@ lzx_write_compressed_code(struct lzx_output_bitstream *os,
        }
 }
 
+/* Output a match or literal.  */
+static inline void
+lzx_write_item(struct lzx_output_bitstream *os, struct lzx_item item,
+              unsigned ones_if_aligned, const struct lzx_codes *codes)
+{
+       u64 data = item.data;
+       unsigned main_symbol;
+       unsigned len_symbol;
+       unsigned num_extra_bits;
+       u32 extra_bits;
+
+       main_symbol = data & 0x3FF;
+
+       lzx_write_varbits(os, codes->codewords.main[main_symbol],
+                         codes->lens.main[main_symbol],
+                         LZX_MAX_MAIN_CODEWORD_LEN);
+
+       if (main_symbol < LZX_NUM_CHARS)  /* Literal?  */
+               return;
+
+       len_symbol = (data >> 10) & 0xFF;
+
+       if (len_symbol != LZX_LENCODE_NUM_SYMBOLS) {
+               lzx_write_varbits(os, codes->codewords.len[len_symbol],
+                                 codes->lens.len[len_symbol],
+                                 LZX_MAX_LEN_CODEWORD_LEN);
+       }
+
+       num_extra_bits = (data >> 18) & 0x1F;
+       if (num_extra_bits == 0)  /* Small offset or repeat offset match?  */
+               return;
+
+       extra_bits = data >> 23;
+
+       /*if (block_type == LZX_BLOCKTYPE_ALIGNED && num_extra_bits >= 3) {*/
+       if ((num_extra_bits & ones_if_aligned) >= 3) {
+
+               /* Aligned offset blocks: The low 3 bits of the extra offset
+                * bits are Huffman-encoded using the aligned offset code.  The
+                * remaining bits are output literally.  */
+
+               lzx_write_varbits(os, extra_bits >> 3, num_extra_bits - 3, 14);
+
+               lzx_write_varbits(os, codes->codewords.aligned[extra_bits & 7],
+                                 codes->lens.aligned[extra_bits & 7],
+                                 LZX_MAX_ALIGNED_CODEWORD_LEN);
+       } else {
+               /* Verbatim blocks, or fewer than 3 extra bits:  All extra
+                * offset bits are output literally.  */
+               lzx_write_varbits(os, extra_bits, num_extra_bits, 17);
+       }
+}
+
 /*
  * Write all matches and literal bytes (which were precomputed) in an LZX
  * compressed block to the output bitstream in the final compressed
@@ -950,18 +680,11 @@ lzx_write_items(struct lzx_output_bitstream *os, int block_type,
 {
        unsigned ones_if_aligned = 0U - (block_type == LZX_BLOCKTYPE_ALIGNED);
 
-       for (u32 i = 0; i < num_items; i++) {
-               /* The high bit of the 32-bit intermediate representation
-                * indicates whether the item is an actual LZ-style match (1) or
-                * a literal byte (0).  */
-               if (items[i].data & 0x80000000)
-                       lzx_write_match(os, ones_if_aligned, items[i], codes);
-               else
-                       lzx_write_literal(os, items[i].data, codes);
-       }
+       for (u32 i = 0; i < num_items; i++)
+               lzx_write_item(os, items[i], ones_if_aligned, codes);
 }
 
-/* Write an LZX aligned offset or verbatim block to the output.  */
+/* Write an LZX aligned offset or verbatim block to the output bitstream.  */
 static void
 lzx_write_compressed_block(int block_type,
                           u32 block_size,
@@ -970,7 +693,7 @@ lzx_write_compressed_block(int block_type,
                           struct lzx_item * chosen_items,
                           u32 num_chosen_items,
                           const struct lzx_codes * codes,
-                          const struct lzx_codes * prev_codes,
+                          const struct lzx_lens * prev_lens,
                           struct lzx_output_bitstream * os)
 {
        LZX_ASSERT(block_type == LZX_BLOCKTYPE_ALIGNED ||
@@ -1006,7 +729,7 @@ lzx_write_compressed_block(int block_type,
                lzx_write_bits(os, block_size & 0xFFFF, 16);
        }
 
-       /* Output the aligned offset code.  */
+       /* If it's an aligned offset block, output the aligned offset code.  */
        if (block_type == LZX_BLOCKTYPE_ALIGNED) {
                for (int i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
                        lzx_write_bits(os, codes->lens.aligned[i],
@@ -1016,238 +739,78 @@ lzx_write_compressed_block(int block_type,
 
        /* Output the main code (two parts).  */
        lzx_write_compressed_code(os, codes->lens.main,
-                                 prev_codes->lens.main,
+                                 prev_lens->main,
                                  LZX_NUM_CHARS);
        lzx_write_compressed_code(os, codes->lens.main + LZX_NUM_CHARS,
-                                 prev_codes->lens.main + LZX_NUM_CHARS,
+                                 prev_lens->main + LZX_NUM_CHARS,
                                  num_main_syms - LZX_NUM_CHARS);
 
        /* Output the length code.  */
        lzx_write_compressed_code(os, codes->lens.len,
-                                 prev_codes->lens.len,
+                                 prev_lens->len,
                                  LZX_LENCODE_NUM_SYMBOLS);
 
        /* Output the compressed matches and literals.  */
        lzx_write_items(os, block_type, chosen_items, num_chosen_items, codes);
 }
 
-/* Write out the LZX blocks that were computed.  */
-static void
-lzx_write_all_blocks(struct lzx_compressor *c, struct lzx_output_bitstream *os)
+/* Don't allow matches to span the end of an LZX block.  */
+static inline unsigned
+maybe_truncate_matches(struct lz_match matches[], unsigned num_matches,
+                      struct lzx_compressor *c)
 {
+       if (c->match_window_end < c->cur_window_size && num_matches != 0) {
+               u32 limit = c->match_window_end - c->match_window_pos;
 
-       const struct lzx_codes *prev_codes = &c->zero_codes;
-       for (unsigned i = 0; i < c->num_blocks; i++) {
-               const struct lzx_block_spec *spec = &c->block_specs[i];
+               if (limit >= LZX_MIN_MATCH_LEN) {
 
-               lzx_write_compressed_block(spec->block_type,
-                                          spec->block_size,
-                                          c->window_order,
-                                          c->num_main_syms,
-                                          spec->chosen_items,
-                                          spec->num_chosen_items,
-                                          &spec->codes,
-                                          prev_codes,
-                                          os);
+                       unsigned i = num_matches - 1;
+                       do {
+                               if (matches[i].len >= limit) {
+                                       matches[i].len = limit;
 
-               prev_codes = &spec->codes;
+                                       /* Truncation might produce multiple
+                                        * matches with length 'limit'.  Keep at
+                                        * most 1.  */
+                                       num_matches = i + 1;
+                               }
+                       } while (i--);
+               } else {
+                       num_matches = 0;
+               }
        }
+       return num_matches;
 }
 
-/* Constructs an LZX match from a literal byte and updates the main code symbol
- * frequencies.  */
-static inline u32
-lzx_tally_literal(u8 lit, struct lzx_freqs *freqs)
+static unsigned
+lzx_get_matches_fillcache_singleblock(struct lzx_compressor *c,
+                                     const struct lz_match **matches_ret)
 {
-       freqs->main[lit]++;
-       return (u32)lit;
-}
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
 
-/* Constructs an LZX match from an offset and a length, and updates the LRU
- * queue and the frequency of symbols in the main, length, and aligned offset
- * alphabets.  The return value is a 32-bit number that provides the match in an
- * intermediate representation documented below.  */
-static inline u32
-lzx_tally_match(unsigned match_len, u32 match_offset,
-               struct lzx_freqs *freqs, struct lzx_lru_queue *queue)
-{
-       unsigned position_slot;
-       u32 position_footer;
-       u32 len_header;
-       unsigned main_symbol;
-       unsigned len_footer;
-       unsigned adjusted_match_len;
-
-       LZX_ASSERT(match_len >= LZX_MIN_MATCH_LEN && match_len <= LZX_MAX_MATCH_LEN);
-
-       /* The match offset shall be encoded as a position slot (itself encoded
-        * as part of the main symbol) and a position footer.  */
-       position_slot = lzx_get_position_slot(match_offset, queue);
-       position_footer = (match_offset + LZX_OFFSET_OFFSET) &
-                               (((u32)1 << lzx_get_num_extra_bits(position_slot)) - 1);
-
-       /* The match length shall be encoded as a length header (itself encoded
-        * as part of the main symbol) and an optional length footer.  */
-       adjusted_match_len = match_len - LZX_MIN_MATCH_LEN;
-       if (adjusted_match_len < LZX_NUM_PRIMARY_LENS) {
-               /* No length footer needed.  */
-               len_header = adjusted_match_len;
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       if (likely(cache_ptr <= c->cache_limit)) {
+               num_matches = lz_mf_get_matches(c->mf, matches);
+               cache_ptr->len = num_matches;
+               c->cache_ptr = matches + num_matches;
        } else {
-               /* Length footer needed.  It will be encoded using the length
-                * code.  */
-               len_header = LZX_NUM_PRIMARY_LENS;
-               len_footer = adjusted_match_len - LZX_NUM_PRIMARY_LENS;
-               freqs->len[len_footer]++;
+               num_matches = 0;
        }
-
-       /* Account for the main symbol.  */
-       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-
-       freqs->main[main_symbol]++;
-
-       /* In an aligned offset block, 3 bits of the position footer are output
-        * as an aligned offset symbol.  Account for this, although we may
-        * ultimately decide to output the block as verbatim.  */
-
-       /* The following check is equivalent to:
-        *
-        * if (lzx_extra_bits[position_slot] >= 3)
-        *
-        * Note that this correctly excludes position slots that correspond to
-        * recent offsets.  */
-       if (position_slot >= 8)
-               freqs->aligned[position_footer & 7]++;
-
-       /* Pack the position slot, position footer, and match length into an
-        * intermediate representation.  See `struct lzx_item' for details.
-        */
-       LZX_ASSERT(LZX_MAX_POSITION_SLOTS <= 64);
-       LZX_ASSERT(lzx_get_num_extra_bits(LZX_MAX_POSITION_SLOTS - 1) <= 17);
-       LZX_ASSERT(LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1 <= 256);
-
-       LZX_ASSERT(position_slot      <= (1U << (31 - 25)) - 1);
-       LZX_ASSERT(position_footer    <= (1U << (25 -  8)) - 1);
-       LZX_ASSERT(adjusted_match_len <= (1U << (8  -  0)) - 1);
-       return 0x80000000 |
-               (position_slot << 25) |
-               (position_footer << 8) |
-               (adjusted_match_len);
-}
-
-/* Returns the cost, in bits, to output a literal byte using the specified cost
- * model.  */
-static u32
-lzx_literal_cost(u8 c, const struct lzx_costs * costs)
-{
-       return costs->main[c];
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
 }
 
-/* Returns the cost, in bits, to output a repeat offset match of the specified
- * length and position slot (repeat index) using the specified cost model.  */
-static u32
-lzx_repmatch_cost(u32 len, unsigned position_slot, const struct lzx_costs *costs)
+static unsigned
+lzx_get_matches_fillcache_multiblock(struct lzx_compressor *c,
+                                    const struct lz_match **matches_ret)
 {
-       unsigned len_header, main_symbol;
-       u32 cost = 0;
-
-       len_header = min(len - LZX_MIN_MATCH_LEN, LZX_NUM_PRIMARY_LENS);
-       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-
-       /* Account for main symbol.  */
-       cost += costs->main[main_symbol];
-
-       /* Account for extra length information.  */
-       if (len_header == LZX_NUM_PRIMARY_LENS)
-               cost += costs->len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
-
-       return cost;
-}
-
-/* Set the cost model @c->costs from the Huffman codeword lengths specified in
- * @lens.
- *
- * The cost model and codeword lengths are almost the same thing, but the
- * Huffman codewords with length 0 correspond to symbols with zero frequency
- * that still need to be assigned actual costs.  The specific values assigned
- * are arbitrary, but they should be fairly high (near the maximum codeword
- * length) to take into account the fact that uses of these symbols are expected
- * to be rare.  */
-static void
-lzx_set_costs(struct lzx_compressor *c, const struct lzx_lens * lens,
-             unsigned nostat)
-{
-       unsigned i;
-
-       /* Main code  */
-       for (i = 0; i < c->num_main_syms; i++)
-               c->costs.main[i] = lens->main[i] ? lens->main[i] : nostat;
-
-       /* Length code  */
-       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
-               c->costs.len[i] = lens->len[i] ? lens->len[i] : nostat;
-
-       /* Aligned offset code  */
-       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
-               c->costs.aligned[i] = lens->aligned[i] ? lens->aligned[i] : nostat / 2;
-}
-
-/* Don't allow matches to span the end of an LZX block.  */
-static inline u32
-maybe_truncate_matches(struct lz_match matches[], u32 num_matches,
-                      struct lzx_compressor *c)
-{
-       if (c->match_window_end < c->cur_window_size && num_matches != 0) {
-               u32 limit = c->match_window_end - c->match_window_pos;
-
-               if (limit >= LZX_MIN_MATCH_LEN) {
-
-                       u32 i = num_matches - 1;
-                       do {
-                               if (matches[i].len >= limit) {
-                                       matches[i].len = limit;
-
-                                       /* Truncation might produce multiple
-                                        * matches with length 'limit'.  Keep at
-                                        * most 1.  */
-                                       num_matches = i + 1;
-                               }
-                       } while (i--);
-               } else {
-                       num_matches = 0;
-               }
-       }
-       return num_matches;
-}
-
-static unsigned
-lzx_get_matches_fillcache_singleblock(struct lzx_compressor *c,
-                                     const struct lz_match **matches_ret)
-{
-       struct lz_match *cache_ptr;
-       struct lz_match *matches;
-       unsigned num_matches;
-
-       cache_ptr = c->cache_ptr;
-       matches = cache_ptr + 1;
-       if (likely(cache_ptr <= c->cache_limit)) {
-               num_matches = lz_mf_get_matches(c->mf, matches);
-               cache_ptr->len = num_matches;
-               c->cache_ptr = matches + num_matches;
-       } else {
-               num_matches = 0;
-       }
-       c->match_window_pos++;
-       *matches_ret = matches;
-       return num_matches;
-}
-
-static unsigned
-lzx_get_matches_fillcache_multiblock(struct lzx_compressor *c,
-                                    const struct lz_match **matches_ret)
-{
-       struct lz_match *cache_ptr;
-       struct lz_match *matches;
-       unsigned num_matches;
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
 
        cache_ptr = c->cache_ptr;
        matches = cache_ptr + 1;
@@ -1334,6 +897,8 @@ lzx_get_matches_nocache_multiblock(struct lzx_compressor *c,
 /*
  * Find matches at the next position in the window.
  *
+ * This uses a wrapper function around the underlying match-finder.
+ *
  * Returns the number of matches found and sets *matches_ret to point to the
  * matches array.  The matches will be sorted by strictly increasing length and
  * offset.
@@ -1400,6 +965,8 @@ lzx_skip_bytes_nocache(struct lzx_compressor *c, unsigned n)
 /*
  * Skip the specified number of positions in the window (don't search for
  * matches at them).
+ *
+ * This uses a wrapper function around the underlying match-finder.
  */
 static inline void
 lzx_skip_bytes(struct lzx_compressor *c, unsigned n)
@@ -1407,600 +974,915 @@ lzx_skip_bytes(struct lzx_compressor *c, unsigned n)
        return (*c->skip_bytes_func)(c, n);
 }
 
-/*
- * Reverse the linked list of near-optimal matches so that they can be returned
- * in forwards order.
- *
- * Returns the first match in the list.
- */
-static struct lz_match
-lzx_match_chooser_reverse_list(struct lzx_compressor *c, unsigned cur_pos)
+/* Tally, and optionally record, the specified literal byte.  */
+static inline void
+lzx_declare_literal(struct lzx_compressor *c, unsigned literal,
+                   struct lzx_item **next_chosen_item)
 {
-       unsigned prev_link, saved_prev_link;
-       unsigned prev_match_offset, saved_prev_match_offset;
+       unsigned main_symbol = literal;
 
-       c->optimum_end_idx = cur_pos;
+       c->freqs.main[main_symbol]++;
 
-       saved_prev_link = c->optimum[cur_pos].prev.link;
-       saved_prev_match_offset = c->optimum[cur_pos].prev.match_offset;
+       if (next_chosen_item) {
+               *(*next_chosen_item)++ = (struct lzx_item) {
+                       .data = main_symbol,
+               };
+       }
+}
 
-       do {
-               prev_link = saved_prev_link;
-               prev_match_offset = saved_prev_match_offset;
+/* Tally, and optionally record, the specified repeat offset match.  */
+static inline void
+lzx_declare_repeat_offset_match(struct lzx_compressor *c,
+                               unsigned len, unsigned rep_index,
+                               struct lzx_item **next_chosen_item)
+{
+       unsigned len_header;
+       unsigned main_symbol;
+       unsigned len_symbol;
 
-               saved_prev_link = c->optimum[prev_link].prev.link;
-               saved_prev_match_offset = c->optimum[prev_link].prev.match_offset;
+       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+               len_header = len - LZX_MIN_MATCH_LEN;
+               len_symbol = LZX_LENCODE_NUM_SYMBOLS;
+       } else {
+               len_header = LZX_NUM_PRIMARY_LENS;
+               len_symbol = len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS;
+               c->freqs.len[len_symbol]++;
+       }
+
+       main_symbol = LZX_NUM_CHARS + ((rep_index << 3) | len_header);
+
+       c->freqs.main[main_symbol]++;
+
+       if (next_chosen_item) {
+               *(*next_chosen_item)++ = (struct lzx_item) {
+                       .data = (u64)main_symbol | ((u64)len_symbol << 10),
+               };
+       }
+}
+
+/* Tally, and optionally record, the specified explicit offset match.  */
+static inline void
+lzx_declare_explicit_offset_match(struct lzx_compressor *c, unsigned len, u32 offset,
+                                 struct lzx_item **next_chosen_item)
+{
+       unsigned len_header;
+       unsigned main_symbol;
+       unsigned len_symbol;
+       unsigned offset_slot;
+       unsigned num_extra_bits;
+       u32 extra_bits;
+
+       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+               len_header = len - LZX_MIN_MATCH_LEN;
+               len_symbol = LZX_LENCODE_NUM_SYMBOLS;
+       } else {
+               len_header = LZX_NUM_PRIMARY_LENS;
+               len_symbol = len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS;
+               c->freqs.len[len_symbol]++;
+       }
+
+       offset_slot = lzx_get_offset_slot_raw(offset + LZX_OFFSET_OFFSET);
 
-               c->optimum[prev_link].next.link = cur_pos;
-               c->optimum[prev_link].next.match_offset = prev_match_offset;
+       main_symbol = LZX_NUM_CHARS + ((offset_slot << 3) | len_header);
 
-               cur_pos = prev_link;
-       } while (cur_pos != 0);
+       c->freqs.main[main_symbol]++;
 
