]> wimlib.net Git - wimlib/blobdiff - src/xpress_compress.c
Adjust naming of (de)compression files
[wimlib] / src / xpress_compress.c
diff --git a/src/xpress_compress.c b/src/xpress_compress.c
new file mode 100644 (file)
index 0000000..04105ae
--- /dev/null
@@ -0,0 +1,1156 @@
+/*
+ * xpress_compress.c
+ *
+ * A compressor for the XPRESS compression format (Huffman variant).
+ */
+
+/*
+ * Copyright (C) 2012, 2013, 2014 Eric Biggers
+ *
+ * This file is free software; you can redistribute it and/or modify it under
+ * the terms of the GNU Lesser General Public License as published by the Free
+ * Software Foundation; either version 3 of the License, or (at your option) any
+ * later version.
+ *
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
+ * details.
+ *
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this file; if not, see http://www.gnu.org/licenses/.
+ */
+
+#ifdef HAVE_CONFIG_H
+#  include "config.h"
+#endif
+
+/*
+ * The maximum buffer size, in bytes, that can be compressed.  An XPRESS
+ * compressor instance must be created with a 'max_bufsize' less than or equal
+ * to this value.
+ */
+#define XPRESS_MAX_BUFSIZE             65536
+
+/*
+ * Define to 1 to enable the near-optimal parsing algorithm at high compression
+ * levels.  The near-optimal parsing algorithm produces a compression ratio
+ * significantly better than the greedy and lazy algorithms.  However, it is
+ * much slower.
+ */
+#define SUPPORT_NEAR_OPTIMAL_PARSING   1
+
+/*
+ * The lowest compression level at which near-optimal parsing is enabled.
+ */
+#define MIN_LEVEL_FOR_NEAR_OPTIMAL     60
+
+/*
+ * The window order for the matchfinder.  This must be the base 2 logarithm of
+ * the maximum buffer size.
+ */
+#define MATCHFINDER_WINDOW_ORDER       16
+
+/*
+ * Although XPRESS can potentially use a sliding window, it isn't well suited
+ * for large buffers of data because there is no way to reset the Huffman code.
+ * Therefore, we only allow buffers in which there is no restriction on match
+ * offsets (no sliding window).  This simplifies the code and allows some
+ * optimizations.
+ */
+#define MATCHFINDER_IS_SLIDING         0
+
+#include <string.h>
+
+#include "wimlib/bitops.h"
+#include "wimlib/compress_common.h"
+#include "wimlib/compressor_ops.h"
+#include "wimlib/endianness.h"
+#include "wimlib/error.h"
+#include "wimlib/hc_matchfinder.h"
+#include "wimlib/unaligned.h"
+#include "wimlib/util.h"
+#include "wimlib/xpress_constants.h"
+
+#if SUPPORT_NEAR_OPTIMAL_PARSING
+
+/*
+ * CACHE_RESERVE_PER_POS is the number of lz_match structures to reserve in the
+ * match cache for each byte position.  This value should be high enough so that
+ * virtually the time, all matches found in the input buffer can fit in the
+ * match cache.  However, fallback behavior on cache overflow is still required.
+ */
+#define CACHE_RESERVE_PER_POS  8
+
+/*
+ * We use a binary-tree based matchfinder for optimal parsing because it can
+ * find more matches in the same number of steps compared to hash-chain based
+ * matchfinders.  In addition, since we need to find matches at almost every
+ * position, there isn't much penalty for keeping the sequences sorted in the
+ * binary trees.
+ */
+#include "wimlib/bt_matchfinder.h"
+
+struct xpress_optimum_node;
+
+#endif /* SUPPORT_NEAR_OPTIMAL_PARSING */
+
+struct xpress_item;
+
+/* The main XPRESS compressor structure  */
+struct xpress_compressor {
+
+       /* Pointer to the compress() implementation chosen at allocation time */
+       size_t (*impl)(struct xpress_compressor *,
+                      const void *, size_t, void *, size_t);
+
+       /* Symbol frequency counters for the Huffman code  */
+       u32 freqs[XPRESS_NUM_SYMBOLS];
+
+       /* The Huffman codewords and their lengths  */
+       u32 codewords[XPRESS_NUM_SYMBOLS];
+       u8 lens[XPRESS_NUM_SYMBOLS];
+
+       /* The "nice" match length: if a match of this length is found, then
+        * choose it immediately without further consideration.  */
+       unsigned nice_match_length;
+
+       /* The maximum search depth: consider at most this many potential
+        * matches at each position.  */
+       unsigned max_search_depth;
+
+       union {
+               /* Data for greedy or lazy parsing  */
+               struct {
+                       struct hc_matchfinder hc_mf;
+                       struct xpress_item *chosen_items;
+                       u8 nonoptimal_end[0];
+               };
+
+       #if SUPPORT_NEAR_OPTIMAL_PARSING
+               /* Data for near-optimal parsing  */
+               struct {
+                       struct bt_matchfinder bt_mf;
+                       struct xpress_optimum_node *optimum_nodes;
+                       struct lz_match *match_cache;
+                       struct lz_match *cache_overflow_mark;
+                       unsigned num_optim_passes;
+                       u32 costs[XPRESS_NUM_SYMBOLS];
+                       u8 optimal_end[0];
+               };
+       #endif
+       };
+};
+
+#if SUPPORT_NEAR_OPTIMAL_PARSING
+
+/*
+ * This structure represents a byte position in the input buffer and a node in
+ * the graph of possible match/literal choices.
