]> wimlib.net Git - wimlib/blob - src/lzx_compress.c
lzx_compress: refactor near-optimal matchfinding loop to be more efficient
[wimlib] / src / lzx_compress.c
1 /*
2  * lzx_compress.c
3  *
4  * A compressor for the LZX compression format, as used in WIM files.
5  */
6
7 /*
8  * Copyright (C) 2012-2016 Eric Biggers
9  *
10  * This file is free software; you can redistribute it and/or modify it under
11  * the terms of the GNU Lesser General Public License as published by the Free
12  * Software Foundation; either version 3 of the License, or (at your option) any
13  * later version.
14  *
15  * This file is distributed in the hope that it will be useful, but WITHOUT
16  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17  * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
18  * details.
19  *
20  * You should have received a copy of the GNU Lesser General Public License
21  * along with this file; if not, see http://www.gnu.org/licenses/.
22  */
23
24
25 /*
26  * This file contains a compressor for the LZX ("Lempel-Ziv eXtended")
27  * compression format, as used in the WIM (Windows IMaging) file format.
28  *
29  * Two different parsing algorithms are implemented: "near-optimal" and "lazy".
30  * "Near-optimal" is significantly slower than "lazy", but results in a better
31  * compression ratio.  The "near-optimal" algorithm is used at the default
32  * compression level.
33  *
34  * This file may need some slight modifications to be used outside of the WIM
35  * format.  In particular, in other situations the LZX block header might be
36  * slightly different, and sliding window support might be required.
37  *
38  * Note: LZX is a compression format derived from DEFLATE, the format used by
39  * zlib and gzip.  Both LZX and DEFLATE use LZ77 matching and Huffman coding.
40  * Certain details are quite similar, such as the method for storing Huffman
41  * codes.  However, the main differences are:
42  *
43  * - LZX preprocesses the data to attempt to make x86 machine code slightly more
44  *   compressible before attempting to compress it further.
45  *
46  * - LZX uses a "main" alphabet which combines literals and matches, with the
47  *   match symbols containing a "length header" (giving all or part of the match
48  *   length) and an "offset slot" (giving, roughly speaking, the order of
49  *   magnitude of the match offset).
50  *
51  * - LZX does not have static Huffman blocks (that is, the kind with preset
52  *   Huffman codes); however it does have two types of dynamic Huffman blocks
53  *   ("verbatim" and "aligned").
54  *
55  * - LZX has a minimum match length of 2 rather than 3.  Length 2 matches can be
56  *   useful, but generally only if the parser is smart about choosing them.
57  *
58  * - In LZX, offset slots 0 through 2 actually represent entries in an LRU queue
59  *   of match offsets.  This is very useful for certain types of files, such as
60  *   binary files that have repeating records.
61  */
62
63 #ifdef HAVE_CONFIG_H
64 #  include "config.h"
65 #endif
66
67 /*
68  * The compressor always chooses a block of at least MIN_BLOCK_SIZE bytes,
69  * except if the last block has to be shorter.
70  */
71 #define MIN_BLOCK_SIZE          6500
72
73 /*
74  * The compressor attempts to end blocks after SOFT_MAX_BLOCK_SIZE bytes, but
75  * the final size might be larger due to matches extending beyond the end of the
76  * block.  Specifically:
77  *
78  *  - The greedy parser may choose an arbitrarily long match starting at the
79  *    SOFT_MAX_BLOCK_SIZE'th byte.
80  *
81  *  - The lazy parser may choose a sequence of literals starting at the
82  *    SOFT_MAX_BLOCK_SIZE'th byte when it sees a sequence of increasing good
83  *    matches.  The final match may be of arbitrary length.  The length of the
84  *    literal sequence is approximately limited by the "nice match length"
85  *    parameter.
86  */
87 #define SOFT_MAX_BLOCK_SIZE     100000
88
89 /*
90  * The number of observed matches or literals that represents sufficient data to
91  * decide whether the current block should be terminated or not.
92  */
93 #define NUM_OBSERVATIONS_PER_BLOCK_CHECK        500
94
95 /*
96  * LZX_CACHE_LENGTH is the number of lz_match structures in the match cache,
97  * excluding the extra "overflow" entries.  This value should be high enough so
98  * that nearly the time, all matches found in a given block can fit in the match
99  * cache.  However, fallback behavior (immediately terminating the block) on
100  * cache overflow is still required.
101  */
102 #define LZX_CACHE_LENGTH        (SOFT_MAX_BLOCK_SIZE * 5)
103
104 /*
105  * LZX_MAX_MATCHES_PER_POS is an upper bound on the number of matches that can
106  * ever be saved in the match cache for a single position.  Since each match we
107  * save for a single position has a distinct length, we can use the number of
108  * possible match lengths in LZX as this bound.  This bound is guaranteed to be
109  * valid in all cases, although if 'nice_match_length < LZX_MAX_MATCH_LEN', then
110  * it will never actually be reached.
111  */
112 #define LZX_MAX_MATCHES_PER_POS LZX_NUM_LENS
113
114 /*
115  * LZX_BIT_COST is a scaling factor that represents the cost to output one bit.
116  * This makes it possible to consider fractional bit costs.
117  *
118  * Note: this is only useful as a statistical trick for when the true costs are
119  * unknown.  In reality, each token in LZX requires a whole number of bits to
120  * output.
121  */
122 #define LZX_BIT_COST            64
123
124 /*
125  * Should the compressor take into account the costs of aligned offset symbols?
126  */
127 #define LZX_CONSIDER_ALIGNED_COSTS      1
128
129 /*
130  * LZX_MAX_FAST_LEVEL is the maximum compression level at which we use the
131  * faster algorithm.
132  */
133 #define LZX_MAX_FAST_LEVEL      34
134
135 /*
136  * BT_MATCHFINDER_HASH2_ORDER is the log base 2 of the number of entries in the
137  * hash table for finding length 2 matches.  This could be as high as 16, but
138  * using a smaller hash table speeds up compression due to reduced cache
139  * pressure.
140  */
141 #define BT_MATCHFINDER_HASH2_ORDER      12
142
143 /*
144  * These are the compressor-side limits on the codeword lengths for each Huffman
145  * code.  To make outputting bits slightly faster, some of these limits are
146  * lower than the limits defined by the LZX format.  This does not significantly
147  * affect the compression ratio, at least for the block sizes we use.
148  */
149 #define MAIN_CODEWORD_LIMIT     16
150 #define LENGTH_CODEWORD_LIMIT   12
151 #define ALIGNED_CODEWORD_LIMIT  7
152 #define PRE_CODEWORD_LIMIT      7
153
154 #include "wimlib/compress_common.h"
155 #include "wimlib/compressor_ops.h"
156 #include "wimlib/error.h"
157 #include "wimlib/lz_extend.h"
158 #include "wimlib/lzx_common.h"
159 #include "wimlib/unaligned.h"
160 #include "wimlib/util.h"
161
162 /* Matchfinders with 16-bit positions  */
163 #define mf_pos_t        u16
164 #define MF_SUFFIX       _16
165 #include "wimlib/bt_matchfinder.h"
166 #include "wimlib/hc_matchfinder.h"
167
168 /* Matchfinders with 32-bit positions  */
169 #undef mf_pos_t
170 #undef MF_SUFFIX
171 #define mf_pos_t        u32
172 #define MF_SUFFIX       _32
173 #include "wimlib/bt_matchfinder.h"
174 #include "wimlib/hc_matchfinder.h"
175
176 struct lzx_output_bitstream;
177
178 /* Codewords for the LZX Huffman codes.  */
179 struct lzx_codewords {
180         u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
181         u32 len[LZX_LENCODE_NUM_SYMBOLS];
182         u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
183 };
184
185 /* Codeword lengths (in bits) for the LZX Huffman codes.
186  * A zero length means the corresponding codeword has zero frequency.  */
187 struct lzx_lens {
188         u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS + 1];
189         u8 len[LZX_LENCODE_NUM_SYMBOLS + 1];
190         u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
191 };
192
193 /* Cost model for near-optimal parsing  */
194 struct lzx_costs {
195
196         /* 'match_cost[offset_slot][len - LZX_MIN_MATCH_LEN]' is the cost for a
197          * length 'len' match that has an offset belonging to 'offset_slot'.  */
198         u32 match_cost[LZX_MAX_OFFSET_SLOTS][LZX_NUM_LENS];
199
200         /* Cost for each symbol in the main code  */
201         u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
202
203         /* Cost for each symbol in the length code  */
204         u32 len[LZX_LENCODE_NUM_SYMBOLS];
205
206 #if LZX_CONSIDER_ALIGNED_COSTS
207         /* Cost for each symbol in the aligned code  */
208         u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
209 #endif
210 };
211
212 /* Codewords and lengths for the LZX Huffman codes.  */
213 struct lzx_codes {
214         struct lzx_codewords codewords;
215         struct lzx_lens lens;
216 };
217
218 /* Symbol frequency counters for the LZX Huffman codes.  */
219 struct lzx_freqs {
220         u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
221         u32 len[LZX_LENCODE_NUM_SYMBOLS];
222         u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
223 };
224
225 /* Block split statistics.  See "Block splitting algorithm" below. */
226 #define NUM_LITERAL_OBSERVATION_TYPES 8
227 #define NUM_MATCH_OBSERVATION_TYPES 2
228 #define NUM_OBSERVATION_TYPES (NUM_LITERAL_OBSERVATION_TYPES + NUM_MATCH_OBSERVATION_TYPES)
229 struct block_split_stats {
230         u32 new_observations[NUM_OBSERVATION_TYPES];
231         u32 observations[NUM_OBSERVATION_TYPES];
232         u32 num_new_observations;
233         u32 num_observations;
234 };
235
236 /*
237  * Represents a run of literals followed by a match or end-of-block.  This
238  * struct is needed to temporarily store items chosen by the parser, since items
239  * cannot be written until all items for the block have been chosen and the
240  * block's Huffman codes have been computed.
241  */
242 struct lzx_sequence {
243
244         /* The number of literals in the run.  This may be 0.  The literals are
245          * not stored explicitly in this structure; instead, they are read
246          * directly from the uncompressed data.  */
247         u16 litrunlen;
248
249         /* If the next field doesn't indicate end-of-block, then this is the
250          * match length minus LZX_MIN_MATCH_LEN.  */
251         u16 adjusted_length;
252
253         /* If bit 31 is clear, then this field contains the match header in bits
254          * 0-8, and either the match offset plus LZX_OFFSET_ADJUSTMENT or a
255          * recent offset code in bits 9-30.  Otherwise (if bit 31 is set), this
256          * sequence's literal run was the last literal run in the block, so
257          * there is no match that follows it.  */
258         u32 adjusted_offset_and_match_hdr;
259 };
260
261 /*
262  * This structure represents a byte position in the input buffer and a node in
263  * the graph of possible match/literal choices.
264  *
265  * Logically, each incoming edge to this node is labeled with a literal or a
266  * match that can be taken to reach this position from an earlier position; and
267  * each outgoing edge from this node is labeled with a literal or a match that
268  * can be taken to advance from this position to a later position.
269  */
270 struct lzx_optimum_node {
271
272         /* The cost, in bits, of the lowest-cost path that has been found to
273          * reach this position.  This can change as progressively lower cost
274          * paths are found to reach this position.  */
275         u32 cost;
276
277         /*
278          * The match or literal that was taken to reach this position.  This can
279          * change as progressively lower cost paths are found to reach this
280          * position.
281          *
282          * This variable is divided into two bitfields.
283          *
284          * Literals:
285          *      Low bits are 0, high bits are the literal.
286          *
287          * Explicit offset matches:
288          *      Low bits are the match length, high bits are the offset plus 2.
289          *
290          * Repeat offset matches:
291          *      Low bits are the match length, high bits are the queue index.
292          */
293         u32 item;
294 #define OPTIMUM_OFFSET_SHIFT 9
295 #define OPTIMUM_LEN_MASK ((1 << OPTIMUM_OFFSET_SHIFT) - 1)
296 #define OPTIMUM_EXTRA_FLAG 0x80000000
297         u32 extra_match;
298         u32 extra_literal;
299 } _aligned_attribute(8);
300
301 /*
302  * Least-recently-used queue for match offsets.
303  *
304  * This is represented as a 64-bit integer for efficiency.  There are three
305  * offsets of 21 bits each.  Bit 64 is garbage.
