include/wimlib/lz_repsearch.h \
include/wimlib/lz_suffix_array_utils.h \
include/wimlib/lzms.h \
+ include/wimlib/lzms_constants.h \
include/wimlib/lzx.h \
include/wimlib/lzx_constants.h \
include/wimlib/metadata.h \
Version 1.7.2-BETA:
- More compression performance improvements.
+ Made more improvements to the XPRESS, LZX, and LZMS compressors.
Fixes for setting short names on Windows.
implementation in WIMGAPI is included.
=============================================================================
- | Compression || wimlib (v1.7.2-BETA) | WIMGAPI (Windows 8.1) |
+ | Compression || wimlib (v1.7.2) | WIMGAPI (Windows 8.1) |
=============================================================================
- | None [1] || 361,404,682 in 3.4s | 361,364,994 in 4.2s |
- | XPRESS [2] || 138,398,747 in 4.2s | 140,468,002 in 5.1s |
- | XPRESS (slow) [3] || 135,284,950 in 10.3s | N/A |
- | LZX (quick) [4] || 131,861,913 in 4.7s | N/A |
- | LZX (normal) [5] || 126,855,247 in 14.9s | 127,301,774 in 18.2s |
- | LZX (slow) [6] || 126,245,561 in 32.1s | N/A |
- | LZMS (non-solid) [7] || 122,126,328 in 16.4s | N/A |
- | LZMS (solid) [8] || 93,795,440 in 47.4s | 88,789,426 in 96.8s |
- | "WIMBoot" [9] || 167,121,495 in 5.3s | 169,124,968 in 9.3s |
- | "WIMBoot" (slow) [10] || 165,219,818 in 9.4s | N/A |
+ | None [1] || 361,314,224 in 3.4s | 361,315,338 in 4.5s |
+ | XPRESS [2] || 138,380,918 in 4.2s | 140,457,487 in 6.3s |
+ | XPRESS (slow) [3] || 135,269,627 in 11.1s | N/A |
+ | LZX (quick) [4] || 130,332,081 in 4.7s | N/A |
+ | LZX (normal) [5] || 126,714,941 in 12.9s | 127,293,240 in 19.2s |
+ | LZX (slow) [6] || 126,150,725 in 23.4s | N/A |
+ | LZMS (non-solid) [7] || 121,909,750 in 13.3s | N/A |
+ | LZMS (solid) [8] || 93,650,894 in 44.4s | 88,771,192 in 109.2 |
+ | "WIMBoot" [9] || 167,095,369 in 6.4s | 169,109,650 in 10.7s |
+ | "WIMBoot" (slow) [10] || 165,195,668 in 9.5s | N/A |
=============================================================================
Notes:
The compression ratio provided by wimlib is also competitive with commonly used
archive formats. Below are file sizes that result when the Canterbury corpus is
-compressed with wimlib (v1.7.0), WIMGAPI (Windows 8), and some other
+compressed with wimlib (v1.7.2), WIMGAPI (Windows 8.1), and some other
formats/programs:
- =================================================
- | Format | Size (bytes) |
- =================================================
- | tar | 2,826,240 |
- | WIM (WIMGAPI, None) | 2,814,278 |
- | WIM (wimlib, None) | 2,813,856 |
- | WIM (WIMGAPI, XPRESS) | 825,410 |
- | WIM (wimlib, XPRESS) | 792,024 |
- | tar.gz (gzip, default) | 738,796 |
- | ZIP (Info-ZIP, default) | 735,334 |
- | tar.gz (gzip, -9) | 733,971 |
- | ZIP (Info-ZIP, -9) | 732,297 |
- | WIM (wimlib, LZX quick) | 722,196 |
- | WIM (WIMGAPI, LZX) | 651,766 |
- | WIM (wimlib, LZX normal) | 649,204 |
- | WIM (wimlib, LZX slow) | 639,618 |
- | WIM (wimlib, LZMS non-solid) | 592,136 |
- | tar.bz2 (bzip, default) | 565,008 |
- | tar.bz2 (bzip, -9) | 565,008 |
- | WIM (wimlib, LZMS solid) | 525,270 |
- | WIM (wimlib, LZMS solid, slow) | 521,700 |
- | WIM (WIMGAPI, LZMS solid) | 521,232 |
- | tar.xz (xz, default) | 486,916 |
- | tar.xz (xz, -9) | 486,904 |
- | 7z (7-zip, default) | 484,700 |
- | 7z (7-zip, -9) | 483,239 |
- =================================================
+ =====================================================
+ | Format | Size (bytes) |
+ =====================================================
+ | tar | 2,826,240 |
+ | WIM (WIMGAPI, None) | 2,814,254 |
+ | WIM (wimlib, None) | 2,814,216 |
+ | WIM (WIMGAPI, XPRESS) | 825,536 |
+ | WIM (wimlib, XPRESS) | 790,016 |
+ | tar.gz (gzip, default) | 738,796 |
+ | ZIP (Info-ZIP, default) | 735,334 |
+ | tar.gz (gzip, -9) | 733,971 |
+ | ZIP (Info-ZIP, -9) | 732,297 |
+ | WIM (wimlib, LZX quick) | 704,006 |
+ | WIM (WIMGAPI, LZX) | 651,866 |
+ | WIM (wimlib, LZX normal) | 632,614 |
+ | WIM (wimlib, LZX slow) | 625,050 |
+ | WIM (wimlib, LZMS non-solid) | 581,960 |
+ | tar.bz2 (bzip, default) | 565,008 |
+ | tar.bz2 (bzip, -9) | 565,008 |
+ | WIM (wimlib, LZX solid) | 532,700 |
+ | WIM (wimlib, LZMS solid) | 525,990 |
+ | WIM (wimlib, LZX solid, slow) | 525,140 |
+ | WIM (wimlib, LZMS solid, slow) | 523,728 |
+ | WIM (WIMGAPI, LZMS solid) | 521,366 |
+ | WIM (wimlib, LZX solid, very slow) | 520,832 |
+ | tar.xz (xz, default) | 486,916 |
+ | tar.xz (xz, -9) | 486,904 |
+ | 7z (7-zip, default) | 484,700 |
+ | 7z (7-zip, -9) | 483,239 |
+ =====================================================
Note: WIM does even better on directory trees containing duplicate files, which
the Canterbury corpus doesn't have.
#define _LZ_REPSEARCH_H
#include "wimlib/lz_extend.h"
-#include "wimlib/util.h"
extern u32
lz_extend_repmatch(const u8 *strptr, const u8 *matchptr, u32 max_len);
/*
- * Find the longest repeat offset match.
+ * Given a pointer to the current string and a queue of 3 recent match offsets,
+ * find the longest repeat offset match.
*
* If no match of at least 2 bytes is found, then return 0.
*
* If a match of at least 2 bytes is found, then return its length and set
- * *slot_ret to the index of its offset in @queue.
- */
+ * *rep_max_idx_ret to the index of its offset in @recent_offsets.
+*/
static inline u32
-lz_repsearch(const u8 * const strptr, const u32 bytes_remaining,
- const u32 max_match_len, const u32 repeat_offsets[],
- const unsigned num_repeat_offsets, unsigned *slot_ret)
+lz_repsearch3(const u8 * const strptr, const u32 max_len,
+ const u32 recent_offsets[3], unsigned *rep_max_idx_ret)
{
- u32 best_len = 0;
-
- if (likely(bytes_remaining >= 2)) {
- const u32 max_len = min(max_match_len, bytes_remaining);
- const u16 str = *(const u16 *)strptr;
-
- for (unsigned i = 0; i < num_repeat_offsets; i++) {
- const u8 * const matchptr = strptr - repeat_offsets[i];
-
- /* Check the first two bytes. If they match, then
- * extend the match to its full length. */
- if (*(const u16 *)matchptr == str) {
- const u32 len = lz_extend_repmatch(strptr, matchptr, max_len);
- if (len > best_len) {
- best_len = len;
- *slot_ret = i;
- }
- }
+ unsigned rep_max_idx;
+ u32 rep_len;
+ u32 rep_max_len;
+ const u16 str = *(const u16 *)strptr;
+ const u8 *matchptr;
+
+ matchptr = strptr - recent_offsets[0];
+ if (*(const u16 *)matchptr == str)
+ rep_max_len = lz_extend_repmatch(strptr, matchptr, max_len);
+ else
+ rep_max_len = 0;
+ rep_max_idx = 0;
+
+ matchptr = strptr - recent_offsets[1];
+ if (*(const u16 *)matchptr == str) {
+ rep_len = lz_extend_repmatch(strptr, matchptr, max_len);
+ if (rep_len > rep_max_len) {
+ rep_max_len = rep_len;
+ rep_max_idx = 1;
}
}
- return best_len;
+
+ matchptr = strptr - recent_offsets[2];
+ if (*(const u16 *)matchptr == str) {
+ rep_len = lz_extend_repmatch(strptr, matchptr, max_len);
+ if (rep_len > rep_max_len) {
+ rep_max_len = rep_len;
+ rep_max_idx = 2;
+ }
+ }
+
+ *rep_max_idx_ret = rep_max_idx;
+ return rep_max_len;
}
#endif /* _LZ_REPSEARCH_H */
+/*
+ * lzms.h
+ *
+ * Declarations shared between LZMS compression and decompression.
+ */
+
#ifndef _WIMLIB_LZMS_H
#define _WIMLIB_LZMS_H
-/* Constants for the LZMS data compression format. See the comments in
- * lzms-decompress.c for more information about this format. */
+#include "wimlib/lzms_constants.h"
+#include "wimlib/util.h"
//#define ENABLE_LZMS_DEBUG
#ifdef ENABLE_LZMS_DEBUG
# define LZMS_ASSERT(...)
#endif
-#define LZMS_NUM_RECENT_OFFSETS 3
-#define LZMS_MAX_INIT_RECENT_OFFSET (LZMS_NUM_RECENT_OFFSETS + 1)
-
-#define LZMS_PROBABILITY_BITS 6
-#define LZMS_PROBABILITY_MAX (1U << LZMS_PROBABILITY_BITS)
-#define LZMS_INITIAL_PROBABILITY 48
-#define LZMS_INITIAL_RECENT_BITS 0x0000000055555555ULL
-
-#define LZMS_NUM_MAIN_STATES 16
-#define LZMS_NUM_MATCH_STATES 32
-#define LZMS_NUM_LZ_MATCH_STATES 64
-#define LZMS_NUM_LZ_REPEAT_MATCH_STATES 64
-#define LZMS_NUM_DELTA_MATCH_STATES 64
-#define LZMS_NUM_DELTA_REPEAT_MATCH_STATES 64
-#define LZMS_MAX_NUM_STATES 64
-
-#define LZMS_NUM_LITERAL_SYMS 256
-#define LZMS_NUM_LEN_SYMS 54
-#define LZMS_NUM_DELTA_POWER_SYMS 8
-#define LZMS_MAX_NUM_OFFSET_SYMS 799
-#define LZMS_MAX_NUM_SYMS 799
-
-#define LZMS_MAX_CODEWORD_LEN 15
-
-#define LZMS_LITERAL_CODE_REBUILD_FREQ 1024
-#define LZMS_LZ_OFFSET_CODE_REBUILD_FREQ 1024
-#define LZMS_LENGTH_CODE_REBUILD_FREQ 512
-#define LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ 1024
-#define LZMS_DELTA_POWER_CODE_REBUILD_FREQ 512
-
-#define LZMS_X86_MAX_GOOD_TARGET_OFFSET 65535
-#define LZMS_X86_MAX_TRANSLATION_OFFSET 1023
-
-/* Code shared between the LZMS decompressor and compressor. */
-
-#include <wimlib/util.h>
-
extern void
lzms_x86_filter(u8 data[], s32 size, s32 last_target_usages[], bool undo);
/* Number of zeroes in the most recent LZMS_PROBABILITY_MAX bits that
* have been coded using this probability entry. This is a cached value
- * because it can be computed as LZMS_PROBABILITY_MAX minus the Hamming
- * weight of the low-order LZMS_PROBABILITY_MAX bits of @recent_bits.
- * */
+ * because it can be computed as LZMS_PROBABILITY_MAX minus the number
+ * of bits set in the low-order LZMS_PROBABILITY_MAX bits of
+ * @recent_bits. */
u32 num_recent_zero_bits;
/* The most recent LZMS_PROBABILITY_MAX bits that have been coded using
struct lzms_delta_lru_queues delta;
};
-extern u32 lzms_position_slot_base[LZMS_MAX_NUM_OFFSET_SYMS + 1];
-
-extern u8 lzms_extra_position_bits[LZMS_MAX_NUM_OFFSET_SYMS];
-
-extern u16 lzms_order_to_position_slot_bounds[30][2];
+/* Offset slot tables */
+extern u32 lzms_offset_slot_base[LZMS_MAX_NUM_OFFSET_SYMS + 1];
+extern u8 lzms_extra_offset_bits[LZMS_MAX_NUM_OFFSET_SYMS];
+/* Length slot tables */
extern u32 lzms_length_slot_base[LZMS_NUM_LEN_SYMS + 1];
-
-#define LZMS_NUM_FAST_LENGTHS 1024
-extern u8 lzms_length_slot_fast[LZMS_NUM_FAST_LENGTHS];
-
extern u8 lzms_extra_length_bits[LZMS_NUM_LEN_SYMS];
extern void
lzms_init_slots(void);
-/* Return the slot for the specified value. */
-extern u32
-lzms_get_slot(u32 value, const u32 slot_base_tab[], u32 num_slots);
+extern unsigned
+lzms_get_slot(u32 value, const u32 slot_base_tab[], unsigned num_slots);
-static inline u32
-lzms_get_position_slot(u32 position)
+/* Return the offset slot for the specified offset */
+static inline unsigned
+lzms_get_offset_slot(u32 offset)
{
- u32 order = bsr32(position);
- u32 l = lzms_order_to_position_slot_bounds[order][0];
- u32 r = lzms_order_to_position_slot_bounds[order][1];
-
- for (;;) {
- u32 slot = (l + r) / 2;
- if (position >= lzms_position_slot_base[slot]) {
- if (position < lzms_position_slot_base[slot + 1])
- return slot;
- else
- l = slot + 1;
- } else {
- r = slot - 1;
- }
- }
+ return lzms_get_slot(offset, lzms_offset_slot_base, LZMS_MAX_NUM_OFFSET_SYMS);
}
-static inline u32
+/* Return the length slot for the specified length */
+static inline unsigned
lzms_get_length_slot(u32 length)
{
- if (likely(length < LZMS_NUM_FAST_LENGTHS))
- return lzms_length_slot_fast[length];
- else
- return lzms_get_slot(length, lzms_length_slot_base,
- LZMS_NUM_LEN_SYMS);
+ return lzms_get_slot(length, lzms_length_slot_base, LZMS_NUM_LEN_SYMS);
}
+extern void
+lzms_init_lz_lru_queues(struct lzms_lz_lru_queues *lz);
+
+extern void
+lzms_init_delta_lru_queues(struct lzms_delta_lru_queues *delta);
+
extern void
lzms_init_lru_queues(struct lzms_lru_queues *lru);
extern void
-lzms_update_lz_lru_queues(struct lzms_lz_lru_queues *lz);
+lzms_update_lz_lru_queue(struct lzms_lz_lru_queues *lz);
extern void
lzms_update_delta_lru_queues(struct lzms_delta_lru_queues *delta);
extern void
lzms_update_lru_queues(struct lzms_lru_queues *lru);
+/* Given a decoded bit, update the probability entry. */
+static inline void
+lzms_update_probability_entry(struct lzms_probability_entry *prob_entry, int bit)
+{
+ s32 delta_zero_bits;
+
+ BUILD_BUG_ON(LZMS_PROBABILITY_MAX != sizeof(prob_entry->recent_bits) * 8);
+
+ delta_zero_bits = (s32)(prob_entry->recent_bits >> (LZMS_PROBABILITY_MAX - 1)) - bit;
+
+ prob_entry->num_recent_zero_bits += delta_zero_bits;
+ prob_entry->recent_bits <<= 1;
+ prob_entry->recent_bits |= bit;
+}
+
+/* Given a probability entry, return the chance out of LZMS_PROBABILITY_MAX that
+ * the next decoded bit will be a 0. */
+static inline u32
+lzms_get_probability(const struct lzms_probability_entry *prob_entry)
+{
+ u32 prob;
+
+ prob = prob_entry->num_recent_zero_bits;
+
+ /* 0% and 100% probabilities aren't allowed. */
+ if (prob == 0)
+ prob++;
+ if (prob == LZMS_PROBABILITY_MAX)
+ prob--;
+ return prob;
+}
+
#endif /* _WIMLIB_LZMS_H */
--- /dev/null
+/*
+ * lzms_constants.h
+ *
+ * Constants for the LZMS compression format.
+ */
+
+#ifndef _LZMS_CONSTANTS_H
+#define _LZMS_CONSTANTS_H
+
+#define LZMS_NUM_RECENT_OFFSETS 3
+#define LZMS_MAX_INIT_RECENT_OFFSET (LZMS_NUM_RECENT_OFFSETS + 1)
+#define LZMS_OFFSET_OFFSET (LZMS_NUM_RECENT_OFFSETS - 1)
+
+#define LZMS_PROBABILITY_BITS 6
+#define LZMS_PROBABILITY_MAX (1U << LZMS_PROBABILITY_BITS)
+#define LZMS_INITIAL_PROBABILITY 48
+#define LZMS_INITIAL_RECENT_BITS 0x0000000055555555ULL
+
+#define LZMS_NUM_MAIN_STATES 16
+#define LZMS_NUM_MATCH_STATES 32
+#define LZMS_NUM_LZ_MATCH_STATES 64
+#define LZMS_NUM_LZ_REPEAT_MATCH_STATES 64
+#define LZMS_NUM_DELTA_MATCH_STATES 64
+#define LZMS_NUM_DELTA_REPEAT_MATCH_STATES 64
+#define LZMS_MAX_NUM_STATES 64
+
+#define LZMS_NUM_LITERAL_SYMS 256
+#define LZMS_NUM_LEN_SYMS 54
+#define LZMS_NUM_DELTA_POWER_SYMS 8
+#define LZMS_MAX_NUM_OFFSET_SYMS 799
+#define LZMS_MAX_NUM_SYMS 799
+
+#define LZMS_MAX_CODEWORD_LEN 15
+
+#define LZMS_LITERAL_CODE_REBUILD_FREQ 1024
+#define LZMS_LZ_OFFSET_CODE_REBUILD_FREQ 1024
+#define LZMS_LENGTH_CODE_REBUILD_FREQ 512
+#define LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ 1024
+#define LZMS_DELTA_POWER_CODE_REBUILD_FREQ 512
+
+#define LZMS_X86_MAX_GOOD_TARGET_OFFSET 65535
+#define LZMS_X86_MAX_TRANSLATION_OFFSET 1023
+
+#endif /* _LZMS_CONSTANTS_H */
# define LZX_ASSERT(...)
#endif
-#define USE_LZX_EXTRA_BITS_ARRAY
+extern const u32 lzx_offset_slot_base[LZX_MAX_OFFSET_SLOTS];
-#ifdef USE_LZX_EXTRA_BITS_ARRAY
-extern const u8 lzx_extra_bits[LZX_MAX_POSITION_SLOTS];
-#endif
-
-/* Given the number of an LZX position slot, return the number of extra bits that
- * are needed to encode the match offset. */
-static inline unsigned
-lzx_get_num_extra_bits(unsigned position_slot)
-{
-#ifdef USE_LZX_EXTRA_BITS_ARRAY
- /* Use a table */
- return lzx_extra_bits[position_slot];
-#else
- /* Calculate directly using a shift and subtraction. */
- LZX_ASSERT(position_slot >= 2 && position_slot <= 37);
- return (position_slot >> 1) - 1;
-#endif
-}
-
-extern const u32 lzx_position_base[LZX_MAX_POSITION_SLOTS];
+extern const u8 lzx_extra_offset_bits[LZX_MAX_OFFSET_SLOTS];
-/* Returns the LZX position slot that corresponds to a given formatted offset.
+/* Returns the LZX offset slot that corresponds to a given adjusted offset.
*
* Logically, this returns the smallest i such that
- * formatted_offset >= lzx_position_base[i].
+ * adjusted_offset >= lzx_offset_slot_base[i].
*
* The actual implementation below takes advantage of the regularity of the
- * numbers in the lzx_position_base array to calculate the slot directly from
- * the formatted offset without actually looking at the array.
+ * numbers in the lzx_offset_slot_base array to calculate the slot directly from
+ * the adjusted offset without actually looking at the array.
*/
static inline unsigned
-lzx_get_position_slot_raw(u32 formatted_offset)
+lzx_get_offset_slot_raw(u32 adjusted_offset)
{
- if (formatted_offset >= 196608) {
- return (formatted_offset >> 17) + 34;
+ if (adjusted_offset >= 196608) {
+ return (adjusted_offset >> 17) + 34;
} else {
- LZX_ASSERT(2 <= formatted_offset && formatted_offset < 655360);
- unsigned mssb_idx = bsr32(formatted_offset);
+ LZX_ASSERT(2 <= adjusted_offset && adjusted_offset < 655360);
+ unsigned mssb_idx = bsr32(adjusted_offset);
return (mssb_idx << 1) |
- ((formatted_offset >> (mssb_idx - 1)) & 1);
+ ((adjusted_offset >> (mssb_idx - 1)) & 1);
}
}
/* Least-recently used queue for match offsets. */
struct lzx_lru_queue {
u32 R[LZX_NUM_RECENT_OFFSETS];
-}
-#ifdef __x86_64__
-_aligned_attribute(8) /* Improves performance of LZX compression by 1% - 2%;
- specifically, this speeds up
- lzx_choose_near_optimal_item(). */
-#endif
-;
+} _aligned_attribute(sizeof(unsigned long));
/* Initialize the LZX least-recently-used match offset queue at the beginning of
* a new window for either decompression or compression. */
* + LZX_MIN_MATCH_LEN, and a length symbol follows. */
#define LZX_NUM_PRIMARY_LENS 7
-/* Maximum number of position slots. The actual number of position slots will
+/* Maximum number of offset slots. The actual number of offset slots will
* depend on the window size. */
-#define LZX_MAX_POSITION_SLOTS 51
+#define LZX_MAX_OFFSET_SLOTS 51
#define LZX_MIN_WINDOW_ORDER 15
#define LZX_MAX_WINDOW_ORDER 21
/* Maximum number of symbols in the main code. The actual number of symbols in
* the main code will depend on the window size. */
-#define LZX_MAINCODE_MAX_NUM_SYMBOLS (LZX_NUM_CHARS + (LZX_MAX_POSITION_SLOTS << 3))
+#define LZX_MAINCODE_MAX_NUM_SYMBOLS (LZX_NUM_CHARS + (LZX_MAX_OFFSET_SLOTS << 3))
/* Number of symbols in the length code. */
#define LZX_LENCODE_NUM_SYMBOLS 249
*/
/*
- * Copyright (C) 2013 Eric Biggers
+ * Copyright (C) 2013, 2014 Eric Biggers
*
* This file is part of wimlib, a library for working with WIM files.