+ *
+ * Logically, each incoming edge to this node is labeled with a literal or a
+ * match that can be taken to reach this position from an earlier position; and
+ * each outgoing edge from this node is labeled with a literal or a match that
+ * can be taken to advance from this position to a later position.
+ *
+ * But these "edges" are actually stored elsewhere (in 'match_cache').  Here we
+ * associate with each node just two pieces of information:
+ *
+ *     'cost_to_end' is the minimum cost to reach the end of the buffer from
+ *     this position.
+ *
+ *     'item' represents the literal or match that must be chosen from here to
+ *     reach the end of the buffer with the minimum cost.  Equivalently, this
+ *     can be interpreted as the label of the outgoing edge on the minimum cost
+ *     path to the "end of buffer" node from this node.
+ */
+struct xpress_optimum_node {
+
+       u32 cost_to_end;
+
+       /*
+        * Notes on the match/literal representation used here:
+        *
+        *      The low bits of 'item' are the length: 1 if the item is a
+        *      literal, or the match length if the item is a match.
+        *
+        *      The high bits of 'item' are the actual literal byte if the item
+        *      is a literal, or the match offset if the item is a match.
+        */
+#define OPTIMUM_OFFSET_SHIFT   16
+#define OPTIMUM_LEN_MASK       (((u32)1 << OPTIMUM_OFFSET_SHIFT) - 1)
+       u32 item;
+};
+
+#endif /* SUPPORT_NEAR_OPTIMAL_PARSING */
+
+/* An intermediate representation of an XPRESS match or literal  */
+struct xpress_item {
+       /*
+        * Bits 0  -  8: Symbol
+        * Bits 9  - 24: Length - XPRESS_MIN_MATCH_LEN
+        * Bits 25 - 28: Number of extra offset bits
+        * Bits 29+    : Extra offset bits
+        *
+        * Unfortunately, gcc generates worse code if we use real bitfields here.
+        */
+       u64 data;
+};
+
+/*
+ * Structure to keep track of the current state of sending compressed data to
+ * the output buffer.
+ *
+ * The XPRESS bitstream is encoded as a sequence of little endian 16-bit coding
+ * units interwoven with literal bytes.
+ */
+struct xpress_output_bitstream {
+
+       /* Bits that haven't yet been written to the output buffer.  */
+       u32 bitbuf;
+
+       /* Number of bits currently held in @bitbuf.  */
+       u32 bitcount;
+
+       /* Pointer to the start of the output buffer.  */
+       u8 *start;
+
+       /* Pointer to the location in the ouput buffer at which to write the
+        * next 16 bits.  */
+       u8 *next_bits;
+
+       /* Pointer to the location in the output buffer at which to write the
+        * next 16 bits, after @next_bits.  */
+       u8 *next_bits2;
+
+       /* Pointer to the location in the output buffer at which to write the
+        * next literal byte.  */
+       u8 *next_byte;
+
+       /* Pointer to the end of the output buffer.  */
+       u8 *end;
+};
+
+/* Reset the symbol frequencies for the XPRESS Huffman code.  */
+static void
+xpress_reset_symbol_frequencies(struct xpress_compressor *c)
+{
+       memset(c->freqs, 0, sizeof(c->freqs));
+}
+
+/*
+ * Make the Huffman code for XPRESS.
+ *
+ * Input: c->freqs
+ * Output: c->lens and c->codewords
+ */
+static void
+xpress_make_huffman_code(struct xpress_compressor *c)
+{
+       make_canonical_huffman_code(XPRESS_NUM_SYMBOLS, XPRESS_MAX_CODEWORD_LEN,
+                                   c->freqs, c->lens, c->codewords);
+}
+
+/*
+ * Initialize the output bitstream.
+ *
+ * @os
+ *     The output bitstream structure to initialize.
+ * @buffer
+ *     The output buffer.
+ * @size
+ *     Size of @buffer, in bytes.  Must be at least 4.
+ */
+static void
+xpress_init_output(struct xpress_output_bitstream *os, void *buffer, size_t size)
+{
+       os->bitbuf = 0;
+       os->bitcount = 0;
+       os->start = buffer;
+       os->next_bits = os->start;
+       os->next_bits2 = os->start + 2;
+       os->next_byte = os->start + 4;
+       os->end = os->start + size;
+}
+
+/*
+ * Write some bits to the output bitstream.
+ *
+ * The bits are given by the low-order @num_bits bits of @bits.  Higher-order
+ * bits in @bits cannot be set.  At most 16 bits can be written at once.
+ *
+ * If the output buffer space is exhausted, then the bits will be ignored, and
+ * xpress_flush_output() will return 0 when it gets called.
+ */
+static inline void
+xpress_write_bits(struct xpress_output_bitstream *os,
+                 const u32 bits, const unsigned num_bits)
+{
+       /* This code is optimized for XPRESS, which never needs to write more
+        * than 16 bits at once.  */
+
+       os->bitcount += num_bits;
+       os->bitbuf = (os->bitbuf << num_bits) | bits;
+
+       if (os->bitcount > 16) {
+               os->bitcount -= 16;
+               if (os->end - os->next_byte >= 2) {
+                       put_unaligned_u16_le(os->bitbuf >> os->bitcount, os->next_bits);
+                       os->next_bits = os->next_bits2;
+                       os->next_bits2 = os->next_byte;
+                       os->next_byte += 2;
+               }
+       }
+}
+
+/*
+ * Interweave a literal byte into the output bitstream.
