]> wimlib.net Git - wimlib/blobdiff - src/lzms-compress.c
Adjust naming of (de)compression files
[wimlib] / src / lzms-compress.c
diff --git a/src/lzms-compress.c b/src/lzms-compress.c
deleted file mode 100644 (file)
index 5f5e374..0000000
+++ /dev/null
@@ -1,1583 +0,0 @@
-/*
- * lzms-compress.c
- *
- * A compressor that produces output compatible with the LZMS compression format.
- */
-
-/*
- * Copyright (C) 2013, 2014 Eric Biggers
- *
- * This file is free software; you can redistribute it and/or modify it under
- * the terms of the GNU Lesser General Public License as published by the Free
- * Software Foundation; either version 3 of the License, or (at your option) any
- * later version.
- *
- * This file is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
- * details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this file; if not, see http://www.gnu.org/licenses/.
- */
-
-#ifdef HAVE_CONFIG_H
-#  include "config.h"
-#endif
-
-#include "wimlib/compress_common.h"
-#include "wimlib/compressor_ops.h"
-#include "wimlib/endianness.h"
-#include "wimlib/error.h"
-#include "wimlib/lz_mf.h"
-#include "wimlib/lz_repsearch.h"
-#include "wimlib/lzms.h"
-#include "wimlib/unaligned.h"
-#include "wimlib/util.h"
-
-#include <string.h>
-#include <limits.h>
-#include <pthread.h>
-
-/* Stucture used for writing raw bits as a series of 16-bit little endian coding
- * units.  This starts at the *end* of the compressed data buffer and proceeds
- * backwards.  */
-struct lzms_output_bitstream {
-
-       /* Bits that haven't yet been written to the output buffer.  */
-       u64 bitbuf;
-
-       /* Number of bits currently held in @bitbuf.  */
-       unsigned bitcount;
-
-       /* Pointer to one past the next position in the compressed data buffer
-        * at which to output a 16-bit coding unit.  */
-       le16 *next;
-
-       /* Pointer to the beginning of the output buffer.  (The "end" when
-        * writing backwards!)  */
-       le16 *begin;
-};
-
-/* Stucture used for range encoding (raw version).  This starts at the
- * *beginning* of the compressed data buffer and proceeds forward.  */
-struct lzms_range_encoder_raw {
-
-       /* A 33-bit variable that holds the low boundary of the current range.
-        * The 33rd bit is needed to catch carries.  */
-       u64 low;
-
-       /* Size of the current range.  */
-       u32 range;
-
-       /* Next 16-bit coding unit to output.  */
-       u16 cache;
-
-       /* Number of 16-bit coding units whose output has been delayed due to
-        * possible carrying.  The first such coding unit is @cache; all
-        * subsequent such coding units are 0xffff.  */
-       u32 cache_size;
-
-       /* Pointer to the beginning of the output buffer.  */
-       le16 *begin;
-
-       /* Pointer to the position in the output buffer at which the next coding
-        * unit must be written.  */
-       le16 *next;
-
-       /* Pointer just past the end of the output buffer.  */
-       le16 *end;
-};
-
-/* Structure used for range encoding.  This wraps around `struct
- * lzms_range_encoder_raw' to use and maintain probability entries.  */
-struct lzms_range_encoder {
-
-       /* Pointer to the raw range encoder, which has no persistent knowledge
-        * of probabilities.  Multiple lzms_range_encoder's share the same
-        * lzms_range_encoder_raw.  */
-       struct lzms_range_encoder_raw *rc;
-
-       /* Bits recently encoded by this range encoder.  This is used as an
-        * index into @prob_entries.  */
-       u32 state;
-
-       /* Bitmask for @state to prevent its value from exceeding the number of
-        * probability entries.  */
-       u32 mask;
-
-       /* Probability entries being used for this range encoder.  */
-       struct lzms_probability_entry prob_entries[LZMS_MAX_NUM_STATES];
-};
-
-/* Structure used for Huffman encoding.  */
-struct lzms_huffman_encoder {
-
-       /* Bitstream to write Huffman-encoded symbols and verbatim bits to.
-        * Multiple lzms_huffman_encoder's share the same lzms_output_bitstream.
-        */
-       struct lzms_output_bitstream *os;
-
-       /* Number of symbols that have been written using this code far.  Reset
-        * to 0 whenever the code is rebuilt.  */
-       u32 num_syms_written;
-
-       /* When @num_syms_written reaches this number, the Huffman code must be
-        * rebuilt.  */
-       u32 rebuild_freq;
-
-       /* Number of symbols in the represented Huffman code.  */
-       unsigned num_syms;
-
-       /* Running totals of symbol frequencies.  These are diluted slightly
-        * whenever the code is rebuilt.  */
-       u32 sym_freqs[LZMS_MAX_NUM_SYMS];
-
-       /* The length, in bits, of each symbol in the Huffman code.  */
-       u8 lens[LZMS_MAX_NUM_SYMS];
-
-       /* The codeword of each symbol in the Huffman code.  */
-       u32 codewords[LZMS_MAX_NUM_SYMS];
-};
-
-/* Internal compression parameters  */
-struct lzms_compressor_params {
-       u32 min_match_length;
-       u32 nice_match_length;
-       u32 max_search_depth;
-       u32 optim_array_length;
-};
-
-/* State of the LZMS compressor  */
-struct lzms_compressor {
-
-       /* Internal compression parameters  */
-       struct lzms_compressor_params params;
-
-       /* Data currently being compressed  */
-       u8 *cur_window;
-       u32 cur_window_size;
-
-       /* Lempel-Ziv match-finder  */
-       struct lz_mf *mf;
-
-       /* Temporary space to store found matches  */
-       struct lz_match *matches;
-
-       /* Per-position data for near-optimal parsing  */
-       struct lzms_mc_pos_data *optimum;
-       struct lzms_mc_pos_data *optimum_end;
-
-       /* Raw range encoder which outputs to the beginning of the compressed
-        * data buffer, proceeding forwards  */
-       struct lzms_range_encoder_raw rc;
-
-       /* Bitstream which outputs to the end of the compressed data buffer,
-        * proceeding backwards  */
-       struct lzms_output_bitstream os;
-
-       /* Range encoders  */
-       struct lzms_range_encoder main_range_encoder;
-       struct lzms_range_encoder match_range_encoder;
-       struct lzms_range_encoder lz_match_range_encoder;
-       struct lzms_range_encoder lz_repeat_match_range_encoders[LZMS_NUM_RECENT_OFFSETS - 1];
-       struct lzms_range_encoder delta_match_range_encoder;
-       struct lzms_range_encoder delta_repeat_match_range_encoders[LZMS_NUM_RECENT_OFFSETS - 1];
-
-       /* Huffman encoders  */
-       struct lzms_huffman_encoder literal_encoder;
-       struct lzms_huffman_encoder lz_offset_encoder;
-       struct lzms_huffman_encoder length_encoder;
-       struct lzms_huffman_encoder delta_power_encoder;
-       struct lzms_huffman_encoder delta_offset_encoder;
-
-       /* Used for preprocessing  */
-       s32 last_target_usages[65536];
-
-#define LZMS_NUM_FAST_LENGTHS 256
-       /* Table: length => length slot for small lengths  */
-       u8 length_slot_fast[LZMS_NUM_FAST_LENGTHS];
-
-       /* Table: length => current cost for small match lengths  */
-       u32 length_cost_fast[LZMS_NUM_FAST_LENGTHS];
-
-#define LZMS_NUM_FAST_OFFSETS 32768
-       /* Table: offset => offset slot for small offsets  */
-       u8 offset_slot_fast[LZMS_NUM_FAST_OFFSETS];
-};
-
-struct lzms_lz_lru_queue {
-       u32 recent_offsets[LZMS_NUM_RECENT_OFFSETS + 1];
-       u32 prev_offset;
-       u32 upcoming_offset;
-};
-
-static void
-lzms_init_lz_lru_queue(struct lzms_lz_lru_queue *queue)
-{
-       for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS + 1; i++)
-               queue->recent_offsets[i] = i + 1;
-
-       queue->prev_offset = 0;
-       queue->upcoming_offset = 0;
-}
-
-static void
-lzms_update_lz_lru_queue(struct lzms_lz_lru_queue *queue)
-{
-       if (queue->prev_offset != 0) {
-               for (int i = LZMS_NUM_RECENT_OFFSETS - 1; i >= 0; i--)
-                       queue->recent_offsets[i + 1] = queue->recent_offsets[i];
-               queue->recent_offsets[0] = queue->prev_offset;
-       }
-       queue->prev_offset = queue->upcoming_offset;
-}
-
-/*
- * Match chooser position data:
- *
- * An array of these structures is used during the near-optimal match-choosing
- * algorithm.  They correspond to consecutive positions in the window and are
- * used to keep track of the cost to reach each position, and the match/literal
- * choices that need to be chosen to reach that position.