306  */
307 struct lzx_lru_queue {
308         u64 R;
309 };
310
311 #define LZX_QUEUE64_OFFSET_SHIFT 21
312 #define LZX_QUEUE64_OFFSET_MASK (((u64)1 << LZX_QUEUE64_OFFSET_SHIFT) - 1)
313
314 #define LZX_QUEUE64_R0_SHIFT (0 * LZX_QUEUE64_OFFSET_SHIFT)
315 #define LZX_QUEUE64_R1_SHIFT (1 * LZX_QUEUE64_OFFSET_SHIFT)
316 #define LZX_QUEUE64_R2_SHIFT (2 * LZX_QUEUE64_OFFSET_SHIFT)
317
318 #define LZX_QUEUE64_R0_MASK (LZX_QUEUE64_OFFSET_MASK << LZX_QUEUE64_R0_SHIFT)
319 #define LZX_QUEUE64_R1_MASK (LZX_QUEUE64_OFFSET_MASK << LZX_QUEUE64_R1_SHIFT)
320 #define LZX_QUEUE64_R2_MASK (LZX_QUEUE64_OFFSET_MASK << LZX_QUEUE64_R2_SHIFT)
321
322 static inline void
323 lzx_lru_queue_init(struct lzx_lru_queue *queue)
324 {
325         queue->R = ((u64)1 << LZX_QUEUE64_R0_SHIFT) |
326                    ((u64)1 << LZX_QUEUE64_R1_SHIFT) |
327                    ((u64)1 << LZX_QUEUE64_R2_SHIFT);
328 }
329
330 static inline u64
331 lzx_lru_queue_R0(struct lzx_lru_queue queue)
332 {
333         return (queue.R >> LZX_QUEUE64_R0_SHIFT) & LZX_QUEUE64_OFFSET_MASK;
334 }
335
336 static inline u64
337 lzx_lru_queue_R1(struct lzx_lru_queue queue)
338 {
339         return (queue.R >> LZX_QUEUE64_R1_SHIFT) & LZX_QUEUE64_OFFSET_MASK;
340 }
341
342 static inline u64
343 lzx_lru_queue_R2(struct lzx_lru_queue queue)
344 {
345         return (queue.R >> LZX_QUEUE64_R2_SHIFT) & LZX_QUEUE64_OFFSET_MASK;
346 }
347
348 /* Push a match offset onto the front (most recently used) end of the queue.  */
349 static inline struct lzx_lru_queue
350 lzx_lru_queue_push(struct lzx_lru_queue queue, u32 offset)
351 {
352         return (struct lzx_lru_queue) {
353                 .R = (queue.R << LZX_QUEUE64_OFFSET_SHIFT) | offset,
354         };
355 }
356
357 /* Swap a match offset to the front of the queue.  */
358 static inline struct lzx_lru_queue
359 lzx_lru_queue_swap(struct lzx_lru_queue queue, unsigned idx)
360 {
361         if (idx == 0)
362                 return queue;
363
364         if (idx == 1)
365                 return (struct lzx_lru_queue) {
366                         .R = (lzx_lru_queue_R1(queue) << LZX_QUEUE64_R0_SHIFT) |
367                              (lzx_lru_queue_R0(queue) << LZX_QUEUE64_R1_SHIFT) |
368                              (queue.R & LZX_QUEUE64_R2_MASK),
369                 };
370
371         return (struct lzx_lru_queue) {
372                 .R = (lzx_lru_queue_R2(queue) << LZX_QUEUE64_R0_SHIFT) |
373                      (queue.R & LZX_QUEUE64_R1_MASK) |
374                      (lzx_lru_queue_R0(queue) << LZX_QUEUE64_R2_SHIFT),
375         };
376 }
377
378 /* The main LZX compressor structure  */
379 struct lzx_compressor {
380
381         /* The "nice" match length: if a match of this length is found, then
382          * choose it immediately without further consideration.  */
383         unsigned nice_match_length;
384
385         /* The maximum search depth: consider at most this many potential
386          * matches at each position.  */
387         unsigned max_search_depth;
388
389         /* The log base 2 of the LZX window size for LZ match offset encoding
390          * purposes.  This will be >= LZX_MIN_WINDOW_ORDER and <=
391          * LZX_MAX_WINDOW_ORDER.  */
392         unsigned window_order;
393
394         /* The number of symbols in the main alphabet.  This depends on
395          * @window_order, since @window_order determines the maximum possible
396          * offset.  */
397         unsigned num_main_syms;
398
399         /* Number of optimization passes per block  */
400         unsigned num_optim_passes;
401
402         /* The preprocessed buffer of data being compressed  */
403         u8 *in_buffer;
404
405         /* The number of bytes of data to be compressed, which is the number of
406          * bytes of data in @in_buffer that are actually valid.  */
407         size_t in_nbytes;
408
409         /* Pointer to the compress() implementation chosen at allocation time */
410         void (*impl)(struct lzx_compressor *, struct lzx_output_bitstream *);
411
412         /* If true, the compressor need not preserve the input buffer if it
413          * compresses the data successfully.  */
414         bool destructive;
415
416         /* The Huffman symbol frequency counters for the current block.  */
417         struct lzx_freqs freqs;
418
419         /* Block split statistics.  */
420         struct block_split_stats split_stats;
421
422         /* The Huffman codes for the current and previous blocks.  The one with
423          * index 'codes_index' is for the current block, and the other one is
424          * for the previous block.  */
425         struct lzx_codes codes[2];
426         unsigned codes_index;
427
428         /* The matches and literals that the parser has chosen for the current
429          * block.  The required length of this array is limited by the maximum
430          * number of matches that can ever be chosen for a single block, plus
431          * one for the special entry at the end.  */
432         struct lzx_sequence chosen_sequences[
433                        DIV_ROUND_UP(SOFT_MAX_BLOCK_SIZE, LZX_MIN_MATCH_LEN) + 1];
434
435         /* Tables for mapping adjusted offsets to offset slots  */
436
437         /* offset slots [0, 29]  */
438         u8 offset_slot_tab_1[32768];
439
440         /* offset slots [30, 49]  */
441         u8 offset_slot_tab_2[128];
442
443         union {
444                 /* Data for greedy or lazy parsing  */
445                 struct {
446                         /* Hash chains matchfinder (MUST BE LAST!!!)  */
447                         union {
448                                 struct hc_matchfinder_16 hc_mf_16;
449                                 struct hc_matchfinder_32 hc_mf_32;
450                         };
451                 };
452
453                 /* Data for near-optimal parsing  */
454                 struct {
455                         /*
456                          * Array of nodes, one per position, for running the
457                          * minimum-cost path algorithm.
458                          *
459                          * This array must be large enough to accommodate the
460                          * worst-case number of nodes, which occurs if we find a
461                          * match of length LZX_MAX_MATCH_LEN at position
462                          * SOFT_MAX_BLOCK_SIZE - 1, producing a block of length
463                          * SOFT_MAX_BLOCK_SIZE - 1 + LZX_MAX_MATCH_LEN.  Add one
464                          * for the end-of-block node.
465                          */
466                         struct lzx_optimum_node optimum_nodes[SOFT_MAX_BLOCK_SIZE - 1 +
467                                                               LZX_MAX_MATCH_LEN + 1];
468
469                         /* The cost model for the current block  */
470                         struct lzx_costs costs;
471
472                         /*
473                          * Cached matches for the current block.  This array
474                          * contains the matches that were found at each position
475                          * in the block.  Specifically, for each position, there
476                          * is a special 'struct lz_match' whose 'length' field
477                          * contains the number of matches that were found at
478                          * that position; this is followed by the matches
479                          * themselves, if any, sorted by strictly increasing
480                          * length.
481                          *
482                          * Note: in rare cases, there will be a very high number
483                          * of matches in the block and this array will overflow.
484                          * If this happens, we force the end of the current
485                          * block.  LZX_CACHE_LENGTH is the length at which we
486                          * actually check for overflow.  The extra slots beyond
487                          * this are enough to absorb the worst case overflow,
488                          * which occurs if starting at
489                          * &match_cache[LZX_CACHE_LENGTH - 1], we write the
490                          * match count header, then write
491                          * LZX_MAX_MATCHES_PER_POS matches, then skip searching
492                          * for matches at 'LZX_MAX_MATCH_LEN - 1' positions and
493                          * write the match count header for each.
494                          */
495                         struct lz_match match_cache[LZX_CACHE_LENGTH +
496                                                     LZX_MAX_MATCHES_PER_POS +
497                                                     LZX_MAX_MATCH_LEN - 1];
498
499                         /* Binary trees matchfinder (MUST BE LAST!!!)  */
500                         union {
501                                 struct bt_matchfinder_16 bt_mf_16;
502                                 struct bt_matchfinder_32 bt_mf_32;
503                         };
504                 };
505         };
506 };
507
508 /*
509  * Will a matchfinder using 16-bit positions be sufficient for compressing
510  * buffers of up to the specified size?  The limit could be 65536 bytes, but we
511  * also want to optimize out the use of offset_slot_tab_2 in the 16-bit case.
512  * This requires that the limit be no more than the length of offset_slot_tab_1
513  * (currently 32768).
514  */
515 static inline bool
516 lzx_is_16_bit(size_t max_bufsize)
517 {
518         STATIC_ASSERT(ARRAY_LEN(((struct lzx_compressor *)0)->offset_slot_tab_1) == 32768);
519         return max_bufsize <= 32768;
520 }
521
522 /*
523  * The following macros call either the 16-bit or the 32-bit version of a
524  * matchfinder function based on the value of 'is_16_bit', which will be known
525  * at compilation time.
526  */
527
528 #define CALL_HC_MF(is_16_bit, c, funcname, ...)                               \
529         ((is_16_bit) ? CONCAT(funcname, _16)(&(c)->hc_mf_16, ##__VA_ARGS__) : \
530                        CONCAT(funcname, _32)(&(c)->hc_mf_32, ##__VA_ARGS__));
531
532 #define CALL_BT_MF(is_16_bit, c, funcname, ...)                               \
533         ((is_16_bit) ? CONCAT(funcname, _16)(&(c)->bt_mf_16, ##__VA_ARGS__) : \
534                        CONCAT(funcname, _32)(&(c)->bt_mf_32, ##__VA_ARGS__));
535
536 /*
537  * Structure to keep track of the current state of sending bits to the
538  * compressed output buffer.
539  *
540  * The LZX bitstream is encoded as a sequence of 16-bit coding units.
541  */
542 struct lzx_output_bitstream {
543
544         /* Bits that haven't yet been written to the output buffer.  */
545         machine_word_t bitbuf;
546
547         /* Number of bits currently held in @bitbuf.  */
548         u32 bitcount;
549
550         /* Pointer to the start of the output buffer.  */
551         u8 *start;
552
553         /* Pointer to the position in the output buffer at which the next coding
554          * unit should be written.  */
555         u8 *next;
556
557         /* Pointer just past the end of the output buffer, rounded down to a
558          * 2-byte boundary.  */
559         u8 *end;
560 };
561
562 /* Can the specified number of bits always be added to 'bitbuf' after any
563  * pending 16-bit coding units have been flushed?  */
564 #define CAN_BUFFER(n)   ((n) <= (8 * sizeof(machine_word_t)) - 15)
565
566 /*
567  * Initialize the output bitstream.
568  *
569  * @os
570  *      The output bitstream structure to initialize.
571  * @buffer
572  *      The buffer being written to.
573  * @size
574  *      Size of @buffer, in bytes.
575  */
576 static void
577 lzx_init_output(struct lzx_output_bitstream *os, void *buffer, size_t size)
578 {
579         os->bitbuf = 0;
580         os->bitcount = 0;
581         os->start = buffer;
582         os->next = os->start;
583         os->end = os->start + (size & ~1);
584 }
585
586 /* Add some bits to the bitbuffer variable of the output bitstream.  The caller
587  * must make sure there is enough room.  */
588 static inline void
589 lzx_add_bits(struct lzx_output_bitstream *os, u32 bits, unsigned num_bits)
590 {
591         os->bitbuf = (os->bitbuf << num_bits) | bits;
592         os->bitcount += num_bits;
593 }
594
595 /* Flush bits from the bitbuffer variable to the output buffer.  'max_num_bits'
596  * specifies the maximum number of bits that may have been added since the last
597  * flush.  */
598 static inline void
599 lzx_flush_bits(struct lzx_output_bitstream *os, unsigned max_num_bits)
600 {
601         /* Masking the number of bits to shift is only needed to avoid undefined
602          * behavior; we don't actually care about the results of bad shifts.  On
603          * x86, the explicit masking generates no extra code.  */
604         const u32 shift_mask = 8 * sizeof(os->bitbuf) - 1;
605
606         if (os->end - os->next < 6)
607                 return;
608         put_unaligned_le16(os->bitbuf >> ((os->bitcount - 16) &
609                                             shift_mask), os->next + 0);
610         if (max_num_bits > 16)
611                 put_unaligned_le16(os->bitbuf >> ((os->bitcount - 32) &
612                                                 shift_mask), os->next + 2);
613         if (max_num_bits > 32)
614                 put_unaligned_le16(os->bitbuf >> ((os->bitcount - 48) &
615                                                 shift_mask), os->next + 4);
616         os->next += (os->bitcount >> 4) << 1;
617         os->bitcount &= 15;
618 }
619
620 /* Add at most 16 bits to the bitbuffer and flush it.  */
621 static inline void
622 lzx_write_bits(struct lzx_output_bitstream *os, u32 bits, unsigned num_bits)
623 {
624         lzx_add_bits(os, bits, num_bits);
625         lzx_flush_bits(os, 16);
626 }
627
628 /*
629  * Flush the last coding unit to the output buffer if needed.  Return the total
630  * number of bytes written to the output buffer, or 0 if an overflow occurred.
631  */
632 static u32
633 lzx_flush_output(struct lzx_output_bitstream *os)
634 {
635         if (os->end - os->next < 6)
636                 return 0;
637
638         if (os->bitcount != 0) {
639                 put_unaligned_le16(os->bitbuf << (16 - os->bitcount), os->next);
640                 os->next += 2;
641         }
642
643         return os->next - os->start;
644 }
645
646 /* Build the main, length, and aligned offset Huffman codes used in LZX.