+ */
+static inline void
+xpress_write_byte(struct xpress_output_bitstream *os, u8 byte)
+{
+       if (os->next_byte < os->end)
+               *os->next_byte++ = byte;
+}
+
+/*
+ * Interweave two literal bytes into the output bitstream.
+ */
+static inline void
+xpress_write_u16(struct xpress_output_bitstream *os, u16 v)
+{
+       if (os->end - os->next_byte >= 2) {
+               put_unaligned_u16_le(v, os->next_byte);
+               os->next_byte += 2;
+       }
+}
+
+/*
+ * Flush the last coding unit to the output buffer if needed.  Return the total
+ * number of bytes written to the output buffer, or 0 if an overflow occurred.
+ */
+static size_t
+xpress_flush_output(struct xpress_output_bitstream *os)
+{
+       if (os->end - os->next_byte < 2)
+               return 0;
+
+       put_unaligned_u16_le(os->bitbuf << (16 - os->bitcount), os->next_bits);
+       put_unaligned_u16_le(0, os->next_bits2);
+
+       return os->next_byte - os->start;
+}
+
+static inline void
+xpress_write_extra_length_bytes(struct xpress_output_bitstream *os,
+                               unsigned adjusted_len)
+{
+       /* If length >= 18, output one extra length byte.
+        * If length >= 273, output three (total) extra length bytes.  */
+       if (adjusted_len >= 0xF) {
+               u8 byte1 = min(adjusted_len - 0xF, 0xFF);
+               xpress_write_byte(os, byte1);
+               if (byte1 == 0xFF)
+                       xpress_write_u16(os, adjusted_len);
+       }
+}
+
+/* Output a match or literal.  */
+static inline void
+xpress_write_item(struct xpress_item item, struct xpress_output_bitstream *os,
+                 const u32 codewords[], const u8 lens[])
+{
+       u64 data = item.data;
+       unsigned symbol = data & 0x1FF;
+
+       xpress_write_bits(os, codewords[symbol], lens[symbol]);
+
+       if (symbol >= XPRESS_NUM_CHARS) {
+               /* Match, not a literal  */
+               xpress_write_extra_length_bytes(os, (data >> 9) & 0xFFFF);
+               xpress_write_bits(os, data >> 29, (data >> 25) & 0xF);
+       }
+}
+
+/* Output a sequence of XPRESS matches and literals.  */
+static void
+xpress_write_items(struct xpress_output_bitstream *os,
+                  const struct xpress_item items[], size_t num_items,
+                  const u32 codewords[], const u8 lens[])
+{
+       for (size_t i = 0; i < num_items; i++)
+               xpress_write_item(items[i], os, codewords, lens);
+}
+
+#if SUPPORT_NEAR_OPTIMAL_PARSING
+
+/*
+ * Follow the minimum cost path in the graph of possible match/literal choices
+ * and write out the matches/literals using the specified Huffman code.
+ *
+ * Note: this is slightly duplicated with xpress_write_items().  However, we
+ * don't want to waste time translating between intermediate match/literal
+ * representations.
+ */
+static void
+xpress_write_item_list(struct xpress_output_bitstream *os,
+                      struct xpress_optimum_node *optimum_nodes,
+                      size_t count, const u32 codewords[], const u8 lens[])
+{
+       struct xpress_optimum_node *cur_optimum_ptr = optimum_nodes;
+       struct xpress_optimum_node *end_optimum_ptr = optimum_nodes + count;
+       do {
+               unsigned length = cur_optimum_ptr->item & OPTIMUM_LEN_MASK;
+               unsigned offset = cur_optimum_ptr->item >> OPTIMUM_OFFSET_SHIFT;
+
+               if (length == 1) {
+                       /* Literal  */
+                       unsigned literal = offset;
+
+                       xpress_write_bits(os, codewords[literal], lens[literal]);
+               } else {
+                       /* Match  */
+                       unsigned adjusted_len;
+                       unsigned offset_high_bit;
+                       unsigned len_hdr;
+                       unsigned sym;
+
+                       adjusted_len = length - XPRESS_MIN_MATCH_LEN;
+                       offset_high_bit = fls32(offset);
+                       len_hdr = min(0xF, adjusted_len);
+                       sym = XPRESS_NUM_CHARS + ((offset_high_bit << 4) | len_hdr);
+
+                       xpress_write_bits(os, codewords[sym], lens[sym]);
+                       xpress_write_extra_length_bytes(os, adjusted_len);
+                       xpress_write_bits(os, offset - (1U << offset_high_bit),
+                                         offset_high_bit);
+               }
+               cur_optimum_ptr += length;
+       } while (cur_optimum_ptr != end_optimum_ptr);
+}
+#endif /* SUPPORT_NEAR_OPTIMAL_PARSING */
+
+/*
+ * Output the XPRESS-compressed data, given the sequence of match/literal
+ * "items" that was chosen to represent the input data.
+ *
+ * If @near_optimal is %false, then the items are taken from the array
+ * c->chosen_items[0...count].
+ *
+ * If @near_optimal is %true, then the items are taken from the minimum cost
+ * path stored in c->optimum_nodes[0...count].