- */
-struct lzms_mc_pos_data {
-
-       /* The cost, in bits, of the lowest-cost path that has been found to
-        * reach this position.  This can change as progressively lower cost
-        * paths are found to reach this position.  */
-       u32 cost;
-#define MC_INFINITE_COST UINT32_MAX
-
-       /* The match or literal that was taken to reach this position.  This can
-        * change as progressively lower cost paths are found to reach this
-        * position.
-        *
-        * This variable is divided into two bitfields.
-        *
-        * Literals:
-        *      Low bits are 1, high bits are the literal.
-        *
-        * Explicit offset matches:
-        *      Low bits are the match length, high bits are the offset plus 2.
-        *
-        * Repeat offset matches:
-        *      Low bits are the match length, high bits are the queue index.
-        */
-       u64 mc_item_data;
-#define MC_OFFSET_SHIFT 32
-#define MC_LEN_MASK (((u64)1 << MC_OFFSET_SHIFT) - 1)
-
-       /* The LZMS adaptive state that exists at this position.  This is filled
-        * in lazily, only after the minimum-cost path to this position is
-        * found.
-        *
-        * Note: the way we handle this adaptive state in the "minimum-cost"
-        * parse is actually only an approximation.  It's possible for the
-        * globally optimal, minimum cost path to contain a prefix, ending at a
-        * position, where that path prefix is *not* the minimum cost path to
-        * that position.  This can happen if such a path prefix results in a
-        * different adaptive state which results in lower costs later.  We do
-        * not solve this problem; we only consider the lowest cost to reach
-        * each position, which seems to be an acceptable approximation.
-        *
-        * Note: this adaptive state also does not include the probability
-        * entries or current Huffman codewords.  Those aren't maintained
-        * per-position and are only updated occassionally.  */
-       struct lzms_adaptive_state {
-               struct lzms_lz_lru_queue lru;
-               u8 main_state;
-               u8 match_state;
-               u8 lz_match_state;
-               u8 lz_repeat_match_state[LZMS_NUM_RECENT_OFFSETS - 1];
-       } state;
-};
-
-static void
-lzms_init_fast_slots(struct lzms_compressor *c)
-{
-       /* Create table mapping small lengths to length slots.  */
-       for (unsigned slot = 0, i = 0; i < LZMS_NUM_FAST_LENGTHS; i++) {
-               while (i >= lzms_length_slot_base[slot + 1])
-                       slot++;
-               c->length_slot_fast[i] = slot;
-       }
-
-       /* Create table mapping small offsets to offset slots.  */
-       for (unsigned slot = 0, i = 0; i < LZMS_NUM_FAST_OFFSETS; i++) {
-               while (i >= lzms_offset_slot_base[slot + 1])
-                       slot++;
-               c->offset_slot_fast[i] = slot;
-       }
-}
-
-static inline unsigned
-lzms_get_length_slot_fast(const struct lzms_compressor *c, u32 length)
-{
-       if (likely(length < LZMS_NUM_FAST_LENGTHS))
-               return c->length_slot_fast[length];
-       else
-               return lzms_get_length_slot(length);
-}
-
-static inline unsigned
-lzms_get_offset_slot_fast(const struct lzms_compressor *c, u32 offset)
-{
-       if (offset < LZMS_NUM_FAST_OFFSETS)
-               return c->offset_slot_fast[offset];
-       else
-               return lzms_get_offset_slot(offset);
-}
-
-/* Initialize the output bitstream @os to write backwards to the specified
- * compressed data buffer @out that is @out_limit 16-bit integers long.  */
-static void
-lzms_output_bitstream_init(struct lzms_output_bitstream *os,
-                          le16 *out, size_t out_limit)
-{
-       os->bitbuf = 0;
-       os->bitcount = 0;
-       os->next = out + out_limit;
-       os->begin = out;
-}
-
-/*
- * Write some bits, contained in the low @num_bits bits of @bits (ordered from
- * high-order to low-order), to the output bitstream @os.
- *
- * @max_num_bits is a compile-time constant that specifies the maximum number of
- * bits that can ever be written at this call site.
- */
-static inline void
-lzms_output_bitstream_put_varbits(struct lzms_output_bitstream *os,
-                                 u32 bits, unsigned num_bits,
-                                 unsigned max_num_bits)
-{
-       LZMS_ASSERT(num_bits <= 48);
-
-       /* Add the bits to the bit buffer variable.  */
-       os->bitcount += num_bits;
-       os->bitbuf = (os->bitbuf << num_bits) | bits;
-
-       /* Check whether any coding units need to be written.  */
-       while (os->bitcount >= 16) {
-
-               os->bitcount -= 16;
-
-               /* Write a coding unit, unless it would underflow the buffer. */
-               if (os->next != os->begin)
-                       put_unaligned_u16_le(os->bitbuf >> os->bitcount, --os->next);
-
-               /* Optimization for call sites that never write more than 16
-                * bits at once.  */
-               if (max_num_bits <= 16)
-                       break;
-       }
-}
-
-/* Flush the output bitstream, ensuring that all bits written to it have been
- * written to memory.  Returns %true if all bits have been output successfully,
- * or %false if an overrun occurred.  */
-static bool
-lzms_output_bitstream_flush(struct lzms_output_bitstream *os)
-{
-       if (os->next == os->begin)
-               return false;
-
-       if (os->bitcount != 0)
-               put_unaligned_u16_le(os->bitbuf << (16 - os->bitcount), --os->next);
-
-       return true;
-}
-
-/* Initialize the range encoder @rc to write forwards to the specified
- * compressed data buffer @out that is @out_limit 16-bit integers long.  */
-static void
-lzms_range_encoder_raw_init(struct lzms_range_encoder_raw *rc,
-                           le16 *out, size_t out_limit)
-{
-       rc->low = 0;
-       rc->range = 0xffffffff;
-       rc->cache = 0;
-       rc->cache_size = 1;
-       rc->begin = out;
-       rc->next = out - 1;
-       rc->end = out + out_limit;
-}
-
-/*
- * Attempt to flush bits from the range encoder.
- *
- * Note: this is based on the public domain code for LZMA written by Igor
- * Pavlov.  The only differences in this function are that in LZMS the bits must
- * be output in 16-bit coding units instead of 8-bit coding units, and that in
- * LZMS the first coding unit is not ignored by the decompressor, so the encoder
- * cannot output a dummy value to that position.
- *
- * The basic idea is that we're writing bits from @rc->low to the output.