647  *
648  * This takes as input the frequency tables for each code and produces as output
649  * a set of tables that map symbols to codewords and codeword lengths.  */
650 static void
651 lzx_make_huffman_codes(struct lzx_compressor *c)
652 {
653         const struct lzx_freqs *freqs = &c->freqs;
654         struct lzx_codes *codes = &c->codes[c->codes_index];
655
656         STATIC_ASSERT(MAIN_CODEWORD_LIMIT >= 9 &&
657                       MAIN_CODEWORD_LIMIT <= LZX_MAX_MAIN_CODEWORD_LEN);
658         STATIC_ASSERT(LENGTH_CODEWORD_LIMIT >= 8 &&
659                       LENGTH_CODEWORD_LIMIT <= LZX_MAX_LEN_CODEWORD_LEN);
660         STATIC_ASSERT(ALIGNED_CODEWORD_LIMIT >= LZX_NUM_ALIGNED_OFFSET_BITS &&
661                       ALIGNED_CODEWORD_LIMIT <= LZX_MAX_ALIGNED_CODEWORD_LEN);
662
663         make_canonical_huffman_code(c->num_main_syms,
664                                     MAIN_CODEWORD_LIMIT,
665                                     freqs->main,
666                                     codes->lens.main,
667                                     codes->codewords.main);
668
669         make_canonical_huffman_code(LZX_LENCODE_NUM_SYMBOLS,
670                                     LENGTH_CODEWORD_LIMIT,
671                                     freqs->len,
672                                     codes->lens.len,
673                                     codes->codewords.len);
674
675         make_canonical_huffman_code(LZX_ALIGNEDCODE_NUM_SYMBOLS,
676                                     ALIGNED_CODEWORD_LIMIT,
677                                     freqs->aligned,
678                                     codes->lens.aligned,
679                                     codes->codewords.aligned);
680 }
681
682 /* Reset the symbol frequencies for the LZX Huffman codes.  */
683 static void
684 lzx_reset_symbol_frequencies(struct lzx_compressor *c)
685 {
686         memset(&c->freqs, 0, sizeof(c->freqs));
687 }
688
689 static unsigned
690 lzx_compute_precode_items(const u8 lens[restrict],
691                           const u8 prev_lens[restrict],
692                           u32 precode_freqs[restrict],
693                           unsigned precode_items[restrict])
694 {
695         unsigned *itemptr;
696         unsigned run_start;
697         unsigned run_end;
698         unsigned extra_bits;
699         int delta;
700         u8 len;
701
702         itemptr = precode_items;
703         run_start = 0;
704
705         while (!((len = lens[run_start]) & 0x80)) {
706
707                 /* len = the length being repeated  */
708
709                 /* Find the next run of codeword lengths.  */
710
711                 run_end = run_start + 1;
712
713                 /* Fast case for a single length.  */
714                 if (likely(len != lens[run_end])) {
715                         delta = prev_lens[run_start] - len;
716                         if (delta < 0)
717                                 delta += 17;
718                         precode_freqs[delta]++;
719                         *itemptr++ = delta;
720                         run_start++;
721                         continue;
722                 }
723
724                 /* Extend the run.  */
725                 do {
726                         run_end++;
727                 } while (len == lens[run_end]);
728
729                 if (len == 0) {
730                         /* Run of zeroes.  */
731
732                         /* Symbol 18: RLE 20 to 51 zeroes at a time.  */
733                         while ((run_end - run_start) >= 20) {
734                                 extra_bits = min((run_end - run_start) - 20, 0x1f);
735                                 precode_freqs[18]++;
736                                 *itemptr++ = 18 | (extra_bits << 5);
737                                 run_start += 20 + extra_bits;
738                         }
739
740                         /* Symbol 17: RLE 4 to 19 zeroes at a time.  */
741                         if ((run_end - run_start) >= 4) {
742                                 extra_bits = min((run_end - run_start) - 4, 0xf);
743                                 precode_freqs[17]++;
744                                 *itemptr++ = 17 | (extra_bits << 5);
745                                 run_start += 4 + extra_bits;
746                         }
747                 } else {
748
749                         /* A run of nonzero lengths. */
750
751                         /* Symbol 19: RLE 4 to 5 of any length at a time.  */
752                         while ((run_end - run_start) >= 4) {
753                                 extra_bits = (run_end - run_start) > 4;
754                                 delta = prev_lens[run_start] - len;
755                                 if (delta < 0)
756                                         delta += 17;
757                                 precode_freqs[19]++;
758                                 precode_freqs[delta]++;
759                                 *itemptr++ = 19 | (extra_bits << 5) | (delta << 6);
760                                 run_start += 4 + extra_bits;
761                         }
762                 }
763
764                 /* Output any remaining lengths without RLE.  */
765                 while (run_start != run_end) {
766                         delta = prev_lens[run_start] - len;
767                         if (delta < 0)
768                                 delta += 17;
769                         precode_freqs[delta]++;
770                         *itemptr++ = delta;
771                         run_start++;
772                 }
773         }
774
775         return itemptr - precode_items;
776 }
777
778 /*
779  * Output a Huffman code in the compressed form used in LZX.
780  *
781  * The Huffman code is represented in the output as a logical series of codeword
782  * lengths from which the Huffman code, which must be in canonical form, can be
783  * reconstructed.
784  *
785  * The codeword lengths are themselves compressed using a separate Huffman code,
786  * the "precode", which contains a symbol for each possible codeword length in
787  * the larger code as well as several special symbols to represent repeated
788  * codeword lengths (a form of run-length encoding).  The precode is itself
789  * constructed in canonical form, and its codeword lengths are represented
790  * literally in 20 4-bit fields that immediately precede the compressed codeword
791  * lengths of the larger code.
792  *
793  * Furthermore, the codeword lengths of the larger code are actually represented
794  * as deltas from the codeword lengths of the corresponding code in the previous
795  * block.
796  *
797  * @os:
798  *      Bitstream to which to write the compressed Huffman code.
799  * @lens:
800  *      The codeword lengths, indexed by symbol, in the Huffman code.
801  * @prev_lens:
802  *      The codeword lengths, indexed by symbol, in the corresponding Huffman
803  *      code in the previous block, or all zeroes if this is the first block.
804  * @num_lens:
805  *      The number of symbols in the Huffman code.
806  */
807 static void
808 lzx_write_compressed_code(struct lzx_output_bitstream *os,
809                           const u8 lens[restrict],
810                           const u8 prev_lens[restrict],
811                           unsigned num_lens)
812 {
813         u32 precode_freqs[LZX_PRECODE_NUM_SYMBOLS];
814         u8 precode_lens[LZX_PRECODE_NUM_SYMBOLS];
815         u32 precode_codewords[LZX_PRECODE_NUM_SYMBOLS];
816         unsigned precode_items[num_lens];
817         unsigned num_precode_items;
818         unsigned precode_item;
819         unsigned precode_sym;
820         unsigned i;
821         u8 saved = lens[num_lens];
822         *(u8 *)(lens + num_lens) = 0x80;
823
824         for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
825                 precode_freqs[i] = 0;
826
827         /* Compute the "items" (RLE / literal tokens and extra bits) with which
828          * the codeword lengths in the larger code will be output.  */
829         num_precode_items = lzx_compute_precode_items(lens,
830                                                       prev_lens,
831                                                       precode_freqs,
832                                                       precode_items);
833
834         /* Build the precode.  */
835         STATIC_ASSERT(PRE_CODEWORD_LIMIT >= 5 &&
836                       PRE_CODEWORD_LIMIT <= LZX_MAX_PRE_CODEWORD_LEN);
837         make_canonical_huffman_code(LZX_PRECODE_NUM_SYMBOLS,
838                                     PRE_CODEWORD_LIMIT,
839                                     precode_freqs, precode_lens,
840                                     precode_codewords);
841
842         /* Output the lengths of the codewords in the precode.  */
843         for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
844                 lzx_write_bits(os, precode_lens[i], LZX_PRECODE_ELEMENT_SIZE);
845
846         /* Output the encoded lengths of the codewords in the larger code.  */
847         for (i = 0; i < num_precode_items; i++) {
848                 precode_item = precode_items[i];
849                 precode_sym = precode_item & 0x1F;
850                 lzx_add_bits(os, precode_codewords[precode_sym],
851                              precode_lens[precode_sym]);
852                 if (precode_sym >= 17) {
853                         if (precode_sym == 17) {
854                                 lzx_add_bits(os, precode_item >> 5, 4);
855                         } else if (precode_sym == 18) {
856                                 lzx_add_bits(os, precode_item >> 5, 5);
857                         } else {
858                                 lzx_add_bits(os, (precode_item >> 5) & 1, 1);
859                                 precode_sym = precode_item >> 6;
860                                 lzx_add_bits(os, precode_codewords[precode_sym],
861                                              precode_lens[precode_sym]);
862                         }
863                 }
864                 STATIC_ASSERT(CAN_BUFFER(2 * PRE_CODEWORD_LIMIT + 1));
865                 lzx_flush_bits(os, 2 * PRE_CODEWORD_LIMIT + 1);
866         }
867
868         *(u8 *)(lens + num_lens) = saved;
869 }
870
871 /*
872  * Write all matches and literal bytes (which were precomputed) in an LZX
873  * compressed block to the output bitstream in the final compressed
874  * representation.
875  *
876  * @os
877  *      The output bitstream.
878  * @block_type
879  *      The chosen type of the LZX compressed block (LZX_BLOCKTYPE_ALIGNED or
880  *      LZX_BLOCKTYPE_VERBATIM).
881  * @block_data
882  *      The uncompressed data of the block.
883  * @sequences
884  *      The matches and literals to output, given as a series of sequences.
885  * @codes
886  *      The main, length, and aligned offset Huffman codes for the current
887  *      LZX compressed block.
888  */
889 static void
890 lzx_write_sequences(struct lzx_output_bitstream *os, int block_type,
891                     const u8 *block_data, const struct lzx_sequence sequences[],
892                     const struct lzx_codes *codes)
893 {
894         const struct lzx_sequence *seq = sequences;
895         u32 ones_if_aligned = 0 - (block_type == LZX_BLOCKTYPE_ALIGNED);
896
897         for (;;) {
898                 /* Output the next sequence.  */
899
900                 unsigned litrunlen = seq->litrunlen;
901                 unsigned match_hdr;
902                 unsigned main_symbol;
903                 unsigned adjusted_length;
904                 u32 adjusted_offset;
905                 unsigned offset_slot;
906                 unsigned num_extra_bits;
907                 u32 extra_bits;
908
909                 /* Output the literal run of the sequence.  */
910
911                 if (litrunlen) {  /* Is the literal run nonempty?  */
912
913                         /* Verify optimization is enabled on 64-bit  */
914                         STATIC_ASSERT(sizeof(machine_word_t) < 8 ||
915                                       CAN_BUFFER(3 * MAIN_CODEWORD_LIMIT));
916
917                         if (CAN_BUFFER(3 * MAIN_CODEWORD_LIMIT)) {
918
919                                 /* 64-bit: write 3 literals at a time.  */
920                                 while (litrunlen >= 3) {
921                                         unsigned lit0 = block_data[0];
922                                         unsigned lit1 = block_data[1];
923                                         unsigned lit2 = block_data[2];
924                                         lzx_add_bits(os, codes->codewords.main[lit0],
925                                                      codes->lens.main[lit0]);
926                                         lzx_add_bits(os, codes->codewords.main[lit1],
927                                                      codes->lens.main[lit1]);
928                                         lzx_add_bits(os, codes->codewords.main[lit2],
929                                                      codes->lens.main[lit2]);
930                                         lzx_flush_bits(os, 3 * MAIN_CODEWORD_LIMIT);
931                                         block_data += 3;
932                                         litrunlen -= 3;
933                                 }
934                                 if (litrunlen--) {
935                                         unsigned lit = *block_data++;
936                                         lzx_add_bits(os, codes->codewords.main[lit],
937                                                      codes->lens.main[lit]);
938                                         if (litrunlen--) {
939                                                 unsigned lit = *block_data++;
940                                                 lzx_add_bits(os, codes->codewords.main[lit],
941                                                              codes->lens.main[lit]);
942                                                 lzx_flush_bits(os, 2 * MAIN_CODEWORD_LIMIT);
943                                         } else {
944                                                 lzx_flush_bits(os, 1 * MAIN_CODEWORD_LIMIT);
945                                         }
946                                 }
947                         } else {
948                                 /* 32-bit: write 1 literal at a time.  */
949                                 do {
950                                         unsigned lit = *block_data++;
951                                         lzx_add_bits(os, codes->codewords.main[lit],
952                                                      codes->lens.main[lit]);
953                                         lzx_flush_bits(os, MAIN_CODEWORD_LIMIT);
954                                 } while (--litrunlen);
955                         }
956                 }
957
958                 /* Was this the last literal run?  */
959                 if (seq->adjusted_offset_and_match_hdr & 0x80000000)
960                         return;
961
962                 /* Nope; output the match.  */
963
964                 match_hdr = seq->adjusted_offset_and_match_hdr & 0x1FF;
965                 main_symbol = LZX_NUM_CHARS + match_hdr;
966                 adjusted_length = seq->adjusted_length;
967
968                 block_data += adjusted_length + LZX_MIN_MATCH_LEN;
969
970                 offset_slot = match_hdr / LZX_NUM_LEN_HEADERS;
971                 adjusted_offset = seq->adjusted_offset_and_match_hdr >> 9;
972
973                 num_extra_bits = lzx_extra_offset_bits[offset_slot];
974                 extra_bits = adjusted_offset - lzx_offset_slot_base[offset_slot];
975
976         #define MAX_MATCH_BITS  (MAIN_CODEWORD_LIMIT + LENGTH_CODEWORD_LIMIT + \
977                                  14 + ALIGNED_CODEWORD_LIMIT)
978
979                 /* Verify optimization is enabled on 64-bit  */
980                 STATIC_ASSERT(sizeof(machine_word_t) < 8 || CAN_BUFFER(MAX_MATCH_BITS));
981
982                 /* Output the main symbol for the match.  */
983
984                 lzx_add_bits(os, codes->codewords.main[main_symbol],
985                              codes->lens.main[main_symbol]);
986                 if (!CAN_BUFFER(MAX_MATCH_BITS))
987                         lzx_flush_bits(os, MAIN_CODEWORD_LIMIT);
988
989                 /* If needed, output the length symbol for the match.  */
990
991                 if (adjusted_length >= LZX_NUM_PRIMARY_LENS) {
992                         lzx_add_bits(os, codes->codewords.len[adjusted_length -
993                                                               LZX_NUM_PRIMARY_LENS],
994                                      codes->lens.len[adjusted_length -
995                                                      LZX_NUM_PRIMARY_LENS]);
996                         if (!CAN_BUFFER(MAX_MATCH_BITS))
997                                 lzx_flush_bits(os, LENGTH_CODEWORD_LIMIT);
998                 }
999
1000                 /* Output the extra offset bits for the match.  In aligned
1001                  * offset blocks, the lowest 3 bits of the adjusted offset are
1002                  * Huffman-encoded using the aligned offset code, provided that
1003                  * there are at least extra 3 offset bits required.  All other
1004                  * extra offset bits are output verbatim.  */
1005
1006                 if ((adjusted_offset & ones_if_aligned) >= 16) {
1007
1008                         lzx_add_bits(os, extra_bits >> LZX_NUM_ALIGNED_OFFSET_BITS,
1009                                      num_extra_bits - LZX_NUM_ALIGNED_OFFSET_BITS);
1010                         if (!CAN_BUFFER(MAX_MATCH_BITS))
1011                                 lzx_flush_bits(os, 14);
1012
1013                         lzx_add_bits(os, codes->codewords.aligned[adjusted_offset &
1014                                                                   LZX_ALIGNED_OFFSET_BITMASK],
1015                                      codes->lens.aligned[adjusted_offset &
1016                                                          LZX_ALIGNED_OFFSET_BITMASK]);
1017                         if (!CAN_BUFFER(MAX_MATCH_BITS))
1018                                 lzx_flush_bits(os, ALIGNED_CODEWORD_LIMIT);
1019                 } else {
1020                         STATIC_ASSERT(CAN_BUFFER(17));
1021
1022                         lzx_add_bits(os, extra_bits, num_extra_bits);
1023                         if (!CAN_BUFFER(MAX_MATCH_BITS))
1024                                 lzx_flush_bits(os, 17);
1025                 }
1026
1027                 if (CAN_BUFFER(MAX_MATCH_BITS))
1028                         lzx_flush_bits(os, MAX_MATCH_BITS);
1029
1030                 /* Advance to the next sequence.  */
1031                 seq++;
1032         }
1033 }
1034
1035 static void
1036 lzx_write_compressed_block(const u8 *block_begin,
1037                            int block_type,
1038                            u32 block_size,
1039                            unsigned window_order,
1040                            unsigned num_main_syms,
1041                            const struct lzx_sequence sequences[],
1042                            const struct lzx_codes * codes,
1043                            const struct lzx_lens * prev_lens,
1044                            struct lzx_output_bitstream * os)
1045 {
1046         /* The first three bits indicate the type of block and are one of the
1047          * LZX_BLOCKTYPE_* constants.  */
1048         lzx_write_bits(os, block_type, 3);
1049
1050         /* Output the block size.