+ */
+static size_t
+xpress_write(struct xpress_compressor *c, void *out, size_t out_nbytes_avail,
+            size_t count, bool near_optimal)
+{
+       u8 *cptr;
+       struct xpress_output_bitstream os;
+       size_t out_size;
+
+       /* Account for the end-of-data symbol and make the Huffman code.  */
+       c->freqs[XPRESS_END_OF_DATA]++;
+       xpress_make_huffman_code(c);
+
+       /* Output the Huffman code as a series of 512 4-bit lengths.  */
+       cptr = out;
+       for (unsigned i = 0; i < XPRESS_NUM_SYMBOLS; i += 2)
+               *cptr++ = (c->lens[i + 1] << 4) | c->lens[i];
+
+       xpress_init_output(&os, cptr, out_nbytes_avail - XPRESS_NUM_SYMBOLS / 2);
+
+       /* Output the Huffman-encoded items.  */
+#if SUPPORT_NEAR_OPTIMAL_PARSING
+       if (near_optimal) {
+               xpress_write_item_list(&os, c->optimum_nodes, count,
+                                      c->codewords, c->lens);
+
+       } else
+#endif
+       {
+               xpress_write_items(&os, c->chosen_items, count,
+                                  c->codewords, c->lens);
+       }
+
+       /* Write the end-of-data symbol (needed for MS compatibility)  */
+       xpress_write_bits(&os, c->codewords[XPRESS_END_OF_DATA],
+                         c->lens[XPRESS_END_OF_DATA]);
+
+       /* Flush any pending data.  Then return the compressed size if the
+        * compressed data fit in the output buffer, or 0 if it did not.  */
+       out_size = xpress_flush_output(&os);
+       if (out_size == 0)
+               return 0;
+
+       return out_size + XPRESS_NUM_SYMBOLS / 2;
+}
+
+/* Tally the Huffman symbol for a literal and return the intermediate
+ * representation of that literal.  */
+static inline struct xpress_item
+xpress_record_literal(struct xpress_compressor *c, unsigned literal)
+{
+       c->freqs[literal]++;
+
+       return (struct xpress_item) {
+               .data = literal,
+       };
+}
+
+/* Tally the Huffman symbol for a match and return the intermediate
+ * representation of that match.  */
+static inline struct xpress_item
+xpress_record_match(struct xpress_compressor *c, unsigned length, unsigned offset)
+{
+       unsigned adjusted_len = length - XPRESS_MIN_MATCH_LEN;
+       unsigned len_hdr = min(adjusted_len, 0xF);
+       unsigned offset_high_bit = fls32(offset);
+       unsigned sym = XPRESS_NUM_CHARS + ((offset_high_bit << 4) | len_hdr);
+
+       c->freqs[sym]++;
+
+       return (struct xpress_item) {
+               .data = (u64)sym |
+                       ((u64)adjusted_len << 9) |
+                       ((u64)offset_high_bit << 25) |
+                       ((u64)(offset ^ (1U << offset_high_bit)) << 29),
+       };
+}
+
+/*
+ * This is the "greedy" XPRESS compressor. It always chooses the longest match.
+ * (Exception: as a heuristic, we pass up length 3 matches that have large
+ * offsets.)
+ */
+static size_t
+xpress_compress_greedy(struct xpress_compressor * restrict c,
+                      const void * restrict in, size_t in_nbytes,
+                      void * restrict out, size_t out_nbytes_avail)
+{
+       const u8 * const in_base = in;
+       const u8 *       in_next = in_base;
+       const u8 * const in_end = in_base + in_nbytes;
+       struct xpress_item *next_chosen_item = c->chosen_items;
+       unsigned len_3_too_far;
+
+       if (in_nbytes <= 8192)
+               len_3_too_far = 2048;
+       else
+               len_3_too_far = 4096;
+
+       hc_matchfinder_init(&c->hc_mf);
+
+       do {
+               unsigned length;
+               unsigned offset;
+
+               length = hc_matchfinder_longest_match(&c->hc_mf,
+                                                     in_base,
+                                                     in_next,
+                                                     XPRESS_MIN_MATCH_LEN - 1,
+                                                     in_end - in_next,
+                                                     min(in_end - in_next, c->nice_match_length),
+                                                     c->max_search_depth,
+                                                     &offset);
+               if (length >= XPRESS_MIN_MATCH_LEN &&
+                   !(length == XPRESS_MIN_MATCH_LEN && offset >= len_3_too_far))
+               {
+                       /* Match found  */
+                       *next_chosen_item++ =
+                               xpress_record_match(c, length, offset);
+                       in_next += 1;
+                       hc_matchfinder_skip_positions(&c->hc_mf,
+                                                     in_base,
+                                                     in_next,
+                                                     in_end,
+                                                     length - 1);
+                       in_next += length - 1;
+               } else {
+                       /* No match found  */
+                       *next_chosen_item++ =
+                               xpress_record_literal(c, *in_next);
+                       in_next += 1;
+               }
+       } while (in_next != in_end);
+
+       return xpress_write(c, out, out_nbytes_avail,
+                           next_chosen_item - c->chosen_items, false);
+}
+
+/*
+ * This is the "lazy" XPRESS compressor.  Before choosing a match, it checks to
+ * see if there's a longer match at the next position.  If yes, it outputs a
+ * literal and continues to the next position.  If no, it outputs the match.