- * However, due to carrying, the writing of coding units with value 0xffff, as
- * well as one prior coding unit, must be delayed until it is determined whether
- * a carry is needed.
- */
-static void
-lzms_range_encoder_raw_shift_low(struct lzms_range_encoder_raw *rc)
-{
-       if ((u32)(rc->low) < 0xffff0000 ||
-           (u32)(rc->low >> 32) != 0)
-       {
-               /* Carry not needed (rc->low < 0xffff0000), or carry occurred
-                * ((rc->low >> 32) != 0, a.k.a. the carry bit is 1).  */
-               do {
-                       if (likely(rc->next >= rc->begin)) {
-                               if (rc->next != rc->end) {
-                                       put_unaligned_u16_le(rc->cache +
-                                                            (u16)(rc->low >> 32),
-                                                            rc->next++);
-                               }
-                       } else {
-                               rc->next++;
-                       }
-                       rc->cache = 0xffff;
-               } while (--rc->cache_size != 0);
-
-               rc->cache = (rc->low >> 16) & 0xffff;
-       }
-       ++rc->cache_size;
-       rc->low = (rc->low & 0xffff) << 16;
-}
-
-static void
-lzms_range_encoder_raw_normalize(struct lzms_range_encoder_raw *rc)
-{
-       if (rc->range <= 0xffff) {
-               rc->range <<= 16;
-               lzms_range_encoder_raw_shift_low(rc);
-       }
-}
-
-static bool
-lzms_range_encoder_raw_flush(struct lzms_range_encoder_raw *rc)
-{
-       for (unsigned i = 0; i < 4; i++)
-               lzms_range_encoder_raw_shift_low(rc);
-       return rc->next != rc->end;
-}
-
-/* Encode the next bit using the range encoder (raw version).
- *
- * @prob is the chance out of LZMS_PROBABILITY_MAX that the next bit is 0.  */
-static inline void
-lzms_range_encoder_raw_encode_bit(struct lzms_range_encoder_raw *rc,
-                                 int bit, u32 prob)
-{
-       lzms_range_encoder_raw_normalize(rc);
-
-       u32 bound = (rc->range >> LZMS_PROBABILITY_BITS) * prob;
-       if (bit == 0) {
-               rc->range = bound;
-       } else {
-               rc->low += bound;
-               rc->range -= bound;
-       }
-}
-
-/* Encode a bit using the specified range encoder. This wraps around
- * lzms_range_encoder_raw_encode_bit() to handle using and updating the
- * appropriate state and probability entry.  */
-static void
-lzms_range_encode_bit(struct lzms_range_encoder *enc, int bit)
-{
-       struct lzms_probability_entry *prob_entry;
-       u32 prob;
-
-       /* Load the probability entry corresponding to the current state.  */
-       prob_entry = &enc->prob_entries[enc->state];
-
-       /* Update the state based on the next bit.  */
-       enc->state = ((enc->state << 1) | bit) & enc->mask;
-
-       /* Get the probability that the bit is 0.  */
-       prob = lzms_get_probability(prob_entry);
-
-       /* Update the probability entry.  */
-       lzms_update_probability_entry(prob_entry, bit);
-
-       /* Encode the bit.  */
-       lzms_range_encoder_raw_encode_bit(enc->rc, bit, prob);
-}
-
-/* Called when an adaptive Huffman code needs to be rebuilt.  */
-static void
-lzms_rebuild_huffman_code(struct lzms_huffman_encoder *enc)
-{
-       make_canonical_huffman_code(enc->num_syms,
-                                   LZMS_MAX_CODEWORD_LEN,
-                                   enc->sym_freqs,
-                                   enc->lens,
-                                   enc->codewords);
-
-       /* Dilute the frequencies.  */
-       for (unsigned i = 0; i < enc->num_syms; i++) {
-               enc->sym_freqs[i] >>= 1;
-               enc->sym_freqs[i] += 1;
-       }
-       enc->num_syms_written = 0;
-}
-
-/* Encode a symbol using the specified Huffman encoder.  */
-static inline void
-lzms_huffman_encode_symbol(struct lzms_huffman_encoder *enc, unsigned sym)
-{
-       lzms_output_bitstream_put_varbits(enc->os,
-                                         enc->codewords[sym],
-                                         enc->lens[sym],
-                                         LZMS_MAX_CODEWORD_LEN);
-       ++enc->sym_freqs[sym];
-       if (++enc->num_syms_written == enc->rebuild_freq)
-               lzms_rebuild_huffman_code(enc);
-}
-
-static void
-lzms_update_fast_length_costs(struct lzms_compressor *c);
-
-/* Encode a match length.  */
-static void
-lzms_encode_length(struct lzms_compressor *c, u32 length)
-{
-       unsigned slot;
-       unsigned num_extra_bits;
-       u32 extra_bits;
-
-       slot = lzms_get_length_slot_fast(c, length);
-
-       extra_bits = length - lzms_length_slot_base[slot];
-       num_extra_bits = lzms_extra_length_bits[slot];
-
-       lzms_huffman_encode_symbol(&c->length_encoder, slot);
-       if (c->length_encoder.num_syms_written == 0)
-               lzms_update_fast_length_costs(c);
-
-       lzms_output_bitstream_put_varbits(c->length_encoder.os,
-                                         extra_bits, num_extra_bits, 30);
-}
-
-/* Encode an LZ match offset.  */
-static void
-lzms_encode_lz_offset(struct lzms_compressor *c, u32 offset)
-{
-       unsigned slot;
-       unsigned num_extra_bits;
-       u32 extra_bits;
-
-       slot = lzms_get_offset_slot_fast(c, offset);
-
-       extra_bits = offset - lzms_offset_slot_base[slot];
-       num_extra_bits = lzms_extra_offset_bits[slot];
-
-       lzms_huffman_encode_symbol(&c->lz_offset_encoder, slot);
-       lzms_output_bitstream_put_varbits(c->lz_offset_encoder.os,
-                                         extra_bits, num_extra_bits, 30);
-}
-
-/* Encode a literal byte.  */
-static void
-lzms_encode_literal(struct lzms_compressor *c, unsigned literal)
-{
-       /* Main bit: 0 = a literal, not a match.  */
-       lzms_range_encode_bit(&c->main_range_encoder, 0);
-
-       /* Encode the literal using the current literal Huffman code.  */
-       lzms_huffman_encode_symbol(&c->literal_encoder, literal);
-}
-
-/* Encode an LZ repeat offset match.  */
-static void
-lzms_encode_lz_repeat_offset_match(struct lzms_compressor *c,
-                                  u32 length, unsigned rep_index)
-{
-       unsigned i;
-
-       /* Main bit: 1 = a match, not a literal.  */
-       lzms_range_encode_bit(&c->main_range_encoder, 1);
-
-       /* Match bit: 0 = an LZ match, not a delta match.  */
-       lzms_range_encode_bit(&c->match_range_encoder, 0);
-
-       /* LZ match bit: 1 = repeat offset, not an explicit offset.  */
-       lzms_range_encode_bit(&c->lz_match_range_encoder, 1);
-
-       /* Encode the repeat offset index.  A 1 bit is encoded for each index
-        * passed up.  This sequence of 1 bits is terminated by a 0 bit, or
-        * automatically when (LZMS_NUM_RECENT_OFFSETS - 1) 1 bits have been
-        * encoded.  */
-       for (i = 0; i < rep_index; i++)
-               lzms_range_encode_bit(&c->lz_repeat_match_range_encoders[i], 1);
-
-       if (i < LZMS_NUM_RECENT_OFFSETS - 1)
-               lzms_range_encode_bit(&c->lz_repeat_match_range_encoders[i], 0);
-
-       /* Encode the match length.  */
-       lzms_encode_length(c, length);
-}
-
-/* Encode an LZ explicit offset match.  */
-static void
-lzms_encode_lz_explicit_offset_match(struct lzms_compressor *c,
-                                    u32 length, u32 offset)
-{
-       /* Main bit: 1 = a match, not a literal.  */
-       lzms_range_encode_bit(&c->main_range_encoder, 1);
-
-       /* Match bit: 0 = an LZ match, not a delta match.  */
-       lzms_range_encode_bit(&c->match_range_encoder, 0);
-
-       /* LZ match bit: 0 = explicit offset, not a repeat offset.  */
-       lzms_range_encode_bit(&c->lz_match_range_encoder, 0);
-
-       /* Encode the match offset.  */
-       lzms_encode_lz_offset(c, offset);
-
-       /* Encode the match length.  */
-       lzms_encode_length(c, length);
-}
-
-static void
-lzms_encode_item(struct lzms_compressor *c, u64 mc_item_data)
-{
-       u32 len = mc_item_data & MC_LEN_MASK;
-       u32 offset_data = mc_item_data >> MC_OFFSET_SHIFT;
-
-       if (len == 1)
-               lzms_encode_literal(c, offset_data);
-       else if (offset_data < LZMS_NUM_RECENT_OFFSETS)
-               lzms_encode_lz_repeat_offset_match(c, len, offset_data);
-       else
-               lzms_encode_lz_explicit_offset_match(c, len, offset_data - LZMS_OFFSET_OFFSET);
-}
-
-/* Encode a list of matches and literals chosen by the parsing algorithm.  */
-static void
-lzms_encode_item_list(struct lzms_compressor *c,
-                     struct lzms_mc_pos_data *cur_optimum_ptr)
-{
-       struct lzms_mc_pos_data *end_optimum_ptr;
-       u64 saved_item;
-       u64 item;
-
-       /* The list is currently in reverse order (last item to first item).