*
* Constant tables initialized by lzms_compute_slots(): *
***************************************************************/
-/* Table: position slot => position slot base value */
-u32 lzms_position_slot_base[LZMS_MAX_NUM_OFFSET_SYMS + 1];
+/* Table: offset slot => offset slot base value */
+u32 lzms_offset_slot_base[LZMS_MAX_NUM_OFFSET_SYMS + 1];
-/* Table: position slot => number of extra position bits */
-u8 lzms_extra_position_bits[LZMS_MAX_NUM_OFFSET_SYMS];
-
-/* Table: log2(position) => [lower bound, upper bound] on position slot */
-u16 lzms_order_to_position_slot_bounds[30][2];
+/* Table: offset slot => number of extra offset bits */
+u8 lzms_extra_offset_bits[LZMS_MAX_NUM_OFFSET_SYMS];
/* Table: length slot => length slot base value */
u32 lzms_length_slot_base[LZMS_NUM_LEN_SYMS + 1];
/* Table: length slot => number of extra length bits */
u8 lzms_extra_length_bits[LZMS_NUM_LEN_SYMS];
-/* Table: length (< LZMS_NUM_FAST_LENGTHS only) => length slot */
-u8 lzms_length_slot_fast[LZMS_NUM_FAST_LENGTHS];
-
-u32
+unsigned
lzms_get_slot(u32 value, const u32 slot_base_tab[], unsigned num_slots)
{
- u32 l = 0;
- u32 r = num_slots - 1;
+ unsigned l = 0;
+ unsigned r = num_slots - 1;
for (;;) {
LZMS_ASSERT(r >= l);
- u32 slot = (l + r) / 2;
+ unsigned slot = (l + r) / 2;
if (value >= slot_base_tab[slot]) {
if (value < slot_base_tab[slot + 1])
return slot;
lzms_decode_delta_rle_slot_bases(u32 slot_bases[],
u8 extra_bits[],
const u8 delta_run_lens[],
- u32 num_run_lens,
+ unsigned num_run_lens,
u32 final,
- u32 expected_num_slots)
+ unsigned expected_num_slots)
{
- u32 order = 0;
+ unsigned order = 0;
u32 delta = 1;
u32 base = 0;
- u32 slot = 0;
- for (u32 i = 0; i < num_run_lens; i++) {
- u8 run_len = delta_run_lens[i];
+ unsigned slot = 0;
+ for (unsigned i = 0; i < num_run_lens; i++) {
+ unsigned run_len = delta_run_lens[i];
while (run_len--) {
base += delta;
if (slot > 0)
extra_bits[slot - 1] = bsr32(slot_bases[slot] - slot_bases[slot - 1]);
}
-/* Initialize the global position and length slot tables. */
+/* Initialize the global offset and length slot tables. */
static void
lzms_compute_slots(void)
{
- /* If an explicit formula that maps LZMS position and length slots to
- * slot bases exists, then it could be used here. But until one is
- * found, the following code fills in the slots using the observation
- * that the increase from one slot base to the next is an increasing
- * power of 2. Therefore, run-length encoding of the delta of adjacent
- * entries can be used. */
- static const u8 position_slot_delta_run_lens[] = {
+ /* If an explicit formula that maps LZMS offset and length slots to slot
+ * bases exists, then it could be used here. But until one is found,
+ * the following code fills in the slots using the observation that the
+ * increase from one slot base to the next is an increasing power of 2.
+ * Therefore, run-length encoding of the delta of adjacent entries can
+ * be used. */
+ static const u8 offset_slot_delta_run_lens[] = {
9, 0, 9, 7, 10, 15, 15, 20,
20, 30, 33, 40, 42, 45, 60, 73,
80, 85, 95, 105, 6,
1,
};
- /* Position slots */
- lzms_decode_delta_rle_slot_bases(lzms_position_slot_base,
- lzms_extra_position_bits,
- position_slot_delta_run_lens,
- ARRAY_LEN(position_slot_delta_run_lens),
+ /* Offset slots */
+ lzms_decode_delta_rle_slot_bases(lzms_offset_slot_base,
+ lzms_extra_offset_bits,
+ offset_slot_delta_run_lens,
+ ARRAY_LEN(offset_slot_delta_run_lens),
0x7fffffff,
LZMS_MAX_NUM_OFFSET_SYMS);
- for (u32 order = 0; order < 30; order++) {
- lzms_order_to_position_slot_bounds[order][0] =
- lzms_get_slot(1U << order, lzms_position_slot_base,
- LZMS_MAX_NUM_OFFSET_SYMS);
- lzms_order_to_position_slot_bounds[order][1] =
- lzms_get_slot((1U << (order + 1)) - 1, lzms_position_slot_base,
- LZMS_MAX_NUM_OFFSET_SYMS);
- }
-
/* Length slots */
lzms_decode_delta_rle_slot_bases(lzms_length_slot_base,
lzms_extra_length_bits,
ARRAY_LEN(length_slot_delta_run_lens),
0x400108ab,
LZMS_NUM_LEN_SYMS);
-
- /* Create table mapping short lengths to length slots. */
- for (u32 slot = 0, i = 0; i < LZMS_NUM_FAST_LENGTHS; i++) {
- if (i >= lzms_length_slot_base[slot + 1])
- slot++;
- lzms_length_slot_fast[i] = slot;
- }
}
-/* Initialize the global position and length slot tables if not done so already.
- * */
+/* Initialize the global offset and length slot tables if not already done. */
void
lzms_init_slots(void)
{
}
}
-static void
+void
lzms_init_lz_lru_queues(struct lzms_lz_lru_queues *lz)
{
/* Recent offsets for LZ matches */
lz->upcoming_offset = 0;
}
-static void
+void
lzms_init_delta_lru_queues(struct lzms_delta_lru_queues *delta)
{
/* Recent offsets and powers for LZ matches */
}
void
-lzms_update_lz_lru_queues(struct lzms_lz_lru_queues *lz)
+lzms_update_lz_lru_queue(struct lzms_lz_lru_queues *lz)
{
if (lz->prev_offset != 0) {
for (int i = LZMS_NUM_RECENT_OFFSETS - 1; i >= 0; i--)
void
lzms_update_lru_queues(struct lzms_lru_queues *lru)
{
- lzms_update_lz_lru_queues(&lru->lz);
+ lzms_update_lz_lru_queue(&lru->lz);
lzms_update_delta_lru_queues(&lru->delta);
}
/*
* lzms-compress.c
+ *
+ * A compressor that produces output compatible with the LZMS compression format.
*/
/*
* along with wimlib; if not, see http://www.gnu.org/licenses/.
*/
-/* This a compressor for the LZMS compression format. More details about this
- * format can be found in lzms-decompress.c.
- *
- * Also see lzx-compress.c for general information about match-finding and
- * match-choosing that also applies to this LZMS compressor.
- *
- * NOTE: this compressor currently does not code any delta matches.
- */
-
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
-#include "wimlib/assert.h"
-#include "wimlib/compiler.h"
-#include "wimlib/compressor_ops.h"
#include "wimlib/compress_common.h"
+#include "wimlib/compressor_ops.h"
#include "wimlib/endianness.h"
#include "wimlib/error.h"
#include "wimlib/lz_mf.h"
#include <limits.h>
#include <pthread.h>
-/* Stucture used for writing raw bits to the end of the LZMS-compressed data as
- * a series of 16-bit little endian coding units. */
+/* Stucture used for writing raw bits as a series of 16-bit little endian coding
+ * units. This starts at the *end* of the compressed data buffer and proceeds
+ * backwards. */
struct lzms_output_bitstream {
- /* Buffer variable containing zero or more bits that have been logically
- * written to the bitstream but not yet written to memory. This must be
- * at least as large as the coding unit size. */
- u16 bitbuf;
- /* Number of bits in @bitbuf that are valid. */
- unsigned num_free_bits;
+ /* Bits that haven't yet been written to the output buffer. */
+ u64 bitbuf;
+
+ /* Number of bits currently held in @bitbuf. */
+ unsigned bitcount;
/* Pointer to one past the next position in the compressed data buffer
* at which to output a 16-bit coding unit. */
- le16 *out;
+ le16 *next;
- /* Maximum number of 16-bit coding units that can still be output to
- * the compressed data buffer. */
- size_t num_le16_remaining;
-
- /* Set to %true if not all coding units could be output due to
- * insufficient space. */
- bool overrun;
+ /* Pointer to the beginning of the output buffer. (The "end" when
+ * writing backwards!) */
+ le16 *begin;
};
-/* Stucture used for range encoding (raw version). */
+/* Stucture used for range encoding (raw version). This starts at the
+ * *beginning* of the compressed data buffer and proceeds forward. */
struct lzms_range_encoder_raw {
/* A 33-bit variable that holds the low boundary of the current range.
* subsequent such coding units are 0xffff. */
u32 cache_size;
- /* Pointer to the next position in the compressed data buffer at which
- * to output a 16-bit coding unit. */
- le16 *out;
-
- /* Maximum number of 16-bit coding units that can still be output to
- * the compressed data buffer. */
- size_t num_le16_remaining;
+ /* Pointer to the beginning of the output buffer. */
+ le16 *begin;
- /* %true when the very first coding unit has not yet been output. */
- bool first;
+ /* Pointer to the position in the output buffer at which the next coding
+ * unit must be written. */
+ le16 *next;
- /* Set to %true if not all coding units could be output due to
- * insufficient space. */
- bool overrun;
+ /* Pointer just past the end of the output buffer. */
+ le16 *end;
};
/* Structure used for range encoding. This wraps around `struct
* lzms_range_encoder_raw' to use and maintain probability entries. */
struct lzms_range_encoder {
+
/* Pointer to the raw range encoder, which has no persistent knowledge
* of probabilities. Multiple lzms_range_encoder's share the same
* lzms_range_encoder_raw. */
u32 codewords[LZMS_MAX_NUM_SYMS];
};
+/* Internal compression parameters */
struct lzms_compressor_params {
u32 min_match_length;
u32 nice_match_length;
u32 optim_array_length;
};
-/* State of the LZMS compressor. */
+/* State of the LZMS compressor */
struct lzms_compressor {
- /* Pointer to a buffer holding the preprocessed data to compress. */
- u8 *window;
- /* Current position in @buffer. */
- u32 cur_window_pos;
+ /* Internal compression parameters */
+ struct lzms_compressor_params params;
- /* Size of the data in @buffer. */
- u32 window_size;
+ /* Data currently being compressed */
+ u8 *cur_window;
+ u32 cur_window_size;
- /* Lempel-Ziv match-finder. */
+ /* Lempel-Ziv match-finder */
struct lz_mf *mf;
- /* Temporary space to store found matches. */
+ /* Temporary space to store found matches */
struct lz_match *matches;
- /* Match-chooser data. */
+ /* Per-position data for near-optimal parsing */
struct lzms_mc_pos_data *optimum;
- unsigned optimum_cur_idx;
- unsigned optimum_end_idx;
-
- /* Maximum block size this compressor instantiation allows. This is the
- * allocated size of @window. */
- u32 max_block_size;
-
- /* Compression parameters. */
- struct lzms_compressor_params params;
+ struct lzms_mc_pos_data *optimum_end;
/* Raw range encoder which outputs to the beginning of the compressed
- * data buffer, proceeding forwards. */
+ * data buffer, proceeding forwards */
struct lzms_range_encoder_raw rc;
/* Bitstream which outputs to the end of the compressed data buffer,
- * proceeding backwards. */
+ * proceeding backwards */
struct lzms_output_bitstream os;
- /* Range encoders. */
+ /* Range encoders */
struct lzms_range_encoder main_range_encoder;
struct lzms_range_encoder match_range_encoder;
struct lzms_range_encoder lz_match_range_encoder;
struct lzms_range_encoder delta_match_range_encoder;
struct lzms_range_encoder delta_repeat_match_range_encoders[LZMS_NUM_RECENT_OFFSETS - 1];
- /* Huffman encoders. */
+ /* Huffman encoders */
struct lzms_huffman_encoder literal_encoder;
struct lzms_huffman_encoder lz_offset_encoder;
struct lzms_huffman_encoder length_encoder;
struct lzms_huffman_encoder delta_power_encoder;
struct lzms_huffman_encoder delta_offset_encoder;
- /* LRU (least-recently-used) queues for match information. */
- struct lzms_lru_queues lru;
-
- /* Used for preprocessing. */
+ /* Used for preprocessing */
s32 last_target_usages[65536];
+
+#define LZMS_NUM_FAST_LENGTHS 256
+ /* Table: length => length slot for small lengths */
+ u8 length_slot_fast[LZMS_NUM_FAST_LENGTHS];
+
+ /* Table: length => current cost for small match lengths */
+ u32 length_cost_fast[LZMS_NUM_FAST_LENGTHS];
+
+#define LZMS_NUM_FAST_OFFSETS 32768
+ /* Table: offset => offset slot for small offsets */
+ u8 offset_slot_fast[LZMS_NUM_FAST_OFFSETS];
};
+/*
+ * Match chooser position data:
+ *
+ * An array of these structures is used during the near-optimal match-choosing
+ * algorithm. They correspond to consecutive positions in the window and are
+ * used to keep track of the cost to reach each position, and the match/literal
+ * choices that need to be chosen to reach that position.
+ */
struct lzms_mc_pos_data {
+
+ /* The cost, in bits, of the lowest-cost path that has been found to
+ * reach this position. This can change as progressively lower cost
+ * paths are found to reach this position. */
u32 cost;
-#define MC_INFINITE_COST ((u32)~0UL)
- union {
- struct {
- u32 link;
- u32 match_offset;
- } prev;
- struct {
- u32 link;
- u32 match_offset;
- } next;
- };
+#define MC_INFINITE_COST UINT32_MAX
+
+ /* The match or literal that was taken to reach this position. This can
+ * change as progressively lower cost paths are found to reach this
+ * position.
+ *
+ * This variable is divided into two bitfields.
+ *
+ * Literals:
+ * Low bits are 1, high bits are the literal.
+ *
+ * Explicit offset matches:
+ * Low bits are the match length, high bits are the offset plus 2.
+ *
+ * Repeat offset matches:
+ * Low bits are the match length, high bits are the queue index.
+ */
+ u64 mc_item_data;
+#define MC_OFFSET_SHIFT 32
+#define MC_LEN_MASK (((u64)1 << MC_OFFSET_SHIFT) - 1)
+
+ /* The LZMS adaptive state that exists at this position. This is filled
+ * in lazily, only after the minimum-cost path to this position is
+ * found.
+ *
+ * Note: the way we handle this adaptive state in the "minimum-cost"
+ * parse is actually only an approximation. It's possible for the
+ * globally optimal, minimum cost path to contain a prefix, ending at a
+ * position, where that path prefix is *not* the minimum cost path to
+ * that position. This can happen if such a path prefix results in a
+ * different adaptive state which results in lower costs later. We do
+ * not solve this problem; we only consider the lowest cost to reach
+ * each position, which seems to be an acceptable approximation.
+ *
+ * Note: this adaptive state also does not include the probability
+ * entries or current Huffman codewords. Those aren't maintained
+ * per-position and are only updated occassionally. */
struct lzms_adaptive_state {
struct lzms_lz_lru_queues lru;
u8 main_state;
} state;
};
-/* Initialize the output bitstream @os to write forwards to the specified
+static void
+lzms_init_fast_slots(struct lzms_compressor *c)
+{
+ /* Create table mapping small lengths to length slots. */
+ for (unsigned slot = 0, i = 0; i < LZMS_NUM_FAST_LENGTHS; i++) {
+ while (i >= lzms_length_slot_base[slot + 1])
+ slot++;
+ c->length_slot_fast[i] = slot;
+ }
+
+ /* Create table mapping small offsets to offset slots. */
+ for (unsigned slot = 0, i = 0; i < LZMS_NUM_FAST_OFFSETS; i++) {
+ while (i >= lzms_offset_slot_base[slot + 1])
+ slot++;
+ c->offset_slot_fast[i] = slot;
+ }
+}
+
+static inline unsigned
+lzms_get_length_slot_fast(const struct lzms_compressor *c, u32 length)
+{
+ if (likely(length < LZMS_NUM_FAST_LENGTHS))
+ return c->length_slot_fast[length];
+ else
+ return lzms_get_length_slot(length);
+}
+
+static inline unsigned
+lzms_get_offset_slot_fast(const struct lzms_compressor *c, u32 offset)
+{
+ if (offset < LZMS_NUM_FAST_OFFSETS)
+ return c->offset_slot_fast[offset];
+ else
+ return lzms_get_offset_slot(offset);
+}
+
+/* Initialize the output bitstream @os to write backwards to the specified
* compressed data buffer @out that is @out_limit 16-bit integers long. */
static void
lzms_output_bitstream_init(struct lzms_output_bitstream *os,
le16 *out, size_t out_limit)
{
os->bitbuf = 0;
- os->num_free_bits = 16;
- os->out = out + out_limit;
- os->num_le16_remaining = out_limit;
- os->overrun = false;
+ os->bitcount = 0;
+ os->next = out + out_limit;
+ os->begin = out;
}
-/* Write @num_bits bits, contained in the low @num_bits bits of @bits (ordered
- * from high-order to low-order), to the output bitstream @os. */
-static void
-lzms_output_bitstream_put_bits(struct lzms_output_bitstream *os,
- u32 bits, unsigned num_bits)
+/*
+ * Write some bits, contained in the low @num_bits bits of @bits (ordered from
+ * high-order to low-order), to the output bitstream @os.
+ *
+ * @max_num_bits is a compile-time constant that specifies the maximum number of
+ * bits that can ever be written at this call site.
+ */
+static inline void
+lzms_output_bitstream_put_varbits(struct lzms_output_bitstream *os,
+ u32 bits, unsigned num_bits,
+ unsigned max_num_bits)
{
- bits &= (1U << num_bits) - 1;
+ LZMS_ASSERT(num_bits <= 48);
- while (num_bits > os->num_free_bits) {
+ /* Add the bits to the bit buffer variable. */
+ os->bitcount += num_bits;
+ os->bitbuf = (os->bitbuf << num_bits) | bits;
- if (unlikely(os->num_le16_remaining == 0)) {
- os->overrun = true;
- return;
- }
+ /* Check whether any coding units need to be written. */
+ while (os->bitcount >= 16) {
- unsigned num_fill_bits = os->num_free_bits;
+ os->bitcount -= 16;
- os->bitbuf <<= num_fill_bits;
- os->bitbuf |= bits >> (num_bits - num_fill_bits);
+ /* Write a coding unit, unless it would underflow the buffer. */
+ if (os->next != os->begin)
+ *--os->next = cpu_to_le16(os->bitbuf >> os->bitcount);
- *--os->out = cpu_to_le16(os->bitbuf);
- --os->num_le16_remaining;
-
- os->num_free_bits = 16;
- num_bits -= num_fill_bits;
- bits &= (1U << num_bits) - 1;
+ /* Optimization for call sites that never write more than 16
+ * bits at once. */
+ if (max_num_bits <= 16)
+ break;
}
- os->bitbuf <<= num_bits;
- os->bitbuf |= bits;
- os->num_free_bits -= num_bits;
+}
+
+/* Use when @num_bits is a compile-time constant. Otherwise use
+ * lzms_output_bitstream_put_bits(). */
+static inline void
+lzms_output_bitstream_put_bits(struct lzms_output_bitstream *os,
+ u32 bits, unsigned num_bits)
+{
+ lzms_output_bitstream_put_varbits(os, bits, num_bits, num_bits);
}
/* Flush the output bitstream, ensuring that all bits written to it have been
- * written to memory. Returns %true if all bits were output successfully, or
- * %false if an overrun occurred. */
+ * written to memory. Returns %true if all bits have been output successfully,
+ * or %false if an overrun occurred. */
static bool
lzms_output_bitstream_flush(struct lzms_output_bitstream *os)
{
- if (os->num_free_bits != 16)
- lzms_output_bitstream_put_bits(os, 0, os->num_free_bits + 1);
- return !os->overrun;
+ if (os->next == os->begin)
+ return false;
+
+ if (os->bitcount != 0)
+ *--os->next = cpu_to_le16(os->bitbuf << (16 - os->bitcount));
+
+ return true;
}
/* Initialize the range encoder @rc to write forwards to the specified
rc->range = 0xffffffff;
rc->cache = 0;
rc->cache_size = 1;
- rc->out = out;
- rc->num_le16_remaining = out_limit;
- rc->first = true;
- rc->overrun = false;
+ rc->begin = out;
+ rc->next = out - 1;
+ rc->end = out + out_limit;
}
/*
static void
lzms_range_encoder_raw_shift_low(struct lzms_range_encoder_raw *rc)
{
- LZMS_DEBUG("low=%"PRIx64", cache=%"PRIx64", cache_size=%u",
- rc->low, rc->cache, rc->cache_size);
if ((u32)(rc->low) < 0xffff0000 ||
(u32)(rc->low >> 32) != 0)
{
/* Carry not needed (rc->low < 0xffff0000), or carry occurred
* ((rc->low >> 32) != 0, a.k.a. the carry bit is 1). */
do {
- if (!rc->first) {
- if (rc->num_le16_remaining == 0) {
- rc->overrun = true;
- return;
- }
- *rc->out++ = cpu_to_le16(rc->cache +
- (u16)(rc->low >> 32));
- --rc->num_le16_remaining;
+ if (likely(rc->next >= rc->begin)) {
+ if (rc->next != rc->end)
+ *rc->next++ = cpu_to_le16(rc->cache +
+ (u16)(rc->low >> 32));
} else {
- rc->first = false;
+ rc->next++;
}
-
rc->cache = 0xffff;
} while (--rc->cache_size != 0);
{
for (unsigned i = 0; i < 4; i++)
lzms_range_encoder_raw_shift_low(rc);
- return !rc->overrun;
+ return rc->next != rc->end;
}
/* Encode the next bit using the range encoder (raw version).