+ */
+static size_t
+xpress_compress_lazy(struct xpress_compressor * restrict c,
+                    const void * restrict in, size_t in_nbytes,
+                    void * restrict out, size_t out_nbytes_avail)
+{
+       const u8 * const in_base = in;
+       const u8 *       in_next = in_base;
+       const u8 * const in_end = in_base + in_nbytes;
+       struct xpress_item *next_chosen_item = c->chosen_items;
+       unsigned len_3_too_far;
+
+       if (in_nbytes <= 8192)
+               len_3_too_far = 2048;
+       else
+               len_3_too_far = 4096;
+
+       hc_matchfinder_init(&c->hc_mf);
+
+       do {
+               unsigned cur_len;
+               unsigned cur_offset;
+               unsigned next_len;
+               unsigned next_offset;
+
+               /* Find the longest match at the current position.  */
+               cur_len = hc_matchfinder_longest_match(&c->hc_mf,
+                                                      in_base,
+                                                      in_next,
+                                                      XPRESS_MIN_MATCH_LEN - 1,
+                                                      in_end - in_next,
+                                                      min(in_end - in_next, c->nice_match_length),
+                                                      c->max_search_depth,
+                                                      &cur_offset);
+               in_next += 1;
+
+               if (cur_len < XPRESS_MIN_MATCH_LEN ||
+                   (cur_len == XPRESS_MIN_MATCH_LEN &&
+                    cur_offset >= len_3_too_far))
+               {
+                       /* No match found.  Choose a literal.  */
+                       *next_chosen_item++ =
+                               xpress_record_literal(c, *(in_next - 1));
+                       continue;
+               }
+
+       have_cur_match:
+               /* We have a match at the current position.  */
+
+               /* If the current match is very long, choose it immediately.  */
+               if (cur_len >= c->nice_match_length) {
+
+                       *next_chosen_item++ =
+                               xpress_record_match(c, cur_len, cur_offset);
+
+                       hc_matchfinder_skip_positions(&c->hc_mf,
+                                                     in_base,
+                                                     in_next,
+                                                     in_end,
+                                                     cur_len - 1);
+                       in_next += cur_len - 1;
+                       continue;
+               }
+
+               /*
+                * Try to find a match at the next position.
+                *
+                * Note: since we already have a match at the *current*
+                * position, we use only half the 'max_search_depth' when
+                * checking the *next* position.  This is a useful trade-off
+                * because it's more worthwhile to use a greater search depth on
+                * the initial match than on the next match (since a lot of the
+                * time, that next match won't even be used).
+                *
+                * Note: it's possible to structure the code such that there's
+                * only one call to longest_match(), which handles both the
+                * "find the initial match" and "try to find a longer match"
+                * cases.  However, it is faster to have two call sites, with
+                * longest_match() inlined at each.
+                */
+               next_len = hc_matchfinder_longest_match(&c->hc_mf,
+                                                       in_base,
+                                                       in_next,
+                                                       cur_len,
+                                                       in_end - in_next,
+                                                       min(in_end - in_next, c->nice_match_length),
+                                                       c->max_search_depth / 2,
+                                                       &next_offset);
+               in_next += 1;
+
+               if (next_len > cur_len) {
+                       /* Found a longer match at the next position, so output
+                        * a literal.  */
+                       *next_chosen_item++ =
+                               xpress_record_literal(c, *(in_next - 2));
+                       cur_len = next_len;
+                       cur_offset = next_offset;
+                       goto have_cur_match;
+               } else {
+                       /* Didn't find a longer match at the next position, so
+                        * output the current match.  */
+                       *next_chosen_item++ =
+                               xpress_record_match(c, cur_len, cur_offset);
+                       hc_matchfinder_skip_positions(&c->hc_mf,
+                                                     in_base,
+                                                     in_next,
+                                                     in_end,
+                                                     cur_len - 2);
+                       in_next += cur_len - 2;
+                       continue;
+               }
+       } while (in_next != in_end);
+
+       return xpress_write(c, out, out_nbytes_avail,
+                           next_chosen_item - c->chosen_items, false);
+}
+
+#if SUPPORT_NEAR_OPTIMAL_PARSING
+
+/*
+ * Set Huffman symbol costs for the first optimization pass.
+ *
+ * It works well to assume that each Huffman symbol is equally probable.  This
+ * results in each symbol being assigned a cost of -log2(1.0/num_syms) where
+ * 'num_syms' is the number of symbols in the alphabet.
+ */
+static void
+xpress_set_default_costs(struct xpress_compressor *c)
+{
+       for (unsigned i = 0; i < XPRESS_NUM_SYMBOLS; i++)
+               c->costs[i] = 9;
+}
+
+/* Update the cost model based on the codeword lengths @c->lens.  */
+static void
+xpress_update_costs(struct xpress_compressor *c)
+{
+       for (unsigned i = 0; i < XPRESS_NUM_SYMBOLS; i++)
+               c->costs[i] = c->lens[i] ? c->lens[i] : XPRESS_MAX_CODEWORD_LEN;
+}
+
+/*
+ * Follow the minimum cost path in the graph of possible match/literal choices
+ * and compute the frequencies of the Huffman symbols that are needed to output
+ * those matches and literals.