-       c->optimum_cur_idx = c->optimum[0].next.link;
+       if (offset_slot >= 8)
+               c->freqs.aligned[(offset + LZX_OFFSET_OFFSET) & 7]++;
 
-       return (struct lz_match)
-               { .len = c->optimum_cur_idx,
-                 .offset = c->optimum[0].next.match_offset,
+       if (next_chosen_item) {
+
+               num_extra_bits = lzx_extra_offset_bits[offset_slot];
+
+               extra_bits = (offset + LZX_OFFSET_OFFSET) -
+                            lzx_offset_slot_base[offset_slot];
+
+               *(*next_chosen_item)++ = (struct lzx_item) {
+                       .data = (u64)main_symbol |
+                               ((u64)len_symbol << 10) |
+                               ((u64)num_extra_bits << 18) |
+                               ((u64)extra_bits << 23),
                };
+       }
 }
 
-/*
- * Find the longest repeat offset match.
- *
- * If no match of at least LZX_MIN_MATCH_LEN bytes is found, then return 0.
+/* Tally, and optionally record, the specified match or literal.  */
+static inline void
+lzx_declare_item(struct lzx_compressor *c, u32 mc_item_data,
+                struct lzx_item **next_chosen_item)
+{
+       u32 len = mc_item_data & MC_LEN_MASK;
+       u32 offset_data = mc_item_data >> MC_OFFSET_SHIFT;
+
+       if (len == 1)
+               lzx_declare_literal(c, offset_data, next_chosen_item);
+       else if (offset_data < LZX_NUM_RECENT_OFFSETS)
+               lzx_declare_repeat_offset_match(c, len, offset_data,
+                                               next_chosen_item);
+       else
+               lzx_declare_explicit_offset_match(c, len,
+                                                 offset_data - LZX_OFFSET_OFFSET,
+                                                 next_chosen_item);
+}
+
+static inline void
+lzx_record_item_list(struct lzx_compressor *c,
+                    struct lzx_mc_pos_data *cur_optimum_ptr,
+                    struct lzx_item **next_chosen_item)
+{
+       struct lzx_mc_pos_data *end_optimum_ptr;
+       u32 saved_item;
+       u32 item;
+
+       /* The list is currently in reverse order (last item to first item).
+        * Reverse it.  */
+       end_optimum_ptr = cur_optimum_ptr;
+       saved_item = cur_optimum_ptr->mc_item_data;
+       do {
+               item = saved_item;
+               cur_optimum_ptr -= item & MC_LEN_MASK;
+               saved_item = cur_optimum_ptr->mc_item_data;
+               cur_optimum_ptr->mc_item_data = item;
+       } while (cur_optimum_ptr != c->optimum);
+
+       /* Walk the list of items from beginning to end, tallying and recording
+        * each item.  */
+       do {
+               lzx_declare_item(c, cur_optimum_ptr->mc_item_data, next_chosen_item);
+               cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK;
+       } while (cur_optimum_ptr != end_optimum_ptr);
+}
+
+static inline void
+lzx_tally_item_list(struct lzx_compressor *c, struct lzx_mc_pos_data *cur_optimum_ptr)
+{
+       /* Since we're just tallying the items, we don't need to reverse the
+        * list.  Processing the items in reverse order is fine.  */
+       do {
+               lzx_declare_item(c, cur_optimum_ptr->mc_item_data, NULL);
+               cur_optimum_ptr -= (cur_optimum_ptr->mc_item_data & MC_LEN_MASK);
+       } while (cur_optimum_ptr != c->optimum);
+}
+
+/* Tally, and optionally (if next_chosen_item != NULL) record, in order, all
+ * items in the current list of items found by the match-chooser.  */
+static void
+lzx_declare_item_list(struct lzx_compressor *c, struct lzx_mc_pos_data *cur_optimum_ptr,
+                     struct lzx_item **next_chosen_item)
+{
+       if (next_chosen_item)
+               lzx_record_item_list(c, cur_optimum_ptr, next_chosen_item);
+       else
+               lzx_tally_item_list(c, cur_optimum_ptr);
+}
+
+/* Set the cost model @c->costs from the Huffman codeword lengths specified in
+ * @lens.
  *
- * If a match of at least LZX_MIN_MATCH_LEN bytes is found, then return its
- * length and set *slot_ret to the index of its offset in @queue.
- */
+ * The cost model and codeword lengths are almost the same thing, but the
+ * Huffman codewords with length 0 correspond to symbols with zero frequency
+ * that still need to be assigned actual costs.  The specific values assigned
+ * are arbitrary, but they should be fairly high (near the maximum codeword
+ * length) to take into account the fact that uses of these symbols are expected
+ * to be rare.  */
+static void
+lzx_set_costs(struct lzx_compressor *c, const struct lzx_lens * lens)
+{
+       unsigned i;
+
+       /* Main code  */
+       for (i = 0; i < c->num_main_syms; i++)
+               c->costs.main[i] = lens->main[i] ? lens->main[i] : 15;
+
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               c->costs.len[i] = lens->len[i] ? lens->len[i] : 15;
+
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               c->costs.aligned[i] = lens->aligned[i] ? lens->aligned[i] : 7;
+}
+
+/* Set default LZX Huffman symbol costs to bootstrap the iterative optimization
+ * algorithm.  */
+static void
+lzx_set_default_costs(struct lzx_costs * costs, unsigned num_main_syms)
+{
+       unsigned i;
+
+       /* Main code (part 1): Literal symbols  */
+       for (i = 0; i < LZX_NUM_CHARS; i++)
+               costs->main[i] = 8;
+
+       /* Main code (part 2): Match header symbols  */
+       for (; i < num_main_syms; i++)
+               costs->main[i] = 10;
+
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               costs->len[i] = 8;
+
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               costs->aligned[i] = 3;
+}
+
+/* Return the cost, in bits, to output a literal byte using the specified cost
+ * model.  */
 static inline u32
-lzx_repsearch(const u8 * const strptr, const u32 bytes_remaining,
-             const struct lzx_lru_queue *queue, unsigned *slot_ret)
+lzx_literal_cost(unsigned literal, const struct lzx_costs * costs)
 {
-       BUILD_BUG_ON(LZX_MIN_MATCH_LEN != 2);
-       return lz_repsearch(strptr, bytes_remaining, LZX_MAX_MATCH_LEN,
-                           queue->R, LZX_NUM_RECENT_OFFSETS, slot_ret);
+       return costs->main[literal];
 }
 
-/*
- * lzx_choose_near_optimal_item() -
- *
- * Choose an approximately optimal match or literal to use at the next position
- * in the string, or "window", being LZ-encoded.
- *
- * This is based on algorithms used in 7-Zip, including the DEFLATE encoder
- * and the LZMA encoder, written by Igor Pavlov.
- *
- * Unlike a greedy parser that always takes the longest match, or even a "lazy"
- * parser with one match/literal look-ahead like zlib, the algorithm used here
- * may look ahead many matches/literals to determine the approximately optimal
- * match/literal to code next.  The motivation is that the compression ratio is
- * improved if the compressor can do things like use a shorter-than-possible
- * match in order to allow a longer match later, and also take into account the
- * estimated real cost of coding each match/literal based on the underlying
- * entropy encoding.
- *
- * Still, this is not a true optimal parser for several reasons:
- *
- * - Real compression formats use entropy encoding of the literal/match
- *   sequence, so the real cost of coding each match or literal is unknown until
- *   the parse is fully determined.  It can be approximated based on iterative
- *   parses, but the end result is not guaranteed to be globally optimal.
- *
- * - Very long matches are chosen immediately.  This is because locations with
- *   long matches are likely to have many possible alternatives that would cause
- *   slow optimal parsing, but also such locations are already highly
- *   compressible so it is not too harmful to just grab the longest match.
- *
- * - Not all possible matches at each location are considered because the
- *   underlying match-finder limits the number and type of matches produced at
- *   each position.  For example, for a given match length it's usually not
- *   worth it to only consider matches other than the lowest-offset match,
- *   except in the case of a repeat offset.
- *
- * - Although we take into account the adaptive state (in LZX, the recent offset
- *   queue), coding decisions made with respect to the adaptive state will be
- *   locally optimal but will not necessarily be globally optimal.  This is
- *   because the algorithm only keeps the least-costly path to get to a given
- *   location and does not take into account that a slightly more costly path
- *   could result in a different adaptive state that ultimately results in a
- *   lower global cost.
- *
- * - The array space used by this function is bounded, so in degenerate cases it
- *   is forced to start returning matches/literals before the algorithm has
- *   really finished.
- *
- * Each call to this function does one of two things:
- *
- * 1. Build a sequence of near-optimal matches/literals, up to some point, that
- *    will be returned by subsequent calls to this function, then return the
- *    first one.
- *
- * OR
- *
- * 2. Return the next match/literal previously computed by a call to this
- *    function.
- *
- * The return value is a (length, offset) pair specifying the match or literal
- * chosen.  For literals, the length is 0 or 1 and the offset is meaningless.
- */
-static struct lz_match
-lzx_choose_near_optimal_item(struct lzx_compressor *c)
+/* Return the cost, in bits, to output a match of the specified length and
+ * offset slot using the specified cost model.  Does not take into account
+ * extra offset bits.  */
+static inline u32
+lzx_match_cost_raw(unsigned len, unsigned offset_slot,
+                  const struct lzx_costs *costs)
 {
-       unsigned num_matches;
-       const struct lz_match *matches;
-       struct lz_match match;
-       u32 longest_len;
-       u32 longest_rep_len;
-       unsigned longest_rep_slot;
-       unsigned cur_pos;
-       unsigned end_pos;
-       struct lzx_mc_pos_data *optimum = c->optimum;
-
-       if (c->optimum_cur_idx != c->optimum_end_idx) {
-               /* Case 2: Return the next match/literal already found.  */
-               match.len = optimum[c->optimum_cur_idx].next.link -
-                                   c->optimum_cur_idx;
-               match.offset = optimum[c->optimum_cur_idx].next.match_offset;
-
-               c->optimum_cur_idx = optimum[c->optimum_cur_idx].next.link;
-               return match;
+       u32 cost;
+       unsigned len_header;
+       unsigned main_symbol;
+
+       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+               len_header = len - LZX_MIN_MATCH_LEN ;
+               cost = 0;
+       } else {
+               len_header = LZX_NUM_PRIMARY_LENS;
+
+               /* Account for length symbol.  */
+               cost = costs->len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
        }
 
-       /* Case 1:  Compute a new list of matches/literals to return.  */
+       /* Account for main symbol.  */
+       main_symbol = LZX_NUM_CHARS + ((offset_slot << 3) | len_header);
+       cost += costs->main[main_symbol];
+
+       return cost;
+}
+
+/* Equivalent to lzx_match_cost_raw(), but assumes the length is small enough
+ * that it doesn't require a length symbol.  */
+static inline u32
+lzx_match_cost_raw_smalllen(unsigned len, unsigned offset_slot,
+                           const struct lzx_costs *costs)
+{
+       LZX_ASSERT(len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS);
+       return costs->main[LZX_NUM_CHARS +
+                          ((offset_slot << 3) | (len - LZX_MIN_MATCH_LEN))];
+}
+
+/*
+ * Consider coding the match at repeat offset index @rep_idx.  Consider each
+ * length from the minimum (2) to the full match length (@rep_len).
+ */
+static inline void
+lzx_consider_repeat_offset_match(struct lzx_compressor *c,
+                                struct lzx_mc_pos_data *cur_optimum_ptr,
+                                unsigned rep_len, unsigned rep_idx)
+{
+       u32 base_cost = cur_optimum_ptr->cost;
+       u32 cost;
+       unsigned len;
 
-       c->optimum_cur_idx = 0;
-       c->optimum_end_idx = 0;
+#if 1   /* Optimized version */
 
-       /* Search for matches at repeat offsets.  As a heuristic, we only keep
-        * the one with the longest match length.  */
-       if (likely(c->match_window_pos >= 1)) {
-               longest_rep_len = lzx_repsearch(&c->cur_window[c->match_window_pos],
-                                               c->match_window_end - c->match_window_pos,
-                                               &c->queue,
-                                               &longest_rep_slot);
+       if (rep_len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS) {
+               /* All lengths being considered are small.  */
+               len = 2;
+               do {
+                       cost = base_cost +
+                              lzx_match_cost_raw_smalllen(len, rep_idx, &c->costs);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (rep_idx << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len <= rep_len);
        } else {
-               longest_rep_len = 0;
-       }
+               /* Some lengths being considered are small, and some are big.
+                * Start with the optimized loop for small lengths, then switch
+                * to the optimized loop for big lengths.  */
+               len = 2;
+               do {
+                       cost = base_cost +
+                              lzx_match_cost_raw_smalllen(len, rep_idx, &c->costs);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (rep_idx << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS);
 
-       /* If there's a long match with a repeat offset, choose it immediately.  */
-       if (longest_rep_len >= c->params.nice_match_length) {
-               lzx_skip_bytes(c, longest_rep_len);
-               return (struct lz_match) {
-                       .len = longest_rep_len,
-                       .offset = c->queue.R[longest_rep_slot],
-               };
+               /* The main symbol is now fixed.  */
+               base_cost += c->costs.main[LZX_NUM_CHARS +
+                                          ((rep_idx << 3) | LZX_NUM_PRIMARY_LENS)];
+               do {
+                       cost = base_cost +
+                              c->costs.len[len - LZX_MIN_MATCH_LEN -
+                                           LZX_NUM_PRIMARY_LENS];
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (rep_idx << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len <= rep_len);
        }
 
-       /* Find other matches.  */
-       num_matches = lzx_get_matches(c, &matches);
+#else   /* Unoptimized version  */
 
-       /* If there's a long match, choose it immediately.  */
-       if (num_matches) {
-               longest_len = matches[num_matches - 1].len;
-               if (longest_len >= c->params.nice_match_length) {
-                       lzx_skip_bytes(c, longest_len - 1);
-                       return matches[num_matches - 1];
+       len = 2;
+       do {
+               cost = base_cost +
+                      lzx_match_cost_raw(len, rep_idx, &c->costs);
+               if (cost < (cur_optimum_ptr + len)->cost) {
+                       (cur_optimum_ptr + len)->mc_item_data =
+                               (rep_idx << MC_OFFSET_SHIFT) | len;
+                       (cur_optimum_ptr + len)->cost = cost;
                }
+       } while (++len <= rep_len);
+#endif
+}
+
+/*
+ * Consider coding each match in @matches as an explicit offset match.
+ *
+ * @matches must be sorted by strictly increasing length and strictly
+ * increasing offset.  This is guaranteed by the match-finder.
+ *
+ * We consider each length from the minimum (2) to the longest
+ * (matches[num_matches - 1].len).  For each length, we consider only
+ * the smallest offset for which that length is available.  Although
+ * this is not guaranteed to be optimal due to the possibility of a
+ * larger offset costing less than a smaller offset to code, this is a
+ * very useful heuristic.
+ */
+static inline void
+lzx_consider_explicit_offset_matches(struct lzx_compressor *c,
+                                    struct lzx_mc_pos_data *cur_optimum_ptr,
+                                    const struct lz_match matches[],
+                                    unsigned num_matches)
+{
+       LZX_ASSERT(num_matches > 0);
+
+       unsigned i;
+       unsigned len;
+       unsigned offset_slot;
+       u32 position_cost;
+       u32 cost;
+       u32 offset_data;
+
+
+#if 1  /* Optimized version */
+
+       if (matches[num_matches - 1].offset < LZX_NUM_FAST_OFFSETS) {
+
+               /*
+                * Offset is small; the offset slot can be looked up directly in
+                * c->offset_slot_fast.
+                *
+                * Additional optimizations:
+                *
+                * - Since the offset is small, it falls in the exponential part
+                *   of the offset slot bases and the number of extra offset
+                *   bits can be calculated directly as (offset_slot >> 1) - 1.
+                *
+                * - Just consider the number of extra offset bits; don't
+                *   account for the aligned offset code.  Usually this has
+                *   almost no effect on the compression ratio.
+                *
+                * - Start out in a loop optimized for small lengths.  When the
+                *   length becomes high enough that a length symbol will be
+                *   needed, jump into a loop optimized for big lengths.
+                */
+
+               LZX_ASSERT(offset_slot <= 37); /* for extra bits formula  */
+
+               len = 2;
+               i = 0;
+               do {
+                       offset_slot = c->offset_slot_fast[matches[i].offset];
+                       position_cost = cur_optimum_ptr->cost +
+                                       ((offset_slot >> 1) - 1);
+                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+                       do {
+                               if (len >= LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS)
+                                       goto biglen;
+                               cost = position_cost +
+                                      lzx_match_cost_raw_smalllen(len, offset_slot,
+                                                                  &c->costs);
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
+
+               return;
+
+               do {
+                       offset_slot = c->offset_slot_fast[matches[i].offset];
+       biglen:
+                       position_cost = cur_optimum_ptr->cost +
+                                       ((offset_slot >> 1) - 1) +
+                                       c->costs.main[LZX_NUM_CHARS +
+                                                     ((offset_slot << 3) |
+                                                      LZX_NUM_PRIMARY_LENS)];
+                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+                       do {
+                               cost = position_cost +
+                                      c->costs.len[len - LZX_MIN_MATCH_LEN -
+                                                   LZX_NUM_PRIMARY_LENS];
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
        } else {
-               longest_len = 1;
+               len = 2;
+               i = 0;
+               do {
+                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+                       offset_slot = lzx_get_offset_slot_raw(offset_data);
+                       position_cost = cur_optimum_ptr->cost +
+                                       lzx_extra_offset_bits[offset_slot];
+                       do {
+                               cost = position_cost +
+                                      lzx_match_cost_raw(len, offset_slot, &c->costs);
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
        }
 
-       /* Calculate the cost to reach the next position by coding a literal.  */
-       optimum[1].queue = c->queue;
-       optimum[1].cost = lzx_literal_cost(c->cur_window[c->match_window_pos - 1],
-                                             &c->costs);
-       optimum[1].prev.link = 0;
+#else  /* Unoptimized version */
 