*
* @prob is the chance out of LZMS_PROBABILITY_MAX that the next bit is 0. */
-static void
-lzms_range_encoder_raw_encode_bit(struct lzms_range_encoder_raw *rc, int bit,
- u32 prob)
+static inline void
+lzms_range_encoder_raw_encode_bit(struct lzms_range_encoder_raw *rc,
+ int bit, u32 prob)
{
lzms_range_encoder_raw_normalize(rc);
/* Encode a bit using the specified range encoder. This wraps around
* lzms_range_encoder_raw_encode_bit() to handle using and updating the
- * appropriate probability table. */
+ * appropriate state and probability entry. */
static void
lzms_range_encode_bit(struct lzms_range_encoder *enc, int bit)
{
/* Load the probability entry corresponding to the current state. */
prob_entry = &enc->prob_entries[enc->state];
- /* Treat the number of zero bits in the most recently encoded
- * LZMS_PROBABILITY_MAX bits with this probability entry as the chance,
- * out of LZMS_PROBABILITY_MAX, that the next bit will be a 0. However,
- * don't allow 0% or 100% probabilities. */
- prob = prob_entry->num_recent_zero_bits;
- if (prob == 0)
- prob = 1;
- else if (prob == LZMS_PROBABILITY_MAX)
- prob = LZMS_PROBABILITY_MAX - 1;
-
- /* Encode the next bit. */
+ /* Update the state based on the next bit. */
+ enc->state = ((enc->state << 1) | bit) & enc->mask;
+
+ /* Get the probability that the bit is 0. */
+ prob = lzms_get_probability(prob_entry);
+
+ /* Update the probability entry. */
+ lzms_update_probability_entry(prob_entry, bit);
+
+ /* Encode the bit. */
lzms_range_encoder_raw_encode_bit(enc->rc, bit, prob);
+}
- /* Update the state based on the newly encoded bit. */
- enc->state = ((enc->state << 1) | bit) & enc->mask;
+/* Called when an adaptive Huffman code needs to be rebuilt. */
+static void
+lzms_rebuild_huffman_code(struct lzms_huffman_encoder *enc)
+{
+ make_canonical_huffman_code(enc->num_syms,
+ LZMS_MAX_CODEWORD_LEN,
+ enc->sym_freqs,
+ enc->lens,
+ enc->codewords);
- /* Update the recent bits, including the cached count of 0's. */
- BUILD_BUG_ON(LZMS_PROBABILITY_MAX > sizeof(prob_entry->recent_bits) * 8);
- if (bit == 0) {
- if (prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1))) {
- /* Replacing 1 bit with 0 bit; increment the zero count.
- */
- prob_entry->num_recent_zero_bits++;
- }
- } else {
- if (!(prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1)))) {
- /* Replacing 0 bit with 1 bit; decrement the zero count.
- */
- prob_entry->num_recent_zero_bits--;
- }
+ /* Dilute the frequencies. */
+ for (unsigned i = 0; i < enc->num_syms; i++) {
+ enc->sym_freqs[i] >>= 1;
+ enc->sym_freqs[i] += 1;
}
- prob_entry->recent_bits = (prob_entry->recent_bits << 1) | bit;
+ enc->num_syms_written = 0;
}
/* Encode a symbol using the specified Huffman encoder. */
-static void
-lzms_huffman_encode_symbol(struct lzms_huffman_encoder *enc, u32 sym)
+static inline void
+lzms_huffman_encode_symbol(struct lzms_huffman_encoder *enc, unsigned sym)
{
- LZMS_ASSERT(sym < enc->num_syms);
- lzms_output_bitstream_put_bits(enc->os,
- enc->codewords[sym],
- enc->lens[sym]);
+ lzms_output_bitstream_put_varbits(enc->os,
+ enc->codewords[sym],
+ enc->lens[sym],
+ LZMS_MAX_CODEWORD_LEN);
++enc->sym_freqs[sym];
- if (++enc->num_syms_written == enc->rebuild_freq) {
- /* Adaptive code needs to be rebuilt. */
- LZMS_DEBUG("Rebuilding code (num_syms=%u)", enc->num_syms);
- make_canonical_huffman_code(enc->num_syms,
- LZMS_MAX_CODEWORD_LEN,
- enc->sym_freqs,
- enc->lens,
- enc->codewords);
-
- /* Dilute the frequencies. */
- for (unsigned i = 0; i < enc->num_syms; i++) {
- enc->sym_freqs[i] >>= 1;
- enc->sym_freqs[i] += 1;
- }
- enc->num_syms_written = 0;
- }
+ if (++enc->num_syms_written == enc->rebuild_freq)
+ lzms_rebuild_huffman_code(enc);
}
static void
-lzms_encode_length(struct lzms_huffman_encoder *enc, u32 length)
+lzms_update_fast_length_costs(struct lzms_compressor *c);
+
+/* Encode a match length. */
+static void
+lzms_encode_length(struct lzms_compressor *c, u32 length)
{
unsigned slot;
unsigned num_extra_bits;
u32 extra_bits;
- slot = lzms_get_length_slot(length);
+ slot = lzms_get_length_slot_fast(c, length);
+ extra_bits = length - lzms_length_slot_base[slot];
num_extra_bits = lzms_extra_length_bits[slot];
- extra_bits = length - lzms_length_slot_base[slot];
+ lzms_huffman_encode_symbol(&c->length_encoder, slot);
+ if (c->length_encoder.num_syms_written == 0)
+ lzms_update_fast_length_costs(c);
- lzms_huffman_encode_symbol(enc, slot);
- lzms_output_bitstream_put_bits(enc->os, extra_bits, num_extra_bits);
+ lzms_output_bitstream_put_varbits(c->length_encoder.os,
+ extra_bits, num_extra_bits, 30);
}
+/* Encode an LZ match offset. */
static void
-lzms_encode_offset(struct lzms_huffman_encoder *enc, u32 offset)
+lzms_encode_lz_offset(struct lzms_compressor *c, u32 offset)
{
unsigned slot;
unsigned num_extra_bits;
u32 extra_bits;
- slot = lzms_get_position_slot(offset);
-
- num_extra_bits = lzms_extra_position_bits[slot];
+ slot = lzms_get_offset_slot_fast(c, offset);
- extra_bits = offset - lzms_position_slot_base[slot];
+ extra_bits = offset - lzms_offset_slot_base[slot];
+ num_extra_bits = lzms_extra_offset_bits[slot];
- lzms_huffman_encode_symbol(enc, slot);
- lzms_output_bitstream_put_bits(enc->os, extra_bits, num_extra_bits);
-}
-
-static void
-lzms_begin_encode_item(struct lzms_compressor *ctx)
-{
- ctx->lru.lz.upcoming_offset = 0;
- ctx->lru.delta.upcoming_offset = 0;
- ctx->lru.delta.upcoming_power = 0;
-}
-
-static void
-lzms_end_encode_item(struct lzms_compressor *ctx, u32 length)
-{
- LZMS_ASSERT(ctx->window_size - ctx->cur_window_pos >= length);
- ctx->cur_window_pos += length;
- lzms_update_lru_queues(&ctx->lru);
+ lzms_huffman_encode_symbol(&c->lz_offset_encoder, slot);
+ lzms_output_bitstream_put_varbits(c->lz_offset_encoder.os,
+ extra_bits, num_extra_bits, 30);
}
/* Encode a literal byte. */
static void
-lzms_encode_literal(struct lzms_compressor *ctx, u8 literal)
+lzms_encode_literal(struct lzms_compressor *c, unsigned literal)
{
- LZMS_DEBUG("Position %u: Encoding literal 0x%02x ('%c')",
- ctx->cur_window_pos, literal, literal);
-
- lzms_begin_encode_item(ctx);
-
/* Main bit: 0 = a literal, not a match. */
- lzms_range_encode_bit(&ctx->main_range_encoder, 0);
+ lzms_range_encode_bit(&c->main_range_encoder, 0);
/* Encode the literal using the current literal Huffman code. */
- lzms_huffman_encode_symbol(&ctx->literal_encoder, literal);
-
- lzms_end_encode_item(ctx, 1);
+ lzms_huffman_encode_symbol(&c->literal_encoder, literal);
}
-/* Encode a (length, offset) pair (LZ match). */
+/* Encode an LZ repeat offset match. */
static void
-lzms_encode_lz_match(struct lzms_compressor *ctx, u32 length, u32 offset)
+lzms_encode_lz_repeat_offset_match(struct lzms_compressor *c,
+ u32 length, unsigned rep_index)
{
- int recent_offset_idx;
-
- LZMS_DEBUG("Position %u: Encoding LZ match {length=%u, offset=%u}",
- ctx->cur_window_pos, length, offset);
-
- LZMS_ASSERT(length <= ctx->window_size - ctx->cur_window_pos);
- LZMS_ASSERT(offset <= ctx->cur_window_pos);
- LZMS_ASSERT(!memcmp(&ctx->window[ctx->cur_window_pos],
- &ctx->window[ctx->cur_window_pos - offset],
- length));
-
- lzms_begin_encode_item(ctx);
+ unsigned i;
/* Main bit: 1 = a match, not a literal. */
- lzms_range_encode_bit(&ctx->main_range_encoder, 1);
+ lzms_range_encode_bit(&c->main_range_encoder, 1);
/* Match bit: 0 = an LZ match, not a delta match. */
- lzms_range_encode_bit(&ctx->match_range_encoder, 0);
+ lzms_range_encode_bit(&c->match_range_encoder, 0);
- /* Determine if the offset can be represented as a recent offset. */
- for (recent_offset_idx = 0;
- recent_offset_idx < LZMS_NUM_RECENT_OFFSETS;
- recent_offset_idx++)
- if (offset == ctx->lru.lz.recent_offsets[recent_offset_idx])
- break;
+ /* LZ match bit: 1 = repeat offset, not an explicit offset. */
+ lzms_range_encode_bit(&c->lz_match_range_encoder, 1);
- if (recent_offset_idx == LZMS_NUM_RECENT_OFFSETS) {
- /* Explicit offset. */
+ /* Encode the repeat offset index. A 1 bit is encoded for each index
+ * passed up. This sequence of 1 bits is terminated by a 0 bit, or
+ * automatically when (LZMS_NUM_RECENT_OFFSETS - 1) 1 bits have been
+ * encoded. */
+ for (i = 0; i < rep_index; i++)
+ lzms_range_encode_bit(&c->lz_repeat_match_range_encoders[i], 1);
- /* LZ match bit: 0 = explicit offset, not a recent offset. */
- lzms_range_encode_bit(&ctx->lz_match_range_encoder, 0);
+ if (i < LZMS_NUM_RECENT_OFFSETS - 1)
+ lzms_range_encode_bit(&c->lz_repeat_match_range_encoders[i], 0);
- /* Encode the match offset. */
- lzms_encode_offset(&ctx->lz_offset_encoder, offset);
- } else {
- int i;
-
- /* Recent offset. */
+ /* Encode the match length. */
+ lzms_encode_length(c, length);
+}
- /* LZ match bit: 1 = recent offset, not an explicit offset. */
- lzms_range_encode_bit(&ctx->lz_match_range_encoder, 1);
+/* Encode an LZ explicit offset match. */
+static void
+lzms_encode_lz_explicit_offset_match(struct lzms_compressor *c,
+ u32 length, u32 offset)
+{
+ /* Main bit: 1 = a match, not a literal. */
+ lzms_range_encode_bit(&c->main_range_encoder, 1);
- /* Encode the recent offset index. A 1 bit is encoded for each
- * index passed up. This sequence of 1 bits is terminated by a
- * 0 bit, or automatically when (LZMS_NUM_RECENT_OFFSETS - 1) 1
- * bits have been encoded. */
- for (i = 0; i < recent_offset_idx; i++)
- lzms_range_encode_bit(&ctx->lz_repeat_match_range_encoders[i], 1);
+ /* Match bit: 0 = an LZ match, not a delta match. */
+ lzms_range_encode_bit(&c->match_range_encoder, 0);
- if (i < LZMS_NUM_RECENT_OFFSETS - 1)
- lzms_range_encode_bit(&ctx->lz_repeat_match_range_encoders[i], 0);
+ /* LZ match bit: 0 = explicit offset, not a repeat offset. */
+ lzms_range_encode_bit(&c->lz_match_range_encoder, 0);
- /* Initial update of the LZ match offset LRU queue. */
- for (; i < LZMS_NUM_RECENT_OFFSETS; i++)
- ctx->lru.lz.recent_offsets[i] = ctx->lru.lz.recent_offsets[i + 1];
- }
+ /* Encode the match offset. */
+ lzms_encode_lz_offset(c, offset);
/* Encode the match length. */
- lzms_encode_length(&ctx->length_encoder, length);
+ lzms_encode_length(c, length);
+}
- /* Save the match offset for later insertion at the front of the LZ
- * match offset LRU queue. */
- ctx->lru.lz.upcoming_offset = offset;
+static void
+lzms_encode_item(struct lzms_compressor *c, u64 mc_item_data)
+{
+ u32 len = mc_item_data & MC_LEN_MASK;
+ u32 offset_data = mc_item_data >> MC_OFFSET_SHIFT;
- lzms_end_encode_item(ctx, length);
+ if (len == 1)
+ lzms_encode_literal(c, offset_data);
+ else if (offset_data < LZMS_NUM_RECENT_OFFSETS)
+ lzms_encode_lz_repeat_offset_match(c, len, offset_data);
+ else
+ lzms_encode_lz_explicit_offset_match(c, len, offset_data - LZMS_OFFSET_OFFSET);
}
-#define LZMS_COST_SHIFT 5
+/* Encode a list of matches and literals chosen by the parsing algorithm. */
+static void
+lzms_encode_item_list(struct lzms_compressor *c,
+ struct lzms_mc_pos_data *cur_optimum_ptr)
+{
+ struct lzms_mc_pos_data *end_optimum_ptr;
+ u64 saved_item;
+ u64 item;
+
+ /* The list is currently in reverse order (last item to first item).
+ * Reverse it. */
+ end_optimum_ptr = cur_optimum_ptr;
+ saved_item = cur_optimum_ptr->mc_item_data;
+ do {
+ item = saved_item;
+ cur_optimum_ptr -= item & MC_LEN_MASK;
+ saved_item = cur_optimum_ptr->mc_item_data;
+ cur_optimum_ptr->mc_item_data = item;
+ } while (cur_optimum_ptr != c->optimum);
+
+ /* Walk the list of items from beginning to end, encoding each item. */
+ do {
+ lzms_encode_item(c, cur_optimum_ptr->mc_item_data);
+ cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK;
+ } while (cur_optimum_ptr != end_optimum_ptr);
+}
+
+/* Each bit costs 1 << LZMS_COST_SHIFT units. */
+#define LZMS_COST_SHIFT 6
/*#define LZMS_RC_COSTS_USE_FLOATING_POINT*/
pthread_once(&once, lzms_do_init_rc_costs);
}
-/*
- * Return the cost to range-encode the specified bit when in the specified
- * state.
- *
- * @enc The range encoder to use.
- * @cur_state Current state, which indicates the probability entry to choose.
- * Updated by this function.
- * @bit The bit to encode (0 or 1).
- */
-static u32
-lzms_rc_bit_cost(const struct lzms_range_encoder *enc, u8 *cur_state, int bit)
+/* Return the cost to range-encode the specified bit from the specified state.*/
+static inline u32
+lzms_rc_bit_cost(const struct lzms_range_encoder *enc, u8 cur_state, int bit)
{
u32 prob_zero;
u32 prob_correct;
- prob_zero = enc->prob_entries[*cur_state & enc->mask].num_recent_zero_bits;
-
- *cur_state = (*cur_state << 1) | bit;
+ prob_zero = enc->prob_entries[cur_state].num_recent_zero_bits;
if (bit == 0)
prob_correct = prob_zero;
return lzms_rc_costs[prob_correct];
}
-static u32
-lzms_huffman_symbol_cost(const struct lzms_huffman_encoder *enc, u32 sym)
+/* Return the cost to Huffman-encode the specified symbol. */
+static inline u32
+lzms_huffman_symbol_cost(const struct lzms_huffman_encoder *enc, unsigned sym)
{
- return enc->lens[sym] << LZMS_COST_SHIFT;
+ return (u32)enc->lens[sym] << LZMS_COST_SHIFT;
}
-static u32
-lzms_offset_cost(const struct lzms_huffman_encoder *enc, u32 offset)
+/* Return the cost to encode the specified literal byte. */
+static inline u32
+lzms_literal_cost(const struct lzms_compressor *c, unsigned literal,
+ const struct lzms_adaptive_state *state)
{
- u32 slot;
- u32 num_extra_bits;
- u32 cost = 0;
-
- slot = lzms_get_position_slot(offset);
-
- cost += lzms_huffman_symbol_cost(enc, slot);
-
- num_extra_bits = lzms_extra_position_bits[slot];
-
- cost += num_extra_bits << LZMS_COST_SHIFT;
-
- return cost;
+ return lzms_rc_bit_cost(&c->main_range_encoder, state->main_state, 0) +
+ lzms_huffman_symbol_cost(&c->literal_encoder, literal);
}
-static u32
-lzms_get_length_cost(const struct lzms_huffman_encoder *enc, u32 length)
+/* Update the table that directly provides the costs for small lengths. */
+static void
+lzms_update_fast_length_costs(struct lzms_compressor *c)
{
- u32 slot;
- u32 num_extra_bits;
+ u32 len;
+ int slot = -1;
u32 cost = 0;
- slot = lzms_get_length_slot(length);
+ for (len = 1; len < LZMS_NUM_FAST_LENGTHS; len++) {
- cost += lzms_huffman_symbol_cost(enc, slot);
-
- num_extra_bits = lzms_extra_length_bits[slot];
-
- cost += num_extra_bits << LZMS_COST_SHIFT;
+ while (len >= lzms_length_slot_base[slot + 1]) {
+ slot++;
+ cost = (u32)(c->length_encoder.lens[slot] +
+ lzms_extra_length_bits[slot]) << LZMS_COST_SHIFT;
+ }
- return cost;
+ c->length_cost_fast[len] = cost;
+ }
}
-static u32
-lzms_get_matches(struct lzms_compressor *ctx, struct lz_match **matches_ret)
+/* Return the cost to encode the specified match length, which must be less than
+ * LZMS_NUM_FAST_LENGTHS. */
+static inline u32
+lzms_fast_length_cost(const struct lzms_compressor *c, u32 length)
{
- *matches_ret = ctx->matches;
- return lz_mf_get_matches(ctx->mf, ctx->matches);
+ LZMS_ASSERT(length < LZMS_NUM_FAST_LENGTHS);
+ return c->length_cost_fast[length];
}
-static void
-lzms_skip_bytes(struct lzms_compressor *ctx, u32 n)
+/* Return the cost to encode the specified LZ match offset. */
+static inline u32
+lzms_lz_offset_cost(const struct lzms_compressor *c, u32 offset)
{
- lz_mf_skip_positions(ctx->mf, n);
+ unsigned slot = lzms_get_offset_slot_fast(c, offset);
+
+ return (u32)(c->lz_offset_encoder.lens[slot] +
+ lzms_extra_offset_bits[slot]) << LZMS_COST_SHIFT;
}
-static u32
-lzms_get_literal_cost(struct lzms_compressor *ctx,
- struct lzms_adaptive_state *state, u8 literal)
+/*
+ * Consider coding the match at repeat offset index @rep_idx. Consider each
+ * length from the minimum (2) to the full match length (@rep_len).
+ */
+static inline void
+lzms_consider_lz_repeat_offset_match(const struct lzms_compressor *c,
+ struct lzms_mc_pos_data *cur_optimum_ptr,
+ u32 rep_len, unsigned rep_idx)
{
- u32 cost = 0;
-
- state->lru.upcoming_offset = 0;
- lzms_update_lz_lru_queues(&state->lru);
+ u32 len;
+ u32 base_cost;
+ u32 cost;
+ unsigned i;
- cost += lzms_rc_bit_cost(&ctx->main_range_encoder,
- &state->main_state, 0);
+ base_cost = cur_optimum_ptr->cost;
- cost += lzms_huffman_symbol_cost(&ctx->literal_encoder, literal);
+ base_cost += lzms_rc_bit_cost(&c->main_range_encoder,
+ cur_optimum_ptr->state.main_state, 1);
- return cost;
-}
+ base_cost += lzms_rc_bit_cost(&c->match_range_encoder,
+ cur_optimum_ptr->state.match_state, 0);
-static u32
-lzms_get_lz_match_cost_nolen(struct lzms_compressor *ctx,
- struct lzms_adaptive_state *state, u32 offset)
-{
- u32 cost = 0;
- int recent_offset_idx;
+ base_cost += lzms_rc_bit_cost(&c->lz_match_range_encoder,
+ cur_optimum_ptr->state.lz_match_state, 1);
- cost += lzms_rc_bit_cost(&ctx->main_range_encoder,
- &state->main_state, 1);
- cost += lzms_rc_bit_cost(&ctx->match_range_encoder,
- &state->match_state, 0);
+ for (i = 0; i < rep_idx; i++)
+ base_cost += lzms_rc_bit_cost(&c->lz_repeat_match_range_encoders[i],
+ cur_optimum_ptr->state.lz_repeat_match_state[i], 1);
- for (recent_offset_idx = 0;
- recent_offset_idx < LZMS_NUM_RECENT_OFFSETS;
- recent_offset_idx++)
- if (offset == state->lru.recent_offsets[recent_offset_idx])
- break;
+ if (i < LZMS_NUM_RECENT_OFFSETS - 1)
+ base_cost += lzms_rc_bit_cost(&c->lz_repeat_match_range_encoders[i],
+ cur_optimum_ptr->state.lz_repeat_match_state[i], 0);
- if (recent_offset_idx == LZMS_NUM_RECENT_OFFSETS) {
- /* Explicit offset. */
- cost += lzms_rc_bit_cost(&ctx->lz_match_range_encoder,
- &state->lz_match_state, 0);
+ len = 2;
+ do {
+ cost = base_cost + lzms_fast_length_cost(c, len);
+ if (cost < (cur_optimum_ptr + len)->cost) {
+ (cur_optimum_ptr + len)->mc_item_data =
+ ((u64)rep_idx << MC_OFFSET_SHIFT) | len;
+ (cur_optimum_ptr + len)->cost = cost;
+ }
+ } while (++len <= rep_len);
+}
- cost += lzms_offset_cost(&ctx->lz_offset_encoder, offset);
- } else {
- int i;
+/*
+ * Consider coding each match in @matches as an explicit offset match.
+ *
+ * @matches must be sorted by strictly increasing length and strictly increasing
+ * offset. This is guaranteed by the match-finder.
+ *
+ * We consider each length from the minimum (2) to the longest
+ * (matches[num_matches - 1].len). For each length, we consider only the
+ * smallest offset for which that length is available. Although this is not
+ * guaranteed to be optimal due to the possibility of a larger offset costing
+ * less than a smaller offset to code, this is a very useful heuristic.