+ */
+static void
+xpress_tally_item_list(struct xpress_compressor *c,
+                      struct xpress_optimum_node *end_optimum_ptr)
+{
+       struct xpress_optimum_node *cur_optimum_ptr = c->optimum_nodes;
+
+       do {
+               unsigned length = cur_optimum_ptr->item & OPTIMUM_LEN_MASK;
+               unsigned offset = cur_optimum_ptr->item >> OPTIMUM_OFFSET_SHIFT;
+
+               if (length == 1) {
+                       /* Literal  */
+                       unsigned literal = offset;
+
+                       c->freqs[literal]++;
+               } else {
+                       /* Match  */
+                       unsigned adjusted_len;
+                       unsigned offset_high_bit;
+                       unsigned len_hdr;
+                       unsigned sym;
+
+                       adjusted_len = length - XPRESS_MIN_MATCH_LEN;
+                       offset_high_bit = fls32(offset);
+                       len_hdr = min(0xF, adjusted_len);
+                       sym = XPRESS_NUM_CHARS + ((offset_high_bit << 4) | len_hdr);
+
+                       c->freqs[sym]++;
+               }
+               cur_optimum_ptr += length;
+       } while (cur_optimum_ptr != end_optimum_ptr);
+}
+
+/*
+ * Find a new minimum cost path through the graph of possible match/literal
+ * choices.  We find the minimum cost path from 'c->optimum_nodes[0]', which
+ * represents the node at the beginning of the input buffer, to
+ * 'c->optimum_nodes[in_nbytes]', which represents the node at the end of the
+ * input buffer.  Edge costs are evaluated using the cost model 'c->costs'.
+ *
+ * The algorithm works backward, starting at 'c->optimum_nodes[in_nbytes]' and
+ * proceeding backwards one position at a time.  At each position, the minimum
+ * cost to reach 'c->optimum_nodes[in_nbytes]' from that position is computed
+ * and the match/literal choice is saved.
+ */
+static void
+xpress_find_min_cost_path(struct xpress_compressor *c, size_t in_nbytes,
+                         struct lz_match *end_cache_ptr)
+{
+       struct xpress_optimum_node *cur_optimum_ptr = c->optimum_nodes + in_nbytes;
+       struct lz_match *cache_ptr = end_cache_ptr;
+
+       cur_optimum_ptr->cost_to_end = 0;
+       do {
+               unsigned literal;
+               u32 best_item;
+               u32 best_cost_to_end;
+               unsigned num_matches;
+               struct lz_match *match;
+               unsigned len;
+
+               cur_optimum_ptr--;
+               cache_ptr--;
+
+               literal = cache_ptr->offset;
+
+               /* Consider coding a literal.  */
+               best_item = ((u32)literal << OPTIMUM_OFFSET_SHIFT) | 1;
+               best_cost_to_end = c->costs[literal] +
+                                  (cur_optimum_ptr + 1)->cost_to_end;
+
+               num_matches = cache_ptr->length;
+
+               if (num_matches == 0) {
+                       /* No matches; the only choice is the literal.  */
+                       cur_optimum_ptr->cost_to_end = best_cost_to_end;
+                       cur_optimum_ptr->item = best_item;
+                       continue;
+               }
+
+               /*
+                * Consider each match length from the minimum
+                * (XPRESS_MIN_MATCH_LEN) to the length of the longest match
+                * found at this position.  For each length, consider only the
+                * smallest offset for which that length is available.  Although
+                * this is not guaranteed to be optimal due to the possibility
+                * of a larger offset costing less than a smaller offset to
+                * code, this is a very useful heuristic.
+                */
+               match = cache_ptr - num_matches;
+               len = XPRESS_MIN_MATCH_LEN;
+               if (cache_ptr[-1].length < 0xF + XPRESS_MIN_MATCH_LEN) {
+                       /* All lengths are small.  Optimize accordingly.  */
+                       do {
+                               unsigned offset;
+                               unsigned offset_high_bit;
+                               u32 offset_cost;
+
+                               offset = match->offset;
+                               offset_high_bit = fls32(offset);
+                               offset_cost = offset_high_bit;
+                               do {
+                                       unsigned len_hdr;
+                                       unsigned sym;
+                                       u32 cost_to_end;
+
+                                       len_hdr = len - XPRESS_MIN_MATCH_LEN;
+                                       sym = XPRESS_NUM_CHARS +
+                                             ((offset_high_bit << 4) | len_hdr);
+                                       cost_to_end =
+                                               offset_cost + c->costs[sym] +
+                                               (cur_optimum_ptr + len)->cost_to_end;
+                                       if (cost_to_end < best_cost_to_end) {
+                                               best_cost_to_end = cost_to_end;
+                                               best_item =
+                                                       ((u32)offset <<
+                                                        OPTIMUM_OFFSET_SHIFT) | len;
+                                       }
+                               } while (++len <= match->length);
+                       } while (++match != cache_ptr);
+               } else {
+                       /* Some lengths are big.  */
+                       do {
+                               unsigned offset;
+                               unsigned offset_high_bit;
+                               u32 offset_cost;
+
+                               offset = match->offset;
+                               offset_high_bit = fls32(offset);
+                               offset_cost = offset_high_bit;
+                               do {
+                                       unsigned adjusted_len;
+                                       unsigned len_hdr;
+                                       unsigned sym;
+                                       u32 cost_to_end;
+
+                                       adjusted_len = len - XPRESS_MIN_MATCH_LEN;
+                                       len_hdr = min(adjusted_len, 0xF);
+                                       sym = XPRESS_NUM_CHARS +
+                                             ((offset_high_bit << 4) | len_hdr);
+                                       cost_to_end =
+                                               offset_cost + c->costs[sym] +
+                                               (cur_optimum_ptr + len)->cost_to_end;
+                                       if (adjusted_len >= 0xF) {
+                                               cost_to_end += 8;
+                                               if (adjusted_len - 0xF >= 0xFF)
+                                                       cost_to_end += 16;
+                                       }
+                                       if (cost_to_end < best_cost_to_end) {
+                                               best_cost_to_end = cost_to_end;
+                                               best_item =
+                                                       ((u32)offset <<
+                                                        OPTIMUM_OFFSET_SHIFT) | len;
+                                       }
+                               } while (++len <= match->length);
+                       } while (++match != cache_ptr);
+               }
+               cache_ptr -= num_matches;
+               cur_optimum_ptr->cost_to_end = best_cost_to_end;
+               cur_optimum_ptr->item = best_item;
+       } while (cur_optimum_ptr != c->optimum_nodes);
+}
+
+/*
+ * This routine finds matches at each position in the buffer in[0...in_nbytes].