-       /* Calculate the cost to reach any position up to and including that
-        * reached by the longest match.
-        *
-        * Note: We consider only the lowest-offset match that reaches each
-        * position.
-        *
-        * Note: Some of the cost calculation stays the same for each offset,
-        * regardless of how many lengths it gets used for.  Therefore, to
-        * improve performance, we hand-code the cost calculation instead of
-        * calling lzx_match_cost() to do a from-scratch cost evaluation at each
-        * length.  */
-       for (unsigned i = 0, len = 2; i < num_matches; i++) {
-               u32 offset;
-               struct lzx_lru_queue queue;
-               u32 position_cost;
-               unsigned position_slot;
-               unsigned num_extra_bits;
-
-               offset = matches[i].offset;
-               queue = c->queue;
-               position_cost = 0;
-
-               position_slot = lzx_get_position_slot(offset, &queue);
-               num_extra_bits = lzx_get_num_extra_bits(position_slot);
+       unsigned num_extra_bits;
+
+       len = 2;
+       i = 0;
+       do {
+               offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+               position_cost = cur_optimum_ptr->cost;
+               offset_slot = lzx_get_offset_slot_raw(offset_data);
+               num_extra_bits = lzx_extra_offset_bits[offset_slot];
                if (num_extra_bits >= 3) {
                        position_cost += num_extra_bits - 3;
-                       position_cost += c->costs.aligned[(offset + LZX_OFFSET_OFFSET) & 7];
+                       position_cost += c->costs.aligned[offset_data & 7];
                } else {
                        position_cost += num_extra_bits;
                }
-
                do {
-                       u32 cost;
-                       unsigned len_header;
-                       unsigned main_symbol;
-
-                       cost = position_cost;
-
-                       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
-                               len_header = len - LZX_MIN_MATCH_LEN;
-                       } else {
-                               len_header = LZX_NUM_PRIMARY_LENS;
-                               cost += c->costs.len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
+                       cost = position_cost +
+                              lzx_match_cost_raw(len, offset_slot, &c->costs);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->cost = cost;
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (offset_data << MC_OFFSET_SHIFT) | len;
                        }
-
-                       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-                       cost += c->costs.main[main_symbol];
-
-                       optimum[len].queue = queue;
-                       optimum[len].prev.link = 0;
-                       optimum[len].prev.match_offset = offset;
-                       optimum[len].cost = cost;
                } while (++len <= matches[i].len);
-       }
-       end_pos = longest_len;
+       } while (++i != num_matches);
+#endif
+}
 
-       if (longest_rep_len) {
+/*
+ * Search for repeat offset matches with the current position.
+ */
+static inline unsigned
+lzx_repsearch(const u8 * const strptr, const u32 bytes_remaining,
+             const struct lzx_lru_queue *queue, unsigned *rep_max_idx_ret)
+{
+       BUILD_BUG_ON(LZX_NUM_RECENT_OFFSETS != 3);
+       return lz_repsearch3(strptr, min(bytes_remaining, LZX_MAX_MATCH_LEN),
+                            queue->R, rep_max_idx_ret);
+}
 
-               LZX_ASSERT(longest_rep_len >= LZX_MIN_MATCH_LEN);
+/*
+ * The main near-optimal parsing routine.
+ *
+ * Briefly, the algorithm does an approximate minimum-cost path search to find a
+ * "near-optimal" sequence of matches and literals to output, based on the
+ * current cost model.  The algorithm steps forward, position by position (byte
+ * by byte), and updates the minimum cost path to reach each later position that
+ * can be reached using a match or literal from the current position.  This is
+ * essentially Dijkstra's algorithm in disguise: the graph nodes are positions,
+ * the graph edges are possible matches/literals to code, and the cost of each
+ * edge is the estimated number of bits that will be required to output the
+ * corresponding match or literal.  But one difference is that we actually
+ * compute the lowest-cost path in pieces, where each piece is terminated when
+ * there are no choices to be made.
+ *
+ * This function will run this algorithm on the portion of the window from
+ * &c->cur_window[c->match_window_pos] to &c->cur_window[c->match_window_end].
+ *
+ * On entry, c->queue must be the current state of the match offset LRU queue,
+ * and c->costs must be the current cost model to use for Huffman symbols.
+ *
+ * On exit, c->queue will be the state that the LRU queue would be in if the
+ * chosen items were to be coded.
+ *
+ * If next_chosen_item != NULL, then all items chosen will be recorded (saved in
+ * the chosen_items array).  Otherwise, all items chosen will only be tallied
+ * (symbol frequencies tallied in c->freqs).
+ */
+static void
+lzx_optim_pass(struct lzx_compressor *c, struct lzx_item **next_chosen_item)
+{
+       const u8 *block_end;
+       struct lzx_lru_queue *begin_queue;
+       const u8 *window_ptr;
+       struct lzx_mc_pos_data *cur_optimum_ptr;
+       struct lzx_mc_pos_data *end_optimum_ptr;
+       const struct lz_match *matches;
+       unsigned num_matches;
+       unsigned longest_len;
+       unsigned rep_max_len;
+       unsigned rep_max_idx;
+       unsigned literal;
+       unsigned len;
+       u32 cost;
+       u32 offset_data;
 
-               u32 cost;
+       block_end = &c->cur_window[c->match_window_end];
+       begin_queue = &c->queue;
+begin:
+       /* Start building a new list of items, which will correspond to the next
+        * piece of the overall minimum-cost path.
+        *
+        * *begin_queue is the current state of the match offset LRU queue.  */
 
-               while (end_pos < longest_rep_len)
-                       optimum[++end_pos].cost = MC_INFINITE_COST;
+       window_ptr = &c->cur_window[c->match_window_pos];
 
-               cost = lzx_repmatch_cost(longest_rep_len, longest_rep_slot,
-                                        &c->costs);
-               if (cost <= optimum[longest_rep_len].cost) {
-                       optimum[longest_rep_len].queue = c->queue;
-                       swap(optimum[longest_rep_len].queue.R[0],
-                            optimum[longest_rep_len].queue.R[longest_rep_slot]);
-                       optimum[longest_rep_len].prev.link = 0;
-                       optimum[longest_rep_len].prev.match_offset =
-                               optimum[longest_rep_len].queue.R[0];
-                       optimum[longest_rep_len].cost = cost;
-               }
+       if (window_ptr == block_end) {
+               c->queue = *begin_queue;
+               return;
        }
 
-       /* Step forward, calculating the estimated minimum cost to reach each
-        * position.  The algorithm may find multiple paths to reach each
-        * position; only the lowest-cost path is saved.
-        *
-        * The progress of the parse is tracked in the @optimum array, which for
-        * each position contains the minimum cost to reach that position, the
-        * index of the start of the match/literal taken to reach that position
-        * through the minimum-cost path, the offset of the match taken (not
-        * relevant for literals), and the adaptive state that will exist at
-        * that position after the minimum-cost path is taken.  The @cur_pos
-        * variable stores the position at which the algorithm is currently
-        * considering coding choices, and the @end_pos variable stores the
-        * greatest position at which the costs of coding choices have been
-        * saved.
-        *
-        * The loop terminates when any one of the following conditions occurs:
-        *
-        * 1. A match with length greater than or equal to @nice_match_length is
-        *    found.  When this occurs, the algorithm chooses this match
-        *    unconditionally, and consequently the near-optimal match/literal
-        *    sequence up to and including that match is fully determined and it
-        *    can begin returning the match/literal list.
-        *
-        * 2. @cur_pos reaches a position not overlapped by a preceding match.
-        *    In such cases, the near-optimal match/literal sequence up to
-        *    @cur_pos is fully determined and it can begin returning the
-        *    match/literal list.
-        *
-        * 3. Failing either of the above in a degenerate case, the loop
-        *    terminates when space in the @optimum array is exhausted.
-        *    This terminates the algorithm and forces it to start returning
-        *    matches/literals even though they may not be globally optimal.
-        *
-        * Upon loop termination, a nonempty list of matches/literals will have
-        * been produced and stored in the @optimum array.  These
-        * matches/literals are linked in reverse order, so the last thing this
-        * function does is reverse this list and return the first
-        * match/literal, leaving the rest to be returned immediately by
-        * subsequent calls to this function.
-        */
-       cur_pos = 0;
+       cur_optimum_ptr = c->optimum;
+       cur_optimum_ptr->cost = 0;
+       cur_optimum_ptr->queue = *begin_queue;
+
+       end_optimum_ptr = cur_optimum_ptr;
+
+       /* The following loop runs once for each per byte in the window, except
+        * in a couple shortcut cases.  */
        for (;;) {
-               u32 cost;
-
-               /* Advance to next position.  */
-               cur_pos++;
-
-               /* Check termination conditions (2) and (3) noted above.  */
-               if (cur_pos == end_pos || cur_pos == LZX_OPTIM_ARRAY_LENGTH)
-                       return lzx_match_chooser_reverse_list(c, cur_pos);
-
-               /* Search for matches at repeat offsets.  Again, as a heuristic
-                * we only keep the longest one.  */
-               longest_rep_len = lzx_repsearch(&c->cur_window[c->match_window_pos],
-                                               c->match_window_end - c->match_window_pos,
-                                               &optimum[cur_pos].queue,
-                                               &longest_rep_slot);
-
-               /* If we found a long match at a repeat offset, choose it
-                * immediately.  */
-               if (longest_rep_len >= c->params.nice_match_length) {
-                       /* Build the list of matches to return and get
-                        * the first one.  */
-                       match = lzx_match_chooser_reverse_list(c, cur_pos);
-
-                       /* Append the long match to the end of the list.  */
-                       optimum[cur_pos].next.match_offset =
-                               optimum[cur_pos].queue.R[longest_rep_slot];
-                       optimum[cur_pos].next.link = cur_pos + longest_rep_len;
-                       c->optimum_end_idx = cur_pos + longest_rep_len;
-
-                       /* Skip over the remaining bytes of the long match.  */
-                       lzx_skip_bytes(c, longest_rep_len);
-
-                       /* Return first match in the list.  */
-                       return match;
-               }
 
-               /* Find other matches.  */
+               /* Find explicit offset matches with the current position.  */
                num_matches = lzx_get_matches(c, &matches);
 
-               /* If there's a long match, choose it immediately.  */
                if (num_matches) {
+                       /*
+                        * Find the longest repeat offset match with the current
+                        * position.
+                        *
+                        * Heuristics:
+                        *
+                        * - Only search for repeat offset matches if the
+                        *   match-finder already found at least one match.
+                        *
+                        * - Only consider the longest repeat offset match.  It
+                        *   seems to be rare for the optimal parse to include a
+                        *   repeat offset match that doesn't have the longest
+                        *   length (allowing for the possibility that not all
+                        *   of that length is actually used).
+                        */
+                       rep_max_len = lzx_repsearch(window_ptr,
+                                                   block_end - window_ptr,
+                                                   &cur_optimum_ptr->queue,
+                                                   &rep_max_idx);
+
+                       if (rep_max_len) {
+                               /* If there's a very long repeat offset match,
+                                * choose it immediately.  */
+                               if (rep_max_len >= c->params.nice_match_length) {
+
+                                       swap(cur_optimum_ptr->queue.R[0],
+                                            cur_optimum_ptr->queue.R[rep_max_idx]);
+                                       begin_queue = &cur_optimum_ptr->queue;
+
+                                       cur_optimum_ptr += rep_max_len;
+                                       cur_optimum_ptr->mc_item_data =
+                                               (rep_max_idx << MC_OFFSET_SHIFT) |
+                                               rep_max_len;
+
+                                       lzx_skip_bytes(c, rep_max_len - 1);
+                                       break;
+                               }
+
+                               /* If reaching any positions for the first time,
+                                * initialize their costs to "infinity".  */
+                               while (end_optimum_ptr < cur_optimum_ptr + rep_max_len)
+                                       (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+
+                               /* Consider coding a repeat offset match.  */
+                               lzx_consider_repeat_offset_match(c,
+                                                                cur_optimum_ptr,
+                                                                rep_max_len,
+                                                                rep_max_idx);
+                       }
+
                        longest_len = matches[num_matches - 1].len;
+
+                       /* If there's a very long explicit offset match, choose
+                        * it immediately.  */
                        if (longest_len >= c->params.nice_match_length) {
-                               /* Build the list of matches to return and get
-                                * the first one.  */
-                               match = lzx_match_chooser_reverse_list(c, cur_pos);
 
-                               /* Append the long match to the end of the list.  */
-                               optimum[cur_pos].next.match_offset =
+                               cur_optimum_ptr->queue.R[2] =
+                                       cur_optimum_ptr->queue.R[1];
+                               cur_optimum_ptr->queue.R[1] =
+                                       cur_optimum_ptr->queue.R[0];
+                               cur_optimum_ptr->queue.R[0] =
                                        matches[num_matches - 1].offset;
-                               optimum[cur_pos].next.link = cur_pos + longest_len;
-                               c->optimum_end_idx = cur_pos + longest_len;
+                               begin_queue = &cur_optimum_ptr->queue;
 
-                               /* Skip over the remaining bytes of the long match.  */
-                               lzx_skip_bytes(c, longest_len - 1);
+                               offset_data = matches[num_matches - 1].offset +
+                                             LZX_OFFSET_OFFSET;
+                               cur_optimum_ptr += longest_len;
+                               cur_optimum_ptr->mc_item_data =
+                                       (offset_data << MC_OFFSET_SHIFT) |
+                                       longest_len;
 
-                               /* Return first match in the list.  */
-                               return match;
+                               lzx_skip_bytes(c, longest_len - 1);
+                               break;
                        }
+
+                       /* If reaching any positions for the first time,
+                        * initialize their costs to "infinity".  */
+                       while (end_optimum_ptr < cur_optimum_ptr + longest_len)
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+
+                       /* Consider coding an explicit offset match.  */
+                       lzx_consider_explicit_offset_matches(c, cur_optimum_ptr,
+                                                            matches, num_matches);
                } else {
-                       longest_len = 1;
+                       /* No matches found.  The only choice at this position
+                        * is to code a literal.  */
+
+                       if (end_optimum_ptr == cur_optimum_ptr) {
+                       #if 1
+                               /* Optimization for single literals.  */
+                               if (likely(cur_optimum_ptr == c->optimum)) {
+                                       lzx_declare_literal(c, *window_ptr++,
+                                                           next_chosen_item);
+                                       if (window_ptr == block_end) {
+                                               c->queue = cur_optimum_ptr->queue;
+                                               return;
+                                       }
+                                       continue;
+                               }
+                       #endif
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+                       }
                }
 
-               /* If we are reaching any positions for the first time, we need
-                * to initialize their costs to infinity.  */
-               while (end_pos < cur_pos + longest_len)
-                       optimum[++end_pos].cost = MC_INFINITE_COST;
-
-               /* Consider coding a literal.  */
-               cost = optimum[cur_pos].cost +
-                       lzx_literal_cost(c->cur_window[c->match_window_pos - 1],
-                                        &c->costs);
-               if (cost < optimum[cur_pos + 1].cost) {
-                       optimum[cur_pos + 1].queue = optimum[cur_pos].queue;
-                       optimum[cur_pos + 1].cost = cost;
-                       optimum[cur_pos + 1].prev.link = cur_pos;
-               }
+               /* Consider coding a literal.
 
-               /* Consider coding a match.
-                *
-                * The hard-coded cost calculation is done for the same reason
-                * stated in the comment for the similar loop earlier.
-                * Actually, it is *this* one that has the biggest effect on
-                * performance; overall LZX compression is > 10% faster with
-                * this code compared to calling lzx_match_cost() with each
-                * length.  */
-               for (unsigned i = 0, len = 2; i < num_matches; i++) {
-                       u32 offset;
-                       u32 position_cost;
-                       unsigned position_slot;
-                       unsigned num_extra_bits;
-
-                       offset = matches[i].offset;
-                       position_cost = optimum[cur_pos].cost;
-
-                       /* Yet another optimization: instead of calling
-                        * lzx_get_position_slot(), hand-inline the search of
-                        * the repeat offset queue.  Then we can omit the
-                        * extra_bits calculation for repeat offset matches, and
-                        * also only compute the updated queue if we actually do
-                        * find a new lowest cost path.  */
-                       for (position_slot = 0; position_slot < LZX_NUM_RECENT_OFFSETS; position_slot++)
-                               if (offset == optimum[cur_pos].queue.R[position_slot])
-                                       goto have_position_cost;
-
-                       position_slot = lzx_get_position_slot_raw(offset + LZX_OFFSET_OFFSET);
-
-                       num_extra_bits = lzx_get_num_extra_bits(position_slot);
-                       if (num_extra_bits >= 3) {
-                               position_cost += num_extra_bits - 3;
-                               position_cost += c->costs.aligned[
-                                               (offset + LZX_OFFSET_OFFSET) & 7];
-                       } else {
-                               position_cost += num_extra_bits;
-                       }
+                * To avoid an extra unpredictable brench, actually checking the
+                * preferability of coding a literal is integrated into the
+                * queue update code below.  */
+               literal = *window_ptr++;
+               cost = cur_optimum_ptr->cost + lzx_literal_cost(literal, &c->costs);
 
-               have_position_cost:
+               /* Advance to the next position.  */
+               cur_optimum_ptr++;
 
-                       do {
-                               u32 cost;
-                               unsigned len_header;
-                               unsigned main_symbol;
-
-                               cost = position_cost;
-
-                               if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
-                                       len_header = len - LZX_MIN_MATCH_LEN;
-                               } else {
-                                       len_header = LZX_NUM_PRIMARY_LENS;
-                                       cost += c->costs.len[len -
-                                                       LZX_MIN_MATCH_LEN -
-                                                       LZX_NUM_PRIMARY_LENS];
-                               }
+               /* The lowest-cost path to the current position is now known.
+                * Finalize the recent offsets queue that results from taking
+                * this lowest-cost path.  */
 
-                               main_symbol = ((position_slot << 3) | len_header) +
-                                               LZX_NUM_CHARS;
-                               cost += c->costs.main[main_symbol];
-
-                               if (cost < optimum[cur_pos + len].cost) {
-                                       if (position_slot < LZX_NUM_RECENT_OFFSETS) {
-                                               optimum[cur_pos + len].queue = optimum[cur_pos].queue;
-                                               swap(optimum[cur_pos + len].queue.R[0],
-                                                    optimum[cur_pos + len].queue.R[position_slot]);
-                                       } else {
-                                               optimum[cur_pos + len].queue.R[0] = offset;
-                                               optimum[cur_pos + len].queue.R[1] = optimum[cur_pos].queue.R[0];
-                                               optimum[cur_pos + len].queue.R[2] = optimum[cur_pos].queue.R[1];
-                                       }
-                                       optimum[cur_pos + len].prev.link = cur_pos;
-                                       optimum[cur_pos + len].prev.match_offset = offset;
-                                       optimum[cur_pos + len].cost = cost;
-                               }
-                       } while (++len <= matches[i].len);
+               if (cost < cur_optimum_ptr->cost) {
+                       /* Literal: queue remains unchanged.  */
+                       cur_optimum_ptr->cost = cost;
+                       cur_optimum_ptr->mc_item_data = (literal << MC_OFFSET_SHIFT) | 1;
+                       cur_optimum_ptr->queue = (cur_optimum_ptr - 1)->queue;
+               } else {
+                       /* Match: queue update is needed.  */
+                       len = cur_optimum_ptr->mc_item_data & MC_LEN_MASK;
+                       offset_data = cur_optimum_ptr->mc_item_data >> MC_OFFSET_SHIFT;
+                       if (offset_data >= LZX_NUM_RECENT_OFFSETS) {
+                               /* Explicit offset match: offset is inserted at front  */
+                               cur_optimum_ptr->queue.R[0] = offset_data - LZX_OFFSET_OFFSET;
+                               cur_optimum_ptr->queue.R[1] = (cur_optimum_ptr - len)->queue.R[0];
+                               cur_optimum_ptr->queue.R[2] = (cur_optimum_ptr - len)->queue.R[1];
+                       } else {
+                               /* Repeat offset match: offset is swapped to front  */
+                               cur_optimum_ptr->queue = (cur_optimum_ptr - len)->queue;
+                               swap(cur_optimum_ptr->queue.R[0],
+                                    cur_optimum_ptr->queue.R[offset_data]);
+                       }
                }
 