-        * Reverse it.  */
-       end_optimum_ptr = cur_optimum_ptr;
-       saved_item = cur_optimum_ptr->mc_item_data;
-       do {
-               item = saved_item;
-               cur_optimum_ptr -= item & MC_LEN_MASK;
-               saved_item = cur_optimum_ptr->mc_item_data;
-               cur_optimum_ptr->mc_item_data = item;
-       } while (cur_optimum_ptr != c->optimum);
-
-       /* Walk the list of items from beginning to end, encoding each item.  */
-       do {
-               lzms_encode_item(c, cur_optimum_ptr->mc_item_data);
-               cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK;
-       } while (cur_optimum_ptr != end_optimum_ptr);
-}
-
-/* Each bit costs 1 << LZMS_COST_SHIFT units.  */
-#define LZMS_COST_SHIFT 6
-
-/*#define LZMS_RC_COSTS_USE_FLOATING_POINT*/
-
-static u32
-lzms_rc_costs[LZMS_PROBABILITY_MAX + 1];
-
-#ifdef LZMS_RC_COSTS_USE_FLOATING_POINT
-#  include <math.h>
-#endif
-
-static void
-lzms_do_init_rc_costs(void)
-{
-       /* Fill in a table that maps range coding probabilities needed to code a
-        * bit X (0 or 1) to the number of bits (scaled by a constant factor, to
-        * handle fractional costs) needed to code that bit X.
-        *
-        * Consider the range of the range decoder.  To eliminate exactly half
-        * the range (logical probability of 0.5), we need exactly 1 bit.  For
-        * lower probabilities we need more bits and for higher probabilities we
-        * need fewer bits.  In general, a logical probability of N will
-        * eliminate the proportion 1 - N of the range; this information takes
-        * log2(1 / N) bits to encode.
-        *
-        * The below loop is simply calculating this number of bits for each
-        * possible probability allowed by the LZMS compression format, but
-        * without using real numbers.  To handle fractional probabilities, each
-        * cost is multiplied by (1 << LZMS_COST_SHIFT).  These techniques are
-        * based on those used by LZMA.
-        *
-        * Note that in LZMS, a probability x really means x / 64, and 0 / 64 is
-        * really interpreted as 1 / 64 and 64 / 64 is really interpreted as
-        * 63 / 64.
-        */
-       for (u32 i = 0; i <= LZMS_PROBABILITY_MAX; i++) {
-               u32 prob = i;
-
-               if (prob == 0)
-                       prob = 1;
-               else if (prob == LZMS_PROBABILITY_MAX)
-                       prob = LZMS_PROBABILITY_MAX - 1;
-
-       #ifdef LZMS_RC_COSTS_USE_FLOATING_POINT
-               lzms_rc_costs[i] = log2((double)LZMS_PROBABILITY_MAX / prob) *
-                                       (1 << LZMS_COST_SHIFT);
-       #else
-               u32 w = prob;
-               u32 bit_count = 0;
-               for (u32 j = 0; j < LZMS_COST_SHIFT; j++) {
-                       w *= w;
-                       bit_count <<= 1;
-                       while (w >= ((u32)1 << 16)) {
-                               w >>= 1;
-                               ++bit_count;
-                       }
-               }
-               lzms_rc_costs[i] = (LZMS_PROBABILITY_BITS << LZMS_COST_SHIFT) -
-                                  (15 + bit_count);
-       #endif
-       }
-}
-
-static void
-lzms_init_rc_costs(void)
-{
-       static pthread_once_t once = PTHREAD_ONCE_INIT;
-
-       pthread_once(&once, lzms_do_init_rc_costs);
-}
-
-/* Return the cost to range-encode the specified bit from the specified state.*/
-static inline u32
-lzms_rc_bit_cost(const struct lzms_range_encoder *enc, u8 cur_state, int bit)
-{
-       u32 prob_zero;
-       u32 prob_correct;
-
-       prob_zero = enc->prob_entries[cur_state].num_recent_zero_bits;
-
-       if (bit == 0)
-               prob_correct = prob_zero;
-       else
-               prob_correct = LZMS_PROBABILITY_MAX - prob_zero;
-
-       return lzms_rc_costs[prob_correct];
-}
-
-/* Return the cost to Huffman-encode the specified symbol.  */
-static inline u32
-lzms_huffman_symbol_cost(const struct lzms_huffman_encoder *enc, unsigned sym)
-{
-       return (u32)enc->lens[sym] << LZMS_COST_SHIFT;
-}
-
-/* Return the cost to encode the specified literal byte.  */
-static inline u32
-lzms_literal_cost(const struct lzms_compressor *c, unsigned literal,
-                 const struct lzms_adaptive_state *state)
-{
-       return lzms_rc_bit_cost(&c->main_range_encoder, state->main_state, 0) +
-              lzms_huffman_symbol_cost(&c->literal_encoder, literal);
-}
-
-/* Update the table that directly provides the costs for small lengths.  */
-static void
-lzms_update_fast_length_costs(struct lzms_compressor *c)
-{
-       u32 len;
-       int slot = -1;
-       u32 cost = 0;
-
-       for (len = 1; len < LZMS_NUM_FAST_LENGTHS; len++) {
-
-               while (len >= lzms_length_slot_base[slot + 1]) {
-                       slot++;
-                       cost = (u32)(c->length_encoder.lens[slot] +
-                                    lzms_extra_length_bits[slot]) << LZMS_COST_SHIFT;
-               }
-
-               c->length_cost_fast[len] = cost;
-       }
-}
-
-/* Return the cost to encode the specified match length, which must be less than
- * LZMS_NUM_FAST_LENGTHS.  */
-static inline u32
-lzms_fast_length_cost(const struct lzms_compressor *c, u32 length)
-{
-       LZMS_ASSERT(length < LZMS_NUM_FAST_LENGTHS);
-       return c->length_cost_fast[length];
-}
-
-/* Return the cost to encode the specified LZ match offset.  */
-static inline u32
-lzms_lz_offset_cost(const struct lzms_compressor *c, u32 offset)
-{
-       unsigned slot = lzms_get_offset_slot_fast(c, offset);
-
-       return (u32)(c->lz_offset_encoder.lens[slot] +
-                    lzms_extra_offset_bits[slot]) << LZMS_COST_SHIFT;
-}
-
-/*
- * Consider coding the match at repeat offset index @rep_idx.  Consider each
- * length from the minimum (2) to the full match length (@rep_len).