+ */
+static inline void
+lzms_consider_lz_explicit_offset_matches(const struct lzms_compressor *c,
+ struct lzms_mc_pos_data *cur_optimum_ptr,
+ const struct lz_match matches[],
+ u32 num_matches)
+{
+ u32 len;
+ u32 i;
+ u32 base_cost;
+ u32 position_cost;
+ u32 cost;
- /* Recent offset. */
- cost += lzms_rc_bit_cost(&ctx->lz_match_range_encoder,
- &state->lz_match_state, 1);
+ base_cost = cur_optimum_ptr->cost;
- for (i = 0; i < recent_offset_idx; i++)
- cost += lzms_rc_bit_cost(&ctx->lz_repeat_match_range_encoders[i],
- &state->lz_repeat_match_state[i], 0);
+ base_cost += lzms_rc_bit_cost(&c->main_range_encoder,
+ cur_optimum_ptr->state.main_state, 1);
- if (i < LZMS_NUM_RECENT_OFFSETS - 1)
- cost += lzms_rc_bit_cost(&ctx->lz_repeat_match_range_encoders[i],
- &state->lz_repeat_match_state[i], 1);
+ base_cost += lzms_rc_bit_cost(&c->match_range_encoder,
+ cur_optimum_ptr->state.match_state, 0);
+ base_cost += lzms_rc_bit_cost(&c->lz_match_range_encoder,
+ cur_optimum_ptr->state.lz_match_state, 0);
+ len = 2;
+ i = 0;
+ do {
+ position_cost = base_cost + lzms_lz_offset_cost(c,
+ matches[i].offset);
+ do {
+ cost = position_cost + lzms_fast_length_cost(c, len);
+ if (cost < (cur_optimum_ptr + len)->cost) {
+ (cur_optimum_ptr + len)->mc_item_data =
+ ((u64)(matches[i].offset + LZMS_OFFSET_OFFSET)
+ << MC_OFFSET_SHIFT) | len;
+ (cur_optimum_ptr + len)->cost = cost;
+ }
+ } while (++len <= matches[i].len);
+ } while (++i != num_matches);
+}
- /* Initial update of the LZ match offset LRU queue. */
- for (; i < LZMS_NUM_RECENT_OFFSETS; i++)
- state->lru.recent_offsets[i] = state->lru.recent_offsets[i + 1];
- }
+static void
+lzms_init_adaptive_state(struct lzms_adaptive_state *state)
+{
+ unsigned i;
+
+ lzms_init_lz_lru_queues(&state->lru);
+ state->main_state = 0;
+ state->match_state = 0;
+ state->lz_match_state = 0;
+ for (i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++)
+ state->lz_repeat_match_state[i] = 0;
+}
+static inline void
+lzms_update_main_state(struct lzms_adaptive_state *state, int is_match)
+{
+ state->main_state = ((state->main_state << 1) | is_match) % LZMS_NUM_MAIN_STATES;
+}
- state->lru.upcoming_offset = offset;
- lzms_update_lz_lru_queues(&state->lru);
+static inline void
+lzms_update_match_state(struct lzms_adaptive_state *state, int is_delta)
+{
+ state->match_state = ((state->match_state << 1) | is_delta) % LZMS_NUM_MATCH_STATES;
+}
- return cost;
+static inline void
+lzms_update_lz_match_state(struct lzms_adaptive_state *state, int is_repeat_offset)
+{
+ state->lz_match_state = ((state->lz_match_state << 1) | is_repeat_offset) % LZMS_NUM_LZ_MATCH_STATES;
}
-static u32
-lzms_get_lz_match_cost(struct lzms_compressor *ctx,
- struct lzms_adaptive_state *state,
- u32 length, u32 offset)
+static inline void
+lzms_update_lz_repeat_match_state(struct lzms_adaptive_state *state, int rep_idx)
{
- return lzms_get_lz_match_cost_nolen(ctx, state, offset) +
- lzms_get_length_cost(&ctx->length_encoder, length);
+ int i;
+
+ for (i = 0; i < rep_idx; i++)
+ state->lz_repeat_match_state[i] =
+ ((state->lz_repeat_match_state[i] << 1) | 1) %
+ LZMS_NUM_LZ_REPEAT_MATCH_STATES;
+
+ if (i < LZMS_NUM_RECENT_OFFSETS - 1)
+ state->lz_repeat_match_state[i] =
+ ((state->lz_repeat_match_state[i] << 1) | 0) %
+ LZMS_NUM_LZ_REPEAT_MATCH_STATES;
}
-static inline u32
-lzms_repsearch(const u8 * const strptr, const u32 bytes_remaining,
- const struct lzms_lz_lru_queues *queue, u32 *offset_ret)
+/*
+ * The main near-optimal parsing routine.
+ *
+ * Briefly, the algorithm does an approximate minimum-cost path search to find a
+ * "near-optimal" sequence of matches and literals to output, based on the
+ * current cost model. The algorithm steps forward, position by position (byte
+ * by byte), and updates the minimum cost path to reach each later position that
+ * can be reached using a match or literal from the current position. This is
+ * essentially Dijkstra's algorithm in disguise: the graph nodes are positions,
+ * the graph edges are possible matches/literals to code, and the cost of each
+ * edge is the estimated number of bits that will be required to output the
+ * corresponding match or literal. But one difference is that we actually
+ * compute the lowest-cost path in pieces, where each piece is terminated when
+ * there are no choices to be made.
+ *
+ * Notes:
+ *
+ * - This does not output any delta matches.
+ *
+ * - The costs of literals and matches are estimated using the range encoder
+ * states and the semi-adaptive Huffman codes. Except for range encoding
+ * states, costs are assumed to be constant throughout a single run of the
+ * parsing algorithm, which can parse up to @optim_array_length bytes of data.
+ * This introduces a source of inaccuracy because the probabilities and
+ * Huffman codes can change over this part of the data.
+ */
+static void
+lzms_near_optimal_parse(struct lzms_compressor *c)
{
+ const u8 *window_ptr;
+ const u8 *window_end;
+ struct lzms_mc_pos_data *cur_optimum_ptr;
+ struct lzms_mc_pos_data *end_optimum_ptr;
+ u32 num_matches;
+ u32 longest_len;
+ u32 rep_max_len;
+ unsigned rep_max_idx;
+ unsigned literal;
+ unsigned i;
+ u32 cost;
u32 len;
- unsigned slot = 0;
+ u32 offset_data;
- len = lz_repsearch(strptr, bytes_remaining, UINT32_MAX,
- queue->recent_offsets, LZMS_NUM_RECENT_OFFSETS, &slot);
- *offset_ret = queue->recent_offsets[slot];
- return len;
-}
+ window_ptr = c->cur_window;
+ window_end = window_ptr + c->cur_window_size;
+ lzms_init_adaptive_state(&c->optimum[0].state);
-static struct lz_match
-lzms_match_chooser_reverse_list(struct lzms_compressor *ctx, unsigned cur_pos)
-{
- unsigned prev_link, saved_prev_link;
- unsigned prev_match_offset, saved_prev_match_offset;
+begin:
+ /* Start building a new list of items, which will correspond to the next
+ * piece of the overall minimum-cost path. */
- ctx->optimum_end_idx = cur_pos;
+ cur_optimum_ptr = c->optimum;
+ cur_optimum_ptr->cost = 0;
+ end_optimum_ptr = cur_optimum_ptr;
- saved_prev_link = ctx->optimum[cur_pos].prev.link;
- saved_prev_match_offset = ctx->optimum[cur_pos].prev.match_offset;
+ /* States should currently be consistent with the encoders. */
+ LZMS_ASSERT(cur_optimum_ptr->state.main_state == c->main_range_encoder.state);
+ LZMS_ASSERT(cur_optimum_ptr->state.match_state == c->match_range_encoder.state);
+ LZMS_ASSERT(cur_optimum_ptr->state.lz_match_state == c->lz_match_range_encoder.state);
+ for (i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++)
+ LZMS_ASSERT(cur_optimum_ptr->state.lz_repeat_match_state[i] ==
+ c->lz_repeat_match_range_encoders[i].state);
- do {
- prev_link = saved_prev_link;
- prev_match_offset = saved_prev_match_offset;
+ if (window_ptr == window_end)
+ return;
- saved_prev_link = ctx->optimum[prev_link].prev.link;
- saved_prev_match_offset = ctx->optimum[prev_link].prev.match_offset;
+ /* The following loop runs once for each per byte in the window, except
+ * in a couple shortcut cases. */
+ for (;;) {
- ctx->optimum[prev_link].next.link = cur_pos;
- ctx->optimum[prev_link].next.match_offset = prev_match_offset;
+ /* Find explicit offset matches with the current position. */
+ num_matches = lz_mf_get_matches(c->mf, c->matches);
- cur_pos = prev_link;
- } while (cur_pos != 0);
+ if (num_matches) {
+ /*
+ * Find the longest repeat offset match with the current
+ * position.
+ *
+ * Heuristics:
+ *
+ * - Only search for repeat offset matches if the
+ * match-finder already found at least one match.
+ *
+ * - Only consider the longest repeat offset match. It
+ * seems to be rare for the optimal parse to include a
+ * repeat offset match that doesn't have the longest
+ * length (allowing for the possibility that not all
+ * of that length is actually used).
+ */
+ if (likely(window_ptr - c->cur_window >= LZMS_MAX_INIT_RECENT_OFFSET)) {
+ BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
+ rep_max_len = lz_repsearch3(window_ptr,
+ window_end - window_ptr,
+ cur_optimum_ptr->state.lru.recent_offsets,
+ &rep_max_idx);
+ } else {
+ rep_max_len = 0;
+ }
- ctx->optimum_cur_idx = ctx->optimum[0].next.link;
+ if (rep_max_len) {
+ /* If there's a very long repeat offset match,
+ * choose it immediately. */
+ if (rep_max_len >= c->params.nice_match_length) {
- return (struct lz_match)
- { .len = ctx->optimum_cur_idx,
- .offset = ctx->optimum[0].next.match_offset,
- };
-}
+ lz_mf_skip_positions(c->mf, rep_max_len - 1);
+ window_ptr += rep_max_len;
-/* This is similar to lzx_choose_near_optimal_item() in lzx-compress.c.
- * Read that one if you want to understand it. */
-static struct lz_match
-lzms_get_near_optimal_item(struct lzms_compressor *ctx)
-{
- u32 num_matches;
- struct lz_match *matches;
- struct lz_match match;
- u32 longest_len;
- u32 longest_rep_len;
- u32 longest_rep_offset;
- unsigned cur_pos;
- unsigned end_pos;
- struct lzms_adaptive_state initial_state;
-
- if (ctx->optimum_cur_idx != ctx->optimum_end_idx) {
- match.len = ctx->optimum[ctx->optimum_cur_idx].next.link -
- ctx->optimum_cur_idx;
- match.offset = ctx->optimum[ctx->optimum_cur_idx].next.match_offset;
-
- ctx->optimum_cur_idx = ctx->optimum[ctx->optimum_cur_idx].next.link;
- return match;
- }
+ if (cur_optimum_ptr != c->optimum)
+ lzms_encode_item_list(c, cur_optimum_ptr);
- ctx->optimum_cur_idx = 0;
- ctx->optimum_end_idx = 0;
+ lzms_encode_lz_repeat_offset_match(c, rep_max_len,
+ rep_max_idx);
- if (lz_mf_get_position(ctx->mf) >= LZMS_MAX_INIT_RECENT_OFFSET) {
- longest_rep_len = lzms_repsearch(lz_mf_get_window_ptr(ctx->mf),
- lz_mf_get_bytes_remaining(ctx->mf),
- &ctx->lru.lz, &longest_rep_offset);
- } else {
- longest_rep_len = 0;
- }
+ c->optimum[0].state = cur_optimum_ptr->state;
- if (longest_rep_len >= ctx->params.nice_match_length) {
- lzms_skip_bytes(ctx, longest_rep_len);
- return (struct lz_match) {
- .len = longest_rep_len,
- .offset = longest_rep_offset,
- };
- }
+ lzms_update_main_state(&c->optimum[0].state, 1);
+ lzms_update_match_state(&c->optimum[0].state, 0);
+ lzms_update_lz_match_state(&c->optimum[0].state, 1);
+ lzms_update_lz_repeat_match_state(&c->optimum[0].state,
+ rep_max_idx);
- num_matches = lzms_get_matches(ctx, &matches);
+ c->optimum[0].state.lru.upcoming_offset =
+ c->optimum[0].state.lru.recent_offsets[rep_max_idx];
- if (num_matches) {
- longest_len = matches[num_matches - 1].len;
- if (longest_len >= ctx->params.nice_match_length) {
- lzms_skip_bytes(ctx, longest_len - 1);
- return matches[num_matches - 1];
- }
- } else {
- longest_len = 1;
- }
+ for (i = rep_max_idx; i < LZMS_NUM_RECENT_OFFSETS; i++)
+ c->optimum[0].state.lru.recent_offsets[i] =
+ c->optimum[0].state.lru.recent_offsets[i + 1];
- initial_state.lru = ctx->lru.lz;
- initial_state.main_state = ctx->main_range_encoder.state;
- initial_state.match_state = ctx->match_range_encoder.state;
- initial_state.lz_match_state = ctx->lz_match_range_encoder.state;
- for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++)
- initial_state.lz_repeat_match_state[i] = ctx->lz_repeat_match_range_encoders[i].state;
+ lzms_update_lz_lru_queue(&c->optimum[0].state.lru);
+ goto begin;
+ }
- ctx->optimum[1].state = initial_state;
- ctx->optimum[1].cost = lzms_get_literal_cost(ctx,
- &ctx->optimum[1].state,
- *(lz_mf_get_window_ptr(ctx->mf) - 1));
- ctx->optimum[1].prev.link = 0;
+ /* If reaching any positions for the first time,
+ * initialize their costs to "infinity". */
+ while (end_optimum_ptr < cur_optimum_ptr + rep_max_len)
+ (++end_optimum_ptr)->cost = MC_INFINITE_COST;
- for (u32 i = 0, len = 2; i < num_matches; i++) {
- u32 offset = matches[i].offset;
- struct lzms_adaptive_state state;
- u32 position_cost;
+ /* Consider coding a repeat offset match. */
+ lzms_consider_lz_repeat_offset_match(c, cur_optimum_ptr,
+ rep_max_len, rep_max_idx);
+ }
- state = initial_state;
- position_cost = 0;
- position_cost += lzms_get_lz_match_cost_nolen(ctx, &state, offset);
+ longest_len = c->matches[num_matches - 1].len;
- do {
- u32 cost;
+ /* If there's a very long explicit offset match, choose
+ * it immediately. */
+ if (longest_len >= c->params.nice_match_length) {
- cost = position_cost;
- cost += lzms_get_length_cost(&ctx->length_encoder, len);
+ lz_mf_skip_positions(c->mf, longest_len - 1);
+ window_ptr += longest_len;
- ctx->optimum[len].state = state;
- ctx->optimum[len].prev.link = 0;
- ctx->optimum[len].prev.match_offset = offset;
- ctx->optimum[len].cost = cost;
- } while (++len <= matches[i].len);
- }
- end_pos = longest_len;
-
- if (longest_rep_len) {
- struct lzms_adaptive_state state;
- u32 cost;
-
- while (end_pos < longest_rep_len)
- ctx->optimum[++end_pos].cost = MC_INFINITE_COST;
-
- state = initial_state;
- cost = lzms_get_lz_match_cost(ctx,
- &state,
- longest_rep_len,
- longest_rep_offset);
- if (cost <= ctx->optimum[longest_rep_len].cost) {
- ctx->optimum[longest_rep_len].state = state;
- ctx->optimum[longest_rep_len].prev.link = 0;
- ctx->optimum[longest_rep_len].prev.match_offset = longest_rep_offset;
- ctx->optimum[longest_rep_len].cost = cost;
- }
- }
+ if (cur_optimum_ptr != c->optimum)
+ lzms_encode_item_list(c, cur_optimum_ptr);
- cur_pos = 0;
- for (;;) {
- u32 cost;
- struct lzms_adaptive_state state;
+ lzms_encode_lz_explicit_offset_match(c, longest_len,
+ c->matches[num_matches - 1].offset);
- cur_pos++;
+ c->optimum[0].state = cur_optimum_ptr->state;
- if (cur_pos == end_pos || cur_pos == ctx->params.optim_array_length)
- return lzms_match_chooser_reverse_list(ctx, cur_pos);
+ lzms_update_main_state(&c->optimum[0].state, 1);
+ lzms_update_match_state(&c->optimum[0].state, 0);
+ lzms_update_lz_match_state(&c->optimum[0].state, 0);
- if (lz_mf_get_position(ctx->mf) >= LZMS_MAX_INIT_RECENT_OFFSET) {
- longest_rep_len = lzms_repsearch(lz_mf_get_window_ptr(ctx->mf),
- lz_mf_get_bytes_remaining(ctx->mf),
- &ctx->optimum[cur_pos].state.lru,
- &longest_rep_offset);
- } else {
- longest_rep_len = 0;
- }
+ c->optimum[0].state.lru.upcoming_offset =
+ c->matches[num_matches - 1].offset;
- if (longest_rep_len >= ctx->params.nice_match_length) {
- match = lzms_match_chooser_reverse_list(ctx, cur_pos);
+ lzms_update_lz_lru_queue(&c->optimum[0].state.lru);
+ goto begin;
+ }
- ctx->optimum[cur_pos].next.match_offset = longest_rep_offset;
- ctx->optimum[cur_pos].next.link = cur_pos + longest_rep_len;
- ctx->optimum_end_idx = cur_pos + longest_rep_len;
+ /* If reaching any positions for the first time,
+ * initialize their costs to "infinity". */
+ while (end_optimum_ptr < cur_optimum_ptr + longest_len)
+ (++end_optimum_ptr)->cost = MC_INFINITE_COST;
- lzms_skip_bytes(ctx, longest_rep_len);
+ /* Consider coding an explicit offset match. */
+ lzms_consider_lz_explicit_offset_matches(c, cur_optimum_ptr,
+ c->matches, num_matches);
+ } else {
+ /* No matches found. The only choice at this position
+ * is to code a literal. */
- return match;
+ if (end_optimum_ptr == cur_optimum_ptr)
+ (++end_optimum_ptr)->cost = MC_INFINITE_COST;
}
- num_matches = lzms_get_matches(ctx, &matches);
+ /* Consider coding a literal.
- if (num_matches) {
- longest_len = matches[num_matches - 1].len;
- if (longest_len >= ctx->params.nice_match_length) {
- match = lzms_match_chooser_reverse_list(ctx, cur_pos);
+ * To avoid an extra unpredictable brench, actually checking the
+ * preferability of coding a literal is integrated into the
+ * adaptive state update code below. */
+ literal = *window_ptr++;
+ cost = cur_optimum_ptr->cost +
+ lzms_literal_cost(c, literal, &cur_optimum_ptr->state);
- ctx->optimum[cur_pos].next.match_offset =
- matches[num_matches - 1].offset;
- ctx->optimum[cur_pos].next.link = cur_pos + longest_len;
- ctx->optimum_end_idx = cur_pos + longest_len;
+ /* Advance to the next position. */
+ cur_optimum_ptr++;
- lzms_skip_bytes(ctx, longest_len - 1);
+ /* The lowest-cost path to the current position is now known.
+ * Finalize the adaptive state that results from taking this
+ * lowest-cost path. */
- return match;
- }
- } else {
- longest_len = 1;
- }
+ if (cost < cur_optimum_ptr->cost) {
+ /* Literal */
+ cur_optimum_ptr->cost = cost;
+ cur_optimum_ptr->mc_item_data = ((u64)literal << MC_OFFSET_SHIFT) | 1;
- while (end_pos < cur_pos + longest_len)
- ctx->optimum[++end_pos].cost = MC_INFINITE_COST;
-
- state = ctx->optimum[cur_pos].state;
- cost = ctx->optimum[cur_pos].cost +
- lzms_get_literal_cost(ctx,
- &state,
- *(lz_mf_get_window_ptr(ctx->mf) - 1));
- if (cost < ctx->optimum[cur_pos + 1].cost) {
- ctx->optimum[cur_pos + 1].state = state;
- ctx->optimum[cur_pos + 1].cost = cost;
- ctx->optimum[cur_pos + 1].prev.link = cur_pos;
- }
+ cur_optimum_ptr->state = (cur_optimum_ptr - 1)->state;
- for (u32 i = 0, len = 2; i < num_matches; i++) {
- u32 offset = matches[i].offset;
- struct lzms_adaptive_state state;
- u32 position_cost;
+ lzms_update_main_state(&cur_optimum_ptr->state, 0);
- state = ctx->optimum[cur_pos].state;
- position_cost = ctx->optimum[cur_pos].cost;
- position_cost += lzms_get_lz_match_cost_nolen(ctx, &state, offset);
+ cur_optimum_ptr->state.lru.upcoming_offset = 0;
+ } else {
+ /* LZ match */
+ len = cur_optimum_ptr->mc_item_data & MC_LEN_MASK;
+ offset_data = cur_optimum_ptr->mc_item_data >> MC_OFFSET_SHIFT;
- do {
- u32 cost;
+ cur_optimum_ptr->state = (cur_optimum_ptr - len)->state;
- cost = position_cost;
- cost += lzms_get_length_cost(&ctx->length_encoder, len);
+ lzms_update_main_state(&cur_optimum_ptr->state, 1);
+ lzms_update_match_state(&cur_optimum_ptr->state, 0);
- if (cost < ctx->optimum[cur_pos + len].cost) {
- ctx->optimum[cur_pos + len].state = state;
- ctx->optimum[cur_pos + len].prev.link = cur_pos;
- ctx->optimum[cur_pos + len].prev.match_offset = offset;
- ctx->optimum[cur_pos + len].cost = cost;
- }
- } while (++len <= matches[i].len);
- }
+ if (offset_data >= LZMS_NUM_RECENT_OFFSETS) {
- if (longest_rep_len >= ctx->params.min_match_length) {
-
- while (end_pos < cur_pos + longest_rep_len)
- ctx->optimum[++end_pos].cost = MC_INFINITE_COST;
-
- state = ctx->optimum[cur_pos].state;
-
- cost = ctx->optimum[cur_pos].cost +
- lzms_get_lz_match_cost(ctx,
- &state,
- longest_rep_len,
- longest_rep_offset);
- if (cost <= ctx->optimum[cur_pos + longest_rep_len].cost) {
- ctx->optimum[cur_pos + longest_rep_len].state =
- state;
- ctx->optimum[cur_pos + longest_rep_len].prev.link =
- cur_pos;
- ctx->optimum[cur_pos + longest_rep_len].prev.match_offset =
- longest_rep_offset;
- ctx->optimum[cur_pos + longest_rep_len].cost =
- cost;
- }
- }
- }
-}
+ /* Explicit offset LZ match */
-/*
- * The main loop for the LZMS compressor.
- *
- * Notes:
- *
- * - This does not output any delta matches.
- *
- * - The costs of literals and matches are estimated using the range encoder
- * states and the semi-adaptive Huffman codes. Except for range encoding
- * states, costs are assumed to be constant throughout a single run of the
- * parsing algorithm, which can parse up to @optim_array_length bytes of data.
- * This introduces a source of inaccuracy because the probabilities and
- * Huffman codes can change over this part of the data.