-               /* Consider coding a repeat offset match.
+               /*
+                * This loop will terminate when either of the following
+                * conditions is true:
+                *
+                * (1) cur_optimum_ptr == end_optimum_ptr
                 *
-                * As a heuristic, we only consider the longest length of the
-                * longest repeat offset match.  This does not, however,
-                * necessarily mean that we will never consider any other repeat
-                * offsets, because above we detect repeat offset matches that
-                * were found by the regular match-finder.  Therefore, this
-                * special handling of the longest repeat-offset match is only
-                * helpful for coding a repeat offset match that was *not* found
-                * by the match-finder, e.g. due to being obscured by a less
-                * distant match that is at least as long.
+                *      There are no paths that extend beyond the current
+                *      position.  In this case, any path to a later position
+                *      must pass through the current position, so we can go
+                *      ahead and choose the list of items that led to this
+                *      position.
                 *
-                * Note: an alternative, used in LZMA, is to consider every
-                * length of every repeat offset match.  This is a more thorough
-                * search, and it makes it unnecessary to detect repeat offset
-                * matches that were found by the regular match-finder.  But by
-                * my tests, for LZX the LZMA method slows down the compressor
-                * by ~10% and doesn't actually help the compression ratio too
-                * much.
+                * (2) cur_optimum_ptr == &c->optimum[LZX_OPTIM_ARRAY_LENGTH]
                 *
-                * Also tested a compromise approach: consider every 3rd length
-                * of the longest repeat offset match.  Still didn't seem quite
-                * worth it, though.
+                *      This bounds the number of times the algorithm can step
+                *      forward before it is guaranteed to start choosing items.
+                *      This limits the memory usage.  But
+                *      LZX_OPTIM_ARRAY_LENGTH is high enough that on most
+                *      inputs this limit is never reached.
+                *
+                * Note: no check for end-of-block is needed because
+                * end-of-block will trigger condition (1).
                 */
-               if (longest_rep_len) {
-
-                       LZX_ASSERT(longest_rep_len >= LZX_MIN_MATCH_LEN);
-
-                       while (end_pos < cur_pos + longest_rep_len)
-                               optimum[++end_pos].cost = MC_INFINITE_COST;
-
-                       cost = optimum[cur_pos].cost +
-                               lzx_repmatch_cost(longest_rep_len, longest_rep_slot,
-                                                 &c->costs);
-                       if (cost <= optimum[cur_pos + longest_rep_len].cost) {
-                               optimum[cur_pos + longest_rep_len].queue =
-                                       optimum[cur_pos].queue;
-                               swap(optimum[cur_pos + longest_rep_len].queue.R[0],
-                                    optimum[cur_pos + longest_rep_len].queue.R[longest_rep_slot]);
-                               optimum[cur_pos + longest_rep_len].prev.link =
-                                       cur_pos;
-                               optimum[cur_pos + longest_rep_len].prev.match_offset =
-                                       optimum[cur_pos + longest_rep_len].queue.R[0];
-                               optimum[cur_pos + longest_rep_len].cost =
-                                       cost;
-                       }
+               if (cur_optimum_ptr == end_optimum_ptr ||
+                   cur_optimum_ptr == &c->optimum[LZX_OPTIM_ARRAY_LENGTH])
+               {
+                       begin_queue = &cur_optimum_ptr->queue;
+                       break;
                }
        }
+
+       /* Choose the current list of items that constitute the minimum-cost
+        * path to the current position.  */
+       lzx_declare_item_list(c, cur_optimum_ptr, next_chosen_item);
+       goto begin;
 }
 
-static struct lz_match
-lzx_choose_lazy_item(struct lzx_compressor *c)
+/* Fast heuristic scoring for lazy parsing: how "good" is this match?  */
+static inline unsigned
+lzx_explicit_offset_match_score(unsigned len, u32 adjusted_offset)
 {
-       const struct lz_match *matches;
-       struct lz_match cur_match;
-       struct lz_match next_match;
-       u32 num_matches;
-
-       if (c->prev_match.len) {
-               cur_match = c->prev_match;
-               c->prev_match.len = 0;
-       } else {
-               num_matches = lzx_get_matches(c, &matches);
-               if (num_matches == 0 ||
-                   (matches[num_matches - 1].len <= 3 &&
-                    (matches[num_matches - 1].len <= 2 ||
-                     matches[num_matches - 1].offset > 4096)))
-               {
-                       return (struct lz_match) { };
-               }
-
-               cur_match = matches[num_matches - 1];
-       }
-
-       if (cur_match.len >= c->params.nice_match_length) {
-               lzx_skip_bytes(c, cur_match.len - 1);
-               return cur_match;
-       }
+       unsigned score = len;
 
-       num_matches = lzx_get_matches(c, &matches);
-       if (num_matches == 0 ||
-           (matches[num_matches - 1].len <= 3 &&
-            (matches[num_matches - 1].len <= 2 ||
-             matches[num_matches - 1].offset > 4096)))
-       {
-               lzx_skip_bytes(c, cur_match.len - 2);
-               return cur_match;
-       }
+       if (adjusted_offset < 2048)
+               score++;
 
-       next_match = matches[num_matches - 1];
+       if (adjusted_offset < 1024)
+               score++;
 
-       if (next_match.len <= cur_match.len) {
-               lzx_skip_bytes(c, cur_match.len - 2);
-               return cur_match;
-       } else {
-               c->prev_match = next_match;
-               return (struct lz_match) { };
-       }
+       return score;
 }
 
-/*
- * Return the next match or literal to use, delegating to the currently selected
- * match-choosing algorithm.
- *
- * If the length of the returned 'struct lz_match' is less than
- * LZX_MIN_MATCH_LEN, then it is really a literal.
- */
-static inline struct lz_match
-lzx_choose_item(struct lzx_compressor *c)
+static inline unsigned
+lzx_repeat_offset_match_score(unsigned len, unsigned slot)
 {
-       return (*c->params.choose_item_func)(c);
+       return len + 3;
 }
 
-/* Set default symbol costs for the LZX Huffman codes.  */
-static void
-lzx_set_default_costs(struct lzx_costs * costs, unsigned num_main_syms)
+/* Lazy parsing  */
+static u32
+lzx_choose_lazy_items_for_block(struct lzx_compressor *c,
+                               u32 block_start_pos, u32 block_size)
 {
-       unsigned i;
+       const u8 *window_ptr;
+       const u8 *block_end;
+       struct lz_mf *mf;
+       struct lz_match *matches;
+       unsigned num_matches;
+       unsigned cur_len;
+       u32 cur_offset_data;
+       unsigned cur_score;
+       unsigned rep_max_len;
+       unsigned rep_max_idx;
+       unsigned rep_score;
+       unsigned prev_len;
+       unsigned prev_score;
+       u32 prev_offset_data;
+       unsigned skip_len;
+       struct lzx_item *next_chosen_item;
 
-       /* Main code (part 1): Literal symbols  */
-       for (i = 0; i < LZX_NUM_CHARS; i++)
-               costs->main[i] = 8;
+       window_ptr = &c->cur_window[block_start_pos];
+       block_end = window_ptr + block_size;
+       matches = c->cached_matches;
+       mf = c->mf;
+       next_chosen_item = c->chosen_items;
 
-       /* Main code (part 2): Match header symbols  */
-       for (; i < num_main_syms; i++)
-               costs->main[i] = 10;
+       prev_len = 0;
+       prev_offset_data = 0;
+       prev_score = 0;
 
-       /* Length code  */
-       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
-               costs->len[i] = 8;
+       while (window_ptr != block_end) {
 
-       /* Aligned offset code  */
-       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
-               costs->aligned[i] = 3;
+               /* Find explicit offset matches with the current position.  */
+               num_matches = lz_mf_get_matches(mf, matches);
+               window_ptr++;
+
+               if (num_matches == 0 ||
+                   (matches[num_matches - 1].len == 3 &&
+                    matches[num_matches - 1].offset >= 8192 - LZX_OFFSET_OFFSET &&
+                    matches[num_matches - 1].offset != c->queue.R[0] &&
+                    matches[num_matches - 1].offset != c->queue.R[1] &&
+                    matches[num_matches - 1].offset != c->queue.R[2]))
+               {
+                       /* No match found, or the only match found was a distant
+                        * length 3 match.  Output the previous match if there
+                        * is one; otherwise output a literal.  */
+
+                       if (prev_len) {
+                               skip_len = prev_len - 2;
+                               goto output_prev_match;
+                       } else {
+                               lzx_declare_literal(c, *(window_ptr - 1),
+                                                   &next_chosen_item);
+                               continue;
+                       }
+               }
+
+               /* Find the longest repeat offset match with the current
+                * position.  */
+               if (likely(block_end - (window_ptr - 1) >= 2)) {
+                       rep_max_len = lzx_repsearch((window_ptr - 1),
+                                                   block_end - (window_ptr - 1),
+                                                   &c->queue, &rep_max_idx);
+               } else {
+                       rep_max_len = 0;
+               }
+
+               cur_len = matches[num_matches - 1].len;
+               cur_offset_data = matches[num_matches - 1].offset + LZX_OFFSET_OFFSET;
+               cur_score = lzx_explicit_offset_match_score(cur_len, cur_offset_data);
+
+               /* Select the better of the explicit and repeat offset matches.  */
+               if (rep_max_len >= 3 &&
+                   (rep_score = lzx_repeat_offset_match_score(rep_max_len,
+                                                              rep_max_idx)) >= cur_score)
+               {
+                       cur_len = rep_max_len;
+                       cur_offset_data = rep_max_idx;
+                       cur_score = rep_score;
+               }
+
+               if (unlikely(cur_len > block_end - (window_ptr - 1))) {
+                       /* Nearing end of block.  */
+                       cur_len = block_end - (window_ptr - 1);
+                       if (cur_len < 3) {
+                               lzx_declare_literal(c, *(window_ptr - 1), &next_chosen_item);
+                               prev_len = 0;
+                               continue;
+                       }
+               }
+
+               if (prev_len == 0 || cur_score > prev_score) {
+                       /* No previous match, or the current match is better
+                        * than the previous match.
+                        *
+                        * If there's a previous match, then output a literal in
+                        * its place.
+                        *
+                        * In both cases, if the current match is very long,
+                        * then output it immediately.  Otherwise, attempt a
+                        * lazy match by waiting to see if there's a better
+                        * match at the next position.  */
+
+                       if (prev_len)
+                               lzx_declare_literal(c, *(window_ptr - 2), &next_chosen_item);
+
+                       prev_len = cur_len;
+                       prev_offset_data = cur_offset_data;
+                       prev_score = cur_score;
+
+                       if (prev_len >= c->params.nice_match_length) {
+                               skip_len = prev_len - 1;
+                               goto output_prev_match;
+                       }
+                       continue;
+               }
+
+               /* Current match is not better than the previous match, so
+                * output the previous match.  */
+
+               skip_len = prev_len - 2;
+
+       output_prev_match:
+               if (prev_offset_data < LZX_NUM_RECENT_OFFSETS) {
+                       lzx_declare_repeat_offset_match(c, prev_len,
+                                                       prev_offset_data,
+                                                       &next_chosen_item);
+                       swap(c->queue.R[0], c->queue.R[prev_offset_data]);
+               } else {
+                       lzx_declare_explicit_offset_match(c, prev_len,
+                                                         prev_offset_data - LZX_OFFSET_OFFSET,
+                                                         &next_chosen_item);
+                       c->queue.R[2] = c->queue.R[1];
+                       c->queue.R[1] = c->queue.R[0];
+                       c->queue.R[0] = prev_offset_data - LZX_OFFSET_OFFSET;
+               }
+               lz_mf_skip_positions(mf, skip_len);
+               window_ptr += skip_len;
+               prev_len = 0;
+       }
+
+       return next_chosen_item - c->chosen_items;
 }
 
 /* Given the frequencies of symbols in an LZX-compressed block and the
@@ -2014,204 +1896,229 @@ lzx_choose_verbatim_or_aligned(const struct lzx_freqs * freqs,
        unsigned aligned_cost = 0;
        unsigned verbatim_cost = 0;
 
-       /* Verbatim blocks have a constant 3 bits per position footer.  Aligned
-        * offset blocks have an aligned offset symbol per position footer, plus
-        * an extra 24 bits per block to output the lengths necessary to
-        * reconstruct the aligned offset code itself.  */
+       /* A verbatim block require 3 bits in each place that an aligned symbol
+        * was used.  */
        for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
                verbatim_cost += 3 * freqs->aligned[i];
                aligned_cost += codes->lens.aligned[i] * freqs->aligned[i];
        }
+
+       /* Account for output of the aligned offset code.  */
        aligned_cost += LZX_ALIGNEDCODE_ELEMENT_SIZE * LZX_ALIGNEDCODE_NUM_SYMBOLS;
+
        if (aligned_cost < verbatim_cost)
                return LZX_BLOCKTYPE_ALIGNED;
        else
                return LZX_BLOCKTYPE_VERBATIM;
 }
 
-/* Find a sequence of matches/literals with which to output the specified LZX
- * block, then set the block's type to that which has the minimum cost to output
- * (either verbatim or aligned).  */
-static void
-lzx_choose_items_for_block(struct lzx_compressor *c, struct lzx_block_spec *spec)
+/* Near-optimal parsing  */
+static u32
+lzx_choose_near_optimal_items_for_block(struct lzx_compressor *c,
+                                       u32 block_start_pos, u32 block_size)
 {
-       const struct lzx_lru_queue orig_queue = c->queue;
        u32 num_passes_remaining = c->params.num_optim_passes;
-       struct lzx_freqs freqs;
-       const u8 *window_ptr;
-       const u8 *window_end;
+       struct lzx_lru_queue orig_queue;
        struct lzx_item *next_chosen_item;
-       struct lz_match lz_match;
-       struct lzx_item lzx_item;
-
-       LZX_ASSERT(num_passes_remaining >= 1);
-       LZX_ASSERT(lz_mf_get_position(c->mf) == spec->window_pos);
-
-       c->match_window_end = spec->window_pos + spec->block_size;
+       struct lzx_item **next_chosen_item_ptr;
 
-       if (c->params.num_optim_passes > 1) {
-               if (spec->block_size == c->cur_window_size)
+       /* Choose appropriate match-finder wrapper functions.  */
+       if (num_passes_remaining > 1) {
+               if (block_size == c->cur_window_size)
                        c->get_matches_func = lzx_get_matches_fillcache_singleblock;
                else
                        c->get_matches_func = lzx_get_matches_fillcache_multiblock;
                c->skip_bytes_func = lzx_skip_bytes_fillcache;
        } else {
-               if (spec->block_size == c->cur_window_size)
+               if (block_size == c->cur_window_size)
                        c->get_matches_func = lzx_get_matches_nocache_singleblock;
                else
                        c->get_matches_func = lzx_get_matches_nocache_multiblock;
                c->skip_bytes_func = lzx_skip_bytes_nocache;
        }
 
-       /* The first optimal parsing pass is done using the cost model already
-        * set in c->costs.  Each later pass is done using a cost model
-        * computed from the previous pass.
+       /* No matches will extend beyond the end of the block.  */
+       c->match_window_end = block_start_pos + block_size;
+
+       /* The first optimization pass will use a default cost model.  Each
+        * additional optimization pass will use a cost model computed from the
+        * previous pass.
         *
         * To improve performance we only generate the array containing the
-        * matches and literals in intermediate form on the final pass.  */
+        * matches and literals in intermediate form on the final pass.  For
+        * earlier passes, tallying symbol frequencies is sufficient.  */
+       lzx_set_default_costs(&c->costs, c->num_main_syms);
 
-       while (--num_passes_remaining) {
-               c->match_window_pos = spec->window_pos;
+       next_chosen_item_ptr = NULL;
+       orig_queue = c->queue;
+       do {
+               /* Reset the match-finder wrapper.  */
+               c->match_window_pos = block_start_pos;
                c->cache_ptr = c->cached_matches;
-               memset(&freqs, 0, sizeof(freqs));
-               window_ptr = &c->cur_window[spec->window_pos];
-               window_end = window_ptr + spec->block_size;
 
-               while (window_ptr != window_end) {
+               if (num_passes_remaining == 1) {
+                       /* Last pass: actually generate the items.  */
+                       next_chosen_item = c->chosen_items;
+                       next_chosen_item_ptr = &next_chosen_item;
+               }
 
-                       lz_match = lzx_choose_item(c);
+               /* Choose the items.  */
+               lzx_optim_pass(c, next_chosen_item_ptr);
 
-                       LZX_ASSERT(!(lz_match.len == LZX_MIN_MATCH_LEN &&
-                                    lz_match.offset == c->max_window_size -
-                                                        LZX_MIN_MATCH_LEN));
-                       if (lz_match.len >= LZX_MIN_MATCH_LEN) {
-                               lzx_tally_match(lz_match.len, lz_match.offset,
-                                               &freqs, &c->queue);
-                               window_ptr += lz_match.len;
-                       } else {
-                               lzx_tally_literal(*window_ptr, &freqs);
-                               window_ptr += 1;
-                       }
-               }
-               lzx_make_huffman_codes(&freqs, &spec->codes, c->num_main_syms);
-               lzx_set_costs(c, &spec->codes.lens, 15);
-               c->queue = orig_queue;
-               if (c->cache_ptr <= c->cache_limit) {
-                       c->get_matches_func = lzx_get_matches_usecache_nocheck;
-                       c->skip_bytes_func = lzx_skip_bytes_usecache_nocheck;
-               } else {
-                       c->get_matches_func = lzx_get_matches_usecache;
-                       c->skip_bytes_func = lzx_skip_bytes_usecache;
-               }
-       }
+               if (num_passes_remaining > 1) {
+                       /* This isn't the last pass.  */
 
-       c->match_window_pos = spec->window_pos;
-       c->cache_ptr = c->cached_matches;
-       memset(&freqs, 0, sizeof(freqs));
-       window_ptr = &c->cur_window[spec->window_pos];
-       window_end = window_ptr + spec->block_size;
+                       /* Make the Huffman codes from the symbol frequencies.  */
+                       lzx_make_huffman_codes(&c->freqs, &c->codes[c->codes_index],
+                                              c->num_main_syms);
 
-       spec->chosen_items = &c->chosen_items[spec->window_pos];
-       next_chosen_item = spec->chosen_items;
+                       /* Update symbol costs.  */
+                       lzx_set_costs(c, &c->codes[c->codes_index].lens);
 
-       unsigned unseen_cost = 9;
-       while (window_ptr != window_end) {
+                       /* Reset symbol frequencies.  */
+                       memset(&c->freqs, 0, sizeof(c->freqs));
 