1051          *
1052          * The original LZX format seemed to always encode the block size in 3
1053          * bytes.  However, the implementation in WIMGAPI, as used in WIM files,
1054          * uses the first bit to indicate whether the block is the default size
1055          * (32768) or a different size given explicitly by the next 16 bits.
1056          *
1057          * By default, this compressor uses a window size of 32768 and therefore
1058          * follows the WIMGAPI behavior.  However, this compressor also supports
1059          * window sizes greater than 32768 bytes, which do not appear to be
1060          * supported by WIMGAPI.  In such cases, we retain the default size bit
1061          * to mean a size of 32768 bytes but output non-default block size in 24
1062          * bits rather than 16.  The compatibility of this behavior is unknown
1063          * because WIMs created with chunk size greater than 32768 can seemingly
1064          * only be opened by wimlib anyway.  */
1065         if (block_size == LZX_DEFAULT_BLOCK_SIZE) {
1066                 lzx_write_bits(os, 1, 1);
1067         } else {
1068                 lzx_write_bits(os, 0, 1);
1069
1070                 if (window_order >= 16)
1071                         lzx_write_bits(os, block_size >> 16, 8);
1072
1073                 lzx_write_bits(os, block_size & 0xFFFF, 16);
1074         }
1075
1076         /* If it's an aligned offset block, output the aligned offset code.  */
1077         if (block_type == LZX_BLOCKTYPE_ALIGNED) {
1078                 for (int i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
1079                         lzx_write_bits(os, codes->lens.aligned[i],
1080                                        LZX_ALIGNEDCODE_ELEMENT_SIZE);
1081                 }
1082         }
1083
1084         /* Output the main code (two parts).  */
1085         lzx_write_compressed_code(os, codes->lens.main,
1086                                   prev_lens->main,
1087                                   LZX_NUM_CHARS);
1088         lzx_write_compressed_code(os, codes->lens.main + LZX_NUM_CHARS,
1089                                   prev_lens->main + LZX_NUM_CHARS,
1090                                   num_main_syms - LZX_NUM_CHARS);
1091
1092         /* Output the length code.  */
1093         lzx_write_compressed_code(os, codes->lens.len,
1094                                   prev_lens->len,
1095                                   LZX_LENCODE_NUM_SYMBOLS);
1096
1097         /* Output the compressed matches and literals.  */
1098         lzx_write_sequences(os, block_type, block_begin, sequences, codes);
1099 }
1100
1101 /* Given the frequencies of symbols in an LZX-compressed block and the
1102  * corresponding Huffman codes, return LZX_BLOCKTYPE_ALIGNED or
1103  * LZX_BLOCKTYPE_VERBATIM if an aligned offset or verbatim block, respectively,
1104  * will take fewer bits to output.  */
1105 static int
1106 lzx_choose_verbatim_or_aligned(const struct lzx_freqs * freqs,
1107                                const struct lzx_codes * codes)
1108 {
1109         u32 aligned_cost = 0;
1110         u32 verbatim_cost = 0;
1111
1112         /* A verbatim block requires 3 bits in each place that an aligned symbol
1113          * would be used in an aligned offset block.  */
1114         for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
1115                 verbatim_cost += LZX_NUM_ALIGNED_OFFSET_BITS * freqs->aligned[i];
1116                 aligned_cost += codes->lens.aligned[i] * freqs->aligned[i];
1117         }
1118
1119         /* Account for output of the aligned offset code.  */
1120         aligned_cost += LZX_ALIGNEDCODE_ELEMENT_SIZE * LZX_ALIGNEDCODE_NUM_SYMBOLS;
1121
1122         if (aligned_cost < verbatim_cost)
1123                 return LZX_BLOCKTYPE_ALIGNED;
1124         else
1125                 return LZX_BLOCKTYPE_VERBATIM;
1126 }
1127
1128 /*
1129  * Return the offset slot for the specified adjusted match offset, using the
1130  * compressor's acceleration tables to speed up the mapping.
1131  */
1132 static inline unsigned
1133 lzx_comp_get_offset_slot(struct lzx_compressor *c, u32 adjusted_offset,
1134                          bool is_16_bit)
1135 {
1136         if (is_16_bit || adjusted_offset < ARRAY_LEN(c->offset_slot_tab_1))
1137                 return c->offset_slot_tab_1[adjusted_offset];
1138         return c->offset_slot_tab_2[adjusted_offset >> 14];
1139 }
1140
1141 /*
1142  * Finish an LZX block:
1143  *
1144  * - build the Huffman codes
1145  * - decide whether to output the block as VERBATIM or ALIGNED
1146  * - output the block
1147  * - swap the indices of the current and previous Huffman codes
1148  */
1149 static void
1150 lzx_finish_block(struct lzx_compressor *c, struct lzx_output_bitstream *os,
1151                  const u8 *block_begin, u32 block_size, u32 seq_idx)
1152 {
1153         int block_type;
1154
1155         lzx_make_huffman_codes(c);
1156
1157         block_type = lzx_choose_verbatim_or_aligned(&c->freqs,
1158                                                     &c->codes[c->codes_index]);
1159         lzx_write_compressed_block(block_begin,
1160                                    block_type,
1161                                    block_size,
1162                                    c->window_order,
1163                                    c->num_main_syms,
1164                                    &c->chosen_sequences[seq_idx],
1165                                    &c->codes[c->codes_index],
1166                                    &c->codes[c->codes_index ^ 1].lens,
1167                                    os);
1168         c->codes_index ^= 1;
1169 }
1170
1171 /* Tally the Huffman symbol for a literal and increment the literal run length.
1172  */
1173 static inline void
1174 lzx_record_literal(struct lzx_compressor *c, unsigned literal, u32 *litrunlen_p)
1175 {
1176         c->freqs.main[literal]++;
1177         ++*litrunlen_p;
1178 }
1179
1180 /* Tally the Huffman symbol for a match, save the match data and the length of
1181  * the preceding literal run in the next lzx_sequence, and update the recent
1182  * offsets queue.  */
1183 static inline void
1184 lzx_record_match(struct lzx_compressor *c, unsigned length, u32 offset_data,
1185                  u32 recent_offsets[LZX_NUM_RECENT_OFFSETS], bool is_16_bit,
1186                  u32 *litrunlen_p, struct lzx_sequence **next_seq_p)
1187 {
1188         u32 litrunlen = *litrunlen_p;
1189         struct lzx_sequence *next_seq = *next_seq_p;
1190         unsigned offset_slot;
1191         unsigned v;
1192
1193         v = length - LZX_MIN_MATCH_LEN;
1194
1195         /* Save the literal run length and adjusted length.  */
1196         next_seq->litrunlen = litrunlen;
1197         next_seq->adjusted_length = v;
1198
1199         /* Compute the length header and tally the length symbol if needed  */
1200         if (v >= LZX_NUM_PRIMARY_LENS) {
1201                 c->freqs.len[v - LZX_NUM_PRIMARY_LENS]++;
1202                 v = LZX_NUM_PRIMARY_LENS;
1203         }
1204
1205         /* Compute the offset slot  */
1206         offset_slot = lzx_comp_get_offset_slot(c, offset_data, is_16_bit);
1207
1208         /* Compute the match header.  */
1209         v += offset_slot * LZX_NUM_LEN_HEADERS;
1210
1211         /* Save the adjusted offset and match header.  */
1212         next_seq->adjusted_offset_and_match_hdr = (offset_data << 9) | v;
1213
1214         /* Tally the main symbol.  */
1215         c->freqs.main[LZX_NUM_CHARS + v]++;
1216
1217         /* Update the recent offsets queue.  */
1218         if (offset_data < LZX_NUM_RECENT_OFFSETS) {
1219                 /* Repeat offset match  */
1220                 swap(recent_offsets[0], recent_offsets[offset_data]);
1221         } else {
1222                 /* Explicit offset match  */
1223
1224                 /* Tally the aligned offset symbol if needed  */
1225                 if (offset_data >= 16)
1226                         c->freqs.aligned[offset_data & LZX_ALIGNED_OFFSET_BITMASK]++;
1227
1228                 recent_offsets[2] = recent_offsets[1];
1229                 recent_offsets[1] = recent_offsets[0];
1230                 recent_offsets[0] = offset_data - LZX_OFFSET_ADJUSTMENT;
1231         }
1232
1233         /* Reset the literal run length and advance to the next sequence.  */
1234         *next_seq_p = next_seq + 1;
1235         *litrunlen_p = 0;
1236 }
1237
1238 /* Finish the last lzx_sequence.  The last lzx_sequence is just a literal run;
1239  * there is no match.  This literal run may be empty.  */
1240 static inline void
1241 lzx_finish_sequence(struct lzx_sequence *last_seq, u32 litrunlen)
1242 {
1243         last_seq->litrunlen = litrunlen;
1244
1245         /* Special value to mark last sequence  */
1246         last_seq->adjusted_offset_and_match_hdr = 0x80000000;
1247 }
1248
1249 /******************************************************************************/
1250
1251 /*
1252  * Block splitting algorithm.  The problem is to decide when it is worthwhile to
1253  * start a new block with new entropy codes.  There is a theoretically optimal
1254  * solution: recursively consider every possible block split, considering the
1255  * exact cost of each block, and choose the minimum cost approach.  But this is
1256  * far too slow.  Instead, as an approximation, we can count symbols and after
1257  * every N symbols, compare the expected distribution of symbols based on the
1258  * previous data with the actual distribution.  If they differ "by enough", then
1259  * start a new block.
1260  *
1261  * As an optimization and heuristic, we don't distinguish between every symbol
1262  * but rather we combine many symbols into a single "observation type".  For
1263  * literals we only look at the high bits and low bits, and for matches we only
1264  * look at whether the match is long or not.  The assumption is that for typical
1265  * "real" data, places that are good block boundaries will tend to be noticable
1266  * based only on changes in these aggregate frequencies, without looking for
1267  * subtle differences in individual symbols.  For example, a change from ASCII
1268  * bytes to non-ASCII bytes, or from few matches (generally less compressible)
1269  * to many matches (generally more compressible), would be easily noticed based
1270  * on the aggregates.
1271  *
1272  * For determining whether the frequency distributions are "different enough" to
1273  * start a new block, the simply heuristic of splitting when the sum of absolute
1274  * differences exceeds a constant seems to be good enough.  We also add a number
1275  * proportional to the block size so that the algorithm is more likely to end
1276  * large blocks than small blocks.  This reflects the general expectation that
1277  * it will become increasingly beneficial to start a new block as the current
1278  * blocks grows larger.
1279  *
1280  * Finally, for an approximation, it is not strictly necessary that the exact
1281  * symbols being used are considered.  With "near-optimal parsing", for example,
1282  * the actual symbols that will be used are unknown until after the block
1283  * boundary is chosen and the block has been optimized.  Since the final choices
1284  * cannot be used, we can use preliminary "greedy" choices instead.