- */
-static void
-lzms_encode(struct lzms_compressor *ctx)
-{
- struct lz_match item;
+ lzms_update_lz_match_state(&cur_optimum_ptr->state, 0);
+
+ cur_optimum_ptr->state.lru.upcoming_offset =
+ offset_data - LZMS_OFFSET_OFFSET;
+ } else {
+ /* Repeat offset LZ match */
- /* Load window into the match-finder. */
- lz_mf_load_window(ctx->mf, ctx->window, ctx->window_size);
+ lzms_update_lz_match_state(&cur_optimum_ptr->state, 1);
+ lzms_update_lz_repeat_match_state(&cur_optimum_ptr->state,
+ offset_data);
- /* Reset the match-chooser. */
- ctx->optimum_cur_idx = 0;
- ctx->optimum_end_idx = 0;
+ cur_optimum_ptr->state.lru.upcoming_offset =
+ cur_optimum_ptr->state.lru.recent_offsets[offset_data];
- while (ctx->cur_window_pos != ctx->window_size) {
- item = lzms_get_near_optimal_item(ctx);
- if (item.len <= 1)
- lzms_encode_literal(ctx, ctx->window[ctx->cur_window_pos]);
- else
- lzms_encode_lz_match(ctx, item.len, item.offset);
+ for (i = offset_data; i < LZMS_NUM_RECENT_OFFSETS; i++)
+ cur_optimum_ptr->state.lru.recent_offsets[i] =
+ cur_optimum_ptr->state.lru.recent_offsets[i + 1];
+ }
+ }
+
+ lzms_update_lz_lru_queue(&cur_optimum_ptr->state.lru);
+
+ /*
+ * This loop will terminate when either of the following
+ * conditions is true:
+ *
+ * (1) cur_optimum_ptr == end_optimum_ptr
+ *
+ * There are no paths that extend beyond the current
+ * position. In this case, any path to a later position
+ * must pass through the current position, so we can go
+ * ahead and choose the list of items that led to this
+ * position.
+ *
+ * (2) cur_optimum_ptr == c->optimum_end
+ *
+ * This bounds the number of times the algorithm can step
+ * forward before it is guaranteed to start choosing items.
+ * This limits the memory usage. It also guarantees that
+ * the parser will not go too long without updating the
+ * probability tables.
+ *
+ * Note: no check for end-of-block is needed because
+ * end-of-block will trigger condition (1).
+ */
+ if (cur_optimum_ptr == end_optimum_ptr ||
+ cur_optimum_ptr == c->optimum_end)
+ {
+ c->optimum[0].state = cur_optimum_ptr->state;
+ break;
+ }
}
+
+ /* Output the current list of items that constitute the minimum-cost
+ * path to the current position. */
+ lzms_encode_item_list(c, cur_optimum_ptr);
+ goto begin;
}
static void
{
enc->rc = rc;
enc->state = 0;
+ LZMS_ASSERT(is_power_of_2(num_states));
enc->mask = num_states - 1;
for (u32 i = 0; i < num_states; i++) {
enc->prob_entries[i].num_recent_zero_bits = LZMS_INITIAL_PROBABILITY;
enc->codewords);
}
-/* Initialize the LZMS compressor. */
+/* Prepare the LZMS compressor for compressing a block of data. */
static void
-lzms_init_compressor(struct lzms_compressor *ctx, const u8 *udata, u32 ulen,
- le16 *cdata, u32 clen16)
+lzms_prepare_compressor(struct lzms_compressor *c, const u8 *udata, u32 ulen,
+ le16 *cdata, u32 clen16)
{
- unsigned num_position_slots;
+ unsigned num_offset_slots;
- /* Copy the uncompressed data into the @ctx->window buffer. */
- memcpy(ctx->window, udata, ulen);
- ctx->cur_window_pos = 0;
- ctx->window_size = ulen;
+ /* Copy the uncompressed data into the @c->cur_window buffer. */
+ memcpy(c->cur_window, udata, ulen);
+ c->cur_window_size = ulen;
/* Initialize the raw range encoder (writing forwards). */
- lzms_range_encoder_raw_init(&ctx->rc, cdata, clen16);
+ lzms_range_encoder_raw_init(&c->rc, cdata, clen16);
/* Initialize the output bitstream for Huffman symbols and verbatim bits
* (writing backwards). */
- lzms_output_bitstream_init(&ctx->os, cdata, clen16);
-
- /* Calculate the number of position slots needed for this compressed
- * block. */
- num_position_slots = lzms_get_position_slot(ulen - 1) + 1;
+ lzms_output_bitstream_init(&c->os, cdata, clen16);
- LZMS_DEBUG("Using %u position slots", num_position_slots);
+ /* Calculate the number of offset slots required. */
+ num_offset_slots = lzms_get_offset_slot(ulen - 1) + 1;
- /* Initialize Huffman encoders for each alphabet used in the compressed
- * representation. */
- lzms_init_huffman_encoder(&ctx->literal_encoder, &ctx->os,
+ /* Initialize a Huffman encoder for each alphabet. */
+ lzms_init_huffman_encoder(&c->literal_encoder, &c->os,
LZMS_NUM_LITERAL_SYMS,
LZMS_LITERAL_CODE_REBUILD_FREQ);
- lzms_init_huffman_encoder(&ctx->lz_offset_encoder, &ctx->os,
- num_position_slots,
+ lzms_init_huffman_encoder(&c->lz_offset_encoder, &c->os,
+ num_offset_slots,
LZMS_LZ_OFFSET_CODE_REBUILD_FREQ);
- lzms_init_huffman_encoder(&ctx->length_encoder, &ctx->os,
+ lzms_init_huffman_encoder(&c->length_encoder, &c->os,
LZMS_NUM_LEN_SYMS,
LZMS_LENGTH_CODE_REBUILD_FREQ);
- lzms_init_huffman_encoder(&ctx->delta_offset_encoder, &ctx->os,
- num_position_slots,
+ lzms_init_huffman_encoder(&c->delta_offset_encoder, &c->os,
+ num_offset_slots,
LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ);
- lzms_init_huffman_encoder(&ctx->delta_power_encoder, &ctx->os,
+ lzms_init_huffman_encoder(&c->delta_power_encoder, &c->os,
LZMS_NUM_DELTA_POWER_SYMS,
LZMS_DELTA_POWER_CODE_REBUILD_FREQ);
/* Initialize range encoders, all of which wrap around the same
* lzms_range_encoder_raw. */
- lzms_init_range_encoder(&ctx->main_range_encoder,
- &ctx->rc, LZMS_NUM_MAIN_STATES);
+ lzms_init_range_encoder(&c->main_range_encoder,
+ &c->rc, LZMS_NUM_MAIN_STATES);
- lzms_init_range_encoder(&ctx->match_range_encoder,
- &ctx->rc, LZMS_NUM_MATCH_STATES);
+ lzms_init_range_encoder(&c->match_range_encoder,
+ &c->rc, LZMS_NUM_MATCH_STATES);
- lzms_init_range_encoder(&ctx->lz_match_range_encoder,
- &ctx->rc, LZMS_NUM_LZ_MATCH_STATES);
+ lzms_init_range_encoder(&c->lz_match_range_encoder,
+ &c->rc, LZMS_NUM_LZ_MATCH_STATES);
- for (size_t i = 0; i < ARRAY_LEN(ctx->lz_repeat_match_range_encoders); i++)
- lzms_init_range_encoder(&ctx->lz_repeat_match_range_encoders[i],
- &ctx->rc, LZMS_NUM_LZ_REPEAT_MATCH_STATES);
+ for (unsigned i = 0; i < ARRAY_LEN(c->lz_repeat_match_range_encoders); i++)
+ lzms_init_range_encoder(&c->lz_repeat_match_range_encoders[i],
+ &c->rc, LZMS_NUM_LZ_REPEAT_MATCH_STATES);
- lzms_init_range_encoder(&ctx->delta_match_range_encoder,
- &ctx->rc, LZMS_NUM_DELTA_MATCH_STATES);
+ lzms_init_range_encoder(&c->delta_match_range_encoder,
+ &c->rc, LZMS_NUM_DELTA_MATCH_STATES);
- for (size_t i = 0; i < ARRAY_LEN(ctx->delta_repeat_match_range_encoders); i++)
- lzms_init_range_encoder(&ctx->delta_repeat_match_range_encoders[i],
- &ctx->rc, LZMS_NUM_DELTA_REPEAT_MATCH_STATES);
+ for (unsigned i = 0; i < ARRAY_LEN(c->delta_repeat_match_range_encoders); i++)
+ lzms_init_range_encoder(&c->delta_repeat_match_range_encoders[i],
+ &c->rc, LZMS_NUM_DELTA_REPEAT_MATCH_STATES);
- /* Initialize LRU match information. */
- lzms_init_lru_queues(&ctx->lru);
+ /* Set initial length costs for lengths < LZMS_NUM_FAST_LENGTHS. */
+ lzms_update_fast_length_costs(c);
}
/* Flush the output streams, prepare the final compressed data, and return its
* A return value of 0 indicates that the data could not be compressed to fit in
* the available space. */
static size_t
-lzms_finalize(struct lzms_compressor *ctx, u8 *cdata, size_t csize_avail)
+lzms_finalize(struct lzms_compressor *c, u8 *cdata, size_t csize_avail)
{
size_t num_forwards_bytes;
size_t num_backwards_bytes;
- size_t compressed_size;
/* Flush both the forwards and backwards streams, and make sure they
* didn't cross each other and start overwriting each other's data. */
- if (!lzms_output_bitstream_flush(&ctx->os)) {
- LZMS_DEBUG("Backwards bitstream overrun.");
+ if (!lzms_output_bitstream_flush(&c->os))
return 0;
- }
- if (!lzms_range_encoder_raw_flush(&ctx->rc)) {
- LZMS_DEBUG("Forwards bitstream overrun.");
+ if (!lzms_range_encoder_raw_flush(&c->rc))
return 0;
- }
- if (ctx->rc.out > ctx->os.out) {
- LZMS_DEBUG("Two bitstreams crossed.");
+ if (c->rc.next > c->os.next)
return 0;
- }
/* Now the compressed buffer contains the data output by the forwards
* bitstream, then empty space, then data output by the backwards
* bitstream. Move the data output by the backwards bitstream to be
* adjacent to the data output by the forward bitstream, and calculate
* the compressed size that this results in. */
- num_forwards_bytes = (u8*)ctx->rc.out - (u8*)cdata;
- num_backwards_bytes = ((u8*)cdata + csize_avail) - (u8*)ctx->os.out;
+ num_forwards_bytes = (u8*)c->rc.next - (u8*)cdata;
+ num_backwards_bytes = ((u8*)cdata + csize_avail) - (u8*)c->os.next;
- memmove(cdata + num_forwards_bytes, ctx->os.out, num_backwards_bytes);
+ memmove(cdata + num_forwards_bytes, c->os.next, num_backwards_bytes);
- compressed_size = num_forwards_bytes + num_backwards_bytes;
- LZMS_DEBUG("num_forwards_bytes=%zu, num_backwards_bytes=%zu, "
- "compressed_size=%zu",
- num_forwards_bytes, num_backwards_bytes, compressed_size);
- LZMS_ASSERT(compressed_size % 2 == 0);
- return compressed_size;
+ return num_forwards_bytes + num_backwards_bytes;
}
-
+/* Set internal compression parameters for the specified compression level and
+ * maximum window size. */
static void
lzms_build_params(unsigned int compression_level,
struct lzms_compressor_params *lzms_params)
{
- lzms_params->min_match_length = (compression_level >= 50) ? 2 : 3;
- lzms_params->nice_match_length = max(((u64)compression_level * 32) / 50,
- lzms_params->min_match_length);
- lzms_params->max_search_depth = ((u64)compression_level * 50) / 50;
- lzms_params->optim_array_length = 224 + compression_level * 16;
+ /* Allow length 2 matches if the compression level is sufficiently high.
+ */
+ if (compression_level >= 45)
+ lzms_params->min_match_length = 2;
+ else
+ lzms_params->min_match_length = 3;
+
+ /* Scale nice_match_length and max_search_depth with the compression
+ * level. But to allow an optimization on length cost calculations,
+ * don't allow nice_match_length to exceed LZMS_NUM_FAST_LENGTH. */
+ lzms_params->nice_match_length = ((u64)compression_level * 32) / 50;
+ if (lzms_params->nice_match_length < lzms_params->min_match_length)
+ lzms_params->nice_match_length = lzms_params->min_match_length;
+ if (lzms_params->nice_match_length > LZMS_NUM_FAST_LENGTHS)
+ lzms_params->nice_match_length = LZMS_NUM_FAST_LENGTHS;
+ lzms_params->max_search_depth = compression_level;
+
+ lzms_params->optim_array_length = 1024;
}
+/* Given the internal compression parameters and maximum window size, build the
+ * Lempel-Ziv match-finder parameters. */
static void
lzms_build_mf_params(const struct lzms_compressor_params *lzms_params,
u32 max_window_size, struct lz_mf_params *mf_params)
{
memset(mf_params, 0, sizeof(*mf_params));
- mf_params->algorithm = LZ_MF_DEFAULT;
+ /* Choose an appropriate match-finding algorithm. */
+ if (max_window_size <= 2097152)
+ mf_params->algorithm = LZ_MF_BINARY_TREES;
+ else if (max_window_size <= 33554432)
+ mf_params->algorithm = LZ_MF_LCP_INTERVAL_TREE;
+ else
+ mf_params->algorithm = LZ_MF_LINKED_SUFFIX_ARRAY;
+
mf_params->max_window_size = max_window_size;
mf_params->min_match_len = lzms_params->min_match_length;
mf_params->max_search_depth = lzms_params->max_search_depth;
}
static void
-lzms_free_compressor(void *_ctx);
+lzms_free_compressor(void *_c);
static u64
lzms_get_needed_memory(size_t max_block_size, unsigned int compression_level)
{
struct lzms_compressor_params params;
+ struct lz_mf_params mf_params;
u64 size = 0;
if (max_block_size >= INT32_MAX)
return 0;
lzms_build_params(compression_level, ¶ms);
+ lzms_build_mf_params(¶ms, max_block_size, &mf_params);
size += sizeof(struct lzms_compressor);
+
+ /* cur_window */
size += max_block_size;
- size += lz_mf_get_needed_memory(LZ_MF_DEFAULT, max_block_size);
- size += params.max_search_depth * sizeof(struct lz_match);
+
+ /* mf */
+ size += lz_mf_get_needed_memory(mf_params.algorithm, max_block_size);
+
+ /* matches */
+ size += min(params.max_search_depth, params.nice_match_length) *
+ sizeof(struct lz_match);
+
+ /* optimum */
size += (params.optim_array_length + params.nice_match_length) *
sizeof(struct lzms_mc_pos_data);
lzms_create_compressor(size_t max_block_size, unsigned int compression_level,
void **ctx_ret)
{
- struct lzms_compressor *ctx;
+ struct lzms_compressor *c;
struct lzms_compressor_params params;
struct lz_mf_params mf_params;
if (!lz_mf_params_valid(&mf_params))
return WIMLIB_ERR_INVALID_PARAM;
- ctx = CALLOC(1, sizeof(struct lzms_compressor));
- if (!ctx)
+ c = CALLOC(1, sizeof(struct lzms_compressor));
+ if (!c)
goto oom;
- ctx->params = params;
- ctx->max_block_size = max_block_size;
+ c->params = params;
- ctx->window = MALLOC(max_block_size);
- if (!ctx->window)
+ c->cur_window = MALLOC(max_block_size);
+ if (!c->cur_window)
goto oom;
- ctx->mf = lz_mf_alloc(&mf_params);
- if (!ctx->mf)
+ c->mf = lz_mf_alloc(&mf_params);
+ if (!c->mf)
goto oom;
- ctx->matches = MALLOC(params.max_search_depth * sizeof(struct lz_match));
- if (!ctx->matches)
+ c->matches = MALLOC(min(params.max_search_depth,
+ params.nice_match_length) *
+ sizeof(struct lz_match));
+ if (!c->matches)
goto oom;
- ctx->optimum = MALLOC((params.optim_array_length +
- params.nice_match_length) *
- sizeof(struct lzms_mc_pos_data));
- if (!ctx->optimum)
+ c->optimum = MALLOC((params.optim_array_length +
+ params.nice_match_length) *
+ sizeof(struct lzms_mc_pos_data));
+ if (!c->optimum)
goto oom;
+ c->optimum_end = &c->optimum[params.optim_array_length];
- /* Initialize position and length slot data if not done already. */
lzms_init_slots();
- /* Initialize range encoding cost table if not done already. */
lzms_init_rc_costs();
- *ctx_ret = ctx;
+ lzms_init_fast_slots(c);
+
+ *ctx_ret = c;
return 0;
oom:
- lzms_free_compressor(ctx);
+ lzms_free_compressor(c);
return WIMLIB_ERR_NOMEM;
}
static size_t
lzms_compress(const void *uncompressed_data, size_t uncompressed_size,
- void *compressed_data, size_t compressed_size_avail, void *_ctx)
+ void *compressed_data, size_t compressed_size_avail, void *_c)
{
- struct lzms_compressor *ctx = _ctx;
- size_t compressed_size;
-
- LZMS_DEBUG("uncompressed_size=%zu, compressed_size_avail=%zu",
- uncompressed_size, compressed_size_avail);
+ struct lzms_compressor *c = _c;
/* Don't bother compressing extremely small inputs. */
- if (uncompressed_size < 4) {
- LZMS_DEBUG("Input too small to bother compressing.");
+ if (uncompressed_size < 4)
return 0;
- }
/* Cap the available compressed size to a 32-bit integer and round it
* down to the nearest multiple of 2. */
compressed_size_avail--;
/* Initialize the compressor structures. */
- lzms_init_compressor(ctx, uncompressed_data, uncompressed_size,
- compressed_data, compressed_size_avail / 2);
+ lzms_prepare_compressor(c, uncompressed_data, uncompressed_size,
+ compressed_data, compressed_size_avail / 2);
/* Preprocess the uncompressed data. */
- lzms_x86_filter(ctx->window, ctx->window_size,
- ctx->last_target_usages, false);
+ lzms_x86_filter(c->cur_window, c->cur_window_size,
+ c->last_target_usages, false);
+
+ /* Load the window into the match-finder. */
+ lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
/* Compute and encode a literal/match sequence that decompresses to the
* preprocessed data. */
- lzms_encode(ctx);
-
- /* Get and return the compressed data size. */
- compressed_size = lzms_finalize(ctx, compressed_data,
- compressed_size_avail);
-
- if (compressed_size == 0) {
- LZMS_DEBUG("Data did not compress to requested size or less.");
- return 0;
- }
-
- LZMS_DEBUG("Compressed %zu => %zu bytes",
- uncompressed_size, compressed_size);
+ lzms_near_optimal_parse(c);
- return compressed_size;
+ /* Return the compressed data size or 0. */
+ return lzms_finalize(c, compressed_data, compressed_size_avail);
}
static void
-lzms_free_compressor(void *_ctx)
+lzms_free_compressor(void *_c)
{
- struct lzms_compressor *ctx = _ctx;
-
- if (ctx) {
- FREE(ctx->window);
- lz_mf_free(ctx->mf);
- FREE(ctx->matches);
- FREE(ctx->optimum);
- FREE(ctx);
+ struct lzms_compressor *c = _c;
+
+ if (c) {
+ FREE(c->cur_window);
+ lz_mf_free(c->mf);
+ FREE(c->matches);
+ FREE(c->optimum);
+ FREE(c);
}
}
*/
/*
- * Copyright (C) 2013 Eric Biggers
+ * Copyright (C) 2013, 2014 Eric Biggers
*
* This file is part of wimlib, a library for working with WIM files.
*
*
* For LZ matches, up to 3 repeat offsets are allowed, similar to some other
* LZ-based formats such as LZX and LZMA. They must updated in an LRU fashion,
- * except for a quirk: updates to the queue must be delayed by one LZMS item,
- * except for the removal of a repeat match. As a result, 4 entries are
- * actually needed in the queue, even though it is only possible to decode
- * references to the first 3 at any given time. The queue must be initialized
- * to the offsets {1, 2, 3, 4}.
+ * except for a quirk: inserting anything to the front of the queue must be
+ * delayed by one LZMS item. The reason for this is presumably that there is
+ * almost no reason to code the same match offset twice in a row, since you
+ * might as well have coded a longer match at that offset. For this same
+ * reason, it also is a requirement that when an offset in the queue is used,
+ * that offset is removed from the queue immediately (and made pending for
+ * front-insertion after the following decoded item), and everything to the
+ * right is shifted left one queue slot. This creates a need for an "overflow"
+ * fourth entry in the queue, even though it is only possible to decode
+ * references to the first 3 entries at any given time. The queue must be
+ * initialized to the offsets {1, 2, 3, 4}.
*
* Repeat delta matches are handled similarly, but for them there are two queues
* updated in lock-step: one for powers and one for raw offsets. The power
* 1024 symbols have been decoded with it.
*
* - The LZ offset code, used for decoding the offsets of standard LZ77
- * matches. Each symbol represents a position slot, which corresponds to a
+ * matches. Each symbol represents an offset slot, which corresponds to a
* base value and some number of extra bits which must be read and added to
* the base value to reconstitute the full offset. The number of symbols in
- * this code is the number of position slots needed to represent all possible
+ * this code is the number of offset slots needed to represent all possible
* offsets in the uncompressed block. This code must be rebuilt whenever
* 1024 symbols have been decoded with it.
*
* symbols have been decoded with it.
*
* - The delta offset code, used for decoding the offsets of delta matches.
- * Each symbol corresponds to a position slot, which corresponds to a base
+ * Each symbol corresponds to an offset slot, which corresponds to a base
* value and some number of extra bits which must be read and added to the
* base value to reconstitute the full offset. The number of symbols in this
* code is equal to the number of symbols in the LZ offset code. This code
/* Load the probability entry corresponding to the current state. */
prob_entry = &dec->prob_entries[dec->state];
- /* Treat the number of zero bits in the most recently decoded
- * LZMS_PROBABILITY_MAX bits with this probability entry as the chance,
- * out of LZMS_PROBABILITY_MAX, that the next bit will be a 0. However,
- * don't allow 0% or 100% probabilities. */
- prob = prob_entry->num_recent_zero_bits;
- if (prob == LZMS_PROBABILITY_MAX)
- prob = LZMS_PROBABILITY_MAX - 1;
- else if (prob == 0)
- prob = 1;
+ /* Get the probability that the next bit is 0. */
+ prob = lzms_get_probability(prob_entry);
/* Decode the next bit. */
bit = lzms_range_decoder_raw_decode_bit(dec->rd, prob);
- /* Update the state based on the newly decoded bit. */
+ /* Update the state and probability entry based on the decoded bit. */
dec->state = (((dec->state << 1) | bit) & dec->mask);
-
- /* Update the recent bits, including the cached count of 0's. */
- BUILD_BUG_ON(LZMS_PROBABILITY_MAX > sizeof(prob_entry->recent_bits) * 8);
- if (bit == 0) {
- if (prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1))) {
- /* Replacing 1 bit with 0 bit; increment the zero count.
- */
- prob_entry->num_recent_zero_bits++;
- }
- } else {
- if (!(prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1)))) {
- /* Replacing 0 bit with 1 bit; decrement the zero count.