-               lz_match = lzx_choose_item(c);
+                       /* Reset the match offset LRU queue to what it was at
+                        * the beginning of the block.  */
+                       c->queue = orig_queue;
 
-               LZX_ASSERT(!(lz_match.len == LZX_MIN_MATCH_LEN &&
-                            lz_match.offset == c->max_window_size -
-                                                LZX_MIN_MATCH_LEN));
-               if (lz_match.len >= LZX_MIN_MATCH_LEN) {
-                       lzx_item.data = lzx_tally_match(lz_match.len,
-                                                        lz_match.offset,
-                                                        &freqs, &c->queue);
-                       window_ptr += lz_match.len;
-               } else {
-                       lzx_item.data = lzx_tally_literal(*window_ptr, &freqs);
-                       window_ptr += 1;
+                       /* Choose appopriate match-finder wrapper functions.  */
+                       if (c->cache_ptr <= c->cache_limit) {
+                               c->get_matches_func = lzx_get_matches_usecache_nocheck;
+                               c->skip_bytes_func = lzx_skip_bytes_usecache_nocheck;
+                       } else {
+                               c->get_matches_func = lzx_get_matches_usecache;
+                               c->skip_bytes_func = lzx_skip_bytes_usecache;
+                       }
                }
-               *next_chosen_item++ = lzx_item;
+       } while (--num_passes_remaining);
 
-               /* When doing one-pass "near-optimal" parsing, update the cost
-                * model occassionally.  */
-               if (unlikely((next_chosen_item - spec->chosen_items) % 2048 == 0) &&
-                   c->params.choose_item_func == lzx_choose_near_optimal_item &&
-                   c->params.num_optim_passes == 1)
-               {
-                       lzx_make_huffman_codes(&freqs, &spec->codes, c->num_main_syms);
-                       lzx_set_costs(c, &spec->codes.lens, unseen_cost);
-                       if (unseen_cost < 15)
-                               unseen_cost++;
-               }
-       }
-       spec->num_chosen_items = next_chosen_item - spec->chosen_items;
-       lzx_make_huffman_codes(&freqs, &spec->codes, c->num_main_syms);
-       spec->block_type = lzx_choose_verbatim_or_aligned(&freqs, &spec->codes);
+       /* Return the number of items chosen.  */
+       return next_chosen_item - c->chosen_items;
+}
+
+/*
+ * Choose the matches/literals with which to output the block of data beginning
+ * at '&c->cur_window[block_start_pos]' and extending for 'block_size' bytes.
+ *
+ * The frequences of the Huffman symbols in the block will be tallied in
+ * 'c->freqs'.
+ *
+ * 'c->queue' must specify the state of the queue at the beginning of this block.
+ * This function will update it to the state of the queue at the end of this
+ * block.
+ *
+ * Returns the number of matches/literals that were chosen and written to
+ * 'c->chosen_items' in the 'struct lzx_item' intermediate representation.
+ */
+static u32
+lzx_choose_items_for_block(struct lzx_compressor *c,
+                          u32 block_start_pos, u32 block_size)
+{
+       return (*c->params.choose_items_for_block)(c, block_start_pos, block_size);
 }
 
-/* Prepare the input window into one or more LZX blocks ready to be output.  */
+/* Initialize c->offset_slot_fast.  */
 static void
-lzx_prepare_blocks(struct lzx_compressor *c)
+lzx_init_offset_slot_fast(struct lzx_compressor *c)
 {
-       /* Set up a default cost model.  */
-       if (c->params.choose_item_func == lzx_choose_near_optimal_item)
-               lzx_set_default_costs(&c->costs, c->num_main_syms);
+       u8 slot = 0;
 
-       /* Set up the block specifications.
-        * TODO: The compression ratio could be slightly improved by performing
-        * data-dependent block splitting instead of using fixed-size blocks.
-        * Doing so well is a computationally hard problem, however.  */
-       c->num_blocks = DIV_ROUND_UP(c->cur_window_size, LZX_DIV_BLOCK_SIZE);
-       for (unsigned i = 0; i < c->num_blocks; i++) {
-               u32 pos = LZX_DIV_BLOCK_SIZE * i;
-               c->block_specs[i].window_pos = pos;
-               c->block_specs[i].block_size = min(c->cur_window_size - pos,
-                                                  LZX_DIV_BLOCK_SIZE);
-       }
+       for (u32 offset = 0; offset < LZX_NUM_FAST_OFFSETS; offset++) {
 
-       /* Load the window into the match-finder.  */
-       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
+               while (offset + LZX_OFFSET_OFFSET >= lzx_offset_slot_base[slot + 1])
+                       slot++;
 
-       /* Determine sequence of matches/literals to output for each block.  */
-       lzx_lru_queue_init(&c->queue);
-       c->optimum_cur_idx = 0;
-       c->optimum_end_idx = 0;
-       c->prev_match.len = 0;
-       for (unsigned i = 0; i < c->num_blocks; i++)
-               lzx_choose_items_for_block(c, &c->block_specs[i]);
+               c->offset_slot_fast[offset] = slot;
+       }
 }
 
+/* Set internal compression parameters for the specified compression level and
+ * maximum window size.  */
 static void
-lzx_build_params(unsigned int compression_level,
-                u32 max_window_size,
+lzx_build_params(unsigned int compression_level, u32 max_window_size,
                 struct lzx_compressor_params *lzx_params)
 {
        if (compression_level < 25) {
-               lzx_params->choose_item_func = lzx_choose_lazy_item;
-               lzx_params->num_optim_passes  = 1;
+
+               /* Fast compression: Use lazy parsing.  */
+
+               lzx_params->choose_items_for_block = lzx_choose_lazy_items_for_block;
+               lzx_params->num_optim_passes = 1;
+
+               /* When lazy parsing, the hash chain match-finding algorithm is
+                * fastest unless the window is too large.
+                *
+                * TODO: something like hash arrays would actually be better
+                * than binary trees on large windows.  */
                if (max_window_size <= 262144)
                        lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
                else
                        lzx_params->mf_algo = LZ_MF_BINARY_TREES;
-               lzx_params->min_match_length  = 3;
+
+               /* When lazy parsing, don't bother with length 2 matches.  */
+               lzx_params->min_match_length = 3;
+
+               /* Scale nice_match_length and max_search_depth with the
+                * compression level.  */
                lzx_params->nice_match_length = 25 + compression_level * 2;
-               lzx_params->max_search_depth  = 25 + compression_level;
+               lzx_params->max_search_depth = 25 + compression_level;
        } else {
-               lzx_params->choose_item_func = lzx_choose_near_optimal_item;
-               lzx_params->num_optim_passes  = compression_level / 20;
+
+               /* Normal / high compression: Use near-optimal parsing.  */
+
+               lzx_params->choose_items_for_block = lzx_choose_near_optimal_items_for_block;
+
+               /* Set a number of optimization passes appropriate for the
+                * compression level.  */
+
+               lzx_params->num_optim_passes = 1;
+
+               if (compression_level >= 40)
+                       lzx_params->num_optim_passes++;
+
+               /* Use more optimization passes for higher compression levels.
+                * But the more passes there are, the less they help --- so
+                * don't add them linearly.  */
+               if (compression_level >= 70) {
+                       lzx_params->num_optim_passes++;
+                       if (compression_level >= 100)
+                               lzx_params->num_optim_passes++;
+                       if (compression_level >= 150)
+                               lzx_params->num_optim_passes++;
+                       if (compression_level >= 200)
+                               lzx_params->num_optim_passes++;
+                       if (compression_level >= 300)
+                               lzx_params->num_optim_passes++;
+               }
+
+               /* When doing near-optimal parsing, the hash chain match-finding
+                * algorithm is good if the window size is small and we're only
+                * doing one optimization pass.  Otherwise, the binary tree
+                * algorithm is the way to go.  */
                if (max_window_size <= 32768 && lzx_params->num_optim_passes == 1)
                        lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
                else
                        lzx_params->mf_algo = LZ_MF_BINARY_TREES;
-               lzx_params->min_match_length  = (compression_level >= 45) ? 2 : 3;
+
+               /* When doing near-optimal parsing, allow length 2 matches if
+                * the compression level is sufficiently high.  */
+               if (compression_level >= 45)
+                       lzx_params->min_match_length = 2;
+               else
+                       lzx_params->min_match_length = 3;
+
+               /* Scale nice_match_length and max_search_depth with the
+                * compression level.  */
                lzx_params->nice_match_length = min(((u64)compression_level * 32) / 50,
                                                    LZX_MAX_MATCH_LEN);
-               lzx_params->max_search_depth  = min(((u64)compression_level * 50) / 50,
-                                                   LZX_MAX_MATCH_LEN);
+               lzx_params->max_search_depth = min(((u64)compression_level * 50) / 50,
+                                                  LZX_MAX_MATCH_LEN);
        }
 }
 
+/* Given the internal compression parameters and maximum window size, build the
+ * Lempel-Ziv match-finder parameters.  */
 static void
 lzx_build_mf_params(const struct lzx_compressor_params *lzx_params,
                    u32 max_window_size, struct lz_mf_params *mf_params)
@@ -2246,18 +2153,13 @@ lzx_get_needed_memory(size_t max_block_size, unsigned int compression_level)
 
        size += sizeof(struct lzx_compressor);
 
+       /* cur_window */
        size += max_window_size;
 
-       size += DIV_ROUND_UP(max_window_size, LZX_DIV_BLOCK_SIZE) *
-               sizeof(struct lzx_block_spec);
-
-       size += max_window_size * sizeof(struct lzx_item);
-
+       /* mf */
        size += lz_mf_get_needed_memory(params.mf_algo, max_window_size);
-       if (params.choose_item_func == lzx_choose_near_optimal_item) {
-               size += (LZX_OPTIM_ARRAY_LENGTH + params.nice_match_length) *
-                       sizeof(struct lzx_mc_pos_data);
-       }
+
+       /* cached_matches */
        if (params.num_optim_passes > 1)
                size += LZX_CACHE_LEN * sizeof(struct lz_match);
        else
@@ -2291,35 +2193,18 @@ lzx_create_compressor(size_t max_block_size, unsigned int compression_level,
 
        c->params = params;
        c->num_main_syms = lzx_get_num_main_syms(window_order);
-       c->max_window_size = max_window_size;
        c->window_order = window_order;
 
+       /* The window is allocated as 16-byte aligned to speed up memcpy() and
+        * enable lzx_e8_filter() optimization on x86_64.  */
        c->cur_window = ALIGNED_MALLOC(max_window_size, 16);
        if (!c->cur_window)
                goto oom;
 
-       c->block_specs = MALLOC(DIV_ROUND_UP(max_window_size,
-                                            LZX_DIV_BLOCK_SIZE) *
-                               sizeof(struct lzx_block_spec));
-       if (!c->block_specs)
-               goto oom;
-
-       c->chosen_items = MALLOC(max_window_size * sizeof(struct lzx_item));
-       if (!c->chosen_items)
-               goto oom;
-
        c->mf = lz_mf_alloc(&mf_params);
        if (!c->mf)
                goto oom;
 
-       if (params.choose_item_func == lzx_choose_near_optimal_item) {
-               c->optimum = MALLOC((LZX_OPTIM_ARRAY_LENGTH +
-                                    params.nice_match_length) *
-                                   sizeof(struct lzx_mc_pos_data));
-               if (!c->optimum)
-                       goto oom;
-       }
-
        if (params.num_optim_passes > 1) {
                c->cached_matches = MALLOC(LZX_CACHE_LEN *
                                           sizeof(struct lz_match));
@@ -2334,6 +2219,8 @@ lzx_create_compressor(size_t max_block_size, unsigned int compression_level,
                        goto oom;
        }
 
+       lzx_init_offset_slot_fast(c);
+
        *c_ret = c;
        return 0;
 
@@ -2348,26 +2235,83 @@ lzx_compress(const void *uncompressed_data, size_t uncompressed_size,
 {
        struct lzx_compressor *c = _c;
        struct lzx_output_bitstream os;
+       u32 num_chosen_items;
+       const struct lzx_lens *prev_lens;
+       u32 block_start_pos;
+       u32 block_size;
+       int block_type;
 
        /* Don't bother compressing very small inputs.  */
        if (uncompressed_size < 100)
                return 0;
 
        /* The input data must be preprocessed.  To avoid changing the original
-        * input, copy it to a temporary buffer.  */
+        * input data, copy it to a temporary buffer.  */
        memcpy(c->cur_window, uncompressed_data, uncompressed_size);
        c->cur_window_size = uncompressed_size;
 
        /* Preprocess the data.  */
        lzx_do_e8_preprocessing(c->cur_window, c->cur_window_size);
 
-       /* Prepare the compressed data.  */
-       lzx_prepare_blocks(c);
+       /* Load the window into the match-finder.  */
+       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
+
+       /* Initialize the match offset LRU queue.  */
+       lzx_lru_queue_init(&c->queue);
 
-       /* Generate the compressed data and return its size, or 0 if an overflow
-        * occurred.  */
+       /* Initialize the output bitstream.  */
        lzx_init_output(&os, compressed_data, compressed_size_avail);
-       lzx_write_all_blocks(c, &os);
+
+       /* Compress the data block by block.
+        *
+        * TODO: The compression ratio could be slightly improved by performing
+        * data-dependent block splitting instead of using fixed-size blocks.
+        * Doing so well is a computationally hard problem, however.  */
+       block_start_pos = 0;
+       c->codes_index = 0;
+       prev_lens = &c->zero_lens;
+       do {
+               /* Compute the block size.  */
+               block_size = min(LZX_DIV_BLOCK_SIZE,
+                                uncompressed_size - block_start_pos);
+
+               /* Reset symbol frequencies.  */
+               memset(&c->freqs, 0, sizeof(c->freqs));
+
+               /* Prepare the matches/literals for the block.  */
+               num_chosen_items = lzx_choose_items_for_block(c,
+                                                             block_start_pos,
+                                                             block_size);
+
+               /* Make the Huffman codes from the symbol frequencies.  */
+               lzx_make_huffman_codes(&c->freqs, &c->codes[c->codes_index],
+                                      c->num_main_syms);
+
+               /* Choose the best block type.
+                *
+                * Note: we currently don't consider uncompressed blocks.  */
+               block_type = lzx_choose_verbatim_or_aligned(&c->freqs,
+                                                           &c->codes[c->codes_index]);
+
+               /* Write the compressed block to the output buffer.  */
+               lzx_write_compressed_block(block_type,
+                                          block_size,
+                                          c->window_order,
+                                          c->num_main_syms,
+                                          c->chosen_items,
+                                          num_chosen_items,
+                                          &c->codes[c->codes_index],
+                                          prev_lens,
+                                          &os);
+
+               /* The current codeword lengths become the previous lengths.  */
+               prev_lens = &c->codes[c->codes_index].lens;
+               c->codes_index ^= 1;
+
+               block_start_pos += block_size;
+
+       } while (block_start_pos != uncompressed_size);
+
        return lzx_flush_output(&os);
 }
 
@@ -2378,10 +2322,7 @@ lzx_free_compressor(void *_c)
 
        if (c) {
                ALIGNED_FREE(c->cur_window);
-               FREE(c->block_specs);
-               FREE(c->chosen_items);
                lz_mf_free(c->mf);
-               FREE(c->optimum);
                FREE(c->cached_matches);
                FREE(c);
        }
index 58d1f6b1e75fdcca283a0863534462312a52e44e..411a3a0436fd99e2bb05818c10a677b800df2e32 100644 (file)
@@ -427,7 +427,7 @@ lzx_decompress_block(int block_type, u32 block_size,
        u8 *window_end = window_ptr + block_size;
        unsigned mainsym;
        u32 match_len;
-       unsigned position_slot;
+       unsigned offset_slot;
        u32 match_offset;
        unsigned num_extra_bits;
        unsigned ones_if_aligned = 0U - (block_type == LZX_BLOCKTYPE_ALIGNED);
@@ -443,35 +443,35 @@ lzx_decompress_block(int block_type, u32 block_size,
 
                /* Match  */
 
-               /* Decode the length header and position slot.  */
+               /* Decode the length header and offset slot.  */
                mainsym -= LZX_NUM_CHARS;
                match_len = mainsym & 0x7;
-               position_slot = mainsym >> 3;
+               offset_slot = mainsym >> 3;
 
                /* If needed, read a length symbol to decode the full length. */
                if (match_len == 0x7)
                        match_len += read_huffsym_using_lencode(istream, tables);
                match_len += LZX_MIN_MATCH_LEN;
 
-               if (position_slot <= 2) {
+               if (offset_slot <= 2) {
                        /* Repeat offset  */
 
                        /* Note: This isn't a real LRU queue, since using the R2
                         * offset doesn't bump the R1 offset down to R2.  This
                         * quirk allows all 3 recent offsets to be handled by
                         * the same code.  (For R0, the swap is a no-op.)  */
-                       match_offset = queue->R[position_slot];
-                       queue->R[position_slot] = queue->R[0];
+                       match_offset = queue->R[offset_slot];
+                       queue->R[offset_slot] = queue->R[0];
                        queue->R[0] = match_offset;
                } else {
                        /* Explicit offset  */
 
                        /* Look up the number of extra bits that need to be read
-                        * to decode offsets with this position slot.  */
-                       num_extra_bits = lzx_get_num_extra_bits(position_slot);
+                        * to decode offsets with this offset slot.  */
+                       num_extra_bits = lzx_extra_offset_bits[offset_slot];
 
-                       /* Start with the position slot base value.  */
-                       match_offset = lzx_position_base[position_slot];
+                       /* Start with the offset slot base value.  */
+                       match_offset = lzx_offset_slot_base[offset_slot];
 
                        /* In aligned offset blocks, the low-order 3 bits of
                         * each offset are encoded using the aligned offset
index 4b4e74d8cabe7f92ec6f12e5af28b276c70f04bd..f39d54758969f2884f37ee2e8d50b3164152b7c4 100644 (file)
@@ -28,8 +28,8 @@
 #  include "config.h"
 #endif
 
-#include "wimlib/compressor_ops.h"
 #include "wimlib/compress_common.h"
+#include "wimlib/compressor_ops.h"
 #include "wimlib/endianness.h"
 #include "wimlib/error.h"
 #include "wimlib/lz_mf.h"
@@ -37,6 +37,7 @@
 #include "wimlib/xpress.h"
 
 #include <string.h>
+#include <limits.h>
 
 #define XPRESS_CACHE_PER_POS           8
 #define XPRESS_OPTIM_ARRAY_LENGTH      4096
@@ -45,21 +46,14 @@ struct xpress_compressor;
 struct xpress_item;
 struct xpress_mc_pos_data;
 
+/* Internal compression parameters  */
 struct xpress_compressor_params {
 
-       /* Only used when choose_items_func == xpress_choose_items_near_optimal  */
-       u32 num_optim_passes;
+       /* See xpress_choose_items()  */
+       u32 (*choose_items_func)(struct xpress_compressor *);
 