1285  */
1286
1287 /* Initialize the block split statistics when starting a new block. */
1288 static void
1289 init_block_split_stats(struct block_split_stats *stats)
1290 {
1291         for (int i = 0; i < NUM_OBSERVATION_TYPES; i++) {
1292                 stats->new_observations[i] = 0;
1293                 stats->observations[i] = 0;
1294         }
1295         stats->num_new_observations = 0;
1296         stats->num_observations = 0;
1297 }
1298
1299 /* Literal observation.  Heuristic: use the top 2 bits and low 1 bits of the
1300  * literal, for 8 possible literal observation types.  */
1301 static inline void
1302 observe_literal(struct block_split_stats *stats, u8 lit)
1303 {
1304         stats->new_observations[((lit >> 5) & 0x6) | (lit & 1)]++;
1305         stats->num_new_observations++;
1306 }
1307
1308 /* Match observation.  Heuristic: use one observation type for "short match" and
1309  * one observation type for "long match".  */
1310 static inline void
1311 observe_match(struct block_split_stats *stats, unsigned length)
1312 {
1313         stats->new_observations[NUM_LITERAL_OBSERVATION_TYPES + (length >= 5)]++;
1314         stats->num_new_observations++;
1315 }
1316
1317 static bool
1318 do_end_block_check(struct block_split_stats *stats, u32 block_size)
1319 {
1320         if (stats->num_observations > 0) {
1321
1322                 /* Note: to avoid slow divisions, we do not divide by
1323                  * 'num_observations', but rather do all math with the numbers
1324                  * multiplied by 'num_observations'.  */
1325                 u32 total_delta = 0;
1326                 for (int i = 0; i < NUM_OBSERVATION_TYPES; i++) {
1327                         u32 expected = stats->observations[i] * stats->num_new_observations;
1328                         u32 actual = stats->new_observations[i] * stats->num_observations;
1329                         u32 delta = (actual > expected) ? actual - expected :
1330                                                           expected - actual;
1331                         total_delta += delta;
1332                 }
1333
1334                 /* Ready to end the block? */
1335                 if (total_delta + (block_size / 1024) * stats->num_observations >=
1336                     stats->num_new_observations * 51 / 64 * stats->num_observations)
1337                         return true;
1338         }
1339
1340         for (int i = 0; i < NUM_OBSERVATION_TYPES; i++) {
1341                 stats->num_observations += stats->new_observations[i];
1342                 stats->observations[i] += stats->new_observations[i];
1343                 stats->new_observations[i] = 0;
1344         }
1345         stats->num_new_observations = 0;
1346         return false;
1347 }
1348
1349 static inline bool
1350 should_end_block(struct block_split_stats *stats,
1351                  const u8 *in_block_begin, const u8 *in_next, const u8 *in_end)
1352 {
1353         /* Ready to check block split statistics? */
1354         if (stats->num_new_observations < NUM_OBSERVATIONS_PER_BLOCK_CHECK ||
1355             in_next - in_block_begin < MIN_BLOCK_SIZE ||
1356             in_end - in_next < MIN_BLOCK_SIZE)
1357                 return false;
1358
1359         return do_end_block_check(stats, in_next - in_block_begin);
1360 }
1361
1362 /******************************************************************************/
1363
1364 /*
1365  * Given the minimum-cost path computed through the item graph for the current
1366  * block, walk the path and count how many of each symbol in each Huffman-coded
1367  * alphabet would be required to output the items (matches and literals) along
1368  * the path.
1369  *
1370  * Note that the path will be walked backwards (from the end of the block to the
1371  * beginning of the block), but this doesn't matter because this function only
1372  * computes frequencies.
1373  */
1374 static inline void
1375 lzx_tally_item_list(struct lzx_compressor *c, u32 block_size, bool is_16_bit)
1376 {
1377         u32 node_idx = block_size;
1378
1379         for (;;) {
1380                 u32 item;
1381                 u32 len;
1382                 u32 offset_data;
1383                 unsigned v;
1384                 unsigned offset_slot;
1385
1386                 /* Tally literals until either a match or the beginning of the
1387                  * block is reached.  */
1388                 for (;;) {
1389                         item = c->optimum_nodes[node_idx].item;
1390                         if (item & OPTIMUM_LEN_MASK)
1391                                 break;
1392                         c->freqs.main[item >> OPTIMUM_OFFSET_SHIFT]++;
1393                         node_idx--;
1394                 }
1395
1396                 if (item & OPTIMUM_EXTRA_FLAG) {
1397
1398                         if (node_idx == 0)
1399                                 break;
1400
1401                         /* Tally a rep0 match.  */
1402                         len = item & OPTIMUM_LEN_MASK;
1403                         v = len - LZX_MIN_MATCH_LEN;
1404                         if (v >= LZX_NUM_PRIMARY_LENS) {
1405                                 c->freqs.len[v - LZX_NUM_PRIMARY_LENS]++;
1406                                 v = LZX_NUM_PRIMARY_LENS;
1407                         }
1408                         c->freqs.main[LZX_NUM_CHARS + v]++;
1409
1410                         /* Tally a literal.  */
1411                         c->freqs.main[c->optimum_nodes[node_idx].extra_literal]++;
1412
1413                         item = c->optimum_nodes[node_idx].extra_match;
1414                         node_idx -= len + 1;
1415                 }
1416
1417                 len = item & OPTIMUM_LEN_MASK;
1418                 offset_data = item >> OPTIMUM_OFFSET_SHIFT;
1419
1420                 node_idx -= len;
1421
1422                 /* Tally a match.  */
1423
1424                 /* Tally the aligned offset symbol if needed.  */
1425                 if (offset_data >= 16)
1426                         c->freqs.aligned[offset_data & LZX_ALIGNED_OFFSET_BITMASK]++;
1427
1428                 /* Tally the length symbol if needed.  */
1429                 v = len - LZX_MIN_MATCH_LEN;;
1430                 if (v >= LZX_NUM_PRIMARY_LENS) {
1431                         c->freqs.len[v - LZX_NUM_PRIMARY_LENS]++;
1432                         v = LZX_NUM_PRIMARY_LENS;
1433                 }
1434
1435                 /* Tally the main symbol.  */
1436                 offset_slot = lzx_comp_get_offset_slot(c, offset_data, is_16_bit);
1437                 v += offset_slot * LZX_NUM_LEN_HEADERS;
1438                 c->freqs.main[LZX_NUM_CHARS + v]++;
1439         }
1440 }
1441
1442 /*
1443  * Like lzx_tally_item_list(), but this function also generates the list of
1444  * lzx_sequences for the minimum-cost path and writes it to c->chosen_sequences,
1445  * ready to be output to the bitstream after the Huffman codes are computed.
1446  * The lzx_sequences will be written to decreasing memory addresses as the path
1447  * is walked backwards, which means they will end up in the expected
1448  * first-to-last order.  The return value is the index in c->chosen_sequences at
1449  * which the lzx_sequences begin.
1450  */
1451 static inline u32
1452 lzx_record_item_list(struct lzx_compressor *c, u32 block_size, bool is_16_bit)
1453 {
1454         u32 node_idx = block_size;
1455         u32 seq_idx = ARRAY_LEN(c->chosen_sequences) - 1;
1456         u32 lit_start_node;
1457
1458         /* Special value to mark last sequence  */
1459         c->chosen_sequences[seq_idx].adjusted_offset_and_match_hdr = 0x80000000;
1460
1461         lit_start_node = node_idx;
1462         for (;;) {
1463                 u32 item;
1464                 u32 len;
1465                 u32 offset_data;
1466                 unsigned v;
1467                 unsigned offset_slot;
1468
1469                 /* Tally literals until either a match or the beginning of the
1470                  * block is reached.  */
1471                 for (;;) {
1472                         item = c->optimum_nodes[node_idx].item;
1473                         if (item & OPTIMUM_LEN_MASK)
1474                                 break;
1475                         c->freqs.main[item >> OPTIMUM_OFFSET_SHIFT]++;
1476                         node_idx--;
1477                 }
1478
1479                 if (item & OPTIMUM_EXTRA_FLAG) {
1480
1481                         if (node_idx == 0)
1482                                 break;
1483
1484                         /* Save the literal run length for the next sequence
1485                          * (the "previous sequence" when walking backwards).  */
1486                         len = item & OPTIMUM_LEN_MASK;
1487                         c->chosen_sequences[seq_idx].litrunlen = lit_start_node - node_idx;
1488                         seq_idx--;
1489                         lit_start_node = node_idx - len;
1490
1491                         /* Tally a rep0 match.  */
1492                         v = len - LZX_MIN_MATCH_LEN;
1493                         c->chosen_sequences[seq_idx].adjusted_length = v;
1494                         if (v >= LZX_NUM_PRIMARY_LENS) {
1495                                 c->freqs.len[v - LZX_NUM_PRIMARY_LENS]++;
1496                                 v = LZX_NUM_PRIMARY_LENS;
1497                         }
1498                         c->freqs.main[LZX_NUM_CHARS + v]++;
1499                         c->chosen_sequences[seq_idx].adjusted_offset_and_match_hdr = v;
1500
1501                         /* Tally a literal.  */
1502                         c->freqs.main[c->optimum_nodes[node_idx].extra_literal]++;
1503
1504                         item = c->optimum_nodes[node_idx].extra_match;
1505                         node_idx -= len + 1;
1506                 }
1507
1508                 len = item & OPTIMUM_LEN_MASK;
1509                 offset_data = item >> OPTIMUM_OFFSET_SHIFT;
1510
1511                 /* Save the literal run length for the next sequence (the
1512                  * "previous sequence" when walking backwards).  */
1513                 c->chosen_sequences[seq_idx--].litrunlen = lit_start_node - node_idx;
1514                 node_idx -= len;
1515                 lit_start_node = node_idx;
1516
1517                 /* Record a match.  */
1518
1519                 /* Tally the aligned offset symbol if needed.  */
1520                 if (offset_data >= 16)
1521                         c->freqs.aligned[offset_data & LZX_ALIGNED_OFFSET_BITMASK]++;
1522
1523                 /* Save the adjusted length.  */
1524                 v = len - LZX_MIN_MATCH_LEN;
1525                 c->chosen_sequences[seq_idx].adjusted_length = v;
1526
1527                 /* Tally the length symbol if needed.  */
1528                 if (v >= LZX_NUM_PRIMARY_LENS) {
1529                         c->freqs.len[v - LZX_NUM_PRIMARY_LENS]++;
1530                         v = LZX_NUM_PRIMARY_LENS;
1531                 }
1532
1533                 /* Tally the main symbol.  */
1534                 offset_slot = lzx_comp_get_offset_slot(c, offset_data, is_16_bit);
1535                 v += offset_slot * LZX_NUM_LEN_HEADERS;
1536                 c->freqs.main[LZX_NUM_CHARS + v]++;
1537
1538                 /* Save the adjusted offset and match header.  */
1539                 c->chosen_sequences[seq_idx].adjusted_offset_and_match_hdr =
1540                                 (offset_data << 9) | v;
1541         }
1542
1543         /* Save the literal run length for the first sequence.  */
1544         c->chosen_sequences[seq_idx].litrunlen = lit_start_node - node_idx;
1545
1546         /* Return the index in c->chosen_sequences at which the lzx_sequences
1547          * begin.  */
1548         return seq_idx;
1549 }
1550
1551 /*
1552  * Find an inexpensive path through the graph of possible match/literal choices
1553  * for the current block.  The nodes of the graph are
1554  * c->optimum_nodes[0...block_size].  They correspond directly to the bytes in
1555  * the current block, plus one extra node for end-of-block.  The edges of the
1556  * graph are matches and literals.  The goal is to find the minimum cost path
1557  * from 'c->optimum_nodes[0]' to 'c->optimum_nodes[block_size]'.
1558  *
1559  * The algorithm works forwards, starting at 'c->optimum_nodes[0]' and
1560  * proceeding forwards one node at a time.  At each node, a selection of matches
1561  * (len >= 2), as well as the literal byte (len = 1), is considered.  An item of
1562  * length 'len' provides a new path to reach the node 'len' bytes later.  If
1563  * such a path is the lowest cost found so far to reach that later node, then
1564  * that later node is updated with the new path.
1565  *
1566  * Note that although this algorithm is based on minimum cost path search, due
1567  * to various simplifying assumptions the result is not guaranteed to be the
1568  * true minimum cost, or "optimal", path over the graph of all valid LZX
1569  * representations of this block.
1570  *
1571  * Also, note that because of the presence of the recent offsets queue (which is
1572  * a type of adaptive state), the algorithm cannot work backwards and compute
1573  * "cost to end" instead of "cost to beginning".  Furthermore, the way the
1574  * algorithm handles this adaptive state in the "minimum cost" parse is actually
1575  * only an approximation.  It's possible for the globally optimal, minimum cost
1576  * path to contain a prefix, ending at a position, where that path prefix is
1577  * *not* the minimum cost path to that position.  This can happen if such a path
1578  * prefix results in a different adaptive state which results in lower costs
1579  * later.  The algorithm does not solve this problem; it only considers the
1580  * lowest cost to reach each individual position.
1581  */
1582 static inline struct lzx_lru_queue
1583 lzx_find_min_cost_path(struct lzx_compressor * const restrict c,
1584                        const u8 * const restrict block_begin,
1585                        const u32 block_size,
1586                        const struct lzx_lru_queue initial_queue,
1587                        bool is_16_bit)
1588 {
1589         struct lzx_optimum_node *cur_node = c->optimum_nodes;
1590         struct lz_match *cache_ptr = c->match_cache;
1591         const u8 *in_next = block_begin;
1592         const u8 * const block_end = block_begin + block_size;
1593
1594         /* Instead of storing the match offset LRU queues in the
1595          * 'lzx_optimum_node' structures, we save memory (and cache lines) by
1596          * storing them in a smaller array.  This works because the algorithm
1597          * only requires a limited history of the adaptive state.  Once a given
1598          * state is more than LZX_MAX_MATCH_LEN bytes behind the current node,
1599          * it is no longer needed.  */
1600         struct lzx_lru_queue queues[512];
1601
1602         STATIC_ASSERT(ARRAY_LEN(queues) >= LZX_MAX_MATCH_LEN + 1);
1603 #define QUEUE(in) (queues[(uintptr_t)(in) % ARRAY_LEN(queues)])
1604
1605         /* Initially, the cost to reach each node is "infinity".  */
1606         memset(c->optimum_nodes, 0xFF,
1607                (block_size + 1) * sizeof(c->optimum_nodes[0]));
1608
1609         QUEUE(block_begin) = initial_queue;
1610
1611         /* The following loop runs 'block_size' iterations, one per node.  */
1612         do {
1613                 unsigned num_matches;
1614                 unsigned literal;
1615                 u32 cost;
1616
1617                 /*
1618                  * A selection of matches for the block was already saved in
1619                  * memory so that we don't have to run the uncompressed data
1620                  * through the matchfinder on every optimization pass.  However,
1621                  * we still search for repeat offset matches during each
1622                  * optimization pass because we cannot predict the state of the
1623                  * recent offsets queue.  But as a heuristic, we don't bother
1624                  * searching for repeat offset matches if the general-purpose
1625                  * matchfinder failed to find any matches.