- */
- prob_entry->num_recent_zero_bits--;
- }
- }
- prob_entry->recent_bits = (prob_entry->recent_bits << 1) | bit;
+ lzms_update_probability_entry(prob_entry, bit);
/* Return the decoded bit. */
return bit;
LZMS_ASSERT(dec->slot_base_tab != NULL);
LZMS_ASSERT(dec->extra_bits_tab != NULL);
- /* Read the slot (position slot, length slot, etc.), which is encoded as
- * a Huffman symbol. */
+ /* Read the slot (offset slot, length slot, etc.), which is encoded as a
+ * Huffman symbol. */
slot = lzms_huffman_decode_symbol(dec);
/* Get the number of extra bits needed to represent the range of values
const void *cdata, unsigned clen,
void *ubuf, unsigned ulen)
{
- unsigned num_position_slots;
+ unsigned num_offset_slots;
LZMS_DEBUG("Initializing decompressor (clen=%u, ulen=%u)", clen, ulen);
* backwards) */
lzms_input_bitstream_init(&ctx->is, cdata, clen / 2);
- /* Calculate the number of position slots needed for this compressed
+ /* Calculate the number of offset slots needed for this compressed
* block. */
- num_position_slots = lzms_get_position_slot(ulen - 1) + 1;
+ num_offset_slots = lzms_get_offset_slot(ulen - 1) + 1;
- LZMS_DEBUG("Using %u position slots", num_position_slots);
+ LZMS_DEBUG("Using %u offset slots", num_offset_slots);
/* Initialize Huffman decoders for each alphabet used in the compressed
* representation. */
LZMS_LITERAL_CODE_REBUILD_FREQ);
lzms_init_huffman_decoder(&ctx->lz_offset_decoder, &ctx->is,
- lzms_position_slot_base,
- lzms_extra_position_bits,
- num_position_slots,
+ lzms_offset_slot_base,
+ lzms_extra_offset_bits,
+ num_offset_slots,
LZMS_LZ_OFFSET_CODE_REBUILD_FREQ);
lzms_init_huffman_decoder(&ctx->length_decoder, &ctx->is,
LZMS_LENGTH_CODE_REBUILD_FREQ);
lzms_init_huffman_decoder(&ctx->delta_offset_decoder, &ctx->is,
- lzms_position_slot_base,
- lzms_extra_position_bits,
- num_position_slots,
+ lzms_offset_slot_base,
+ lzms_extra_offset_bits,
+ num_offset_slots,
LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ);
lzms_init_huffman_decoder(&ctx->delta_power_decoder, &ctx->is,
}
/* Handle the trivial case where nothing needs to be decompressed.
- * (Necessary because a window of size 0 does not have a valid position
+ * (Necessary because a window of size 0 does not have a valid offset
* slot.) */
if (uncompressed_size == 0)
return 0;
struct lzms_decompressor *ctx;
/* The x86 post-processor requires that the uncompressed length fit into
- * a signed 32-bit integer. Also, the position slot table cannot be
- * searched for a position of INT32_MAX or greater. */
+ * a signed 32-bit integer. Also, the offset slot table cannot be
+ * searched for an offset of INT32_MAX or greater. */
if (max_block_size >= INT32_MAX)
return WIMLIB_ERR_INVALID_PARAM;
if (ctx == NULL)
return WIMLIB_ERR_NOMEM;
- /* Initialize position and length slot data if not done already. */
+ /* Initialize offset and length slot data if not done already. */
lzms_init_slots();
*ctx_ret = ctx;
# include <emmintrin.h>
#endif
-/* Mapping: position slot => first match offset that uses that position slot.
+/* Mapping: offset slot => first match offset that uses that offset slot.
*/
-const u32 lzx_position_base[LZX_MAX_POSITION_SLOTS] = {
+const u32 lzx_offset_slot_base[LZX_MAX_OFFSET_SLOTS] = {
0 , 1 , 2 , 3 , 4 , /* 0 --- 4 */
6 , 8 , 12 , 16 , 24 , /* 5 --- 9 */
32 , 48 , 64 , 96 , 128 , /* 10 --- 14 */
2097152 /* 50 */
};
-/* Mapping: position slot => how many extra bits must be read and added to the
- * corresponding position base to decode the match offset. */
-#ifdef USE_LZX_EXTRA_BITS_ARRAY
-const u8 lzx_extra_bits[LZX_MAX_POSITION_SLOTS] = {
+/* Mapping: offset slot => how many extra bits must be read and added to the
+ * corresponding offset slot base to decode the match offset. */
+const u8 lzx_extra_offset_bits[LZX_MAX_OFFSET_SLOTS] = {
0 , 0 , 0 , 0 , 1 ,
1 , 2 , 2 , 3 , 3 ,
4 , 4 , 5 , 5 , 6 ,
17, 17, 17, 17, 17,
17
};
-#endif
/* Round the specified compression block size (not LZX block size) up to the
* next valid LZX window size, and return its order (log2). Or, if the block
/* NOTE: the calculation *should* be as follows:
*
* u32 max_offset = window_size - LZX_MIN_MATCH_LEN;
- * u32 max_formatted_offset = max_offset + LZX_OFFSET_OFFSET;
- * u32 num_position_slots = 1 + lzx_get_position_slot_raw(max_formatted_offset);
+ * u32 max_adjusted_offset = max_offset + LZX_OFFSET_OFFSET;
+ * u32 num_offset_slots = 1 + lzx_get_offset_slot_raw(max_adjusted_offset);
*
* However since LZX_MIN_MATCH_LEN == LZX_OFFSET_OFFSET, we would get
- * max_formatted_offset == window_size, which would bump the number of
- * position slots up by 1 since every valid LZX window size is equal to
- * a position base value. The format doesn't do this, and instead
+ * max_adjusted_offset == window_size, which would bump the number of
+ * offset slots up by 1 since every valid LZX window size is equal to a
+ * offset slot base value. The format doesn't do this, and instead
* disallows matches with minimum length and maximum offset. This sets
- * max_formatted_offset = window_size - 1, so instead we must calculate:
+ * max_adjusted_offset = window_size - 1, so instead we must calculate:
*
- * num_position_slots = 1 + lzx_get_position_slot_raw(window_size - 1);
+ * num_offset_slots = 1 + lzx_get_offset_slot_raw(window_size - 1);
*
* ... which is the same as
*
- * num_position_slots = lzx_get_position_slot_raw(window_size);
+ * num_offset_slots = lzx_get_offset_slot_raw(window_size);
*
- * ... since every valid window size is equal to a position base value.
+ * ... since every valid window size is equal to an offset base value.
*/
- unsigned num_position_slots = lzx_get_position_slot_raw(window_size);
+ unsigned num_offset_slots = lzx_get_offset_slot_raw(window_size);
/* Now calculate the number of main symbols as LZX_NUM_CHARS literal
- * symbols, plus 8 symbols per position slot (since there are 8 possible
- * length headers, and we need all (position slot, length header)
+ * symbols, plus 8 symbols per offset slot (since there are 8 possible
+ * length headers, and we need all (offset slot, length header)
* combinations). */
- return LZX_NUM_CHARS + (num_position_slots << 3);
+ return LZX_NUM_CHARS + (num_offset_slots << 3);
}
static void
/*
- * This file contains a compressor for the LZX ("Lempel-Ziv eXtended"?)
- * compression format, as used in the WIM (Windows IMaging) file format. This
- * code may need some slight modifications to be used outside of the WIM format.
- * In particular, in other situations the LZX block header might be slightly
- * different, and a sliding window rather than a fixed-size window might be
- * required.
+ * This file contains a compressor for the LZX ("Lempel-Ziv eXtended")
+ * compression format, as used in the WIM (Windows IMaging) file format.
*
- * ----------------------------------------------------------------------------
+ * Two different parsing algorithms are implemented: "near-optimal" and "lazy".
+ * "Near-optimal" is significantly slower than "lazy", but results in a better
+ * compression ratio. The "near-optimal" algorithm is used at the default
+ * compression level.
*
- * Format Overview
+ * This file may need some slight modifications to be used outside of the WIM
+ * format. In particular, in other situations the LZX block header might be
+ * slightly different, and a sliding window rather than a fixed-size window
+ * might be required.
*
- * The primary reference for LZX is the specification released by Microsoft.
- * However, the comments in lzx-decompress.c provide more information about LZX
- * and note some errors in the Microsoft specification.
- *
- * LZX shares many similarities with DEFLATE, the format used by zlib and gzip.
- * Both LZX and DEFLATE use LZ77 matching and Huffman coding. Certain details
- * are quite similar, such as the method for storing Huffman codes. However,
- * the main differences are:
+ * Note: LZX is a compression format derived from DEFLATE, the format used by
+ * zlib and gzip. Both LZX and DEFLATE use LZ77 matching and Huffman coding.
+ * Certain details are quite similar, such as the method for storing Huffman
+ * codes. However, the main differences are:
*
* - LZX preprocesses the data to attempt to make x86 machine code slightly more
* compressible before attempting to compress it further.
*
* - LZX uses a "main" alphabet which combines literals and matches, with the
* match symbols containing a "length header" (giving all or part of the match
- * length) and a "position slot" (giving, roughly speaking, the order of
+ * length) and an "offset slot" (giving, roughly speaking, the order of
* magnitude of the match offset).
*
* - LZX does not have static Huffman blocks (that is, the kind with preset
* Huffman codes); however it does have two types of dynamic Huffman blocks
* ("verbatim" and "aligned").
*
- * - LZX has a minimum match length of 2 rather than 3.
- *
- * - In LZX, match offsets 0 through 2 actually represent entries in an LRU
- * queue of match offsets. This is very useful for certain types of files,
- * such as binary files that have repeating records.
- *
- * ----------------------------------------------------------------------------
- *
- * Algorithmic Overview
- *
- * At a high level, any implementation of LZX compression must operate as
- * follows:
- *
- * 1. Preprocess the input data to translate the targets of 32-bit x86 call
- * instructions to absolute offsets. (Actually, this is required for WIM,
- * but might not be in other places LZX is used.)
- *
- * 2. Find a sequence of LZ77-style matches and literal bytes that expands to
- * the preprocessed data.
- *
- * 3. Divide the match/literal sequence into one or more LZX blocks, each of
- * which may be "uncompressed", "verbatim", or "aligned".
- *
- * 4. Output each LZX block.
- *
- * Step (1) is fairly straightforward. It requires looking for 0xe8 bytes in
- * the input data and performing a translation on the 4 bytes following each
- * one.
- *
- * Step (4) is complicated, but it is mostly determined by the LZX format. The
- * only real choice we have is what algorithm to use to build the length-limited
- * canonical Huffman codes. See lzx_write_all_blocks() for details.
- *
- * That leaves steps (2) and (3) as where all the hard stuff happens. Focusing
- * on step (2), we need to do LZ77-style parsing on the input data, or "window",
- * to divide it into a sequence of matches and literals. Each position in the
- * window might have multiple matches associated with it, and we need to choose
- * which one, if any, to actually use. Therefore, the problem can really be
- * divided into two areas of concern: (a) finding matches at a given position,
- * which we shall call "match-finding", and (b) choosing whether to use a
- * match or a literal at a given position, and if using a match, which one (if
- * there is more than one available). We shall call this "match-choosing". We
- * first consider match-finding, then match-choosing.
- *
- * ----------------------------------------------------------------------------
- *
- * Match-finding
- *
- * Given a position in the window, we want to find LZ77-style "matches" with
- * that position at previous positions in the window. With LZX, the minimum
- * match length is 2 and the maximum match length is 257. The only restriction
- * on offsets is that LZX does not allow the last 2 bytes of the window to match
- * the beginning of the window.
- *
- * There are a number of algorithms that can be used for this, including hash
- * chains, binary trees, and suffix arrays. Binary trees generally work well
- * for LZX compression since it uses medium-size windows (2^15 to 2^21 bytes).
- * However, when compressing in a fast mode where many positions are skipped
- * (not searched for matches), hash chains are faster.
+ * - LZX has a minimum match length of 2 rather than 3. Length 2 matches can be
+ * useful, but generally only if the parser is smart about choosing them.
*
- * Since the match-finders are not specific to LZX, I will not explain them in
- * detail here. Instead, see lz_hash_chains.c and lz_binary_trees.c.
- *
- * ----------------------------------------------------------------------------
- *
- * Match-choosing
- *
- * Usually, choosing the longest match is best because it encodes the most data
- * in that one item. However, sometimes the longest match is not optimal
- * because (a) choosing a long match now might prevent using an even longer
- * match later, or (b) more generally, what we actually care about is the number
- * of bits it will ultimately take to output each match or literal, which is
- * actually dependent on the entropy encoding using by the underlying
- * compression format. Consequently, a longer match usually, but not always,
- * takes fewer bits to encode than multiple shorter matches or literals that
- * cover the same data.
- *
- * This problem of choosing the truly best match/literal sequence is probably
- * impossible to solve efficiently when combined with entropy encoding. If we
- * knew how many bits it takes to output each match/literal, then we could
- * choose the optimal sequence using shortest-path search a la Dijkstra's
- * algorithm. However, with entropy encoding, the chosen match/literal sequence
- * affects its own encoding. Therefore, we can't know how many bits it will
- * take to actually output any one match or literal until we have actually
- * chosen the full sequence of matches and literals.
- *
- * Notwithstanding the entropy encoding problem, we also aren't guaranteed to
- * choose the optimal match/literal sequence unless the match-finder (see
- * section "Match-finder") provides the match-chooser with all possible matches
- * at each position. However, this is not computationally efficient. For
- * example, there might be many matches of the same length, and usually (but not
- * always) the best choice is the one with the smallest offset. So in practice,
- * it's fine to only consider the smallest offset for a given match length at a
- * given position. (Actually, for LZX, it's also worth considering repeat
- * offsets.)
- *
- * In addition, as mentioned earlier, in LZX we have the choice of using
- * multiple blocks, each of which resets the Huffman codes. This expands the
- * search space even further. Therefore, to simplify the problem, we currently
- * we don't attempt to actually choose the LZX blocks based on the data.
- * Instead, we just divide the data into fixed-size blocks of LZX_DIV_BLOCK_SIZE
- * bytes each, and always use verbatim or aligned blocks (never uncompressed).
- * A previous version of this code recursively split the input data into
- * equal-sized blocks, up to a maximum depth, and chose the lowest-cost block
- * divisions. However, this made compression much slower and did not actually
- * help very much. It remains an open question whether a sufficiently fast and
- * useful block-splitting algorithm is possible for LZX. Essentially the same
- * problem also applies to DEFLATE. The Microsoft LZX compressor seemingly does
- * do block splitting, although I don't know how fast or useful it is,
- * specifically.
- *
- * Now, back to the entropy encoding problem. The "solution" is to use an
- * iterative approach to compute a good, but not necessarily optimal,
- * match/literal sequence. Start with a fixed assignment of symbol costs and
- * choose an "optimal" match/literal sequence based on those costs, using
- * shortest-path seach a la Dijkstra's algorithm. Then, for each iteration of
- * the optimization, update the costs based on the entropy encoding of the
- * current match/literal sequence, then choose a new match/literal sequence
- * based on the updated costs. Usually, the actual cost to output the current
- * match/literal sequence will decrease in each iteration until it converges on
- * a fixed point. This result may not be the truly optimal match/literal
- * sequence, but it usually is much better than one chosen by doing a "greedy"
- * parse where we always chooe the longest match.
- *
- * An alternative to both greedy parsing and iterative, near-optimal parsing is
- * "lazy" parsing. Briefly, "lazy" parsing considers just the longest match at
- * each position, but it waits to choose that match until it has also examined
- * the next position. This is actually a useful approach; it's used by zlib,
- * for example. Therefore, for fast compression we combine lazy parsing with
- * the hash chain max-finder. For normal/high compression we combine
- * near-optimal parsing with the binary tree match-finder.
+ * - In LZX, offset slots 0 through 2 actually represent entries in an LRU queue
+ * of match offsets. This is very useful for certain types of files, such as
+ * binary files that have repeating records.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
-#include "wimlib/compressor_ops.h"
#include "wimlib/compress_common.h"
+#include "wimlib/compressor_ops.h"
#include "wimlib/endianness.h"
#include "wimlib/error.h"
#include "wimlib/lz_mf.h"
#include "wimlib/lz_repsearch.h"
#include "wimlib/lzx.h"
#include "wimlib/util.h"
+
#include <string.h>
+#include <limits.h>
#define LZX_OPTIM_ARRAY_LENGTH 4096
#define LZX_CACHE_LEN (LZX_DIV_BLOCK_SIZE * (LZX_CACHE_PER_POS + 1))
-/* Codewords for the LZX main, length, and aligned offset Huffman codes */
+struct lzx_compressor;
+
+/* Codewords for the LZX Huffman codes. */
struct lzx_codewords {
u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
u32 len[LZX_LENCODE_NUM_SYMBOLS];
u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
};
-/* Codeword lengths (in bits) for the LZX main, length, and aligned offset
- * Huffman codes.
- *
- * A 0 length means the codeword has zero frequency.
- */
+/* Codeword lengths (in bits) for the LZX Huffman codes.
+ * A zero length means the corresponding codeword has zero frequency. */
struct lzx_lens {
u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
u8 len[LZX_LENCODE_NUM_SYMBOLS];
u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
};
-/* Costs for the LZX main, length, and aligned offset Huffman symbols.
- *
- * If a codeword has zero frequency, it must still be assigned some nonzero cost
- * --- generally a high cost, since even if it gets used in the next iteration,
- * it probably will not be used very many times. */
+/* Estimated cost, in bits, to output each symbol in the LZX Huffman codes. */
struct lzx_costs {
u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
u8 len[LZX_LENCODE_NUM_SYMBOLS];
u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
};
-/* The LZX main, length, and aligned offset Huffman codes */
+/* Codewords and lengths for the LZX Huffman codes. */
struct lzx_codes {
struct lzx_codewords codewords;
struct lzx_lens lens;
};
-/* Tables for tallying symbol frequencies in the three LZX alphabets */
+/* Symbol frequency counters for the LZX Huffman codes. */
struct lzx_freqs {
u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
u32 len[LZX_LENCODE_NUM_SYMBOLS];
u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
};
-/* LZX intermediate match/literal format */
+/* Intermediate LZX match/literal format */
struct lzx_item {
- /* Bit Description
- *
- * 31 1 if a match, 0 if a literal.
- *
- * 30-25 position slot. This can be at most 50, so it will fit in 6
- * bits.
- *
- * 8-24 position footer. This is the offset of the real formatted
- * offset from the position base. This can be at most 17 bits
- * (since lzx_extra_bits[LZX_MAX_POSITION_SLOTS - 1] is 17).
- *
- * 0-7 length of match, minus 2. This can be at most
- * (LZX_MAX_MATCH_LEN - 2) == 255, so it will fit in 8 bits. */
- u32 data;
-};
-
-/* Specification for an LZX block. */
-struct lzx_block_spec {
-
- /* One of the LZX_BLOCKTYPE_* constants indicating which type of this
- * block. */
- int block_type;
- /* 0-based position in the window at which this block starts. */
- u32 window_pos;
-
- /* The number of bytes of uncompressed data this block represents. */
- u32 block_size;
-
- /* The match/literal sequence for this block. */
- struct lzx_item *chosen_items;
-
- /* The length of the @chosen_items sequence. */
- u32 num_chosen_items;
-
- /* Huffman codes for this block. */
- struct lzx_codes codes;
+ /* Bits 0 - 9: Main symbol
+ * Bits 10 - 17: Length symbol
+ * Bits 18 - 22: Number of extra offset bits
+ * Bits 23+ : Extra offset bits */
+ u64 data;
};
-struct lzx_compressor;
-
+/* Internal compression parameters */
struct lzx_compressor_params {
- struct lz_match (*choose_item_func)(struct lzx_compressor *);
- enum lz_mf_algo mf_algo;
+ u32 (*choose_items_for_block)(struct lzx_compressor *, u32, u32);
u32 num_optim_passes;
+ enum lz_mf_algo mf_algo;
u32 min_match_length;
u32 nice_match_length;
u32 max_search_depth;
};
-/* State of the LZX compressor. */
-struct lzx_compressor {
+/*
+ * Match chooser position data:
+ *
+ * An array of these structures is used during the near-optimal match-choosing
+ * algorithm. They correspond to consecutive positions in the window and are
+ * used to keep track of the cost to reach each position, and the match/literal
+ * choices that need to be chosen to reach that position.
+ */
+struct lzx_mc_pos_data {
- /* The buffer of data to be compressed.
+ /* The cost, in bits, of the lowest-cost path that has been found to
+ * reach this position. This can change as progressively lower cost
+ * paths are found to reach this position. */
+ u32 cost;
+#define MC_INFINITE_COST UINT32_MAX
+
+ /* The match or literal that was taken to reach this position. This can
+ * change as progressively lower cost paths are found to reach this
+ * position.
+ *
+ * This variable is divided into two bitfields.
*
- * 0xe8 byte preprocessing is done directly on the data here before
- * further compression.
+ * Literals:
+ * Low bits are 1, high bits are the literal.
+ *
+ * Explicit offset matches:
+ * Low bits are the match length, high bits are the offset plus 2.
+ *
+ * Repeat offset matches:
+ * Low bits are the match length, high bits are the queue index.
+ */
+ u32 mc_item_data;
+#define MC_OFFSET_SHIFT 9
+#define MC_LEN_MASK ((1 << MC_OFFSET_SHIFT) - 1)
+
+ /* The state of the LZX recent match offsets queue at this position.
+ * This is filled in lazily, only after the minimum-cost path to this
+ * position is found.
*
- * Note that this compressor does *not* use a real sliding window!!!!
- * It's not needed in the WIM format, since every chunk is compressed
- * independently. This is by design, to allow random access to the
- * chunks. */
+ * Note: the way we handle this adaptive state in the "minimum-cost"
+ * parse is actually only an approximation. It's possible for the
+ * globally optimal, minimum cost path to contain a prefix, ending at a
+ * position, where that path prefix is *not* the minimum cost path to
+ * that position. This can happen if such a path prefix results in a
+ * different adaptive state which results in lower costs later. We do
+ * not solve this problem; we only consider the lowest cost to reach
+ * each position, which seems to be an acceptable approximation. */
+ struct lzx_lru_queue queue _aligned_attribute(16);
+
+} _aligned_attribute(16);
+
+/* State of the LZX compressor */
+struct lzx_compressor {
+
+ /* Internal compression parameters */
+ struct lzx_compressor_params params;
+
+ /* The preprocessed buffer of data being compressed */
u8 *cur_window;
/* Number of bytes of data to be compressed, which is the number of
* bytes of data in @cur_window that are actually valid. */
u32 cur_window_size;
- /* Allocated size of @cur_window. */
- u32 max_window_size;
-
/* log2 order of the LZX window size for LZ match offset encoding
* purposes. Will be >= LZX_MIN_WINDOW_ORDER and <=
* LZX_MAX_WINDOW_ORDER.