- */
-static inline void
-lzms_consider_lz_repeat_offset_match(const struct lzms_compressor *c,
-                                    struct lzms_mc_pos_data *cur_optimum_ptr,
-                                    u32 rep_len, unsigned rep_idx)
-{
-       u32 len;
-       u32 base_cost;
-       u32 cost;
-       unsigned i;
-
-       base_cost = cur_optimum_ptr->cost;
-
-       base_cost += lzms_rc_bit_cost(&c->main_range_encoder,
-                                     cur_optimum_ptr->state.main_state, 1);
-
-       base_cost += lzms_rc_bit_cost(&c->match_range_encoder,
-                                     cur_optimum_ptr->state.match_state, 0);
-
-       base_cost += lzms_rc_bit_cost(&c->lz_match_range_encoder,
-                                     cur_optimum_ptr->state.lz_match_state, 1);
-
-       for (i = 0; i < rep_idx; i++)
-               base_cost += lzms_rc_bit_cost(&c->lz_repeat_match_range_encoders[i],
-                                             cur_optimum_ptr->state.lz_repeat_match_state[i], 1);
-
-       if (i < LZMS_NUM_RECENT_OFFSETS - 1)
-               base_cost += lzms_rc_bit_cost(&c->lz_repeat_match_range_encoders[i],
-                                             cur_optimum_ptr->state.lz_repeat_match_state[i], 0);
-
-       len = 2;
-       do {
-               cost = base_cost + lzms_fast_length_cost(c, len);
-               if (cost < (cur_optimum_ptr + len)->cost) {
-                       (cur_optimum_ptr + len)->mc_item_data =
-                               ((u64)rep_idx << MC_OFFSET_SHIFT) | len;
-                       (cur_optimum_ptr + len)->cost = cost;
-               }
-       } while (++len <= rep_len);
-}
-
-/*
- * Consider coding each match in @matches as an explicit offset match.
- *
- * @matches must be sorted by strictly increasing length and strictly increasing
- * offset.  This is guaranteed by the match-finder.
- *
- * We consider each length from the minimum (2) to the longest
- * (matches[num_matches - 1].len).  For each length, we consider only the
- * smallest offset for which that length is available.  Although this is not
- * guaranteed to be optimal due to the possibility of a larger offset costing
- * less than a smaller offset to code, this is a very useful heuristic.
- */
-static inline void
-lzms_consider_lz_explicit_offset_matches(const struct lzms_compressor *c,
-                                        struct lzms_mc_pos_data *cur_optimum_ptr,
-                                        const struct lz_match matches[],
-                                        u32 num_matches)
-{
-       u32 len;
-       u32 i;
-       u32 base_cost;
-       u32 position_cost;
-       u32 cost;
-
-       base_cost = cur_optimum_ptr->cost;
-
-       base_cost += lzms_rc_bit_cost(&c->main_range_encoder,
-                                     cur_optimum_ptr->state.main_state, 1);
-
-       base_cost += lzms_rc_bit_cost(&c->match_range_encoder,
-                                     cur_optimum_ptr->state.match_state, 0);
-
-       base_cost += lzms_rc_bit_cost(&c->lz_match_range_encoder,
-                                     cur_optimum_ptr->state.lz_match_state, 0);
-       len = 2;
-       i = 0;
-       do {
-               position_cost = base_cost + lzms_lz_offset_cost(c, matches[i].offset);
-               do {
-                       cost = position_cost + lzms_fast_length_cost(c, len);
-                       if (cost < (cur_optimum_ptr + len)->cost) {
-                               (cur_optimum_ptr + len)->mc_item_data =
-                                       ((u64)(matches[i].offset + LZMS_OFFSET_OFFSET)
-                                               << MC_OFFSET_SHIFT) | len;
-                               (cur_optimum_ptr + len)->cost = cost;
-                       }
-               } while (++len <= matches[i].len);
-       } while (++i != num_matches);
-}
-
-static void
-lzms_init_adaptive_state(struct lzms_adaptive_state *state)
-{
-       unsigned i;
-
-       lzms_init_lz_lru_queue(&state->lru);
-       state->main_state = 0;
-       state->match_state = 0;
-       state->lz_match_state = 0;
-       for (i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++)
-               state->lz_repeat_match_state[i] = 0;
-}
-
-static inline void
-lzms_update_main_state(struct lzms_adaptive_state *state, int is_match)
-{
-       state->main_state = ((state->main_state << 1) | is_match) % LZMS_NUM_MAIN_STATES;
-}
-
-static inline void
-lzms_update_match_state(struct lzms_adaptive_state *state, int is_delta)
-{
-       state->match_state = ((state->match_state << 1) | is_delta) % LZMS_NUM_MATCH_STATES;
-}
-
-static inline void
-lzms_update_lz_match_state(struct lzms_adaptive_state *state, int is_repeat_offset)
-{
-       state->lz_match_state = ((state->lz_match_state << 1) | is_repeat_offset) % LZMS_NUM_LZ_MATCH_STATES;
-}
-
-static inline void
-lzms_update_lz_repeat_match_state(struct lzms_adaptive_state *state, int rep_idx)
-{
-       int i;
-
-       for (i = 0; i < rep_idx; i++)
-               state->lz_repeat_match_state[i] =
-                       ((state->lz_repeat_match_state[i] << 1) | 1) %
-                               LZMS_NUM_LZ_REPEAT_MATCH_STATES;
-
-       if (i < LZMS_NUM_RECENT_OFFSETS - 1)
-               state->lz_repeat_match_state[i] =
-                       ((state->lz_repeat_match_state[i] << 1) | 0) %
-                               LZMS_NUM_LZ_REPEAT_MATCH_STATES;
-}
-
-/*
- * The main near-optimal parsing routine.
- *
- * Briefly, the algorithm does an approximate minimum-cost path search to find a
- * "near-optimal" sequence of matches and literals to output, based on the
- * current cost model.  The algorithm steps forward, position by position (byte
- * by byte), and updates the minimum cost path to reach each later position that
- * can be reached using a match or literal from the current position.  This is
- * essentially Dijkstra's algorithm in disguise: the graph nodes are positions,
- * the graph edges are possible matches/literals to code, and the cost of each
- * edge is the estimated number of bits that will be required to output the
- * corresponding match or literal.  But one difference is that we actually
- * compute the lowest-cost path in pieces, where each piece is terminated when
- * there are no choices to be made.
- *
- * Notes:
- *
- * - This does not output any delta matches.
- *
- * - The costs of literals and matches are estimated using the range encoder
- *   states and the semi-adaptive Huffman codes.  Except for range encoding
- *   states, costs are assumed to be constant throughout a single run of the
- *   parsing algorithm, which can parse up to @optim_array_length bytes of data.
- *   This introduces a source of inaccuracy because the probabilities and
- *   Huffman codes can change over this part of the data.