1626                  *
1627                  * Note that a match of length n at some offset implies there is
1628                  * also a match of length l for LZX_MIN_MATCH_LEN <= l <= n at
1629                  * that same offset.  In other words, we don't necessarily need
1630                  * to use the full length of a match.  The key heuristic that
1631                  * saves a significicant amount of time is that for each
1632                  * distinct length, we only consider the smallest offset for
1633                  * which that length is available.  This heuristic also applies
1634                  * to repeat offsets, which we order specially: R0 < R1 < R2 <
1635                  * any explicit offset.  Of course, this heuristic may be
1636                  * produce suboptimal results because offset slots in LZX are
1637                  * subject to entropy encoding, but in practice this is a useful
1638                  * heuristic.
1639                  */
1640
1641                 num_matches = cache_ptr->length;
1642                 cache_ptr++;
1643
1644                 if (num_matches) {
1645                         struct lz_match *end_matches = cache_ptr + num_matches;
1646                         unsigned next_len = LZX_MIN_MATCH_LEN;
1647                         unsigned max_len = min(block_end - in_next, LZX_MAX_MATCH_LEN);
1648                         const u8 *matchptr;
1649
1650                         /* Consider R0 match  */
1651                         matchptr = in_next - lzx_lru_queue_R0(QUEUE(in_next));
1652                         if (load_u16_unaligned(matchptr) != load_u16_unaligned(in_next))
1653                                 goto R0_done;
1654                         STATIC_ASSERT(LZX_MIN_MATCH_LEN == 2);
1655                         do {
1656                                 u32 cost = cur_node->cost +
1657                                            c->costs.match_cost[0][
1658                                                         next_len - LZX_MIN_MATCH_LEN];
1659                                 if (cost <= (cur_node + next_len)->cost) {
1660                                         (cur_node + next_len)->cost = cost;
1661                                         (cur_node + next_len)->item =
1662                                                 (0 << OPTIMUM_OFFSET_SHIFT) | next_len;
1663                                 }
1664                                 if (unlikely(++next_len > max_len)) {
1665                                         cache_ptr = end_matches;
1666                                         goto done_matches;
1667                                 }
1668                         } while (in_next[next_len - 1] == matchptr[next_len - 1]);
1669
1670                 R0_done:
1671
1672                         /* Consider R1 match  */
1673                         matchptr = in_next - lzx_lru_queue_R1(QUEUE(in_next));
1674                         if (load_u16_unaligned(matchptr) != load_u16_unaligned(in_next))
1675                                 goto R1_done;
1676                         if (matchptr[next_len - 1] != in_next[next_len - 1])
1677                                 goto R1_done;
1678                         for (unsigned len = 2; len < next_len - 1; len++)
1679                                 if (matchptr[len] != in_next[len])
1680                                         goto R1_done;
1681                         do {
1682                                 u32 cost = cur_node->cost +
1683                                            c->costs.match_cost[1][
1684                                                         next_len - LZX_MIN_MATCH_LEN];
1685                                 if (cost <= (cur_node + next_len)->cost) {
1686                                         (cur_node + next_len)->cost = cost;
1687                                         (cur_node + next_len)->item =
1688                                                 (1 << OPTIMUM_OFFSET_SHIFT) | next_len;
1689                                 }
1690                                 if (unlikely(++next_len > max_len)) {
1691                                         cache_ptr = end_matches;
1692                                         goto done_matches;
1693                                 }
1694                         } while (in_next[next_len - 1] == matchptr[next_len - 1]);
1695
1696                 R1_done:
1697
1698                         /* Consider R2 match  */
1699                         matchptr = in_next - lzx_lru_queue_R2(QUEUE(in_next));
1700                         if (load_u16_unaligned(matchptr) != load_u16_unaligned(in_next))
1701                                 goto R2_done;
1702                         if (matchptr[next_len - 1] != in_next[next_len - 1])
1703                                 goto R2_done;
1704                         for (unsigned len = 2; len < next_len - 1; len++)
1705                                 if (matchptr[len] != in_next[len])
1706                                         goto R2_done;
1707                         do {
1708                                 u32 cost = cur_node->cost +
1709                                            c->costs.match_cost[2][
1710                                                         next_len - LZX_MIN_MATCH_LEN];
1711                                 if (cost <= (cur_node + next_len)->cost) {
1712                                         (cur_node + next_len)->cost = cost;
1713                                         (cur_node + next_len)->item =
1714                                                 (2 << OPTIMUM_OFFSET_SHIFT) | next_len;
1715                                 }
1716                                 if (unlikely(++next_len > max_len)) {
1717                                         cache_ptr = end_matches;
1718                                         goto done_matches;
1719                                 }
1720                         } while (in_next[next_len - 1] == matchptr[next_len - 1]);
1721
1722                 R2_done:
1723
1724                         while (next_len > cache_ptr->length)
1725                                 if (++cache_ptr == end_matches)
1726                                         goto done_matches;
1727
1728                         /* Consider explicit offset matches  */
1729                         for (;;) {
1730                                 u32 offset = cache_ptr->offset;
1731                                 u32 offset_data = offset + LZX_OFFSET_ADJUSTMENT;
1732                                 unsigned offset_slot = lzx_comp_get_offset_slot(c, offset_data,
1733                                                                                 is_16_bit);
1734                                 u32 base_cost = cur_node->cost;
1735                                 u32 cost;
1736
1737                         #if LZX_CONSIDER_ALIGNED_COSTS
1738                                 if (offset_data >= 16)
1739                                         base_cost += c->costs.aligned[offset_data &
1740                                                                       LZX_ALIGNED_OFFSET_BITMASK];
1741                         #endif
1742                                 do {
1743                                         cost = base_cost +
1744                                                c->costs.match_cost[offset_slot][
1745                                                                 next_len - LZX_MIN_MATCH_LEN];
1746                                         if (cost < (cur_node + next_len)->cost) {
1747                                                 (cur_node + next_len)->cost = cost;
1748                                                 (cur_node + next_len)->item =
1749                                                         (offset_data << OPTIMUM_OFFSET_SHIFT) | next_len;
1750                                         }
1751                                 } while (++next_len <= cache_ptr->length);
1752
1753                                 if (++cache_ptr == end_matches) {
1754                                         /* Consider match + lit + rep0 */
1755                                         u32 remaining = block_end - (in_next + next_len);
1756                                         if (likely(remaining >= 2)) {
1757                                                 const u8 *strptr = in_next + next_len;
1758                                                 const u8 *matchptr = strptr - offset;
1759                                                 if (unlikely(load_u16_unaligned(strptr) == load_u16_unaligned(matchptr))) {
1760                                                         u32 rep0_len = lz_extend(strptr, matchptr, 2,
1761                                                                                  min(remaining, LZX_MAX_MATCH_LEN));
1762                                                         u8 lit = strptr[-1];
1763                                                         cost += c->costs.main[lit] +
1764                                                                 c->costs.match_cost[0][rep0_len - LZX_MIN_MATCH_LEN];
1765                                                         u32 total_len = next_len + rep0_len;
1766                                                         if (cost < (cur_node + total_len)->cost) {
1767                                                                 (cur_node + total_len)->cost = cost;
1768                                                                 (cur_node + total_len)->item =
1769                                                                         OPTIMUM_EXTRA_FLAG | rep0_len;
1770                                                                 (cur_node + total_len)->extra_literal = lit;
1771                                                                 (cur_node + total_len)->extra_match =
1772                                                                         (offset_data << OPTIMUM_OFFSET_SHIFT) | (next_len - 1);
1773                                                         }
1774                                                 }
1775                                         }
1776                                         break;
1777                                 }
1778                         }
1779                 }
1780
1781         done_matches:
1782
1783                 /* Consider coding a literal.
1784
1785                  * To avoid an extra branch, actually checking the preferability
1786                  * of coding the literal is integrated into the queue update
1787                  * code below.  */
1788                 literal = *in_next++;
1789                 cost = cur_node->cost + c->costs.main[literal];
1790
1791                 /* Advance to the next position.  */
1792                 cur_node++;
1793
1794                 /* The lowest-cost path to the current position is now known.
1795                  * Finalize the recent offsets queue that results from taking
1796                  * this lowest-cost path.  */
1797
1798                 if (cost <= cur_node->cost) {
1799                         /* Literal: queue remains unchanged.  */
1800                         cur_node->cost = cost;
1801                         cur_node->item = (u32)literal << OPTIMUM_OFFSET_SHIFT;
1802                         QUEUE(in_next) = QUEUE(in_next - 1);
1803                 } else {
1804                         /* Match: queue update is needed.  */
1805                         unsigned len = cur_node->item & OPTIMUM_LEN_MASK;
1806                         u32 offset_data = (cur_node->item &
1807                                            ~OPTIMUM_EXTRA_FLAG) >> OPTIMUM_OFFSET_SHIFT;
1808                         if (offset_data >= LZX_NUM_RECENT_OFFSETS) {
1809                                 /* Explicit offset match: insert offset at front  */
1810                                 QUEUE(in_next) =
1811                                         lzx_lru_queue_push(QUEUE(in_next - len),
1812                                                            offset_data - LZX_OFFSET_ADJUSTMENT);
1813                         } else if (cur_node->item & OPTIMUM_EXTRA_FLAG) {
1814                                 /* Explicit offset match, then literal, then
1815                                  * rep0 match: insert offset at front  */
1816                                 len += 1 + (cur_node->extra_match & OPTIMUM_LEN_MASK);
1817                                 QUEUE(in_next) =
1818                                         lzx_lru_queue_push(QUEUE(in_next - len),
1819                                                            (cur_node->extra_match >> OPTIMUM_OFFSET_SHIFT) -
1820                                                            LZX_OFFSET_ADJUSTMENT);
1821                         } else {
1822                                 /* Repeat offset match: swap offset to front  */
1823                                 QUEUE(in_next) =
1824                                         lzx_lru_queue_swap(QUEUE(in_next - len),
1825                                                            offset_data);
1826                         }
1827                 }
1828         } while (in_next != block_end);
1829
1830         /* Return the match offset queue at the end of the minimum cost path. */
1831         return QUEUE(block_end);
1832 }
1833
1834 /* Given the costs for the main and length codewords, compute 'match_costs'.  */
1835 static void
1836 lzx_compute_match_costs(struct lzx_compressor *c)
1837 {
1838         unsigned num_offset_slots = (c->num_main_syms - LZX_NUM_CHARS) /
1839                                         LZX_NUM_LEN_HEADERS;
1840         struct lzx_costs *costs = &c->costs;
1841
1842         for (unsigned offset_slot = 0; offset_slot < num_offset_slots; offset_slot++) {
1843
1844                 u32 extra_cost = (u32)lzx_extra_offset_bits[offset_slot] * LZX_BIT_COST;
1845                 unsigned main_symbol = LZX_NUM_CHARS + (offset_slot *
1846                                                         LZX_NUM_LEN_HEADERS);
1847                 unsigned i;
1848
1849         #if LZX_CONSIDER_ALIGNED_COSTS
1850                 if (offset_slot >= 8)
1851                         extra_cost -= LZX_NUM_ALIGNED_OFFSET_BITS * LZX_BIT_COST;
1852         #endif
1853
1854                 for (i = 0; i < LZX_NUM_PRIMARY_LENS; i++)
1855                         costs->match_cost[offset_slot][i] =
1856                                 costs->main[main_symbol++] + extra_cost;
1857
1858                 extra_cost += costs->main[main_symbol];
1859
1860                 for (; i < LZX_NUM_LENS; i++)
1861                         costs->match_cost[offset_slot][i] =
1862                                 costs->len[i - LZX_NUM_PRIMARY_LENS] + extra_cost;
1863         }
1864 }
1865
1866 /* Set default LZX Huffman symbol costs to bootstrap the iterative optimization
1867  * algorithm.  */
1868 static void
1869 lzx_set_default_costs(struct lzx_compressor *c, const u8 *block, u32 block_size)
1870 {
1871         u32 i;
1872         bool have_byte[256];
1873         unsigned num_used_bytes;
1874
1875         /* The costs below are hard coded to use a scaling factor of 64.  */
1876         STATIC_ASSERT(LZX_BIT_COST == 64);
1877
1878         /*
1879          * Heuristics:
1880          *
1881          * - Use smaller initial costs for literal symbols when the input buffer
1882          *   contains fewer distinct bytes.
1883          *
1884          * - Assume that match symbols are more costly than literal symbols.
1885          *
1886          * - Assume that length symbols for shorter lengths are less costly than
1887          *   length symbols for longer lengths.