*
- * Note: 1 << @window_order is normally equal to @max_window_size, but
- * it will be greater than @max_window_size in the event that the
- * compressor was created with a non-power-of-2 block size. (See
- * lzx_get_window_order().) */
+ * Note: 1 << @window_order is normally equal to @max_window_size,
+ * a.k.a. the allocated size of @cur_window, but it will be greater than
+ * @max_window_size in the event that the compressor was created with a
+ * non-power-of-2 block size. (See lzx_get_window_order().) */
unsigned window_order;
- /* Compression parameters. */
- struct lzx_compressor_params params;
+ /* Number of symbols in the main alphabet. This depends on
+ * @window_order, since @window_order determines the maximum possible
+ * offset. It does not, however, depend on the *actual* size of the
+ * current data buffer being processed, which might be less than 1 <<
+ * @window_order. */
+ unsigned num_main_syms;
+ /* Lempel-Ziv match-finder */
+ struct lz_mf *mf;
+
+ /* Match-finder wrapper functions and data for near-optimal parsing.
+ *
+ * When doing more than one match-choosing pass over the data, matches
+ * found by the match-finder are cached to achieve a slight speedup when
+ * the same matches are needed on subsequent passes. This is suboptimal
+ * because different matches may be preferred with different cost
+ * models, but it is a very worthwhile speedup. */
unsigned (*get_matches_func)(struct lzx_compressor *, const struct lz_match **);
void (*skip_bytes_func)(struct lzx_compressor *, unsigned n);
+ u32 match_window_pos;
+ u32 match_window_end;
+ struct lz_match *cached_matches;
+ struct lz_match *cache_ptr;
+ struct lz_match *cache_limit;
- /* Number of symbols in the main alphabet (depends on the @window_order
- * since it determines the maximum allowed offset). */
- unsigned num_main_syms;
+ /* Position data for near-optimal parsing. */
+ struct lzx_mc_pos_data optimum[LZX_OPTIM_ARRAY_LENGTH + LZX_MAX_MATCH_LEN];
+
+ /* The cost model currently being used for near-optimal parsing. */
+ struct lzx_costs costs;
/* The current match offset LRU queue. */
struct lzx_lru_queue queue;
- /* Space for the sequences of matches/literals that were chosen for each
- * block. */
- struct lzx_item *chosen_items;
-
- /* Information about the LZX blocks the preprocessed input was divided
- * into. */
- struct lzx_block_spec *block_specs;
-
- /* Number of LZX blocks the input was divided into; a.k.a. the number of
- * elements of @block_specs that are valid. */
- unsigned num_blocks;
-
- /* This is simply filled in with zeroes and used to avoid special-casing
- * the output of the first compressed Huffman code, which conceptually
- * has a delta taken from a code with all symbols having zero-length
- * codewords. */
- struct lzx_codes zero_codes;
-
- /* The current cost model. */
- struct lzx_costs costs;
-
- /* Lempel-Ziv match-finder. */
- struct lz_mf *mf;
+ /* Frequency counters for the current block. */
+ struct lzx_freqs freqs;
- /* Position in window of next match to return. */
- u32 match_window_pos;
+ /* The Huffman codes for the current and previous blocks. */
+ struct lzx_codes codes[2];
- /* The end-of-block position. We can't allow any matches to span this
- * position. */
- u32 match_window_end;
+ /* Which 'struct lzx_codes' is being used for the current block. The
+ * other was used for the previous block (if this isn't the first
+ * block). */
+ unsigned int codes_index;
- /* When doing more than one match-choosing pass over the data, matches
- * found by the match-finder are cached in the following array to
- * achieve a slight speedup when the same matches are needed on
- * subsequent passes. This is suboptimal because different matches may
- * be preferred with different cost models, but seems to be a worthwhile
- * speedup. */
- struct lz_match *cached_matches;
- struct lz_match *cache_ptr;
- struct lz_match *cache_limit;
+ /* Dummy lengths that are always 0. */
+ struct lzx_lens zero_lens;
- /* Match-chooser state, used when doing near-optimal parsing.
- *
- * When matches have been chosen, optimum_cur_idx is set to the position
- * in the window of the next match/literal to return and optimum_end_idx
- * is set to the position in the window at the end of the last
- * match/literal to return. */
- struct lzx_mc_pos_data *optimum;
- unsigned optimum_cur_idx;
- unsigned optimum_end_idx;
-
- /* Previous match, used when doing lazy parsing. */
- struct lz_match prev_match;
-};
+ /* Matches/literals that were chosen for the current block. */
+ struct lzx_item chosen_items[LZX_DIV_BLOCK_SIZE];
-/*
- * Match chooser position data:
- *
- * An array of these structures is used during the match-choosing algorithm.
- * They correspond to consecutive positions in the window and are used to keep
- * track of the cost to reach each position, and the match/literal choices that
- * need to be chosen to reach that position.
- */
-struct lzx_mc_pos_data {
- /* The approximate minimum cost, in bits, to reach this position in the
- * window which has been found so far. */
- u32 cost;
-#define MC_INFINITE_COST ((u32)~0UL)
-
- /* The union here is just for clarity, since the fields are used in two
- * slightly different ways. Initially, the @prev structure is filled in
- * first, and links go from later in the window to earlier in the
- * window. Later, @next structure is filled in and links go from
- * earlier in the window to later in the window. */
- union {
- struct {
- /* Position of the start of the match or literal that
- * was taken to get to this position in the approximate
- * minimum-cost parse. */
- u32 link;
-
- /* Offset (as in an LZ (length, offset) pair) of the
- * match or literal that was taken to get to this
- * position in the approximate minimum-cost parse. */
- u32 match_offset;
- } prev;
- struct {
- /* Position at which the match or literal starting at
- * this position ends in the minimum-cost parse. */
- u32 link;
-
- /* Offset (as in an LZ (length, offset) pair) of the
- * match or literal starting at this position in the
- * approximate minimum-cost parse. */
- u32 match_offset;
- } next;
- };
-
- /* Adaptive state that exists after an approximate minimum-cost path to
- * reach this position is taken.
- *
- * Note: we update this whenever we update the pending minimum-cost
- * path. This is in contrast to LZMA, which also has an optimal parser
- * that maintains a repeat offset queue per position, but will only
- * compute the queue once that position is actually reached in the
- * parse, meaning that matches are being considered *starting* at that
- * position. However, the two methods seem to have approximately the
- * same performance if appropriate optimizations are used. Intuitively
- * the LZMA method seems faster, but it actually suffers from 1-2 extra
- * hard-to-predict branches at each position. Probably it works better
- * for LZMA than LZX because LZMA has a larger adaptive state than LZX,
- * and the LZMA encoder considers more possibilities. */
- struct lzx_lru_queue queue;
+ /* Table mapping match offset => offset slot for small offsets */
+#define LZX_NUM_FAST_OFFSETS 32768
+ u8 offset_slot_fast[LZX_NUM_FAST_OFFSETS];
};
-
/*
* Structure to keep track of the current state of sending bits to the
* compressed output buffer.
* The bits are given by the low-order @num_bits bits of @bits. Higher-order
* bits in @bits cannot be set. At most 17 bits can be written at once.
*
- * @max_bits is a compile-time constant that specifies the maximum number of
+ * @max_num_bits is a compile-time constant that specifies the maximum number of
* bits that can ever be written at the call site. Currently, it is used to
* optimize away the conditional code for writing a second 16-bit coding unit
* when writing fewer than 17 bits.
* If the output buffer space is exhausted, then the bits will be ignored, and
* lzx_flush_output() will return 0 when it gets called.
*/
-static _always_inline_attribute void
+static inline void
lzx_write_varbits(struct lzx_output_bitstream *os,
const u32 bits, const unsigned int num_bits,
const unsigned int max_num_bits)
/* Use when @num_bits is a compile-time constant. Otherwise use
* lzx_write_varbits(). */
-static _always_inline_attribute void
+static inline void
lzx_write_bits(struct lzx_output_bitstream *os,
const u32 bits, const unsigned int num_bits)
{
return (const u8 *)os->next - (const u8 *)os->start;
}
-/* Returns the LZX position slot that corresponds to a given match offset,
- * taking into account the recent offset queue and updating it if the offset is
- * found in it. */
-static unsigned
-lzx_get_position_slot(u32 offset, struct lzx_lru_queue *queue)
-{
- unsigned position_slot;
-
- /* See if the offset was recently used. */
- for (int i = 0; i < LZX_NUM_RECENT_OFFSETS; i++) {
- if (offset == queue->R[i]) {
- /* Found it. */
-
- /* Bring the repeat offset to the front of the
- * queue. Note: this is, in fact, not a real
- * LRU queue because repeat matches are simply
- * swapped to the front. */
- swap(queue->R[0], queue->R[i]);
-
- /* The resulting position slot is simply the first index
- * at which the offset was found in the queue. */
- return i;
- }
- }
-
- /* The offset was not recently used; look up its real position slot. */
- position_slot = lzx_get_position_slot_raw(offset + LZX_OFFSET_OFFSET);
-
- /* Bring the new offset to the front of the queue. */
- for (int i = LZX_NUM_RECENT_OFFSETS - 1; i > 0; i--)
- queue->R[i] = queue->R[i - 1];
- queue->R[0] = offset;
-
- return position_slot;
-}
-
/* Build the main, length, and aligned offset Huffman codes used in LZX.
*
* This takes as input the frequency tables for each code and produces as output
* a set of tables that map symbols to codewords and codeword lengths. */
static void
-lzx_make_huffman_codes(const struct lzx_freqs *freqs,
- struct lzx_codes *codes,
+lzx_make_huffman_codes(const struct lzx_freqs *freqs, struct lzx_codes *codes,
unsigned num_main_syms)
{
make_canonical_huffman_code(num_main_syms,
codes->codewords.aligned);
}
-/*
- * Output a precomputed LZX match.
- *
- * @os:
- * The bitstream to which to write the match.
- * @ones_if_aligned
- * A mask of all ones if the block is of type LZX_BLOCKTYPE_ALIGNED,
- * otherwise 0.
- * @match:
- * The match data.
- * @codes:
- * Pointer to a structure that contains the codewords for the main, length,
- * and aligned offset Huffman codes for the current LZX compressed block.
- */
-static void
-lzx_write_match(struct lzx_output_bitstream *os, unsigned ones_if_aligned,
- struct lzx_item match, const struct lzx_codes *codes)
-{
- unsigned match_len_minus_2 = match.data & 0xff;
- u32 position_footer = (match.data >> 8) & 0x1ffff;
- unsigned position_slot = (match.data >> 25) & 0x3f;
- unsigned len_header;
- unsigned len_footer;
- unsigned main_symbol;
- unsigned num_extra_bits;
-
- /* If the match length is less than MIN_MATCH_LEN (= 2) +
- * NUM_PRIMARY_LENS (= 7), the length header contains the match length
- * minus MIN_MATCH_LEN, and there is no length footer.
- *
- * Otherwise, the length header contains NUM_PRIMARY_LENS, and the
- * length footer contains the match length minus NUM_PRIMARY_LENS minus
- * MIN_MATCH_LEN. */
- if (match_len_minus_2 < LZX_NUM_PRIMARY_LENS) {
- len_header = match_len_minus_2;
- } else {
- len_header = LZX_NUM_PRIMARY_LENS;
- len_footer = match_len_minus_2 - LZX_NUM_PRIMARY_LENS;
- }
-
- /* Combine the position slot with the length header into a single symbol
- * that will be encoded with the main code.
- *
- * The actual main symbol is offset by LZX_NUM_CHARS because values
- * under LZX_NUM_CHARS are used to indicate a literal byte rather than a
- * match. */
- main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-
- /* Output main symbol. */
- lzx_write_varbits(os, codes->codewords.main[main_symbol],
- codes->lens.main[main_symbol],
- LZX_MAX_MAIN_CODEWORD_LEN);
-
- /* If there is a length footer, output it using the
- * length Huffman code. */
- if (len_header == LZX_NUM_PRIMARY_LENS) {
- lzx_write_varbits(os, codes->codewords.len[len_footer],
- codes->lens.len[len_footer],
- LZX_MAX_LEN_CODEWORD_LEN);
- }
-
- /* Output the position footer. */
-
- num_extra_bits = lzx_get_num_extra_bits(position_slot);
-
- if ((num_extra_bits & ones_if_aligned) >= 3) {
-
- /* Aligned offset blocks: The low 3 bits of the position footer
- * are Huffman-encoded using the aligned offset code. The
- * remaining bits are output literally. */
-
- lzx_write_varbits(os,
- position_footer >> 3, num_extra_bits - 3, 14);
-
- lzx_write_varbits(os,
- codes->codewords.aligned[position_footer & 7],
- codes->lens.aligned[position_footer & 7],
- LZX_MAX_ALIGNED_CODEWORD_LEN);
- } else {
- /* Verbatim blocks, or fewer than 3 extra bits: All position
- * footer bits are output literally. */
- lzx_write_varbits(os, position_footer, num_extra_bits, 17);
- }
-}
-
-/* Output an LZX literal (encoded with the main Huffman code). */
-static void
-lzx_write_literal(struct lzx_output_bitstream *os, unsigned literal,
- const struct lzx_codes *codes)
-{
- lzx_write_varbits(os, codes->codewords.main[literal],
- codes->lens.main[literal], LZX_MAX_MAIN_CODEWORD_LEN);
-}
-
static unsigned
lzx_compute_precode_items(const u8 lens[restrict],
const u8 prev_lens[restrict],
}
}
+/* Output a match or literal. */
+static inline void
+lzx_write_item(struct lzx_output_bitstream *os, struct lzx_item item,
+ unsigned ones_if_aligned, const struct lzx_codes *codes)
+{
+ u64 data = item.data;
+ unsigned main_symbol;
+ unsigned len_symbol;
+ unsigned num_extra_bits;
+ u32 extra_bits;
+
+ main_symbol = data & 0x3FF;
+
+ lzx_write_varbits(os, codes->codewords.main[main_symbol],
+ codes->lens.main[main_symbol],
+ LZX_MAX_MAIN_CODEWORD_LEN);
+
+ if (main_symbol < LZX_NUM_CHARS) /* Literal? */
+ return;
+
+ len_symbol = (data >> 10) & 0xFF;
+
+ if (len_symbol != LZX_LENCODE_NUM_SYMBOLS) {
+ lzx_write_varbits(os, codes->codewords.len[len_symbol],
+ codes->lens.len[len_symbol],
+ LZX_MAX_LEN_CODEWORD_LEN);
+ }
+
+ num_extra_bits = (data >> 18) & 0x1F;
+ if (num_extra_bits == 0) /* Small offset or repeat offset match? */
+ return;
+
+ extra_bits = data >> 23;
+
+ /*if (block_type == LZX_BLOCKTYPE_ALIGNED && num_extra_bits >= 3) {*/
+ if ((num_extra_bits & ones_if_aligned) >= 3) {
+
+ /* Aligned offset blocks: The low 3 bits of the extra offset
+ * bits are Huffman-encoded using the aligned offset code. The
+ * remaining bits are output literally. */
+
+ lzx_write_varbits(os, extra_bits >> 3, num_extra_bits - 3, 14);
+
+ lzx_write_varbits(os, codes->codewords.aligned[extra_bits & 7],
+ codes->lens.aligned[extra_bits & 7],
+ LZX_MAX_ALIGNED_CODEWORD_LEN);
+ } else {
+ /* Verbatim blocks, or fewer than 3 extra bits: All extra
+ * offset bits are output literally. */
+ lzx_write_varbits(os, extra_bits, num_extra_bits, 17);
+ }
+}
+
/*
* Write all matches and literal bytes (which were precomputed) in an LZX
* compressed block to the output bitstream in the final compressed
{
unsigned ones_if_aligned = 0U - (block_type == LZX_BLOCKTYPE_ALIGNED);
- for (u32 i = 0; i < num_items; i++) {
- /* The high bit of the 32-bit intermediate representation
- * indicates whether the item is an actual LZ-style match (1) or
- * a literal byte (0). */
- if (items[i].data & 0x80000000)
- lzx_write_match(os, ones_if_aligned, items[i], codes);
- else
- lzx_write_literal(os, items[i].data, codes);
- }
+ for (u32 i = 0; i < num_items; i++)
+ lzx_write_item(os, items[i], ones_if_aligned, codes);
}
-/* Write an LZX aligned offset or verbatim block to the output. */
+/* Write an LZX aligned offset or verbatim block to the output bitstream. */
static void
lzx_write_compressed_block(int block_type,
u32 block_size,
struct lzx_item * chosen_items,
u32 num_chosen_items,
const struct lzx_codes * codes,
- const struct lzx_codes * prev_codes,
+ const struct lzx_lens * prev_lens,
struct lzx_output_bitstream * os)
{
LZX_ASSERT(block_type == LZX_BLOCKTYPE_ALIGNED ||
lzx_write_bits(os, block_size & 0xFFFF, 16);
}
- /* Output the aligned offset code. */
+ /* If it's an aligned offset block, output the aligned offset code. */
if (block_type == LZX_BLOCKTYPE_ALIGNED) {
for (int i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
lzx_write_bits(os, codes->lens.aligned[i],
/* Output the main code (two parts). */
lzx_write_compressed_code(os, codes->lens.main,
- prev_codes->lens.main,
+ prev_lens->main,
LZX_NUM_CHARS);
lzx_write_compressed_code(os, codes->lens.main + LZX_NUM_CHARS,
- prev_codes->lens.main + LZX_NUM_CHARS,
+ prev_lens->main + LZX_NUM_CHARS,
num_main_syms - LZX_NUM_CHARS);
/* Output the length code. */
lzx_write_compressed_code(os, codes->lens.len,
- prev_codes->lens.len,
+ prev_lens->len,
LZX_LENCODE_NUM_SYMBOLS);
/* Output the compressed matches and literals. */
lzx_write_items(os, block_type, chosen_items, num_chosen_items, codes);
}
-/* Write out the LZX blocks that were computed. */
-static void
-lzx_write_all_blocks(struct lzx_compressor *c, struct lzx_output_bitstream *os)
+/* Don't allow matches to span the end of an LZX block. */
+static inline unsigned
+maybe_truncate_matches(struct lz_match matches[], unsigned num_matches,
+ struct lzx_compressor *c)
{
+ if (c->match_window_end < c->cur_window_size && num_matches != 0) {
+ u32 limit = c->match_window_end - c->match_window_pos;
- const struct lzx_codes *prev_codes = &c->zero_codes;
- for (unsigned i = 0; i < c->num_blocks; i++) {
- const struct lzx_block_spec *spec = &c->block_specs[i];
+ if (limit >= LZX_MIN_MATCH_LEN) {
- lzx_write_compressed_block(spec->block_type,
- spec->block_size,
- c->window_order,
- c->num_main_syms,
- spec->chosen_items,
- spec->num_chosen_items,
- &spec->codes,
- prev_codes,
- os);
+ unsigned i = num_matches - 1;
+ do {
+ if (matches[i].len >= limit) {
+ matches[i].len = limit;
- prev_codes = &spec->codes;
+ /* Truncation might produce multiple
+ * matches with length 'limit'. Keep at
+ * most 1. */
+ num_matches = i + 1;
+ }
+ } while (i--);
+ } else {
+ num_matches = 0;
+ }
}
+ return num_matches;
}
-/* Constructs an LZX match from a literal byte and updates the main code symbol
- * frequencies. */
-static inline u32
-lzx_tally_literal(u8 lit, struct lzx_freqs *freqs)
+static unsigned
+lzx_get_matches_fillcache_singleblock(struct lzx_compressor *c,
+ const struct lz_match **matches_ret)
{
- freqs->main[lit]++;
- return (u32)lit;
-}
+ struct lz_match *cache_ptr;
+ struct lz_match *matches;
+ unsigned num_matches;
-/* Constructs an LZX match from an offset and a length, and updates the LRU
- * queue and the frequency of symbols in the main, length, and aligned offset
- * alphabets. The return value is a 32-bit number that provides the match in an
- * intermediate representation documented below. */
-static inline u32
-lzx_tally_match(unsigned match_len, u32 match_offset,
- struct lzx_freqs *freqs, struct lzx_lru_queue *queue)
-{
- unsigned position_slot;
- u32 position_footer;
- u32 len_header;
- unsigned main_symbol;
- unsigned len_footer;
- unsigned adjusted_match_len;
-
- LZX_ASSERT(match_len >= LZX_MIN_MATCH_LEN && match_len <= LZX_MAX_MATCH_LEN);
-
- /* The match offset shall be encoded as a position slot (itself encoded
- * as part of the main symbol) and a position footer. */
- position_slot = lzx_get_position_slot(match_offset, queue);
- position_footer = (match_offset + LZX_OFFSET_OFFSET) &
- (((u32)1 << lzx_get_num_extra_bits(position_slot)) - 1);
-
- /* The match length shall be encoded as a length header (itself encoded
- * as part of the main symbol) and an optional length footer. */
- adjusted_match_len = match_len - LZX_MIN_MATCH_LEN;
- if (adjusted_match_len < LZX_NUM_PRIMARY_LENS) {
- /* No length footer needed. */
- len_header = adjusted_match_len;
+ cache_ptr = c->cache_ptr;
+ matches = cache_ptr + 1;
+ if (likely(cache_ptr <= c->cache_limit)) {
+ num_matches = lz_mf_get_matches(c->mf, matches);
+ cache_ptr->len = num_matches;
+ c->cache_ptr = matches + num_matches;
} else {
- /* Length footer needed. It will be encoded using the length
- * code. */
- len_header = LZX_NUM_PRIMARY_LENS;
- len_footer = adjusted_match_len - LZX_NUM_PRIMARY_LENS;
- freqs->len[len_footer]++;
+ num_matches = 0;
}
-
- /* Account for the main symbol. */
- main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-
- freqs->main[main_symbol]++;
-
- /* In an aligned offset block, 3 bits of the position footer are output
- * as an aligned offset symbol. Account for this, although we may
- * ultimately decide to output the block as verbatim. */
-
- /* The following check is equivalent to:
- *
- * if (lzx_extra_bits[position_slot] >= 3)
- *
- * Note that this correctly excludes position slots that correspond to
- * recent offsets. */
- if (position_slot >= 8)
- freqs->aligned[position_footer & 7]++;
-
- /* Pack the position slot, position footer, and match length into an
- * intermediate representation. See `struct lzx_item' for details.