- */
-static void
-lzms_near_optimal_parse(struct lzms_compressor *c)
-{
-       const u8 *window_ptr;
-       const u8 *window_end;
-       struct lzms_mc_pos_data *cur_optimum_ptr;
-       struct lzms_mc_pos_data *end_optimum_ptr;
-       u32 num_matches;
-       u32 longest_len;
-       u32 rep_max_len;
-       unsigned rep_max_idx;
-       unsigned literal;
-       unsigned i;
-       u32 cost;
-       u32 len;
-       u32 offset_data;
-
-       window_ptr = c->cur_window;
-       window_end = window_ptr + c->cur_window_size;
-
-       lzms_init_adaptive_state(&c->optimum[0].state);
-
-begin:
-       /* Start building a new list of items, which will correspond to the next
-        * piece of the overall minimum-cost path.  */
-
-       cur_optimum_ptr = c->optimum;
-       cur_optimum_ptr->cost = 0;
-       end_optimum_ptr = cur_optimum_ptr;
-
-       /* States should currently be consistent with the encoders.  */
-       LZMS_ASSERT(cur_optimum_ptr->state.main_state == c->main_range_encoder.state);
-       LZMS_ASSERT(cur_optimum_ptr->state.match_state == c->match_range_encoder.state);
-       LZMS_ASSERT(cur_optimum_ptr->state.lz_match_state == c->lz_match_range_encoder.state);
-       for (i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++)
-               LZMS_ASSERT(cur_optimum_ptr->state.lz_repeat_match_state[i] ==
-                           c->lz_repeat_match_range_encoders[i].state);
-
-       if (window_ptr == window_end)
-               return;
-
-       /* The following loop runs once for each per byte in the window, except
-        * in a couple shortcut cases.  */
-       for (;;) {
-
-               /* Find explicit offset matches with the current position.  */
-               num_matches = lz_mf_get_matches(c->mf, c->matches);
-
-               if (num_matches) {
-                       /*
-                        * Find the longest repeat offset match with the current
-                        * position.
-                        *
-                        * Heuristics:
-                        *
-                        * - Only search for repeat offset matches if the
-                        *   match-finder already found at least one match.
-                        *
-                        * - Only consider the longest repeat offset match.  It
-                        *   seems to be rare for the optimal parse to include a
-                        *   repeat offset match that doesn't have the longest
-                        *   length (allowing for the possibility that not all
-                        *   of that length is actually used).
-                        */
-                       if (likely(window_ptr - c->cur_window >= LZMS_MAX_INIT_RECENT_OFFSET)) {
-                               BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
-                               rep_max_len = lz_repsearch3(window_ptr,
-                                                           window_end - window_ptr,
-                                                           cur_optimum_ptr->state.lru.recent_offsets,
-                                                           &rep_max_idx);
-                       } else {
-                               rep_max_len = 0;
-                       }
-
-                       if (rep_max_len) {
-                               /* If there's a very long repeat offset match,
-                                * choose it immediately.  */
-                               if (rep_max_len >= c->params.nice_match_length) {
-
-                                       lz_mf_skip_positions(c->mf, rep_max_len - 1);
-                                       window_ptr += rep_max_len;
-
-                                       if (cur_optimum_ptr != c->optimum)
-                                               lzms_encode_item_list(c, cur_optimum_ptr);
-
-                                       lzms_encode_lz_repeat_offset_match(c, rep_max_len,
-                                                                          rep_max_idx);
-
-                                       c->optimum[0].state = cur_optimum_ptr->state;
-
-                                       lzms_update_main_state(&c->optimum[0].state, 1);
-                                       lzms_update_match_state(&c->optimum[0].state, 0);
-                                       lzms_update_lz_match_state(&c->optimum[0].state, 1);
-                                       lzms_update_lz_repeat_match_state(&c->optimum[0].state,
-                                                                         rep_max_idx);
-
-                                       c->optimum[0].state.lru.upcoming_offset =
-                                               c->optimum[0].state.lru.recent_offsets[rep_max_idx];
-
-                                       for (i = rep_max_idx; i < LZMS_NUM_RECENT_OFFSETS; i++)
-                                               c->optimum[0].state.lru.recent_offsets[i] =
-                                                       c->optimum[0].state.lru.recent_offsets[i + 1];
-
-                                       lzms_update_lz_lru_queue(&c->optimum[0].state.lru);
-                                       goto begin;
-                               }
-
-                               /* If reaching any positions for the first time,
-                                * initialize their costs to "infinity".  */
-                               while (end_optimum_ptr < cur_optimum_ptr + rep_max_len)
-                                       (++end_optimum_ptr)->cost = MC_INFINITE_COST;
-
-                               /* Consider coding a repeat offset match.  */
-                               lzms_consider_lz_repeat_offset_match(c, cur_optimum_ptr,
-                                                                    rep_max_len, rep_max_idx);
-                       }
-
-                       longest_len = c->matches[num_matches - 1].len;
-
-                       /* If there's a very long explicit offset match, choose
-                        * it immediately.  */
-                       if (longest_len >= c->params.nice_match_length) {
-
-                               lz_mf_skip_positions(c->mf, longest_len - 1);
-                               window_ptr += longest_len;
-
-                               if (cur_optimum_ptr != c->optimum)
-                                       lzms_encode_item_list(c, cur_optimum_ptr);
-
-                               lzms_encode_lz_explicit_offset_match(c, longest_len,
-                                                                    c->matches[num_matches - 1].offset);
-
-                               c->optimum[0].state = cur_optimum_ptr->state;
-
-                               lzms_update_main_state(&c->optimum[0].state, 1);
-                               lzms_update_match_state(&c->optimum[0].state, 0);
-                               lzms_update_lz_match_state(&c->optimum[0].state, 0);
-
-                               c->optimum[0].state.lru.upcoming_offset =
-                                       c->matches[num_matches - 1].offset;
-
-                               lzms_update_lz_lru_queue(&c->optimum[0].state.lru);
-                               goto begin;
-                       }
-
-                       /* If reaching any positions for the first time,
-                        * initialize their costs to "infinity".  */
-                       while (end_optimum_ptr < cur_optimum_ptr + longest_len)
-                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
-
-                       /* Consider coding an explicit offset match.  */
-                       lzms_consider_lz_explicit_offset_matches(c, cur_optimum_ptr,
-                                                                c->matches, num_matches);
-               } else {
-                       /* No matches found.  The only choice at this position
-                        * is to code a literal.  */
-
-                       if (end_optimum_ptr == cur_optimum_ptr)
-                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
-               }
-
-               /* Consider coding a literal.
-
-                * To avoid an extra unpredictable brench, actually checking the
-                * preferability of coding a literal is integrated into the
-                * adaptive state update code below.  */
-               literal = *window_ptr++;
-               cost = cur_optimum_ptr->cost +
-                      lzms_literal_cost(c, literal, &cur_optimum_ptr->state);
-
-               /* Advance to the next position.  */
-               cur_optimum_ptr++;
-
-               /* The lowest-cost path to the current position is now known.