1888          */
1889
1890         for (i = 0; i < 256; i++)
1891                 have_byte[i] = false;
1892
1893         for (i = 0; i < block_size; i++)
1894                 have_byte[block[i]] = true;
1895
1896         num_used_bytes = 0;
1897         for (i = 0; i < 256; i++)
1898                 num_used_bytes += have_byte[i];
1899
1900         for (i = 0; i < 256; i++)
1901                 c->costs.main[i] = 560 - (256 - num_used_bytes);
1902
1903         for (; i < c->num_main_syms; i++)
1904                 c->costs.main[i] = 680;
1905
1906         for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
1907                 c->costs.len[i] = 412 + i;
1908
1909 #if LZX_CONSIDER_ALIGNED_COSTS
1910         for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
1911                 c->costs.aligned[i] = LZX_NUM_ALIGNED_OFFSET_BITS * LZX_BIT_COST;
1912 #endif
1913
1914         lzx_compute_match_costs(c);
1915 }
1916
1917 /* Update the current cost model to reflect the computed Huffman codes.  */
1918 static void
1919 lzx_update_costs(struct lzx_compressor *c)
1920 {
1921         unsigned i;
1922         const struct lzx_lens *lens = &c->codes[c->codes_index].lens;
1923
1924         for (i = 0; i < c->num_main_syms; i++) {
1925                 c->costs.main[i] = (lens->main[i] ? lens->main[i] :
1926                                     MAIN_CODEWORD_LIMIT) * LZX_BIT_COST;
1927         }
1928
1929         for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++) {
1930                 c->costs.len[i] = (lens->len[i] ? lens->len[i] :
1931                                    LENGTH_CODEWORD_LIMIT) * LZX_BIT_COST;
1932         }
1933
1934 #if LZX_CONSIDER_ALIGNED_COSTS
1935         for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
1936                 c->costs.aligned[i] = (lens->aligned[i] ? lens->aligned[i] :
1937                                        ALIGNED_CODEWORD_LIMIT) * LZX_BIT_COST;
1938         }
1939 #endif
1940
1941         lzx_compute_match_costs(c);
1942 }
1943
1944 static inline struct lzx_lru_queue
1945 lzx_optimize_and_write_block(struct lzx_compressor * const restrict c,
1946                              struct lzx_output_bitstream * const restrict os,
1947                              const u8 * const restrict block_begin,
1948                              const u32 block_size,
1949                              const struct lzx_lru_queue initial_queue,
1950                              bool is_16_bit)
1951 {
1952         unsigned num_passes_remaining = c->num_optim_passes;
1953         struct lzx_lru_queue new_queue;
1954         u32 seq_idx;
1955
1956         /* The first optimization pass uses a default cost model.  Each
1957          * additional optimization pass uses a cost model derived from the
1958          * Huffman code computed in the previous pass.  */
1959
1960         lzx_set_default_costs(c, block_begin, block_size);
1961         lzx_reset_symbol_frequencies(c);
1962         do {
1963                 new_queue = lzx_find_min_cost_path(c, block_begin, block_size,
1964                                                    initial_queue, is_16_bit);
1965                 if (num_passes_remaining > 1) {
1966                         lzx_tally_item_list(c, block_size, is_16_bit);
1967                         lzx_make_huffman_codes(c);
1968                         lzx_update_costs(c);
1969                         lzx_reset_symbol_frequencies(c);
1970                 }
1971         } while (--num_passes_remaining);
1972
1973         seq_idx = lzx_record_item_list(c, block_size, is_16_bit);
1974         lzx_finish_block(c, os, block_begin, block_size, seq_idx);
1975         return new_queue;
1976 }
1977
1978 /*
1979  * This is the "near-optimal" LZX compressor.
1980  *
1981  * For each block, it performs a relatively thorough graph search to find an
1982  * inexpensive (in terms of compressed size) way to output that block.
1983  *
1984  * Note: there are actually many things this algorithm leaves on the table in
1985  * terms of compression ratio.  So although it may be "near-optimal", it is
1986  * certainly not "optimal".  The goal is not to produce the optimal compression
1987  * ratio, which for LZX is probably impossible within any practical amount of
1988  * time, but rather to produce a compression ratio significantly better than a
1989  * simpler "greedy" or "lazy" parse while still being relatively fast.
1990  */
1991 static inline void
1992 lzx_compress_near_optimal(struct lzx_compressor * restrict c,
1993                           const u8 * const restrict in_begin,
1994                           struct lzx_output_bitstream * restrict os,
1995                           bool is_16_bit)
1996 {
1997         const u8 *       in_next = in_begin;
1998         const u8 * const in_end  = in_begin + c->in_nbytes;
1999         u32 max_len = LZX_MAX_MATCH_LEN;
2000         u32 nice_len = min(c->nice_match_length, max_len);
2001         u32 next_hashes[2] = {};
2002         struct lzx_lru_queue queue;
2003
2004         CALL_BT_MF(is_16_bit, c, bt_matchfinder_init);
2005         lzx_lru_queue_init(&queue);
2006
2007         do {
2008                 /* Starting a new block  */
2009                 const u8 * const in_block_begin = in_next;
2010                 const u8 * const in_max_block_end =
2011                         in_next + min(SOFT_MAX_BLOCK_SIZE, in_end - in_next);
2012                 struct lz_match *cache_ptr = c->match_cache;
2013                 const u8 *next_search_pos = in_next;
2014                 const u8 *next_observation = in_next;
2015                 const u8 *next_pause_point = min(in_next + MIN_BLOCK_SIZE,
2016                                                  in_max_block_end - LZX_MAX_MATCH_LEN - 1);
2017
2018                 init_block_split_stats(&c->split_stats);
2019
2020                 /* Run the block through the matchfinder and cache the matches. */
2021         enter_mf_loop:
2022                 do {
2023                         if (in_next >= next_search_pos) {
2024                                 struct lz_match *lz_matchptr;
2025                                 u32 best_len;
2026
2027                                 lz_matchptr = CALL_BT_MF(is_16_bit, c,
2028                                                          bt_matchfinder_get_matches,
2029                                                          in_begin,
2030                                                          in_next - in_begin,
2031                                                          max_len,
2032                                                          nice_len,
2033                                                          c->max_search_depth,
2034                                                          next_hashes,
2035                                                          &best_len,
2036                                                          cache_ptr + 1);
2037                                 cache_ptr->length = lz_matchptr - (cache_ptr + 1);
2038                                 cache_ptr = lz_matchptr;
2039
2040                                 if (in_next >= next_observation) {
2041                                         best_len = cache_ptr[-1].length;
2042                                         if (best_len) {
2043                                                 observe_match(&c->split_stats, best_len);
2044                                                 next_observation = in_next + best_len;
2045                                         } else {
2046                                                 observe_literal(&c->split_stats, *in_next);
2047                                                 next_observation = in_next + 1;
2048                                         }
2049                                 }
2050                                 /*
2051                                  * If there was a very long match found, then don't
2052                                  * cache any matches for the bytes covered by that
2053                                  * match.  This avoids degenerate behavior when
2054                                  * compressing highly redundant data, where the number
2055                                  * of matches can be very large.
2056                                  *
2057                                  * This heuristic doesn't actually hurt the compression
2058                                  * ratio very much.  If there's a long match, then the
2059                                  * data must be highly compressible, so it doesn't
2060                                  * matter as much what we do.
2061                                  */
2062                                 if (best_len >= nice_len) {
2063                                         next_search_pos = in_next + best_len;
2064                                         next_observation = next_search_pos;
2065                                 }
2066                         } else {
2067                                 CALL_BT_MF(is_16_bit, c,
2068                                            bt_matchfinder_skip_position,
2069                                            in_begin,
2070                                            in_next - in_begin,
2071                                            nice_len,
2072                                            c->max_search_depth,
2073                                            next_hashes);
2074                                 cache_ptr->length = 0;
2075                                 cache_ptr++;
2076                         }
2077                 } while (++in_next < next_pause_point &&
2078                          likely(cache_ptr < &c->match_cache[LZX_CACHE_LENGTH]));
2079
2080                 if (unlikely(cache_ptr >= &c->match_cache[LZX_CACHE_LENGTH]))
2081                         goto flush_block;
2082
2083                 if (max_len > in_end - in_next) {
2084                         max_len = in_end - in_next;
2085                         nice_len = min(max_len, nice_len);
2086                         if (unlikely(max_len < BT_MATCHFINDER_REQUIRED_NBYTES)) {
2087                                 while (in_next != in_end) {
2088                                         in_next++;
2089                                         cache_ptr->length = 0;
2090                                         cache_ptr++;
2091                                 }
2092                         }
2093                 }
2094
2095                 if (in_next >= in_max_block_end)
2096                         goto flush_block;
2097
2098                 if (c->split_stats.num_new_observations >= NUM_OBSERVATIONS_PER_BLOCK_CHECK) {
2099                         if (do_end_block_check(&c->split_stats, in_next - in_block_begin))
2100                                 goto flush_block;
2101                         if (in_max_block_end - in_next <= MIN_BLOCK_SIZE)
2102                                 next_observation = in_max_block_end;
2103                 }
2104
2105                 next_pause_point = min(in_next +
2106                                        NUM_OBSERVATIONS_PER_BLOCK_CHECK * 2 -
2107                                        c->split_stats.num_new_observations,
2108                                        in_max_block_end - LZX_MAX_MATCH_LEN - 1);
2109                 goto enter_mf_loop;
2110
2111         flush_block:
2112                 /* We've finished running the block through the matchfinder.
2113                  * Now choose a match/literal sequence and write the block.  */
2114
2115                 queue = lzx_optimize_and_write_block(c, os, in_block_begin,
2116                                                      in_next - in_block_begin,
2117                                                      queue, is_16_bit);
2118         } while (in_next != in_end);
2119 }
2120
2121 static void
2122 lzx_compress_near_optimal_16(struct lzx_compressor *c,
2123                              struct lzx_output_bitstream *os)
2124 {
2125         lzx_compress_near_optimal(c, c->in_buffer, os, true);
2126 }
2127
2128 static void
2129 lzx_compress_near_optimal_32(struct lzx_compressor *c,
2130                              struct lzx_output_bitstream *os)
2131 {
2132         lzx_compress_near_optimal(c, c->in_buffer, os, false);
2133 }
2134
2135 /*
2136  * Given a pointer to the current byte sequence and the current list of recent
2137  * match offsets, find the longest repeat offset match.
2138  *
2139  * If no match of at least 2 bytes is found, then return 0.
2140  *
2141  * If a match of at least 2 bytes is found, then return its length and set
2142  * *rep_max_idx_ret to the index of its offset in @queue.
2143 */
2144 static unsigned
2145 lzx_find_longest_repeat_offset_match(const u8 * const in_next,
2146                                      const u32 bytes_remaining,
2147                                      const u32 recent_offsets[LZX_NUM_RECENT_OFFSETS],
2148                                      unsigned *rep_max_idx_ret)
2149 {
2150         STATIC_ASSERT(LZX_NUM_RECENT_OFFSETS == 3);
2151
2152         const unsigned max_len = min(bytes_remaining, LZX_MAX_MATCH_LEN);
2153         const u16 next_2_bytes = load_u16_unaligned(in_next);
2154         const u8 *matchptr;
2155         unsigned rep_max_len;
2156         unsigned rep_max_idx;
2157         unsigned rep_len;
2158
2159         matchptr = in_next - recent_offsets[0];
2160         if (load_u16_unaligned(matchptr) == next_2_bytes)
2161                 rep_max_len = lz_extend(in_next, matchptr, 2, max_len);
2162         else
2163                 rep_max_len = 0;
2164         rep_max_idx = 0;
2165
2166         matchptr = in_next - recent_offsets[1];
2167         if (load_u16_unaligned(matchptr) == next_2_bytes) {
2168                 rep_len = lz_extend(in_next, matchptr, 2, max_len);
2169                 if (rep_len > rep_max_len) {
2170                         rep_max_len = rep_len;
2171                         rep_max_idx = 1;
2172                 }
2173         }
2174
2175         matchptr = in_next - recent_offsets[2];
2176         if (load_u16_unaligned(matchptr) == next_2_bytes) {
2177                 rep_len = lz_extend(in_next, matchptr, 2, max_len);
2178                 if (rep_len > rep_max_len) {
2179                         rep_max_len = rep_len;
2180                         rep_max_idx = 2;
2181                 }
2182         }
2183
2184         *rep_max_idx_ret = rep_max_idx;
2185         return rep_max_len;
2186 }
2187
2188 /* Fast heuristic scoring for lazy parsing: how "good" is this match?  */
2189 static inline unsigned
2190 lzx_explicit_offset_match_score(unsigned len, u32 adjusted_offset)
2191 {
2192         unsigned score = len;
2193
2194         if (adjusted_offset < 4096)
2195                 score++;
2196
2197         if (adjusted_offset < 256)
2198                 score++;
2199
2200         return score;
2201 }
2202
2203 static inline unsigned
2204 lzx_repeat_offset_match_score(unsigned rep_len, unsigned rep_idx)
2205 {
2206         return rep_len + 3;
2207 }
2208
2209 /* This is the "lazy" LZX compressor.  */
2210 static inline void
2211 lzx_compress_lazy(struct lzx_compressor *c, struct lzx_output_bitstream *os,
2212                   bool is_16_bit)
2213 {
2214         const u8 * const in_begin = c->in_buffer;
2215         const u8 *       in_next = in_begin;
2216         const u8 * const in_end  = in_begin + c->in_nbytes;
2217         unsigned max_len = LZX_MAX_MATCH_LEN;
2218         unsigned nice_len = min(c->nice_match_length, max_len);
2219         STATIC_ASSERT(LZX_NUM_RECENT_OFFSETS == 3);
2220         u32 recent_offsets[3] = {1, 1, 1};
2221         u32 next_hashes[2] = {};
2222
2223         CALL_HC_MF(is_16_bit, c, hc_matchfinder_init);
2224
2225         do {
2226                 /* Starting a new block  */
2227
2228                 const u8 * const in_block_begin = in_next;
2229                 const u8 * const in_max_block_end =
2230                         in_next + min(SOFT_MAX_BLOCK_SIZE, in_end - in_next);
2231                 struct lzx_sequence *next_seq = c->chosen_sequences;
2232                 unsigned cur_len;
2233                 u32 cur_offset;
2234                 u32 cur_offset_data;
2235                 unsigned cur_score;
2236                 unsigned next_len;
2237                 u32 next_offset;
2238                 u32 next_offset_data;
2239                 unsigned next_score;
2240                 unsigned rep_max_len;
2241                 unsigned rep_max_idx;
2242                 unsigned rep_score;
2243                 unsigned skip_len;
2244                 u32 litrunlen = 0;
2245
2246                 lzx_reset_symbol_frequencies(c);
2247                 init_block_split_stats(&c->split_stats);
2248
2249                 do {
2250                         if (unlikely(max_len > in_end - in_next)) {
2251                                 max_len = in_end - in_next;
2252                                 nice_len = min(max_len, nice_len);
2253                         }
2254
2255                         /* Find the longest match at the current position.  */