-       /* Given the data to compress (c->cur_window, c->cur_window_size),
-        * 'choose_items_func' fills in c->chosen_items with the intermediate
-        * representation of the match/literal sequence to output.  Also fills
-        * in c->codewords and c->lens to provide the Huffman code with which
-        * these items should be output.
-        *
-        * Returns the number of items written to c->chosen_items.  This can be
-        * at most c->cur_window_size.  (The worst case is all literals, no
-        * matches.)  */
-       u32 (*choose_items_func)(struct xpress_compressor *c);
+       /* For near-optimal parsing only  */
+       u32 num_optim_passes;
 
        /* Match-finding algorithm and parameters  */
        enum lz_mf_algo mf_algo;
@@ -67,35 +61,32 @@ struct xpress_compressor_params {
        u32 nice_match_length;
 };
 
-/* XPRESS compressor state.  */
+/* State of the XPRESS compressor  */
 struct xpress_compressor {
 
-       /* Parameters determined based on the compression level.  */
+       /* Internal compression parameters  */
        struct xpress_compressor_params params;
 
+       /* Data currently being compressed  */
+       const u8 *cur_window;
+       u32 cur_window_size;
+
        /* Lempel-Ziv match-finder  */
        struct lz_mf *mf;
 
        /* Optimal parsing data  */
        unsigned (*get_matches_func)(struct xpress_compressor *,
                                     const struct lz_match **);
-       void (*skip_bytes_func)(struct xpress_compressor *, u32 n);
-       const u8 *cur_window_ptr;
+       void (*skip_bytes_func)(struct xpress_compressor *, unsigned n);
        struct lz_match *cached_matches;
        struct lz_match *cache_ptr;
        struct lz_match *cache_limit;
        struct xpress_mc_pos_data *optimum;
-       unsigned optimum_cur_idx;
-       unsigned optimum_end_idx;
        u8 costs[XPRESS_NUM_SYMBOLS];
 
        /* The selected sequence of matches/literals  */
        struct xpress_item *chosen_items;
 
-       /* Data currently being compressed  */
-       const u8 *cur_window;
-       u32 cur_window_size;
-
        /* Symbol frequency counters  */
        u32 freqs[XPRESS_NUM_SYMBOLS];
 
@@ -104,31 +95,51 @@ struct xpress_compressor {
        u8 lens[XPRESS_NUM_SYMBOLS];
 };
 
-/* Match-chooser position data.
- * See corresponding declaration in lzx-compress.c for more information.  */
+/* Intermediate XPRESS match/literal format  */
+struct xpress_item {
+
+       /* Bits 0  -  8: Symbol
+        * Bits 9  - 24: Length - XPRESS_MIN_MATCH_LEN
+        * Bits 25 - 28: Number of extra offset bits
+        * Bits 29+    : Extra offset bits  */
+
+       u64 data;
+};
+
+/*
+ * Match chooser position data:
+ *
+ * An array of these structures is used during the near-optimal match-choosing
+ * algorithm.  They correspond to consecutive positions in the window and are
+ * used to keep track of the cost to reach each position, and the match/literal
+ * choices that need to be chosen to reach that position.
+ */
 struct xpress_mc_pos_data {
+
+       /* The cost, in bits, of the lowest-cost path that has been found to
+        * reach this position.  This can change as progressively lower cost
+        * paths are found to reach this position.  */
        u32 cost;
-#define MC_INFINITE_COST ((u32)~0UL)
-
-       union {
-               struct {
-                       u32 link;
-                       u32 match_offset;
-               } prev;
-               struct {
-                       u32 link;
-                       u32 match_offset;
-               } next;
-       };
-};
+#define MC_INFINITE_COST UINT32_MAX
 
-/* Intermediate XPRESS match/literal representation.  */
-struct xpress_item {
-       u16 adjusted_len;  /* Match length minus XPRESS_MIN_MATCH_LEN */
-       u16 offset;        /* Match offset */
-       /* For literals, offset == 0 and adjusted_len is the literal byte.  */
+       /* The match or literal that was taken to reach this position.  This can
+        * change as progressively lower cost paths are found to reach this
+        * position.
+        *
+        * This variable is divided into two bitfields.
+        *
+        * Literals:
+        *      Low bits are 1, high bits are the literal.
+        *
+        * Matches:
+        *      Low bits are the match length, high bits are the offset.
+        */
+       u32 mc_item_data;
+#define MC_OFFSET_SHIFT 16
+#define MC_LEN_MASK ((1 << MC_OFFSET_SHIFT) - 1)
 };
 
+
 /*
  * Structure to keep track of the current state of sending data to the
  * compressed output buffer.
@@ -194,7 +205,7 @@ xpress_init_output(struct xpress_output_bitstream *os, void *buffer, u32 size)
  * If the output buffer space is exhausted, then the bits will be ignored, and
  * xpress_flush_output() will return 0 when it gets called.
  */
-static _always_inline_attribute void
+static inline void
 xpress_write_bits(struct xpress_output_bitstream *os,
                  const u32 bits, const unsigned int num_bits)
 {
@@ -218,7 +229,7 @@ xpress_write_bits(struct xpress_output_bitstream *os,
 /*
  * Interweave a literal byte into the output bitstream.
  */
-static _always_inline_attribute void
+static inline void
 xpress_write_byte(struct xpress_output_bitstream *os, u8 byte)
 {
        if (os->next_byte < os->end)
@@ -241,31 +252,41 @@ xpress_flush_output(struct xpress_output_bitstream *os)
        return os->next_byte - os->start;
 }
 
-/* Output an XPRESS match.  */
-static void
-xpress_write_match(struct xpress_item match, struct xpress_output_bitstream *os,
-                  const u32 codewords[], const u8 lens[])
+/* Output a match or literal.  */
+static inline void
+xpress_write_item(struct xpress_item item, struct xpress_output_bitstream *os,
+                 const u32 codewords[], const u8 lens[])
 {
-       unsigned len_hdr = min(match.adjusted_len, 0xf);
-       unsigned offset_bsr = bsr32(match.offset);
-       unsigned sym = XPRESS_NUM_CHARS + ((offset_bsr << 4) | len_hdr);
+       u64 data = item.data;
+       unsigned symbol;
+       unsigned adjusted_len;
+       unsigned num_extra_bits;
+       unsigned extra_bits;
 
-       /* Huffman symbol  */
-       xpress_write_bits(os, codewords[sym], lens[sym]);
+       symbol = data & 0x1FF;
+
+       xpress_write_bits(os, codewords[symbol], lens[symbol]);
+
+       if (symbol < XPRESS_NUM_CHARS)  /* Literal?  */
+               return;
+
+       adjusted_len = (data >> 9) & 0xFFFF;
 
        /* If length >= 18, one extra length byte.
         * If length >= 273, three (total) extra length bytes.  */
-       if (match.adjusted_len >= 0xf) {
-               u8 byte1 = min(match.adjusted_len - 0xf, 0xff);
+       if (adjusted_len >= 0xf) {
+               u8 byte1 = min(adjusted_len - 0xf, 0xff);
                xpress_write_byte(os, byte1);
                if (byte1 == 0xff) {
-                       xpress_write_byte(os, match.adjusted_len & 0xff);
-                       xpress_write_byte(os, match.adjusted_len >> 8);
+                       xpress_write_byte(os, adjusted_len & 0xff);
+                       xpress_write_byte(os, adjusted_len >> 8);
                }
        }
 
-       /* Offset bits  */
-       xpress_write_bits(os, match.offset ^ (1U << offset_bsr), offset_bsr);
+       num_extra_bits = (data >> 25) & 0xF;
+       extra_bits = data >> 29;
+
+       xpress_write_bits(os, extra_bits, num_extra_bits);
 }
 
 /* Output a sequence of XPRESS matches and literals.  */
@@ -274,16 +295,9 @@ xpress_write_items(struct xpress_output_bitstream *os,
                   const struct xpress_item items[], u32 num_items,
                   const u32 codewords[], const u8 lens[])
 {
-       for (u32 i = 0; i < num_items; i++) {
-               if (items[i].offset) {
-                       /* Match  */
-                       xpress_write_match(items[i], os, codewords, lens);
-               } else {
-                       /* Literal  */
-                       unsigned lit = items[i].adjusted_len;
-                       xpress_write_bits(os, codewords[lit], lens[lit]);
-               }
-       }
+       for (u32 i = 0; i < num_items; i++)
+               xpress_write_item(items[i], os, codewords, lens);
+
        /* End-of-data symbol (required for MS compatibility)  */
        xpress_write_bits(os, codewords[XPRESS_END_OF_DATA], lens[XPRESS_END_OF_DATA]);
 }
@@ -298,28 +312,108 @@ xpress_make_huffman_code(struct xpress_compressor *c)
                                    c->freqs, c->lens, c->codewords);
 }
 
-/* Account for the Huffman symbol that would be produced by outputting the
- * specified literal.  Returns the intermediate representation of the literal.
- */
-static inline struct xpress_item
-xpress_tally_literal(u8 lit, u32 freqs[])
+/* Tally, and optionally record, the specified literal byte.  */
+static inline void
+xpress_declare_literal(struct xpress_compressor *c, unsigned literal,
+                      struct xpress_item **next_chosen_item)
 {
-       freqs[lit]++;
-       return (struct xpress_item) { .offset = 0, .adjusted_len = lit };
+       c->freqs[literal]++;
+
+       if (next_chosen_item) {
+               *(*next_chosen_item)++ = (struct xpress_item) {
+                       .data = literal,
+               };
+       }
 }
 
-/* Account for the Huffman symbol that would be produced by outputting the
- * specified match.  Returns the intermediate representation of the match.  */
-static inline struct xpress_item
-xpress_tally_match(u32 len, u32 offset, u32 freqs[])
+/* Tally, and optionally record, the specified match.  */
+static inline void
+xpress_declare_match(struct xpress_compressor *c,
+                    unsigned len, unsigned offset,
+                    struct xpress_item **next_chosen_item)
 {
-       u32 adjusted_len = len - XPRESS_MIN_MATCH_LEN;
+       unsigned adjusted_len = len - XPRESS_MIN_MATCH_LEN;
        unsigned len_hdr = min(adjusted_len, 0xf);
-       unsigned sym = XPRESS_NUM_CHARS + ((bsr32(offset) << 4) | len_hdr);
+       unsigned offset_bsr = bsr32(offset);
+       unsigned sym = XPRESS_NUM_CHARS + ((offset_bsr << 4) | len_hdr);
+
+       c->freqs[sym]++;
+
+       if (next_chosen_item) {
+               *(*next_chosen_item)++ = (struct xpress_item) {
+                       .data = (u64)sym |
+                               ((u64)adjusted_len << 9) |
+                               ((u64)offset_bsr << 25) |
+                               ((u64)(offset ^ (1U << offset_bsr)) << 29),
+               };
+       }
+}
 
-       freqs[sym]++;
-       return (struct xpress_item) { .offset = offset,
-                                     .adjusted_len = adjusted_len };
+/* Tally, and optionally record, the specified match or literal.  */
+static inline void
+xpress_declare_item(struct xpress_compressor *c, u32 mc_item_data,
+                   struct xpress_item **next_chosen_item)
+{
+       unsigned len = mc_item_data & MC_LEN_MASK;
+       unsigned offset_data = mc_item_data >> MC_OFFSET_SHIFT;
+
+       if (len == 1)
+               xpress_declare_literal(c, offset_data, next_chosen_item);
+       else
+               xpress_declare_match(c, len, offset_data, next_chosen_item);
+}
+
+static inline void
+xpress_record_item_list(struct xpress_compressor *c,
+                       struct xpress_mc_pos_data *cur_optimum_ptr,
+                       struct xpress_item **next_chosen_item)
+{
+       struct xpress_mc_pos_data *end_optimum_ptr;
+       u32 saved_item;
+       u32 item;
+
+       /* The list is currently in reverse order (last item to first item).
+        * Reverse it.  */
+       end_optimum_ptr = cur_optimum_ptr;
+       saved_item = cur_optimum_ptr->mc_item_data;
+       do {
+               item = saved_item;
+               cur_optimum_ptr -= item & MC_LEN_MASK;
+               saved_item = cur_optimum_ptr->mc_item_data;
+               cur_optimum_ptr->mc_item_data = item;
+       } while (cur_optimum_ptr != c->optimum);
+
+       /* Walk the list of items from beginning to end, tallying and recording
+        * each item.  */
+       do {
+               xpress_declare_item(c, cur_optimum_ptr->mc_item_data, next_chosen_item);
+               cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK;
+       } while (cur_optimum_ptr != end_optimum_ptr);
+}
+
+static inline void
+xpress_tally_item_list(struct xpress_compressor *c,
+                      struct xpress_mc_pos_data *cur_optimum_ptr)
+{
+       /* Since we're just tallying the items, we don't need to reverse the
+        * list.  Processing the items in reverse order is fine.  */
+       do {
+               xpress_declare_item(c, cur_optimum_ptr->mc_item_data, NULL);
+               cur_optimum_ptr -= (cur_optimum_ptr->mc_item_data & MC_LEN_MASK);
+       } while (cur_optimum_ptr != c->optimum);
+}
+
+/* Tally, and optionally (if next_chosen_item != NULL) record, in order, all
+ * items in the current list of items found by the match-chooser.  */
+static void
+xpress_declare_item_list(struct xpress_compressor *c,
+                        struct xpress_mc_pos_data *cur_optimum_ptr,
+                        struct xpress_item **next_chosen_item)
+{
+       if (next_chosen_item)
+               xpress_record_item_list(c, cur_optimum_ptr, next_chosen_item);
+       else
+               xpress_tally_item_list(c, cur_optimum_ptr);
 }
 
 static unsigned
@@ -339,7 +433,6 @@ xpress_get_matches_fillcache(struct xpress_compressor *c,
        } else {
                num_matches = 0;
        }
-       c->cur_window_ptr++;
        *matches_ret = matches;
        return num_matches;
 }
@@ -354,13 +447,12 @@ xpress_get_matches_usecache(struct xpress_compressor *c,
 
        cache_ptr = c->cache_ptr;
        matches = cache_ptr + 1;
-       if (likely(cache_ptr <= c->cache_limit)) {
+       if (cache_ptr <= c->cache_limit) {
                num_matches = cache_ptr->len;
                c->cache_ptr = matches + num_matches;
        } else {
                num_matches = 0;
        }
-       c->cur_window_ptr++;
        *matches_ret = matches;
        return num_matches;
 }
@@ -377,7 +469,6 @@ xpress_get_matches_usecache_nocheck(struct xpress_compressor *c,
        matches = cache_ptr + 1;
        num_matches = cache_ptr->len;
        c->cache_ptr = matches + num_matches;
-       c->cur_window_ptr++;
        *matches_ret = matches;
        return num_matches;
 }
@@ -386,7 +477,6 @@ static unsigned
 xpress_get_matches_noncaching(struct xpress_compressor *c,
                              const struct lz_match **matches_ret)
 {
-       c->cur_window_ptr++;
        *matches_ret = c->cached_matches;
        return lz_mf_get_matches(c->mf, c->cached_matches);
 }
@@ -394,6 +484,8 @@ xpress_get_matches_noncaching(struct xpress_compressor *c,
 /*
  * Find matches at the next position in the window.
  *
+ * This uses a wrapper function around the underlying match-finder.
+ *
  * Returns the number of matches found and sets *matches_ret to point to the
  * matches array.  The matches will be sorted by strictly increasing length and
  * offset.
@@ -406,14 +498,13 @@ xpress_get_matches(struct xpress_compressor *c,
 }
 
 static void
-xpress_skip_bytes_fillcache(struct xpress_compressor *c, u32 n)
+xpress_skip_bytes_fillcache(struct xpress_compressor *c, unsigned n)
 {
        struct lz_match *cache_ptr;
 
-       c->cur_window_ptr += n;
        cache_ptr = c->cache_ptr;
        lz_mf_skip_positions(c->mf, n);
-       if (likely(cache_ptr <= c->cache_limit)) {
+       if (cache_ptr <= c->cache_limit) {
                do {
                        cache_ptr->len = 0;
                        cache_ptr += 1;
@@ -423,11 +514,10 @@ xpress_skip_bytes_fillcache(struct xpress_compressor *c, u32 n)
 }
 
 static void
-xpress_skip_bytes_usecache(struct xpress_compressor *c, u32 n)
+xpress_skip_bytes_usecache(struct xpress_compressor *c, unsigned n)
 {
        struct lz_match *cache_ptr;
 
-       c->cur_window_ptr += n;
        cache_ptr = c->cache_ptr;
        if (likely(cache_ptr <= c->cache_limit)) {
                do {
@@ -438,11 +528,10 @@ xpress_skip_bytes_usecache(struct xpress_compressor *c, u32 n)
 }
 
 static void
-xpress_skip_bytes_usecache_nocheck(struct xpress_compressor *c, u32 n)
+xpress_skip_bytes_usecache_nocheck(struct xpress_compressor *c, unsigned n)
 {
        struct lz_match *cache_ptr;
 
-       c->cur_window_ptr += n;
        cache_ptr = c->cache_ptr;
        do {
                cache_ptr += 1 + cache_ptr->len;
@@ -451,310 +540,282 @@ xpress_skip_bytes_usecache_nocheck(struct xpress_compressor *c, u32 n)
 }
 
 static void
-xpress_skip_bytes_noncaching(struct xpress_compressor *c, u32 n)
+xpress_skip_bytes_noncaching(struct xpress_compressor *c, unsigned n)
 {
-       c->cur_window_ptr += n;
        lz_mf_skip_positions(c->mf, n);
 }
 
 /*
  * Skip the specified number of positions in the window (don't search for
  * matches at them).
+ *
+ * This uses a wrapper function around the underlying match-finder.
  */
 static inline void
-xpress_skip_bytes(struct xpress_compressor *c, u32 n)
+xpress_skip_bytes(struct xpress_compressor *c, unsigned n)
 {
        return (*c->skip_bytes_func)(c, n);
 }
 
-/*
- * Returns the cost, in bits, required to output the literal from the previous
- * window position (the position at which matches were last searched).
- */
-static inline u32
-xpress_prev_literal_cost(const struct xpress_compressor *c)
+/* Set default XPRESS Huffman symbol costs to bootstrap the iterative
+ * optimization algorithm.  */
+static void
+xpress_set_default_costs(u8 costs[])
+{
+       unsigned i;
+
+       /* Literal symbols  */
+       for (i = 0; i < XPRESS_NUM_CHARS; i++)
+               costs[i] = 8;
+
+       /* Match symbols  */
+       for (; i < XPRESS_NUM_SYMBOLS; i++)
+               costs[i] = 10;
+}
+
+/* Copy the Huffman codeword lengths array @lens to the Huffman symbol costs
+ * array @costs, but also assign a default cost to each 0-length (unused)
+ * codeword.  */
+static void
+xpress_set_costs(u8 costs[], const u8 lens[])
 {
-       return c->costs[*(c->cur_window_ptr - 1)];
+       for (unsigned i = 0; i < XPRESS_NUM_SYMBOLS; i++)
+               costs[i] = lens[i] ? lens[i] : XPRESS_MAX_CODEWORD_LEN;
 }
 