+ * The matches are cached in the array c->match_cache, and the return value is a
+ * pointer past the last slot in this array that was filled.
+ */
+static struct lz_match *
+xpress_find_matches(struct xpress_compressor * restrict c,
+                   const void * restrict in, size_t in_nbytes)
+{
+       const u8 * const in_base = in;
+       const u8 *in_next = in_base;
+       const u8 * const in_end = in_base + in_nbytes;
+       struct lz_match *cache_ptr = c->match_cache;
+       unsigned long prev_hash = 0;
+
+       bt_matchfinder_init(&c->bt_mf);
+
+       do {
+               unsigned num_matches;
+
+               /* If we've found so many matches that the cache might overflow
+                * if we keep finding more, then stop finding matches.  This
+                * case is very unlikely.  */
+               if (unlikely(cache_ptr >= c->cache_overflow_mark)) {
+                       do {
+                               cache_ptr->length = 0;
+                               cache_ptr->offset = *in_next++;
+                               cache_ptr++;
+                       } while (in_next != in_end);
+                       return cache_ptr;
+               }
+
+               /* Find matches with the current position using the binary tree
+                * matchfinder and save them in the next available slots in
+                * the match cache.  */
+               num_matches =
+                       bt_matchfinder_get_matches(&c->bt_mf,
+                                                  in_base,
+                                                  in_next,
+                                                  XPRESS_MIN_MATCH_LEN,
+                                                  in_end - in_next,
+                                                  min(in_end - in_next, c->nice_match_length),
+                                                  c->max_search_depth,
+                                                  &prev_hash,
+                                                  cache_ptr);
+               cache_ptr += num_matches;
+               cache_ptr->length = num_matches;
+               cache_ptr->offset = *in_next;
+               in_next++;
+               cache_ptr++;
+
+               if (num_matches) {
+                       /*
+                        * If there was a very long match found, then don't
+                        * cache any matches for the bytes covered by that
+                        * match.  This avoids degenerate behavior when
+                        * compressing highly redundant data, where the number
+                        * of matches can be very large.
+                        *
+                        * This heuristic doesn't actually hurt the compression
+                        * ratio very much.  If there's a long match, then the
+                        * data must be highly compressible, so it doesn't
+                        * matter as much what we do.
+                        */
+                       unsigned best_len = cache_ptr[-2].length;
+                       if (best_len >= c->nice_match_length) {
+                               --best_len;
+                               do {
+                                       bt_matchfinder_skip_position(&c->bt_mf,
+                                                                    in_base,
+                                                                    in_next,
+                                                                    in_end,
+                                                                    min(in_end - in_next,
+                                                                        c->nice_match_length),
+                                                                    c->max_search_depth,
+                                                                    &prev_hash);
+
+                                       cache_ptr->length = 0;
+                                       cache_ptr->offset = *in_next++;
+                                       cache_ptr++;
+                               } while (--best_len);
+                       }
+               }
+       } while (in_next != in_end);
+
+       return cache_ptr;
+}
+
+/*
+ * This is the "near-optimal" XPRESS compressor.  It computes a compressed
+ * representation of the input buffer by executing a minimum cost path search
+ * over the graph of possible match/literal choices, assuming a certain cost for
+ * each Huffman symbol.  The result is usually close to optimal, but it is *not*
+ * guaranteed to be optimal because of (a) heuristic restrictions in which
+ * matches are considered, and (b) symbol costs are unknown until those symbols
+ * have already been chosen --- so iterative optimization must be used, and the
+ * algorithm might converge on a local optimum rather than a global optimum.