2256
2257                         cur_len = CALL_HC_MF(is_16_bit, c,
2258                                              hc_matchfinder_longest_match,
2259                                              in_begin,
2260                                              in_next - in_begin,
2261                                              2,
2262                                              max_len,
2263                                              nice_len,
2264                                              c->max_search_depth,
2265                                              next_hashes,
2266                                              &cur_offset);
2267                         if (cur_len < 3 ||
2268                             (cur_len == 3 &&
2269                              cur_offset >= 8192 - LZX_OFFSET_ADJUSTMENT &&
2270                              cur_offset != recent_offsets[0] &&
2271                              cur_offset != recent_offsets[1] &&
2272                              cur_offset != recent_offsets[2]))
2273                         {
2274                                 /* There was no match found, or the only match found
2275                                  * was a distant length 3 match.  Output a literal.  */
2276                                 lzx_record_literal(c, *in_next, &litrunlen);
2277                                 observe_literal(&c->split_stats, *in_next);
2278                                 in_next++;
2279                                 continue;
2280                         }
2281
2282                         observe_match(&c->split_stats, cur_len);
2283
2284                         if (cur_offset == recent_offsets[0]) {
2285                                 in_next++;
2286                                 cur_offset_data = 0;
2287                                 skip_len = cur_len - 1;
2288                                 goto choose_cur_match;
2289                         }
2290
2291                         cur_offset_data = cur_offset + LZX_OFFSET_ADJUSTMENT;
2292                         cur_score = lzx_explicit_offset_match_score(cur_len, cur_offset_data);
2293
2294                         /* Consider a repeat offset match  */
2295                         rep_max_len = lzx_find_longest_repeat_offset_match(in_next,
2296                                                                            in_end - in_next,
2297                                                                            recent_offsets,
2298                                                                            &rep_max_idx);
2299                         in_next++;
2300
2301                         if (rep_max_len >= 3 &&
2302                             (rep_score = lzx_repeat_offset_match_score(rep_max_len,
2303                                                                        rep_max_idx)) >= cur_score)
2304                         {
2305                                 cur_len = rep_max_len;
2306                                 cur_offset_data = rep_max_idx;
2307                                 skip_len = rep_max_len - 1;
2308                                 goto choose_cur_match;
2309                         }
2310
2311                 have_cur_match:
2312
2313                         /* We have a match at the current position.  */
2314
2315                         /* If we have a very long match, choose it immediately.  */
2316                         if (cur_len >= nice_len) {
2317                                 skip_len = cur_len - 1;
2318                                 goto choose_cur_match;
2319                         }
2320
2321                         /* See if there's a better match at the next position.  */
2322
2323                         if (unlikely(max_len > in_end - in_next)) {
2324                                 max_len = in_end - in_next;
2325                                 nice_len = min(max_len, nice_len);
2326                         }
2327
2328                         next_len = CALL_HC_MF(is_16_bit, c,
2329                                               hc_matchfinder_longest_match,
2330                                               in_begin,
2331                                               in_next - in_begin,
2332                                               cur_len - 2,
2333                                               max_len,
2334                                               nice_len,
2335                                               c->max_search_depth / 2,
2336                                               next_hashes,
2337                                               &next_offset);
2338
2339                         if (next_len <= cur_len - 2) {
2340                                 in_next++;
2341                                 skip_len = cur_len - 2;
2342                                 goto choose_cur_match;
2343                         }
2344
2345                         next_offset_data = next_offset + LZX_OFFSET_ADJUSTMENT;
2346                         next_score = lzx_explicit_offset_match_score(next_len, next_offset_data);
2347
2348                         rep_max_len = lzx_find_longest_repeat_offset_match(in_next,
2349                                                                            in_end - in_next,
2350                                                                            recent_offsets,
2351                                                                            &rep_max_idx);
2352                         in_next++;
2353
2354                         if (rep_max_len >= 3 &&
2355                             (rep_score = lzx_repeat_offset_match_score(rep_max_len,
2356                                                                        rep_max_idx)) >= next_score)
2357                         {
2358
2359                                 if (rep_score > cur_score) {
2360                                         /* The next match is better, and it's a
2361                                          * repeat offset match.  */
2362                                         lzx_record_literal(c, *(in_next - 2),
2363                                                            &litrunlen);
2364                                         cur_len = rep_max_len;
2365                                         cur_offset_data = rep_max_idx;
2366                                         skip_len = cur_len - 1;
2367                                         goto choose_cur_match;
2368                                 }
2369                         } else {
2370                                 if (next_score > cur_score) {
2371                                         /* The next match is better, and it's an
2372                                          * explicit offset match.  */
2373                                         lzx_record_literal(c, *(in_next - 2),
2374                                                            &litrunlen);
2375                                         cur_len = next_len;
2376                                         cur_offset_data = next_offset_data;
2377                                         cur_score = next_score;
2378                                         goto have_cur_match;
2379                                 }
2380                         }
2381
2382                         /* The original match was better.  */
2383                         skip_len = cur_len - 2;
2384
2385                 choose_cur_match:
2386                         lzx_record_match(c, cur_len, cur_offset_data,
2387                                          recent_offsets, is_16_bit,
2388                                          &litrunlen, &next_seq);
2389                         in_next = CALL_HC_MF(is_16_bit, c,
2390                                              hc_matchfinder_skip_positions,
2391                                              in_begin,
2392                                              in_next - in_begin,
2393                                              in_end - in_begin,
2394                                              skip_len,
2395                                              next_hashes);
2396                 } while (in_next < in_max_block_end &&
2397                          !should_end_block(&c->split_stats, in_block_begin, in_next, in_end));
2398
2399                 lzx_finish_sequence(next_seq, litrunlen);
2400
2401                 lzx_finish_block(c, os, in_block_begin, in_next - in_block_begin, 0);
2402
2403         } while (in_next != in_end);
2404 }
2405
2406 static void
2407 lzx_compress_lazy_16(struct lzx_compressor *c, struct lzx_output_bitstream *os)
2408 {
2409         lzx_compress_lazy(c, os, true);
2410 }
2411
2412 static void
2413 lzx_compress_lazy_32(struct lzx_compressor *c, struct lzx_output_bitstream *os)
2414 {
2415         lzx_compress_lazy(c, os, false);
2416 }
2417
2418 /* Generate the acceleration tables for offset slots.  */
2419 static void
2420 lzx_init_offset_slot_tabs(struct lzx_compressor *c)
2421 {
2422         u32 adjusted_offset = 0;
2423         unsigned slot = 0;
2424
2425         /* slots [0, 29]  */
2426         for (; adjusted_offset < ARRAY_LEN(c->offset_slot_tab_1);
2427              adjusted_offset++)
2428         {
2429                 if (adjusted_offset >= lzx_offset_slot_base[slot + 1])
2430                         slot++;
2431                 c->offset_slot_tab_1[adjusted_offset] = slot;
2432         }
2433
2434         /* slots [30, 49]  */
2435         for (; adjusted_offset < LZX_MAX_WINDOW_SIZE;
2436              adjusted_offset += (u32)1 << 14)
2437         {
2438                 if (adjusted_offset >= lzx_offset_slot_base[slot + 1])
2439                         slot++;
2440                 c->offset_slot_tab_2[adjusted_offset >> 14] = slot;
2441         }
2442 }
2443
2444 static size_t
2445 lzx_get_compressor_size(size_t max_bufsize, unsigned compression_level)
2446 {
2447         if (compression_level <= LZX_MAX_FAST_LEVEL) {
2448                 if (lzx_is_16_bit(max_bufsize))
2449                         return offsetof(struct lzx_compressor, hc_mf_16) +
2450                                hc_matchfinder_size_16(max_bufsize);
2451                 else
2452                         return offsetof(struct lzx_compressor, hc_mf_32) +
2453                                hc_matchfinder_size_32(max_bufsize);
2454         } else {
2455                 if (lzx_is_16_bit(max_bufsize))
2456                         return offsetof(struct lzx_compressor, bt_mf_16) +
2457                                bt_matchfinder_size_16(max_bufsize);
2458                 else
2459                         return offsetof(struct lzx_compressor, bt_mf_32) +
2460                                bt_matchfinder_size_32(max_bufsize);
2461         }
2462 }
2463
2464 static u64
2465 lzx_get_needed_memory(size_t max_bufsize, unsigned compression_level,
2466                       bool destructive)
2467 {
2468         u64 size = 0;
2469
2470         if (max_bufsize > LZX_MAX_WINDOW_SIZE)
2471                 return 0;
2472
2473         size += lzx_get_compressor_size(max_bufsize, compression_level);
2474         if (!destructive)
2475                 size += max_bufsize; /* in_buffer */
2476         return size;
2477 }
2478
2479 static int
2480 lzx_create_compressor(size_t max_bufsize, unsigned compression_level,
2481                       bool destructive, void **c_ret)
2482 {
2483         unsigned window_order;
2484         struct lzx_compressor *c;
2485
2486         window_order = lzx_get_window_order(max_bufsize);
2487         if (window_order == 0)
2488                 return WIMLIB_ERR_INVALID_PARAM;
2489
2490         c = MALLOC(lzx_get_compressor_size(max_bufsize, compression_level));
2491         if (!c)
2492                 goto oom0;
2493
2494         c->destructive = destructive;
2495
2496         c->num_main_syms = lzx_get_num_main_syms(window_order);
2497         c->window_order = window_order;
2498
2499         if (!c->destructive) {
2500                 c->in_buffer = MALLOC(max_bufsize);
2501                 if (!c->in_buffer)
2502                         goto oom1;
2503         }
2504
2505         if (compression_level <= LZX_MAX_FAST_LEVEL) {
2506
2507                 /* Fast compression: Use lazy parsing.  */
2508
2509                 if (lzx_is_16_bit(max_bufsize))
2510                         c->impl = lzx_compress_lazy_16;
2511                 else
2512                         c->impl = lzx_compress_lazy_32;
2513                 c->max_search_depth = (60 * compression_level) / 20;
2514                 c->nice_match_length = (80 * compression_level) / 20;
2515
2516                 /* lzx_compress_lazy() needs max_search_depth >= 2 because it
2517                  * halves the max_search_depth when attempting a lazy match, and
2518                  * max_search_depth cannot be 0.  */
2519                 if (c->max_search_depth < 2)
2520                         c->max_search_depth = 2;
2521         } else {
2522
2523                 /* Normal / high compression: Use near-optimal parsing.  */
2524
2525                 if (lzx_is_16_bit(max_bufsize))
2526                         c->impl = lzx_compress_near_optimal_16;
2527                 else
2528                         c->impl = lzx_compress_near_optimal_32;
2529
2530                 /* Scale nice_match_length and max_search_depth with the
2531                  * compression level.  */
2532                 c->max_search_depth = (24 * compression_level) / 50;
2533                 c->nice_match_length = (48 * compression_level) / 50;
2534
2535                 /* Set a number of optimization passes appropriate for the
2536                  * compression level.  */
2537
2538                 c->num_optim_passes = 1;
2539
2540                 if (compression_level >= 45)
2541                         c->num_optim_passes++;
2542
2543                 /* Use more optimization passes for higher compression levels.
2544                  * But the more passes there are, the less they help --- so
2545                  * don't add them linearly.  */
2546                 if (compression_level >= 70) {
2547                         c->num_optim_passes++;
2548                         if (compression_level >= 100)
2549                                 c->num_optim_passes++;
2550                         if (compression_level >= 150)
2551                                 c->num_optim_passes++;
2552                         if (compression_level >= 200)
2553                                 c->num_optim_passes++;
2554                         if (compression_level >= 300)
2555                                 c->num_optim_passes++;
2556                 }
2557         }
2558
2559         /* max_search_depth == 0 is invalid.  */
2560         if (c->max_search_depth < 1)
2561                 c->max_search_depth = 1;
2562
2563         if (c->nice_match_length > LZX_MAX_MATCH_LEN)
2564                 c->nice_match_length = LZX_MAX_MATCH_LEN;
2565
2566         lzx_init_offset_slot_tabs(c);
2567         *c_ret = c;
2568         return 0;
2569
2570 oom1:
2571         FREE(c);
2572 oom0:
2573         return WIMLIB_ERR_NOMEM;
2574 }
2575
2576 static size_t
2577 lzx_compress(const void *restrict in, size_t in_nbytes,
2578              void *restrict out, size_t out_nbytes_avail, void *restrict _c)
2579 {
2580         struct lzx_compressor *c = _c;
2581         struct lzx_output_bitstream os;
2582         size_t result;
2583
2584         /* Don't bother trying to compress very small inputs.  */
2585         if (in_nbytes < 100)
2586                 return 0;
2587
2588         /* Copy the input data into the internal buffer and preprocess it.  */
2589         if (c->destructive)
2590                 c->in_buffer = (void *)in;
2591         else
2592                 memcpy(c->in_buffer, in, in_nbytes);
2593         c->in_nbytes = in_nbytes;
2594         lzx_preprocess(c->in_buffer, in_nbytes);
2595
2596         /* Initially, the previous Huffman codeword lengths are all zeroes.  */
2597         c->codes_index = 0;
2598         memset(&c->codes[1].lens, 0, sizeof(struct lzx_lens));
2599
2600         /* Initialize the output bitstream.  */
2601         lzx_init_output(&os, out, out_nbytes_avail);
2602
2603         /* Call the compression level-specific compress() function.  */
2604         (*c->impl)(c, &os);
2605
2606         /* Flush the output bitstream and return the compressed size or 0.  */
2607         result = lzx_flush_output(&os);
2608         if (!result && c->destructive)
2609                 lzx_postprocess(c->in_buffer, c->in_nbytes);
2610         return result;
2611 }
2612
2613 static void
2614 lzx_free_compressor(void *_c)
2615 {
2616         struct lzx_compressor *c = _c;
2617
2618         if (!c->destructive)
2619                 FREE(c->in_buffer);
2620         FREE(c);
2621 }
2622
2623 const struct compressor_ops lzx_compressor_ops = {
2624         .get_needed_memory  = lzx_get_needed_memory,
2625         .create_compressor  = lzx_create_compressor,
2626         .compress           = lzx_compress,
2627         .free_compressor    = lzx_free_compressor,
2628 };