-                * Finalize the adaptive state that results from taking this
-                * lowest-cost path.  */
-
-               if (cost < cur_optimum_ptr->cost) {
-                       /* Literal  */
-                       cur_optimum_ptr->cost = cost;
-                       cur_optimum_ptr->mc_item_data = ((u64)literal << MC_OFFSET_SHIFT) | 1;
-
-                       cur_optimum_ptr->state = (cur_optimum_ptr - 1)->state;
-
-                       lzms_update_main_state(&cur_optimum_ptr->state, 0);
-
-                       cur_optimum_ptr->state.lru.upcoming_offset = 0;
-               } else {
-                       /* LZ match  */
-                       len = cur_optimum_ptr->mc_item_data & MC_LEN_MASK;
-                       offset_data = cur_optimum_ptr->mc_item_data >> MC_OFFSET_SHIFT;
-
-                       cur_optimum_ptr->state = (cur_optimum_ptr - len)->state;
-
-                       lzms_update_main_state(&cur_optimum_ptr->state, 1);
-                       lzms_update_match_state(&cur_optimum_ptr->state, 0);
-
-                       if (offset_data >= LZMS_NUM_RECENT_OFFSETS) {
-
-                               /* Explicit offset LZ match  */
-
-                               lzms_update_lz_match_state(&cur_optimum_ptr->state, 0);
-
-                               cur_optimum_ptr->state.lru.upcoming_offset =
-                                       offset_data - LZMS_OFFSET_OFFSET;
-                       } else {
-                               /* Repeat offset LZ match  */
-
-                               lzms_update_lz_match_state(&cur_optimum_ptr->state, 1);
-                               lzms_update_lz_repeat_match_state(&cur_optimum_ptr->state,
-                                                                 offset_data);
-
-                               cur_optimum_ptr->state.lru.upcoming_offset =
-                                       cur_optimum_ptr->state.lru.recent_offsets[offset_data];
-
-                               for (i = offset_data; i < LZMS_NUM_RECENT_OFFSETS; i++)
-                                       cur_optimum_ptr->state.lru.recent_offsets[i] =
-                                               cur_optimum_ptr->state.lru.recent_offsets[i + 1];
-                       }
-               }
-
-               lzms_update_lz_lru_queue(&cur_optimum_ptr->state.lru);
-
-               /*
-                * This loop will terminate when either of the following
-                * conditions is true:
-                *
-                * (1) cur_optimum_ptr == end_optimum_ptr
-                *
-                *      There are no paths that extend beyond the current
-                *      position.  In this case, any path to a later position
-                *      must pass through the current position, so we can go
-                *      ahead and choose the list of items that led to this
-                *      position.
-                *
-                * (2) cur_optimum_ptr == c->optimum_end
-                *
-                *      This bounds the number of times the algorithm can step
-                *      forward before it is guaranteed to start choosing items.
-                *      This limits the memory usage.  It also guarantees that
-                *      the parser will not go too long without updating the
-                *      probability tables.
-                *
-                * Note: no check for end-of-window is needed because
-                * end-of-window will trigger condition (1).
-                */
-               if (cur_optimum_ptr == end_optimum_ptr ||
-                   cur_optimum_ptr == c->optimum_end)
-               {
-                       c->optimum[0].state = cur_optimum_ptr->state;
-                       break;
-               }
-       }
-
-       /* Output the current list of items that constitute the minimum-cost
-        * path to the current position.  */
-       lzms_encode_item_list(c, cur_optimum_ptr);
-       goto begin;
-}
-
-static void
-lzms_init_range_encoder(struct lzms_range_encoder *enc,
-                       struct lzms_range_encoder_raw *rc, u32 num_states)
-{
-       enc->rc = rc;
-       enc->state = 0;
-       LZMS_ASSERT(is_power_of_2(num_states));
-       enc->mask = num_states - 1;
-       lzms_init_probability_entries(enc->prob_entries, num_states);
-}
-
-static void
-lzms_init_huffman_encoder(struct lzms_huffman_encoder *enc,
-                         struct lzms_output_bitstream *os,
-                         unsigned num_syms,
-                         unsigned rebuild_freq)
-{
-       enc->os = os;
-       enc->num_syms_written = 0;
-       enc->rebuild_freq = rebuild_freq;
-       enc->num_syms = num_syms;
-       for (unsigned i = 0; i < num_syms; i++)
-               enc->sym_freqs[i] = 1;
-
-       make_canonical_huffman_code(enc->num_syms,
-                                   LZMS_MAX_CODEWORD_LEN,
-                                   enc->sym_freqs,
-                                   enc->lens,
-                                   enc->codewords);
-}
-
-/* Prepare the LZMS compressor for compressing a block of data.  */
-static void
-lzms_prepare_compressor(struct lzms_compressor *c, const u8 *udata, u32 ulen,
-                       le16 *cdata, u32 clen16)
-{
-       unsigned num_offset_slots;
-
-       /* Copy the uncompressed data into the @c->cur_window buffer.  */
-       memcpy(c->cur_window, udata, ulen);
-       c->cur_window_size = ulen;
-
-       /* Initialize the raw range encoder (writing forwards).  */
-       lzms_range_encoder_raw_init(&c->rc, cdata, clen16);
-
-       /* Initialize the output bitstream for Huffman symbols and verbatim bits
-        * (writing backwards).  */
-       lzms_output_bitstream_init(&c->os, cdata, clen16);
-
-       /* Calculate the number of offset slots required.  */
-       num_offset_slots = lzms_get_offset_slot(ulen - 1) + 1;
-
-       /* Initialize a Huffman encoder for each alphabet.  */
-       lzms_init_huffman_encoder(&c->literal_encoder, &c->os,
-                                 LZMS_NUM_LITERAL_SYMS,
-                                 LZMS_LITERAL_CODE_REBUILD_FREQ);
-
-       lzms_init_huffman_encoder(&c->lz_offset_encoder, &c->os,
-                                 num_offset_slots,
-                                 LZMS_LZ_OFFSET_CODE_REBUILD_FREQ);
-
-       lzms_init_huffman_encoder(&c->length_encoder, &c->os,
-                                 LZMS_NUM_LENGTH_SYMS,
-                                 LZMS_LENGTH_CODE_REBUILD_FREQ);
-
-       lzms_init_huffman_encoder(&c->delta_offset_encoder, &c->os,
-                                 num_offset_slots,
-                                 LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ);
-
-       lzms_init_huffman_encoder(&c->delta_power_encoder, &c->os,
-                                 LZMS_NUM_DELTA_POWER_SYMS,
-                                 LZMS_DELTA_POWER_CODE_REBUILD_FREQ);
-
-       /* Initialize range encoders, all of which wrap around the same
-        * lzms_range_encoder_raw.  */
-       lzms_init_range_encoder(&c->main_range_encoder,
-                               &c->rc, LZMS_NUM_MAIN_STATES);
-
-       lzms_init_range_encoder(&c->match_range_encoder,
-                               &c->rc, LZMS_NUM_MATCH_STATES);
-
-       lzms_init_range_encoder(&c->lz_match_range_encoder,
-                               &c->rc, LZMS_NUM_LZ_MATCH_STATES);
-
-       for (unsigned i = 0; i < ARRAY_LEN(c->lz_repeat_match_range_encoders); i++)
-               lzms_init_range_encoder(&c->lz_repeat_match_range_encoders[i],
-                                       &c->rc, LZMS_NUM_LZ_REPEAT_MATCH_STATES);
-
-       lzms_init_range_encoder(&c->delta_match_range_encoder,
-                               &c->rc, LZMS_NUM_DELTA_MATCH_STATES);
-
-       for (unsigned i = 0; i < ARRAY_LEN(c->delta_repeat_match_range_encoders); i++)
-               lzms_init_range_encoder(&c->delta_repeat_match_range_encoders[i],
-                                       &c->rc, LZMS_NUM_DELTA_REPEAT_MATCH_STATES);
-
-       /* Set initial length costs for lengths < LZMS_NUM_FAST_LENGTHS.  */
-       lzms_update_fast_length_costs(c);
-}
-
-/* Flush the output streams, prepare the final compressed data, and return its
- * size in bytes.