+ */
+static size_t
+xpress_compress_near_optimal(struct xpress_compressor * restrict c,
+                            const void * restrict in, size_t in_nbytes,
+                            void * restrict out, size_t out_nbytes_avail)
+{
+       struct lz_match *end_cache_ptr;
+       unsigned num_passes_remaining = c->num_optim_passes;
+
+       /* Run the input buffer through the matchfinder and save the results. */
+       end_cache_ptr = xpress_find_matches(c, in, in_nbytes);
+
+       /* The first optimization pass uses a default cost model.  Each
+        * additional optimization pass uses a cost model derived from the
+        * Huffman code computed in the previous pass.  */
+       xpress_set_default_costs(c);
+       do {
+               xpress_find_min_cost_path(c, in_nbytes, end_cache_ptr);
+               xpress_tally_item_list(c, c->optimum_nodes + in_nbytes);
+               if (num_passes_remaining > 1) {
+                       c->freqs[XPRESS_END_OF_DATA]++;
+                       xpress_make_huffman_code(c);
+                       xpress_update_costs(c);
+                       xpress_reset_symbol_frequencies(c);
+               }
+       } while (--num_passes_remaining);
+
+       return xpress_write(c, out, out_nbytes_avail, in_nbytes, true);
+}
+
+#endif /* SUPPORT_NEAR_OPTIMAL_PARSING */
+
+static u64
+xpress_get_needed_memory(size_t max_bufsize, unsigned compression_level)
+{
+       size_t size = 0;
+
+       if (max_bufsize > XPRESS_MAX_BUFSIZE)
+               return 0;
+
+       if (compression_level < MIN_LEVEL_FOR_NEAR_OPTIMAL ||
+           !SUPPORT_NEAR_OPTIMAL_PARSING) {
+               size += offsetof(struct xpress_compressor, nonoptimal_end);
+               size += max_bufsize * sizeof(struct xpress_item);
+       }
+#if SUPPORT_NEAR_OPTIMAL_PARSING
+       else {
+               size += offsetof(struct xpress_compressor, optimal_end);
+               size += (max_bufsize + 1) * sizeof(struct xpress_optimum_node);
+               size += ((max_bufsize * CACHE_RESERVE_PER_POS) +
+                        XPRESS_MAX_MATCH_LEN + max_bufsize) *
+                               sizeof(struct lz_match);
+       }
+#endif
+       return size;
+}
+
+static int
+xpress_create_compressor(size_t max_bufsize, unsigned compression_level,
+                        void **c_ret)
+{
+       struct xpress_compressor *c;
+
+       if (max_bufsize > XPRESS_MAX_BUFSIZE)
+               return WIMLIB_ERR_INVALID_PARAM;
+
+       if (compression_level < 30) {
+               c = ALIGNED_MALLOC(offsetof(struct xpress_compressor,
+                                           nonoptimal_end),
+                                  MATCHFINDER_ALIGNMENT);
+               if (!c)
+                       return WIMLIB_ERR_NOMEM;
+               c->impl = xpress_compress_greedy;
+               c->max_search_depth = (compression_level * 24) / 16;
+               c->nice_match_length = (compression_level * 48) / 16;
+               c->chosen_items = MALLOC(max_bufsize * sizeof(struct xpress_item));
+               if (!c->chosen_items) {
+                       ALIGNED_FREE(c);
+                       return WIMLIB_ERR_NOMEM;
+               }
+       } else if (compression_level < MIN_LEVEL_FOR_NEAR_OPTIMAL ||
+                  !SUPPORT_NEAR_OPTIMAL_PARSING)
+       {
+               c = ALIGNED_MALLOC(offsetof(struct xpress_compressor,
+                                           nonoptimal_end),
+                                  MATCHFINDER_ALIGNMENT);
+               if (!c)
+                       return WIMLIB_ERR_NOMEM;
+
+               c->impl = xpress_compress_lazy;
+               c->max_search_depth = (compression_level * 24) / 32;
+               c->nice_match_length = (compression_level * 48) / 32;
+               c->chosen_items = MALLOC(max_bufsize * sizeof(struct xpress_item));
+               if (!c->chosen_items) {
+                       ALIGNED_FREE(c);
+                       return WIMLIB_ERR_NOMEM;
+               }
+       }
+#if SUPPORT_NEAR_OPTIMAL_PARSING
+       else {
+               c = ALIGNED_MALLOC(offsetof(struct xpress_compressor,
+                                           optimal_end),
+                                  MATCHFINDER_ALIGNMENT);
+               if (!c)
+                       return WIMLIB_ERR_NOMEM;
+               c->impl = xpress_compress_near_optimal;
+               c->max_search_depth = (compression_level * 32) / 100;
+               c->nice_match_length = (compression_level * 50) / 100;
+               c->num_optim_passes = compression_level / 40;
+
+               c->optimum_nodes = MALLOC((max_bufsize + 1) *
+                                         sizeof(struct xpress_optimum_node));
+               c->match_cache = MALLOC(((max_bufsize * CACHE_RESERVE_PER_POS) +
+                                        XPRESS_MAX_MATCH_LEN + max_bufsize) *
+                                       sizeof(struct lz_match));
+               if (!c->optimum_nodes || !c->match_cache) {
+                       FREE(c->optimum_nodes);
+                       FREE(c->match_cache);
+                       ALIGNED_FREE(c);
+                       return WIMLIB_ERR_NOMEM;
+               }
+               c->cache_overflow_mark =
+                       &c->match_cache[max_bufsize * CACHE_RESERVE_PER_POS];
+       }
+#endif /* SUPPORT_NEAR_OPTIMAL_PARSING */
+
+       *c_ret = c;
+       return 0;
+}
+
+static size_t
+xpress_compress(const void *in, size_t in_nbytes,
+               void *out, size_t out_nbytes_avail, void *_c)
+{
+       struct xpress_compressor *c = _c;
+
+       if (out_nbytes_avail <= XPRESS_NUM_SYMBOLS / 2 + 4)
+               return 0;
+
+       xpress_reset_symbol_frequencies(c);
+
+       return (*c->impl)(c, in, in_nbytes, out, out_nbytes_avail);
+}
+
+static void
+xpress_free_compressor(void *_c)
+{
+       struct xpress_compressor *c = _c;
+
+       if (c) {
+       #if SUPPORT_NEAR_OPTIMAL_PARSING
+               if (c->impl == xpress_compress_near_optimal) {
+                       FREE(c->optimum_nodes);
+                       FREE(c->match_cache);
+               } else
+       #endif
+                       FREE(c->chosen_items);
+               ALIGNED_FREE(c);
+       }
+}
+
+const struct compressor_ops xpress_compressor_ops = {
+       .get_needed_memory  = xpress_get_needed_memory,
+       .create_compressor  = xpress_create_compressor,
+       .compress           = xpress_compress,
+       .free_compressor    = xpress_free_compressor,
+};