 /*
- * Reverse the linked list of near-optimal matches so that they can be returned
- * in forwards order.
+ * Consider coding each match in @matches.
  *
- * Returns the first match in the list.
+ * @matches must be sorted by strictly increasing length and strictly
+ * increasing offset.  This is guaranteed by the match-finder.
+ *
+ * We consider each length from the minimum (2) to the longest
+ * (matches[num_matches - 1].len).  For each length, we consider only
+ * the smallest offset for which that length is available.  Although
+ * this is not guaranteed to be optimal due to the possibility of a
+ * larger offset costing less than a smaller offset to code, this is a
+ * very useful heuristic.
  */
-static struct lz_match
-xpress_match_chooser_reverse_list(struct xpress_compressor *c, unsigned cur_pos)
+static inline void
+xpress_consider_matches(struct xpress_compressor *c,
+                       struct xpress_mc_pos_data *cur_optimum_ptr,
+                       const struct lz_match matches[],
+                       unsigned num_matches)
 {
-       unsigned prev_link, saved_prev_link;
-       u32 prev_match_offset, saved_prev_match_offset;
-
-       c->optimum_end_idx = cur_pos;
-
-       saved_prev_link = c->optimum[cur_pos].prev.link;
-       saved_prev_match_offset = c->optimum[cur_pos].prev.match_offset;
-
-       do {
-               prev_link = saved_prev_link;
-               prev_match_offset = saved_prev_match_offset;
-
-               saved_prev_link = c->optimum[prev_link].prev.link;
-               saved_prev_match_offset = c->optimum[prev_link].prev.match_offset;
-
-               c->optimum[prev_link].next.link = cur_pos;
-               c->optimum[prev_link].next.match_offset = prev_match_offset;
-
-               cur_pos = prev_link;
-       } while (cur_pos != 0);
-
-       c->optimum_cur_idx = c->optimum[0].next.link;
+       unsigned i = 0;
+       unsigned len = XPRESS_MIN_MATCH_LEN;
+       u32 cost;
+       u32 position_cost;
+       unsigned offset;
+       unsigned offset_bsr;
+       unsigned adjusted_len;
+       unsigned len_hdr;
+       unsigned sym;
+
+       if (matches[num_matches - 1].len < 0xf + XPRESS_MIN_MATCH_LEN) {
+               /* All lengths are small.  Optimize accordingly.  */
+               do {
+                       offset = matches[i].offset;
+                       offset_bsr = bsr32(offset);
+                       len_hdr = len - XPRESS_MIN_MATCH_LEN;
+                       sym = XPRESS_NUM_CHARS + ((offset_bsr << 4) | len_hdr);
 
-       return (struct lz_match)
-               { .len = c->optimum_cur_idx,
-                 .offset = c->optimum[0].next.match_offset,
-               };
+                       position_cost = cur_optimum_ptr->cost + offset_bsr;
+                       do {
+                               cost = position_cost + c->costs[sym];
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset << MC_OFFSET_SHIFT) | len;
+                               }
+                               sym++;
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
+       } else {
+               /* Some lengths are big.  */
+               do {
+                       offset = matches[i].offset;
+                       offset_bsr = bsr32(offset);
+                       position_cost = cur_optimum_ptr->cost + offset_bsr;
+                       do {
+                               adjusted_len = len - XPRESS_MIN_MATCH_LEN;
+                               len_hdr = min(adjusted_len, 0xf);
+                               sym = XPRESS_NUM_CHARS + ((offset_bsr << 4) | len_hdr);
+
+                               cost = position_cost + c->costs[sym];
+                               if (adjusted_len >= 0xf) {
+                                       cost += 8;
+                                       if (adjusted_len - 0xf >= 0xff)
+                                               cost += 16;
+                               }
+
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
+       }
 }
 
 /*
- * Near-optimal parsing.
+ * The main near-optimal parsing routine.
+ *
+ * Briefly, the algorithm does an approximate minimum-cost path search to find a
+ * "near-optimal" sequence of matches and literals to output, based on the
+ * current cost model.  The algorithm steps forward, position by position (byte
+ * by byte), and updates the minimum cost path to reach each later position that
+ * can be reached using a match or literal from the current position.  This is
+ * essentially Dijkstra's algorithm in disguise: the graph nodes are positions,
+ * the graph edges are possible matches/literals to code, and the cost of each
+ * edge is the estimated number of bits that will be required to output the
+ * corresponding match or literal.  But one difference is that we actually
+ * compute the lowest-cost path in pieces, where each piece is terminated when
+ * there are no choices to be made.
  *
- * This does a forward lowest-cost path search.  The search is terminated when a
- * sufficiently long match is found, when the search reaches a position with no
- * alternatives, or when the temporary 'optimum' array fills up.  After
- * termination of the search, matches/literals will be returned one by one by
- * successive calls to this function.  Once all the matches/literals are used
- * up, the next call to this function will begin a new search.
+ * If next_chosen_item != NULL, then all items chosen will be recorded (saved in
+ * the chosen_items array).  Otherwise, all items chosen will only be tallied
+ * (symbol frequencies tallied in c->freqs).
  */
-static struct lz_match
-xpress_choose_near_optimal_item(struct xpress_compressor *c)
+static void
+xpress_optim_pass(struct xpress_compressor *c,
+                 struct xpress_item **next_chosen_item)
 {
+       const u8 *window_end;
+       const u8 *window_ptr;
+       struct xpress_mc_pos_data *cur_optimum_ptr;
+       struct xpress_mc_pos_data *end_optimum_ptr;
        const struct lz_match *matches;
        unsigned num_matches;
-       struct lz_match match;
-       unsigned cur_pos;
-       unsigned end_pos;
-       struct xpress_mc_pos_data * const optimum = c->optimum;
-
-       if (c->optimum_cur_idx != c->optimum_end_idx) {
-               /* Return previously computed match or literal.  */
-               match.len = optimum[c->optimum_cur_idx].next.link -
-                                   c->optimum_cur_idx;
-               match.offset = optimum[c->optimum_cur_idx].next.match_offset;
-
-               c->optimum_cur_idx = optimum[c->optimum_cur_idx].next.link;
-               return match;
-       }
-
-       c->optimum_cur_idx = 0;
-       c->optimum_end_idx = 0;
-
-       num_matches = xpress_get_matches(c, &matches);
-
-       if (num_matches == 0)
-               return (struct lz_match) {};
-
-       if (matches[num_matches - 1].len >= c->params.nice_match_length) {
-               /* Take the long match immediately.  */
-               xpress_skip_bytes(c, matches[num_matches - 1].len - 1);
-               return matches[num_matches - 1];
-       }
+       unsigned longest_len;
+       unsigned literal;
+       u32 cost;
 
-       /* Consider coding a literal.  */
-       optimum[1].cost = xpress_prev_literal_cost(c);
-       optimum[1].prev.link = 0;
+       window_ptr = c->cur_window;
+       window_end = &c->cur_window[c->cur_window_size];
 
-       optimum[2].cost = MC_INFINITE_COST;
+begin:
+       /* Start building a new list of items, which will correspond to the next
+        * piece of the overall minimum-cost path.  */
 
-       {
-               /* Consider coding a match.  Cost evaluation is hand-inlined so
-                * that we can do some performance hacks.  */
+       if (window_ptr == window_end)
+               return;
 
-               unsigned i = 0;
-               unsigned len = 3;
-               struct xpress_mc_pos_data *optimum_ptr = &optimum[len];
+       cur_optimum_ptr = c->optimum;
+       cur_optimum_ptr->cost = 0;
+       end_optimum_ptr = cur_optimum_ptr;
 
-               if (matches[num_matches - 1].len < 0xf + XPRESS_MIN_MATCH_LEN) {
-                       do {
-                               u32 offset = matches[i].offset;
-                               u32 offset_bsr = bsr32(offset);
-                               unsigned len_hdr = len - XPRESS_MIN_MATCH_LEN;
-                               unsigned sym = XPRESS_NUM_CHARS +
-                                               ((offset_bsr << 4) | len_hdr);
-                               do {
-                                       optimum_ptr->prev.link = 0;
-                                       optimum_ptr->prev.match_offset = offset;
-                                       optimum_ptr->cost = offset_bsr + c->costs[sym];
-                                       sym++;
-                                       optimum_ptr++;
-                               } while (++len <= matches[i].len);
-                       } while (++i != num_matches);
-               } else {
-                       do {
-                               u32 offset = matches[i].offset;
-                               u32 offset_bsr = bsr32(offset);
-                               do {
-                                       u32 adjusted_len = len - XPRESS_MIN_MATCH_LEN;
-                                       unsigned len_hdr = min(adjusted_len, 0xf);
-                                       unsigned sym = XPRESS_NUM_CHARS +
-                                                       ((offset_bsr << 4) | len_hdr);
-                                       u32 cost = offset_bsr + c->costs[sym];
-                                       if (adjusted_len >= 0xf) {
-                                               cost += 8;
-                                               if (adjusted_len - 0xf >= 0xff)
-                                                       cost += 16;
-                                       }
-
-                                       optimum_ptr->prev.link = 0;
-                                       optimum_ptr->prev.match_offset = offset;
-                                       optimum_ptr->cost = cost;
-                                       optimum_ptr++;
-                               } while (++len <= matches[i].len);
-                       } while (++i != num_matches);
-               }
-       }
-
-       end_pos = matches[num_matches - 1].len;
-       cur_pos = 1;
-       do {
-               u32 cost;
-               u32 longest_len;
+       /* The following loop runs once for each per byte in the window, except
+        * in a couple shortcut cases.  */
+       for (;;) {
 
+               /* Find matches with the current position.  */
                num_matches = xpress_get_matches(c, &matches);
 
                if (num_matches) {
+
                        longest_len = matches[num_matches - 1].len;
-                       if (longest_len >= c->params.nice_match_length) {
-                               /* Take the long match immediately.  */
-                               match = xpress_match_chooser_reverse_list(c, cur_pos);
 
-                               optimum[cur_pos].next.match_offset =
-                                       matches[num_matches - 1].offset;
-                               optimum[cur_pos].next.link = cur_pos + longest_len;
-                               c->optimum_end_idx = cur_pos + longest_len;
+                       /* If there's a very long match, choose it immediately.
+                        */
+                       if (longest_len >= c->params.nice_match_length) {
 
                                xpress_skip_bytes(c, longest_len - 1);
+                               window_ptr += longest_len;
 
-                               return match;
-                       }
-               } else {
-                       longest_len = 1;
-               }
+                               if (cur_optimum_ptr != c->optimum)
+                                       xpress_declare_item_list(c, cur_optimum_ptr,
+                                                                next_chosen_item);
 
-               while (end_pos < cur_pos + longest_len)
-                       optimum[++end_pos].cost = MC_INFINITE_COST;
+                               xpress_declare_match(c, longest_len,
+                                                    matches[num_matches - 1].offset,
+                                                    next_chosen_item);
+                               goto begin;
+                       }
 
-               /* Consider coding a literal.  */
-               cost = optimum[cur_pos].cost + xpress_prev_literal_cost(c);
-               if (cost < optimum[cur_pos + 1].cost) {
-                       optimum[cur_pos + 1].cost = cost;
-                       optimum[cur_pos + 1].prev.link = cur_pos;
-               }
+                       /* If reaching any positions for the first time,
+                        * initialize their costs to "infinity".  */
+                       while (end_optimum_ptr < cur_optimum_ptr + longest_len)
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
 
-               if (num_matches) {
-                       /* Consider coding a match.  Cost evaluation is
-                        * hand-inlined so that we can do some performance
-                        * hacks.  */
-                       unsigned i = 0;
-                       unsigned len = 3;
-                       struct xpress_mc_pos_data *optimum_ptr = &optimum[cur_pos + 3];
-                       u32 cur_cost = optimum[cur_pos].cost;
-
-                       if (matches[num_matches - 1].len < 0xf + XPRESS_MIN_MATCH_LEN) {
-                               do {
-                                       u32 offset = matches[i].offset;
-                                       u32 offset_bsr = bsr32(offset);
-                                       unsigned len_hdr = len - XPRESS_MIN_MATCH_LEN;
-                                       unsigned sym = XPRESS_NUM_CHARS +
-                                                       ((offset_bsr << 4) | len_hdr);
-
-                                       u32 base_cost = cur_cost + offset_bsr;
-                                       do {
-                                               cost = base_cost + c->costs[sym];
-                                               if (cost < optimum_ptr->cost) {
-                                                       optimum_ptr->prev.link = cur_pos;
-                                                       optimum_ptr->prev.match_offset = offset;
-                                                       optimum_ptr->cost = cost;
-                                               }
-                                               sym++;
-                                               optimum_ptr++;
-                                       } while (++len <= matches[i].len);
-                               } while (++i != num_matches);
-                       } else {
-                               do {
-                                       u32 offset = matches[i].offset;
-                                       u32 offset_bsr = bsr32(offset);
-
-                                       u32 base_cost = cur_cost + offset_bsr;
-                                       do {
-                                               u32 adjusted_len = len - XPRESS_MIN_MATCH_LEN;
-                                               unsigned len_hdr = min(adjusted_len, 0xf);
-                                               unsigned sym = XPRESS_NUM_CHARS +
-                                                               ((offset_bsr << 4) | len_hdr);
-
-                                               cost = base_cost + c->costs[sym];
-                                               if (adjusted_len >= 0xf) {
-                                                       cost += 8;
-                                                       if (adjusted_len - 0xf >= 0xff)
-                                                               cost += 16;
-                                               }
-
-                                               if (cost < optimum_ptr->cost) {
-                                                       optimum_ptr->prev.link = cur_pos;
-                                                       optimum_ptr->prev.match_offset = offset;
-                                                       optimum_ptr->cost = cost;
-                                               }
-                                               optimum_ptr++;
-                                       } while (++len <= matches[i].len);
-                               } while (++i != num_matches);
+                       /* Consider coding a match.  */
+                       xpress_consider_matches(c, cur_optimum_ptr,
+                                               matches, num_matches);
+               } else {
+                       /* No matches found.  The only choice at this position
+                        * is to code a literal.  */
+
+                       if (end_optimum_ptr == cur_optimum_ptr) {
+                       #if 1
+                               /* Optimization for single literals.  */
+                               if (likely(cur_optimum_ptr == c->optimum)) {
+                                       xpress_declare_literal(c, *window_ptr++,
+                                                              next_chosen_item);
+                                       if (window_ptr == window_end)
+                                               return;
+                                       continue;
+                               }
+                       #endif
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
                        }
                }
 
-               cur_pos++;
-
-       } while (cur_pos != end_pos && cur_pos != XPRESS_OPTIM_ARRAY_LENGTH);
-
-       return xpress_match_chooser_reverse_list(c, cur_pos);
-}
-
-/* Set default XPRESS Huffman symbol costs to kick-start the iterative
- * optimization algorithm.  */
-static void
-xpress_set_default_costs(u8 costs[])
-{
-       unsigned i;
+               /* Consider coding a literal.  */
+               literal = *window_ptr++;
+               cost = cur_optimum_ptr->cost + c->costs[literal];
+               if (cost < (cur_optimum_ptr + 1)->cost) {
+                       (cur_optimum_ptr + 1)->cost = cost;
+                       (cur_optimum_ptr + 1)->mc_item_data =
+                               ((u32)literal << MC_OFFSET_SHIFT) | 1;
+               }
 
-       for (i = 0; i < XPRESS_NUM_CHARS; i++)
-               costs[i] = 8;
+               /* Advance to the next position.  */
+               cur_optimum_ptr++;
+
+               /*
+                * This loop will terminate when either of the following
+                * conditions is true:
+                *
+                * (1) cur_optimum_ptr == end_optimum_ptr
+                *
+                *      There are no paths that extend beyond the current
+                *      position.  In this case, any path to a later position
+                *      must pass through the current position, so we can go
+                *      ahead and choose the list of items that led to this
+                *      position.
+                *
+                * (2) cur_optimum_ptr == &c->optimum[XPRESS_OPTIM_ARRAY_LENGTH]
+                *
+                *      This bounds the number of times the algorithm can step
+                *      forward before it is guaranteed to start choosing items.
+                *      This limits the memory usage.  But
+                *      XPRESS_OPTIM_ARRAY_LENGTH is high enough that on most
+                *      inputs this limit is never reached.
+                *
+                * Note: no check for end-of-block is needed because
+                * end-of-block will trigger condition (1).
+                */
+               if (cur_optimum_ptr == end_optimum_ptr ||
+                   cur_optimum_ptr == &c->optimum[XPRESS_OPTIM_ARRAY_LENGTH])
+                       break;
+       }
 
-       for (; i < XPRESS_NUM_SYMBOLS; i++)
-               costs[i] = 10;
-}
-
-/* Copy the Huffman codeword lengths array @lens to the Huffman symbol costs
- * array @costs, but also assign a default cost to each 0-length (unused)
- * codeword.  */
-static void
-xpress_set_costs(u8 costs[], const u8 lens[])
-{
-       for (unsigned i = 0; i < XPRESS_NUM_SYMBOLS; i++)
-               costs[i] = lens[i] ? lens[i] : XPRESS_MAX_CODEWORD_LEN;
+       /* Choose the current list of items that constitute the minimum-cost
+        * path to the current position.  */
+       xpress_declare_item_list(c, cur_optimum_ptr, next_chosen_item);
+       goto begin;
 }
 
 /* Near-optimal parsing  */
 static u32
-xpress_choose_items_near_optimal(struct xpress_compressor *c)
+xpress_choose_near_optimal_items(struct xpress_compressor *c)
 {
        u32 num_passes_remaining = c->params.num_optim_passes;
-       const u8 *window_ptr;
-       const u8 *window_end;
        struct xpress_item *next_chosen_item;
-       struct lz_match raw_item;
-       struct xpress_item xpress_item;
-
-       xpress_set_default_costs(c->costs);
-       c->optimum_cur_idx = 0;
-       c->optimum_end_idx = 0;
+       struct xpress_item **next_chosen_item_ptr;
 
+       /* Choose appropriate match-finder wrapper functions.  */
        if (c->params.num_optim_passes > 1) {
                c->get_matches_func = xpress_get_matches_fillcache;
                c->skip_bytes_func = xpress_skip_bytes_fillcache;
@@ -763,108 +824,76 @@ xpress_choose_items_near_optimal(struct xpress_compressor *c)
                c->skip_bytes_func = xpress_skip_bytes_noncaching;
        }
 
-       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
+       /* The first optimization pass will use a default cost model.  Each
+        * additional optimization pass will use a cost model computed from the
+        * previous pass.
+        *
+        * To improve performance, we only generate the array containing the
+        * matches and literals in intermediate form on the final pass.  For
+        * earlier passes, tallying symbol frequencies is sufficient.  */
+       xpress_set_default_costs(c->costs);
 