- *
- * A return value of 0 indicates that the data could not be compressed to fit in
- * the available space.  */
-static size_t
-lzms_finalize(struct lzms_compressor *c, u8 *cdata, size_t csize_avail)
-{
-       size_t num_forwards_bytes;
-       size_t num_backwards_bytes;
-
-       /* Flush both the forwards and backwards streams, and make sure they
-        * didn't cross each other and start overwriting each other's data.  */
-       if (!lzms_output_bitstream_flush(&c->os))
-               return 0;
-
-       if (!lzms_range_encoder_raw_flush(&c->rc))
-               return 0;
-
-       if (c->rc.next > c->os.next)
-               return 0;
-
-       /* Now the compressed buffer contains the data output by the forwards
-        * bitstream, then empty space, then data output by the backwards
-        * bitstream.  Move the data output by the backwards bitstream to be
-        * adjacent to the data output by the forward bitstream, and calculate
-        * the compressed size that this results in.  */
-       num_forwards_bytes = (u8*)c->rc.next - (u8*)cdata;
-       num_backwards_bytes = ((u8*)cdata + csize_avail) - (u8*)c->os.next;
-
-       memmove(cdata + num_forwards_bytes, c->os.next, num_backwards_bytes);
-
-       return num_forwards_bytes + num_backwards_bytes;
-}
-
-/* Set internal compression parameters for the specified compression level and
- * maximum window size.  */
-static void
-lzms_build_params(unsigned int compression_level,
-                 struct lzms_compressor_params *params)
-{
-       /* Allow length 2 matches if the compression level is sufficiently high.
-        */
-       if (compression_level >= 45)
-               params->min_match_length = 2;
-       else
-               params->min_match_length = 3;
-
-       /* Scale nice_match_length and max_search_depth with the compression
-        * level.  But to allow an optimization on length cost calculations,
-        * don't allow nice_match_length to exceed LZMS_NUM_FAST_LENGTH.  */
-       params->nice_match_length = ((u64)compression_level * 32) / 50;
-       if (params->nice_match_length < params->min_match_length)
-               params->nice_match_length = params->min_match_length;
-       if (params->nice_match_length > LZMS_NUM_FAST_LENGTHS)
-               params->nice_match_length = LZMS_NUM_FAST_LENGTHS;
-       params->max_search_depth = compression_level;
-
-       params->optim_array_length = 1024;
-}
-
-/* Given the internal compression parameters and maximum window size, build the
- * Lempel-Ziv match-finder parameters.  */
-static void
-lzms_build_mf_params(const struct lzms_compressor_params *lzms_params,
-                    u32 max_window_size, struct lz_mf_params *mf_params)
-{
-       memset(mf_params, 0, sizeof(*mf_params));
-
-       /* Choose an appropriate match-finding algorithm.  */
-       if (max_window_size <= 2097152)
-               mf_params->algorithm = LZ_MF_BINARY_TREES;
-       else if (max_window_size <= 33554432)
-               mf_params->algorithm = LZ_MF_LCP_INTERVAL_TREE;
-       else
-               mf_params->algorithm = LZ_MF_LINKED_SUFFIX_ARRAY;
-
-       mf_params->max_window_size = max_window_size;
-       mf_params->min_match_len = lzms_params->min_match_length;
-       mf_params->max_search_depth = lzms_params->max_search_depth;
-       mf_params->nice_match_len = lzms_params->nice_match_length;
-}
-
-static void
-lzms_free_compressor(void *_c);
-
-static u64
-lzms_get_needed_memory(size_t max_block_size, unsigned int compression_level)
-{
-       struct lzms_compressor_params params;
-       struct lz_mf_params mf_params;
-       u64 size = 0;
-
-       if (max_block_size >= INT32_MAX)
-               return 0;
-
-       lzms_build_params(compression_level, &params);
-       lzms_build_mf_params(&params, max_block_size, &mf_params);
-
-       size += sizeof(struct lzms_compressor);
-
-       /* cur_window */
-       size += max_block_size;
-
-       /* mf */
-       size += lz_mf_get_needed_memory(mf_params.algorithm, max_block_size);
-
-       /* matches */
-       size += min(params.max_search_depth, params.nice_match_length) *
-               sizeof(struct lz_match);
-
-       /* optimum */
-       size += (params.optim_array_length + params.nice_match_length) *
-               sizeof(struct lzms_mc_pos_data);
-
-       return size;
-}
-
-static int
-lzms_create_compressor(size_t max_block_size, unsigned int compression_level,
-                      void **ctx_ret)
-{
-       struct lzms_compressor *c;
-       struct lzms_compressor_params params;
-       struct lz_mf_params mf_params;
-
-       if (max_block_size >= INT32_MAX)
-               return WIMLIB_ERR_INVALID_PARAM;
-
-       lzms_build_params(compression_level, &params);
-       lzms_build_mf_params(&params, max_block_size, &mf_params);
-       if (!lz_mf_params_valid(&mf_params))
-               return WIMLIB_ERR_INVALID_PARAM;
-
-       c = CALLOC(1, sizeof(struct lzms_compressor));
-       if (!c)
-               goto oom;
-
-       c->params = params;
-
-       c->cur_window = MALLOC(max_block_size);
-       if (!c->cur_window)
-               goto oom;
-
-       c->mf = lz_mf_alloc(&mf_params);
-       if (!c->mf)
-               goto oom;
-
-       c->matches = MALLOC(min(params.max_search_depth,
-                               params.nice_match_length) *
-                           sizeof(struct lz_match));
-       if (!c->matches)
-               goto oom;
-
-       c->optimum = MALLOC((params.optim_array_length +
-                            params.nice_match_length) *
-                           sizeof(struct lzms_mc_pos_data));
-       if (!c->optimum)
-               goto oom;
-       c->optimum_end = &c->optimum[params.optim_array_length];
-
-       lzms_init_rc_costs();
-
-       lzms_init_fast_slots(c);
-
-       *ctx_ret = c;
-       return 0;
-
-oom:
-       lzms_free_compressor(c);
-       return WIMLIB_ERR_NOMEM;
-}
-
-static size_t
-lzms_compress(const void *uncompressed_data, size_t uncompressed_size,
-             void *compressed_data, size_t compressed_size_avail, void *_c)
-{
-       struct lzms_compressor *c = _c;
-
-       /* Don't bother compressing extremely small inputs.  */
-       if (uncompressed_size < 4)
-               return 0;
-
-       /* Cap the available compressed size to a 32-bit integer and round it
-        * down to the nearest multiple of 2.  */
-       if (compressed_size_avail > UINT32_MAX)
-               compressed_size_avail = UINT32_MAX;
-       if (compressed_size_avail & 1)
-               compressed_size_avail--;
-
-       /* Initialize the compressor structures.  */
-       lzms_prepare_compressor(c, uncompressed_data, uncompressed_size,
-                               compressed_data, compressed_size_avail / 2);
-
-       /* Preprocess the uncompressed data.  */
-       lzms_x86_filter(c->cur_window, c->cur_window_size,
-                       c->last_target_usages, false);
-
-       /* Load the window into the match-finder.  */
-       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
-
-       /* Compute and encode a literal/match sequence that decompresses to the
-        * preprocessed data.  */
-       lzms_near_optimal_parse(c);
-
-       /* Return the compressed data size or 0.  */
-       return lzms_finalize(c, compressed_data, compressed_size_avail);
-}
-
-static void
-lzms_free_compressor(void *_c)
-{
-       struct lzms_compressor *c = _c;
-
-       if (c) {
-               FREE(c->cur_window);
-               lz_mf_free(c->mf);
-               FREE(c->matches);
-               FREE(c->optimum);
-               FREE(c);
-       }
-}
-
-const struct compressor_ops lzms_compressor_ops = {
-       .get_needed_memory  = lzms_get_needed_memory,
-       .create_compressor  = lzms_create_compressor,
-       .compress           = lzms_compress,
-       .free_compressor    = lzms_free_compressor,
-};