-       while (--num_passes_remaining) {
-               c->cur_window_ptr = c->cur_window;
-               window_ptr = c->cur_window;
-               window_end = window_ptr + c->cur_window_size;
+       next_chosen_item_ptr = NULL;
+       do {
+               /* Reset the match-finder wrapper.  */
                c->cache_ptr = c->cached_matches;
-               memset(c->freqs, 0, sizeof(c->freqs));
-
-               while (window_ptr != window_end) {
-                       raw_item = xpress_choose_near_optimal_item(c);
-                       if (raw_item.len >= XPRESS_MIN_MATCH_LEN) {
-                               xpress_tally_match(raw_item.len,
-                                                  raw_item.offset, c->freqs);
-                               window_ptr += raw_item.len;
-                       } else {
-                               xpress_tally_literal(*window_ptr, c->freqs);
-                               window_ptr += 1;
-                       }
-               }
-               c->freqs[XPRESS_END_OF_DATA]++;
-               xpress_make_huffman_code(c);
-               xpress_set_costs(c->costs, c->lens);
-               if (c->cache_ptr <= c->cache_limit) {
-                       c->get_matches_func = xpress_get_matches_usecache_nocheck;
-                       c->skip_bytes_func = xpress_skip_bytes_usecache_nocheck;
-               } else {
-                       c->get_matches_func = xpress_get_matches_usecache;
-                       c->skip_bytes_func = xpress_skip_bytes_usecache;
-               }
-       }
 
-       c->cur_window_ptr = c->cur_window;
-       window_ptr = c->cur_window;
-       window_end = window_ptr + c->cur_window_size;
-       c->cache_ptr = c->cached_matches;
-       memset(c->freqs, 0, sizeof(c->freqs));
-       next_chosen_item = c->chosen_items;
-
-       u32 unseen_cost = 9;
-       while (window_ptr != window_end) {
-               raw_item = xpress_choose_near_optimal_item(c);
-               if (raw_item.len >= XPRESS_MIN_MATCH_LEN) {
-                       xpress_item = xpress_tally_match(raw_item.len,
-                                                        raw_item.offset,
-                                                        c->freqs);
-                       window_ptr += raw_item.len;
-               } else {
-                       xpress_item = xpress_tally_literal(*window_ptr,
-                                                          c->freqs);
-                       window_ptr += 1;
+               if (num_passes_remaining == 1) {
+                       /* Last pass: actually generate the items.  */
+                       next_chosen_item = c->chosen_items;
+                       next_chosen_item_ptr = &next_chosen_item;
                }
-               *next_chosen_item++ = xpress_item;
 
-               /* When doing one-pass near-optimal parsing, rebuild the Huffman
-                * code occasionally.  */
-               if (unlikely((next_chosen_item - c->chosen_items) % 2048 == 0) &&
-                   c->cur_window_size >= 16384 &&
-                   c->params.num_optim_passes == 1)
-               {
+               /* Choose the items.  */
+               xpress_optim_pass(c, next_chosen_item_ptr);
+
+               if (num_passes_remaining > 1) {
+                       /* This isn't the last pass.  */
+
+                       /* Make the Huffman code from the symbol frequencies.  */
+                       c->freqs[XPRESS_END_OF_DATA]++;
                        xpress_make_huffman_code(c);
-                       for (unsigned i = 0; i < XPRESS_NUM_SYMBOLS; i++)
-                               c->costs[i] = c->lens[i] ? c->lens[i] : unseen_cost;
-                       if (unseen_cost < 15)
-                               unseen_cost++;
+
+                       /* Reset symbol frequencies.  */
+                       memset(c->freqs, 0, sizeof(c->freqs));
+
+                       /* Update symbol costs.  */
+                       xpress_set_costs(c->costs, c->lens);
+
+                       /* Choose appopriate match-finder wrapper functions.  */
+                       if (c->cache_ptr <= c->cache_limit) {
+                               c->get_matches_func = xpress_get_matches_usecache_nocheck;
+                               c->skip_bytes_func = xpress_skip_bytes_usecache_nocheck;
+                       } else {
+                               c->get_matches_func = xpress_get_matches_usecache;
+                               c->skip_bytes_func = xpress_skip_bytes_usecache;
+                       }
                }
-       }
-       c->freqs[XPRESS_END_OF_DATA]++;
-       xpress_make_huffman_code(c);
+       } while (--num_passes_remaining);
+
+       /* Return the number of items chosen.  */
        return next_chosen_item - c->chosen_items;
 }
 
 /* Lazy parsing  */
 static u32
-xpress_choose_items_lazy(struct xpress_compressor *c)
+xpress_choose_lazy_items(struct xpress_compressor *c)
 {
-       struct lz_mf *mf;
+       const u8 *window_ptr = c->cur_window;
+       const u8 *window_end = &c->cur_window[c->cur_window_size];
+       struct xpress_item *next_chosen_item = c->chosen_items;
        u32 len_3_too_far;
-       const u8 *window_ptr;
-       const u8 *window_end;
-       u32 num_matches;
-       struct lz_match matches[min(c->params.nice_match_length, c->params.max_search_depth)];
-       struct xpress_item *next_chosen_item;
+       struct lz_mf *mf = c->mf;
+       struct lz_match *matches = c->cached_matches;
+       unsigned num_matches;
        struct lz_match prev_match;
 
-       mf = c->mf;
-
-       lz_mf_load_window(mf, c->cur_window, c->cur_window_size);
-
        if (c->cur_window_size <= 8192)
                len_3_too_far = 2048;
        else
                len_3_too_far = 4096;
 
-       memset(c->freqs, 0, sizeof(c->freqs));
-
-       window_ptr = c->cur_window;
-       window_end = c->cur_window + c->cur_window_size;
-       next_chosen_item = c->chosen_items;
-
-       for (;;) {
-
+       do {
                /* Don't have match at previous position  */
 
                num_matches = lz_mf_get_matches(mf, matches);
@@ -875,10 +904,8 @@ xpress_choose_items_lazy(struct xpress_compressor *c)
                     matches[num_matches - 1].offset >= len_3_too_far))
                {
                        /* No matches found => output literal  */
-                       *next_chosen_item++ = xpress_tally_literal(*(window_ptr - 1),
-                                                                  c->freqs);
-                       if (window_ptr == window_end)
-                               break;
+                       xpress_declare_literal(c, *(window_ptr - 1),
+                                              &next_chosen_item);
                        continue;
                }
 
@@ -889,13 +916,11 @@ xpress_choose_items_lazy(struct xpress_compressor *c)
 
                if (prev_match.len >= c->params.nice_match_length) {
                        /* Very long match found => output immediately  */
-                       *next_chosen_item++ = xpress_tally_match(prev_match.len,
-                                                                prev_match.offset,
-                                                                c->freqs);
+                       xpress_declare_match(c, prev_match.len,
+                                            prev_match.offset,
+                                            &next_chosen_item);
                        lz_mf_skip_positions(mf, prev_match.len - 1);
                        window_ptr += prev_match.len - 1;
-                       if (window_ptr == window_end)
-                               break;
                        continue;
                }
 
@@ -906,58 +931,44 @@ xpress_choose_items_lazy(struct xpress_compressor *c)
                    (matches[num_matches - 1].len <= prev_match.len))
                {
                        /* Next match is not longer => output previous match  */
-                       *next_chosen_item++ = xpress_tally_match(prev_match.len,
-                                                                prev_match.offset,
-                                                                c->freqs);
+                       xpress_declare_match(c, prev_match.len,
+                                            prev_match.offset,
+                                            &next_chosen_item);
                        lz_mf_skip_positions(mf, prev_match.len - 2);
                        window_ptr += prev_match.len - 2;
-                       if (window_ptr == window_end)
-                               break;
                        continue;
                }
 
                /* Next match is longer => output literal  */
 
-               *next_chosen_item++ = xpress_tally_literal(*(window_ptr - 2),
-                                                          c->freqs);
+               xpress_declare_literal(c, *(window_ptr - 2), &next_chosen_item);
 
                prev_match = matches[num_matches - 1];
 
                goto have_prev_match;
-       }
 
-       c->freqs[XPRESS_END_OF_DATA]++;
-       xpress_make_huffman_code(c);
+       } while (window_ptr != window_end);
+
        return next_chosen_item - c->chosen_items;
 }
 
 /* Greedy parsing  */
 static u32
-xpress_choose_items_greedy(struct xpress_compressor *c)
+xpress_choose_greedy_items(struct xpress_compressor *c)
 {
-       struct lz_mf *mf;
+       const u8 *window_ptr = c->cur_window;
+       const u8 *window_end = &c->cur_window[c->cur_window_size];
+       struct xpress_item *next_chosen_item = c->chosen_items;
        u32 len_3_too_far;
-       const u8 *window_ptr;
-       const u8 *window_end;
-       struct lz_match matches[min(c->params.nice_match_length, c->params.max_search_depth)];
-       u32 num_matches;
-       struct xpress_item *next_chosen_item;
-
-       mf = c->mf;
-
-       lz_mf_load_window(mf, c->cur_window, c->cur_window_size);
+       struct lz_mf *mf = c->mf;
+       struct lz_match *matches = c->cached_matches;
+       unsigned num_matches;
 
        if (c->cur_window_size <= 8192)
                len_3_too_far = 2048;
        else
                len_3_too_far = 4096;
 
-       memset(c->freqs, 0, sizeof(c->freqs));
-
-       window_ptr = c->cur_window;
-       window_end = c->cur_window + c->cur_window_size;
-       next_chosen_item = c->chosen_items;
-
        do {
                /* Get longest match at the current position.  */
                num_matches = lz_mf_get_matches(mf, matches);
@@ -966,80 +977,89 @@ xpress_choose_items_greedy(struct xpress_compressor *c)
                    (matches[num_matches - 1].len == 3 &&
                     matches[num_matches - 1].offset >= len_3_too_far))
                {
-                       *next_chosen_item++ = xpress_tally_literal(*window_ptr, c->freqs);
+                       /* No match, or length 3 match with large offset.
+                        * Choose a literal.  */
+                       xpress_declare_literal(c, *window_ptr, &next_chosen_item);
                        window_ptr += 1;
                } else {
-                       u32 len = matches[num_matches - 1].len;
-                       u32 offset = matches[num_matches - 1].offset;
+                       /* Match found.  Choose it.  */
+                       unsigned len = matches[num_matches - 1].len;
+                       unsigned offset = matches[num_matches - 1].offset;
 
-                       *next_chosen_item++ = xpress_tally_match(len, offset, c->freqs);
+                       xpress_declare_match(c, len, offset, &next_chosen_item);
                        lz_mf_skip_positions(mf, len - 1);
                        window_ptr += len;
                }
        } while (window_ptr != window_end);
 
-       c->freqs[XPRESS_END_OF_DATA]++;
-       xpress_make_huffman_code(c);
        return next_chosen_item - c->chosen_items;
 }
 
-/* Huffman-only parsing  */
+/* Literals-only parsing  */
 static u32
-xpress_choose_items_huffonly(struct xpress_compressor *c)
+xpress_choose_literals(struct xpress_compressor *c)
 {
-       const u8 *window_ptr;
-       const u8 *window_end;
-       struct xpress_item *next_chosen_item;
-
-       memset(c->freqs, 0, sizeof(c->freqs));
-
-       window_ptr = c->cur_window;
-       window_end = c->cur_window + c->cur_window_size;
-       next_chosen_item = c->chosen_items;
+       const u8 *window_ptr = c->cur_window;
+       const u8 *window_end = &c->cur_window[c->cur_window_size];
+       struct xpress_item *next_chosen_item = c->chosen_items;
 
        do {
-               *next_chosen_item++ = xpress_tally_literal(*window_ptr++, c->freqs);
+               xpress_declare_literal(c, *window_ptr++, &next_chosen_item);
        } while (window_ptr != window_end);
 
-       c->freqs[XPRESS_END_OF_DATA]++;
-       xpress_make_huffman_code(c);
        return next_chosen_item - c->chosen_items;
 }
 
-/* Given the specified compression level and maximum window size, build the
- * parameters to use for XPRESS compression.  */
+/*
+ * 'choose_items_func' is provided a data buffer c->cur_window of length
+ * c->cur_window_size bytes.  This data buffer will have already been loaded
+ * into the match-finder c->mf.  'choose_items_func' must choose the
+ * match/literal sequence to output to represent this data buffer.  The
+ * intermediate representation of this match/literal sequence must be recorded
+ * in c->chosen_items, and the Huffman symbols used must be tallied in c->freqs.
+ * The return value must be the number of items written to c->chosen_items.
+ */
+static u32
+xpress_choose_items(struct xpress_compressor *c)
+{
+       return (*c->params.choose_items_func)(c);
+}
+
+/* Set internal compression parameters for the specified compression level and
+ * maximum window size.  */
 static void
 xpress_build_params(unsigned int compression_level, u32 max_window_size,
                    struct xpress_compressor_params *xpress_params)
 {
        memset(xpress_params, 0, sizeof(*xpress_params));
+       xpress_params->num_optim_passes = 1;
 
        if (compression_level == 1) {
 
-               /* Huffman only (no Lempel-Ziv matches)  */
+               /* Literal-only parsing  */
+               xpress_params->choose_items_func = xpress_choose_literals;
                xpress_params->mf_algo = LZ_MF_NULL;
-               xpress_params->choose_items_func = xpress_choose_items_huffonly;
 
        } else if (compression_level < 30) {
 
                /* Greedy parsing  */
+               xpress_params->choose_items_func = xpress_choose_greedy_items;
                xpress_params->mf_algo = LZ_MF_HASH_CHAINS;
-               xpress_params->choose_items_func = xpress_choose_items_greedy;
                xpress_params->nice_match_length = compression_level;
                xpress_params->max_search_depth = compression_level / 2;
 
        } else if (compression_level < 60) {
 
                /* Lazy parsing  */
+               xpress_params->choose_items_func = xpress_choose_lazy_items;
                xpress_params->mf_algo = LZ_MF_HASH_CHAINS;
-               xpress_params->choose_items_func = xpress_choose_items_lazy;
                xpress_params->nice_match_length = compression_level;
                xpress_params->max_search_depth = compression_level / 2;
 
        } else {
 
                /* Near-optimal parsing  */
-               xpress_params->choose_items_func = xpress_choose_items_near_optimal;
+               xpress_params->choose_items_func = xpress_choose_near_optimal_items;
                if (max_window_size >= 16384)
                        xpress_params->mf_algo = LZ_MF_BINARY_TREES;
                else
@@ -1052,8 +1072,8 @@ xpress_build_params(unsigned int compression_level, u32 max_window_size,
        }
 }
 
-/* Given the specified XPRESS parameters and maximum window size, build the
- * parameters to use for match-finding.  */
+/* Given the internal compression parameters and maximum window size, build the
+ * Lempel-Ziv match-finder parameters.  */
 static void
 xpress_build_mf_params(const struct xpress_compressor_params *xpress_params,
                       u32 max_window_size, struct lz_mf_params *mf_params)
@@ -1084,20 +1104,25 @@ xpress_get_needed_memory(size_t max_window_size, unsigned int compression_level)
 
        size += sizeof(struct xpress_compressor);
 
+       /* mf */
        size += lz_mf_get_needed_memory(params.mf_algo, max_window_size);
 
-       if (params.choose_items_func == xpress_choose_items_near_optimal) {
+       /* optimum */
+       if (params.choose_items_func == xpress_choose_near_optimal_items) {
                size += (XPRESS_OPTIM_ARRAY_LENGTH + params.nice_match_length) *
-                                     sizeof(struct xpress_mc_pos_data);
-               if (params.num_optim_passes > 1) {
-                       size_t cache_len = max(max_window_size * XPRESS_CACHE_PER_POS,
-                                              params.max_search_depth + 1);
-                       size += cache_len * sizeof(struct lz_match);
-               } else {
-                       size += params.max_search_depth * sizeof(struct lz_match);
-               }
+                       sizeof(struct xpress_mc_pos_data);
+       }
+
+       /* cached_matches */
+       if (params.num_optim_passes > 1) {
+               size_t cache_len = max(max_window_size * XPRESS_CACHE_PER_POS,
+                                      params.max_search_depth + 1);
+               size += cache_len * sizeof(struct lz_match);
+       } else {
+               size += params.max_search_depth * sizeof(struct lz_match);
        }
 
+       /* chosen_items */
        size += max_window_size * sizeof(struct xpress_item);
 
        return size;
@@ -1127,26 +1152,27 @@ xpress_create_compressor(size_t max_window_size, unsigned int compression_level,
        if (!c->mf)
                goto oom;
 
-       if (params.choose_items_func == xpress_choose_items_near_optimal) {
+       if (params.choose_items_func == xpress_choose_near_optimal_items) {
                c->optimum = MALLOC((XPRESS_OPTIM_ARRAY_LENGTH +
                                     params.nice_match_length) *
                                      sizeof(struct xpress_mc_pos_data));
                if (!c->optimum)
                        goto oom;
-               if (params.num_optim_passes > 1) {
-                       size_t cache_len = max(max_window_size * XPRESS_CACHE_PER_POS,
-                                              params.max_search_depth + 1);
-                       c->cached_matches = MALLOC(cache_len * sizeof(struct lz_match));
-                       if (!c->cached_matches)
-                               goto oom;
-                       c->cache_limit = c->cached_matches + cache_len -
-                                          (params.max_search_depth + 1);
-               } else {
-                       c->cached_matches = MALLOC(params.max_search_depth *
-                                                  sizeof(struct lz_match));
-                       if (!c->cached_matches)
-                               goto oom;
-               }
+       }
+
+       if (params.num_optim_passes > 1) {
+               size_t cache_len = max(max_window_size * XPRESS_CACHE_PER_POS,
+                                      params.max_search_depth + 1);
+               c->cached_matches = MALLOC(cache_len * sizeof(struct lz_match));
+               if (!c->cached_matches)
+                       goto oom;
+               c->cache_limit = c->cached_matches + cache_len -
+                                  (params.max_search_depth + 1);
+       } else {
+               c->cached_matches = MALLOC(params.max_search_depth *
+                                          sizeof(struct lz_match));
+               if (!c->cached_matches)
+                       goto oom;
        }
 
        c->chosen_items = MALLOC(max_window_size * sizeof(struct xpress_item));
@@ -1177,10 +1203,14 @@ xpress_compress(const void *uncompressed_data, size_t uncompressed_size,
        if (compressed_size_avail < XPRESS_NUM_SYMBOLS / 2 + 50)
                return 0;
 
-       /* Determine match/literal sequence to divide the data into.  */
+       /* Determine match/literal sequence.  */
        c->cur_window = uncompressed_data;
        c->cur_window_size = uncompressed_size;
-       num_chosen_items = (*c->params.choose_items_func)(c);
+       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
+       memset(c->freqs, 0, sizeof(c->freqs));
+       num_chosen_items = xpress_choose_items(c);
+       c->freqs[XPRESS_END_OF_DATA]++;
+       xpress_make_huffman_code(c);
 
        /* Output the Huffman code as a series of 512 4-bit lengths.  */
        cptr = compressed_data;