- */
- LZX_ASSERT(LZX_MAX_POSITION_SLOTS <= 64);
- LZX_ASSERT(lzx_get_num_extra_bits(LZX_MAX_POSITION_SLOTS - 1) <= 17);
- LZX_ASSERT(LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1 <= 256);
-
- LZX_ASSERT(position_slot <= (1U << (31 - 25)) - 1);
- LZX_ASSERT(position_footer <= (1U << (25 - 8)) - 1);
- LZX_ASSERT(adjusted_match_len <= (1U << (8 - 0)) - 1);
- return 0x80000000 |
- (position_slot << 25) |
- (position_footer << 8) |
- (adjusted_match_len);
-}
-
-/* Returns the cost, in bits, to output a literal byte using the specified cost
- * model. */
-static u32
-lzx_literal_cost(u8 c, const struct lzx_costs * costs)
-{
- return costs->main[c];
+ c->match_window_pos++;
+ *matches_ret = matches;
+ return num_matches;
}
-/* Returns the cost, in bits, to output a repeat offset match of the specified
- * length and position slot (repeat index) using the specified cost model. */
-static u32
-lzx_repmatch_cost(u32 len, unsigned position_slot, const struct lzx_costs *costs)
+static unsigned
+lzx_get_matches_fillcache_multiblock(struct lzx_compressor *c,
+ const struct lz_match **matches_ret)
{
- unsigned len_header, main_symbol;
- u32 cost = 0;
-
- len_header = min(len - LZX_MIN_MATCH_LEN, LZX_NUM_PRIMARY_LENS);
- main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-
- /* Account for main symbol. */
- cost += costs->main[main_symbol];
-
- /* Account for extra length information. */
- if (len_header == LZX_NUM_PRIMARY_LENS)
- cost += costs->len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
-
- return cost;
-}
-
-/* Set the cost model @c->costs from the Huffman codeword lengths specified in
- * @lens.
- *
- * The cost model and codeword lengths are almost the same thing, but the
- * Huffman codewords with length 0 correspond to symbols with zero frequency
- * that still need to be assigned actual costs. The specific values assigned
- * are arbitrary, but they should be fairly high (near the maximum codeword
- * length) to take into account the fact that uses of these symbols are expected
- * to be rare. */
-static void
-lzx_set_costs(struct lzx_compressor *c, const struct lzx_lens * lens,
- unsigned nostat)
-{
- unsigned i;
-
- /* Main code */
- for (i = 0; i < c->num_main_syms; i++)
- c->costs.main[i] = lens->main[i] ? lens->main[i] : nostat;
-
- /* Length code */
- for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
- c->costs.len[i] = lens->len[i] ? lens->len[i] : nostat;
-
- /* Aligned offset code */
- for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
- c->costs.aligned[i] = lens->aligned[i] ? lens->aligned[i] : nostat / 2;
-}
-
-/* Don't allow matches to span the end of an LZX block. */
-static inline u32
-maybe_truncate_matches(struct lz_match matches[], u32 num_matches,
- struct lzx_compressor *c)
-{
- if (c->match_window_end < c->cur_window_size && num_matches != 0) {
- u32 limit = c->match_window_end - c->match_window_pos;
-
- if (limit >= LZX_MIN_MATCH_LEN) {
-
- u32 i = num_matches - 1;
- do {
- if (matches[i].len >= limit) {
- matches[i].len = limit;
-
- /* Truncation might produce multiple
- * matches with length 'limit'. Keep at
- * most 1. */
- num_matches = i + 1;
- }
- } while (i--);
- } else {
- num_matches = 0;
- }
- }
- return num_matches;
-}
-
-static unsigned
-lzx_get_matches_fillcache_singleblock(struct lzx_compressor *c,
- const struct lz_match **matches_ret)
-{
- struct lz_match *cache_ptr;
- struct lz_match *matches;
- unsigned num_matches;
-
- cache_ptr = c->cache_ptr;
- matches = cache_ptr + 1;
- if (likely(cache_ptr <= c->cache_limit)) {
- num_matches = lz_mf_get_matches(c->mf, matches);
- cache_ptr->len = num_matches;
- c->cache_ptr = matches + num_matches;
- } else {
- num_matches = 0;
- }
- c->match_window_pos++;
- *matches_ret = matches;
- return num_matches;
-}
-
-static unsigned
-lzx_get_matches_fillcache_multiblock(struct lzx_compressor *c,
- const struct lz_match **matches_ret)
-{
- struct lz_match *cache_ptr;
- struct lz_match *matches;
- unsigned num_matches;
+ struct lz_match *cache_ptr;
+ struct lz_match *matches;
+ unsigned num_matches;
cache_ptr = c->cache_ptr;
matches = cache_ptr + 1;
/*
* Find matches at the next position in the window.
*
+ * This uses a wrapper function around the underlying match-finder.
+ *
* Returns the number of matches found and sets *matches_ret to point to the
* matches array. The matches will be sorted by strictly increasing length and
* offset.
/*
* Skip the specified number of positions in the window (don't search for
* matches at them).
+ *
+ * This uses a wrapper function around the underlying match-finder.
*/
static inline void
lzx_skip_bytes(struct lzx_compressor *c, unsigned n)
return (*c->skip_bytes_func)(c, n);
}
-/*
- * Reverse the linked list of near-optimal matches so that they can be returned
- * in forwards order.
- *
- * Returns the first match in the list.
- */
-static struct lz_match
-lzx_match_chooser_reverse_list(struct lzx_compressor *c, unsigned cur_pos)
+/* Tally, and optionally record, the specified literal byte. */
+static inline void
+lzx_declare_literal(struct lzx_compressor *c, unsigned literal,
+ struct lzx_item **next_chosen_item)
{
- unsigned prev_link, saved_prev_link;
- unsigned prev_match_offset, saved_prev_match_offset;
+ unsigned main_symbol = literal;
- c->optimum_end_idx = cur_pos;
+ c->freqs.main[main_symbol]++;
- saved_prev_link = c->optimum[cur_pos].prev.link;
- saved_prev_match_offset = c->optimum[cur_pos].prev.match_offset;
+ if (next_chosen_item) {
+ *(*next_chosen_item)++ = (struct lzx_item) {
+ .data = main_symbol,
+ };
+ }
+}
- do {
- prev_link = saved_prev_link;
- prev_match_offset = saved_prev_match_offset;
+/* Tally, and optionally record, the specified repeat offset match. */
+static inline void
+lzx_declare_repeat_offset_match(struct lzx_compressor *c,
+ unsigned len, unsigned rep_index,
+ struct lzx_item **next_chosen_item)
+{
+ unsigned len_header;
+ unsigned main_symbol;
+ unsigned len_symbol;
- saved_prev_link = c->optimum[prev_link].prev.link;
- saved_prev_match_offset = c->optimum[prev_link].prev.match_offset;
+ if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+ len_header = len - LZX_MIN_MATCH_LEN;
+ len_symbol = LZX_LENCODE_NUM_SYMBOLS;
+ } else {
+ len_header = LZX_NUM_PRIMARY_LENS;
+ len_symbol = len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS;
+ c->freqs.len[len_symbol]++;
+ }
+
+ main_symbol = LZX_NUM_CHARS + ((rep_index << 3) | len_header);
+
+ c->freqs.main[main_symbol]++;
+
+ if (next_chosen_item) {
+ *(*next_chosen_item)++ = (struct lzx_item) {
+ .data = (u64)main_symbol | ((u64)len_symbol << 10),
+ };
+ }
+}
+
+/* Tally, and optionally record, the specified explicit offset match. */
+static inline void
+lzx_declare_explicit_offset_match(struct lzx_compressor *c, unsigned len, u32 offset,
+ struct lzx_item **next_chosen_item)
+{
+ unsigned len_header;
+ unsigned main_symbol;
+ unsigned len_symbol;
+ unsigned offset_slot;
+ unsigned num_extra_bits;
+ u32 extra_bits;
+
+ if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+ len_header = len - LZX_MIN_MATCH_LEN;
+ len_symbol = LZX_LENCODE_NUM_SYMBOLS;
+ } else {
+ len_header = LZX_NUM_PRIMARY_LENS;
+ len_symbol = len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS;
+ c->freqs.len[len_symbol]++;
+ }
+
+ offset_slot = lzx_get_offset_slot_raw(offset + LZX_OFFSET_OFFSET);
- c->optimum[prev_link].next.link = cur_pos;
- c->optimum[prev_link].next.match_offset = prev_match_offset;
+ main_symbol = LZX_NUM_CHARS + ((offset_slot << 3) | len_header);
- cur_pos = prev_link;
- } while (cur_pos != 0);
+ c->freqs.main[main_symbol]++;
- c->optimum_cur_idx = c->optimum[0].next.link;
+ if (offset_slot >= 8)
+ c->freqs.aligned[(offset + LZX_OFFSET_OFFSET) & 7]++;
- return (struct lz_match)
- { .len = c->optimum_cur_idx,
- .offset = c->optimum[0].next.match_offset,
+ if (next_chosen_item) {
+
+ num_extra_bits = lzx_extra_offset_bits[offset_slot];
+
+ extra_bits = (offset + LZX_OFFSET_OFFSET) -
+ lzx_offset_slot_base[offset_slot];
+
+ *(*next_chosen_item)++ = (struct lzx_item) {
+ .data = (u64)main_symbol |
+ ((u64)len_symbol << 10) |
+ ((u64)num_extra_bits << 18) |
+ ((u64)extra_bits << 23),
};
+ }
}
-/*
- * Find the longest repeat offset match.
- *
- * If no match of at least LZX_MIN_MATCH_LEN bytes is found, then return 0.
+/* Tally, and optionally record, the specified match or literal. */
+static inline void
+lzx_declare_item(struct lzx_compressor *c, u32 mc_item_data,
+ struct lzx_item **next_chosen_item)
+{
+ u32 len = mc_item_data & MC_LEN_MASK;
+ u32 offset_data = mc_item_data >> MC_OFFSET_SHIFT;
+
+ if (len == 1)
+ lzx_declare_literal(c, offset_data, next_chosen_item);
+ else if (offset_data < LZX_NUM_RECENT_OFFSETS)
+ lzx_declare_repeat_offset_match(c, len, offset_data,
+ next_chosen_item);
+ else
+ lzx_declare_explicit_offset_match(c, len,
+ offset_data - LZX_OFFSET_OFFSET,
+ next_chosen_item);
+}
+
+static inline void
+lzx_record_item_list(struct lzx_compressor *c,
+ struct lzx_mc_pos_data *cur_optimum_ptr,
+ struct lzx_item **next_chosen_item)
+{
+ struct lzx_mc_pos_data *end_optimum_ptr;
+ u32 saved_item;
+ u32 item;
+
+ /* The list is currently in reverse order (last item to first item).
+ * Reverse it. */
+ end_optimum_ptr = cur_optimum_ptr;
+ saved_item = cur_optimum_ptr->mc_item_data;
+ do {
+ item = saved_item;
+ cur_optimum_ptr -= item & MC_LEN_MASK;
+ saved_item = cur_optimum_ptr->mc_item_data;
+ cur_optimum_ptr->mc_item_data = item;
+ } while (cur_optimum_ptr != c->optimum);
+
+ /* Walk the list of items from beginning to end, tallying and recording
+ * each item. */
+ do {
+ lzx_declare_item(c, cur_optimum_ptr->mc_item_data, next_chosen_item);
+ cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK;
+ } while (cur_optimum_ptr != end_optimum_ptr);
+}
+
+static inline void
+lzx_tally_item_list(struct lzx_compressor *c, struct lzx_mc_pos_data *cur_optimum_ptr)
+{
+ /* Since we're just tallying the items, we don't need to reverse the
+ * list. Processing the items in reverse order is fine. */
+ do {
+ lzx_declare_item(c, cur_optimum_ptr->mc_item_data, NULL);
+ cur_optimum_ptr -= (cur_optimum_ptr->mc_item_data & MC_LEN_MASK);
+ } while (cur_optimum_ptr != c->optimum);
+}
+
+/* Tally, and optionally (if next_chosen_item != NULL) record, in order, all
+ * items in the current list of items found by the match-chooser. */
+static void
+lzx_declare_item_list(struct lzx_compressor *c, struct lzx_mc_pos_data *cur_optimum_ptr,
+ struct lzx_item **next_chosen_item)
+{
+ if (next_chosen_item)
+ lzx_record_item_list(c, cur_optimum_ptr, next_chosen_item);
+ else
+ lzx_tally_item_list(c, cur_optimum_ptr);
+}
+
+/* Set the cost model @c->costs from the Huffman codeword lengths specified in
+ * @lens.
*
- * If a match of at least LZX_MIN_MATCH_LEN bytes is found, then return its
- * length and set *slot_ret to the index of its offset in @queue.
- */
+ * The cost model and codeword lengths are almost the same thing, but the
+ * Huffman codewords with length 0 correspond to symbols with zero frequency
+ * that still need to be assigned actual costs. The specific values assigned
+ * are arbitrary, but they should be fairly high (near the maximum codeword
+ * length) to take into account the fact that uses of these symbols are expected
+ * to be rare. */
+static void
+lzx_set_costs(struct lzx_compressor *c, const struct lzx_lens * lens)
+{
+ unsigned i;
+
+ /* Main code */
+ for (i = 0; i < c->num_main_syms; i++)
+ c->costs.main[i] = lens->main[i] ? lens->main[i] : 15;
+
+ /* Length code */
+ for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+ c->costs.len[i] = lens->len[i] ? lens->len[i] : 15;
+
+ /* Aligned offset code */
+ for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+ c->costs.aligned[i] = lens->aligned[i] ? lens->aligned[i] : 7;
+}
+
+/* Set default LZX Huffman symbol costs to bootstrap the iterative optimization
+ * algorithm. */
+static void
+lzx_set_default_costs(struct lzx_costs * costs, unsigned num_main_syms)
+{
+ unsigned i;
+
+ /* Main code (part 1): Literal symbols */
+ for (i = 0; i < LZX_NUM_CHARS; i++)
+ costs->main[i] = 8;
+
+ /* Main code (part 2): Match header symbols */
+ for (; i < num_main_syms; i++)
+ costs->main[i] = 10;
+
+ /* Length code */
+ for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+ costs->len[i] = 8;
+
+ /* Aligned offset code */
+ for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+ costs->aligned[i] = 3;
+}
+
+/* Return the cost, in bits, to output a literal byte using the specified cost
+ * model. */
static inline u32
-lzx_repsearch(const u8 * const strptr, const u32 bytes_remaining,
- const struct lzx_lru_queue *queue, unsigned *slot_ret)
+lzx_literal_cost(unsigned literal, const struct lzx_costs * costs)
{
- BUILD_BUG_ON(LZX_MIN_MATCH_LEN != 2);
- return lz_repsearch(strptr, bytes_remaining, LZX_MAX_MATCH_LEN,
- queue->R, LZX_NUM_RECENT_OFFSETS, slot_ret);
+ return costs->main[literal];
}
-/*
- * lzx_choose_near_optimal_item() -
- *
- * Choose an approximately optimal match or literal to use at the next position
- * in the string, or "window", being LZ-encoded.
- *
- * This is based on algorithms used in 7-Zip, including the DEFLATE encoder
- * and the LZMA encoder, written by Igor Pavlov.
- *
- * Unlike a greedy parser that always takes the longest match, or even a "lazy"
- * parser with one match/literal look-ahead like zlib, the algorithm used here
- * may look ahead many matches/literals to determine the approximately optimal
- * match/literal to code next. The motivation is that the compression ratio is
- * improved if the compressor can do things like use a shorter-than-possible
- * match in order to allow a longer match later, and also take into account the
- * estimated real cost of coding each match/literal based on the underlying
- * entropy encoding.
- *
- * Still, this is not a true optimal parser for several reasons:
- *
- * - Real compression formats use entropy encoding of the literal/match
- * sequence, so the real cost of coding each match or literal is unknown until
- * the parse is fully determined. It can be approximated based on iterative
- * parses, but the end result is not guaranteed to be globally optimal.
- *
- * - Very long matches are chosen immediately. This is because locations with
- * long matches are likely to have many possible alternatives that would cause
- * slow optimal parsing, but also such locations are already highly
- * compressible so it is not too harmful to just grab the longest match.
- *
- * - Not all possible matches at each location are considered because the
- * underlying match-finder limits the number and type of matches produced at
- * each position. For example, for a given match length it's usually not
- * worth it to only consider matches other than the lowest-offset match,
- * except in the case of a repeat offset.
- *
- * - Although we take into account the adaptive state (in LZX, the recent offset
- * queue), coding decisions made with respect to the adaptive state will be
- * locally optimal but will not necessarily be globally optimal. This is
- * because the algorithm only keeps the least-costly path to get to a given
- * location and does not take into account that a slightly more costly path
- * could result in a different adaptive state that ultimately results in a
- * lower global cost.
- *
- * - The array space used by this function is bounded, so in degenerate cases it
- * is forced to start returning matches/literals before the algorithm has
- * really finished.
- *
- * Each call to this function does one of two things:
- *
- * 1. Build a sequence of near-optimal matches/literals, up to some point, that
- * will be returned by subsequent calls to this function, then return the
- * first one.
- *
- * OR
- *
- * 2. Return the next match/literal previously computed by a call to this
- * function.
- *
- * The return value is a (length, offset) pair specifying the match or literal
- * chosen. For literals, the length is 0 or 1 and the offset is meaningless.
- */
-static struct lz_match
-lzx_choose_near_optimal_item(struct lzx_compressor *c)
+/* Return the cost, in bits, to output a match of the specified length and
+ * offset slot using the specified cost model. Does not take into account
+ * extra offset bits. */
+static inline u32
+lzx_match_cost_raw(unsigned len, unsigned offset_slot,
+ const struct lzx_costs *costs)
{
- unsigned num_matches;
- const struct lz_match *matches;
- struct lz_match match;
- u32 longest_len;
- u32 longest_rep_len;
- unsigned longest_rep_slot;
- unsigned cur_pos;
- unsigned end_pos;
- struct lzx_mc_pos_data *optimum = c->optimum;
-
- if (c->optimum_cur_idx != c->optimum_end_idx) {
- /* Case 2: Return the next match/literal already found. */
- match.len = optimum[c->optimum_cur_idx].next.link -
- c->optimum_cur_idx;
- match.offset = optimum[c->optimum_cur_idx].next.match_offset;
-
- c->optimum_cur_idx = optimum[c->optimum_cur_idx].next.link;
- return match;
+ u32 cost;
+ unsigned len_header;
+ unsigned main_symbol;
+
+ if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+ len_header = len - LZX_MIN_MATCH_LEN ;
+ cost = 0;
+ } else {
+ len_header = LZX_NUM_PRIMARY_LENS;
+
+ /* Account for length symbol. */
+ cost = costs->len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
}
- /* Case 1: Compute a new list of matches/literals to return. */
+ /* Account for main symbol. */
+ main_symbol = LZX_NUM_CHARS + ((offset_slot << 3) | len_header);
+ cost += costs->main[main_symbol];
+
+ return cost;
+}
+
+/* Equivalent to lzx_match_cost_raw(), but assumes the length is small enough
+ * that it doesn't require a length symbol. */
+static inline u32
+lzx_match_cost_raw_smalllen(unsigned len, unsigned offset_slot,
+ const struct lzx_costs *costs)
+{
+ LZX_ASSERT(len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS);
+ return costs->main[LZX_NUM_CHARS +
+ ((offset_slot << 3) | (len - LZX_MIN_MATCH_LEN))];
+}
+
+/*
+ * Consider coding the match at repeat offset index @rep_idx. Consider each
+ * length from the minimum (2) to the full match length (@rep_len).
+ */
+static inline void
+lzx_consider_repeat_offset_match(struct lzx_compressor *c,
+ struct lzx_mc_pos_data *cur_optimum_ptr,
+ unsigned rep_len, unsigned rep_idx)
+{
+ u32 base_cost = cur_optimum_ptr->cost;
+ u32 cost;
+ unsigned len;
- c->optimum_cur_idx = 0;
- c->optimum_end_idx = 0;
+#if 1 /* Optimized version */
- /* Search for matches at repeat offsets. As a heuristic, we only keep
- * the one with the longest match length. */
- if (likely(c->match_window_pos >= 1)) {
- longest_rep_len = lzx_repsearch(&c->cur_window[c->match_window_pos],
- c->match_window_end - c->match_window_pos,
- &c->queue,
- &longest_rep_slot);
+ if (rep_len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS) {
+ /* All lengths being considered are small. */
+ len = 2;
+ do {
+ cost = base_cost +
+ lzx_match_cost_raw_smalllen(len, rep_idx, &c->costs);
+ if (cost < (cur_optimum_ptr + len)->cost) {
+ (cur_optimum_ptr + len)->mc_item_data =
+ (rep_idx << MC_OFFSET_SHIFT) | len;
+ (cur_optimum_ptr + len)->cost = cost;
+ }
+ } while (++len <= rep_len);
} else {
- longest_rep_len = 0;
- }
+ /* Some lengths being considered are small, and some are big.
+ * Start with the optimized loop for small lengths, then switch
+ * to the optimized loop for big lengths. */
+ len = 2;
+ do {
+ cost = base_cost +
+ lzx_match_cost_raw_smalllen(len, rep_idx, &c->costs);
+ if (cost < (cur_optimum_ptr + len)->cost) {
+ (cur_optimum_ptr + len)->mc_item_data =
+ (rep_idx << MC_OFFSET_SHIFT) | len;
+ (cur_optimum_ptr + len)->cost = cost;
+ }
+ } while (++len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS);
- /* If there's a long match with a repeat offset, choose it immediately. */
- if (longest_rep_len >= c->params.nice_match_length) {
- lzx_skip_bytes(c, longest_rep_len);
- return (struct lz_match) {
- .len = longest_rep_len,
- .offset = c->queue.R[longest_rep_slot],
- };
+ /* The main symbol is now fixed. */
+ base_cost += c->costs.main[LZX_NUM_CHARS +
+ ((rep_idx << 3) | LZX_NUM_PRIMARY_LENS)];
+ do {
+ cost = base_cost +
+ c->costs.len[len - LZX_MIN_MATCH_LEN -
+ LZX_NUM_PRIMARY_LENS];
+ if (cost < (cur_optimum_ptr + len)->cost) {
+ (cur_optimum_ptr + len)->mc_item_data =
+ (rep_idx << MC_OFFSET_SHIFT) | len;
+ (cur_optimum_ptr + len)->cost = cost;
+ }
+ } while (++len <= rep_len);
}
- /* Find other matches. */
- num_matches = lzx_get_matches(c, &matches);
+#else /* Unoptimized version */
- /* If there's a long match, choose it immediately. */
- if (num_matches) {
- longest_len = matches[num_matches - 1].len;
- if (longest_len >= c->params.nice_match_length) {
- lzx_skip_bytes(c, longest_len - 1);
- return matches[num_matches - 1];
+ len = 2;
+ do {
+ cost = base_cost +
+ lzx_match_cost_raw(len, rep_idx, &c->costs);
+ if (cost < (cur_optimum_ptr + len)->cost) {
+ (cur_optimum_ptr + len)->mc_item_data =
+ (rep_idx << MC_OFFSET_SHIFT) | len;
+ (cur_optimum_ptr + len)->cost = cost;
}
+ } while (++len <= rep_len);
+#endif
+}
+
+/*
+ * Consider coding each match in @matches as an explicit offset match.
+ *
+ * @matches must be sorted by strictly increasing length and strictly
+ * increasing offset. This is guaranteed by the match-finder.
+ *
+ * We consider each length from the minimum (2) to the longest
+ * (matches[num_matches - 1].len). For each length, we consider only
+ * the smallest offset for which that length is available. Although
+ * this is not guaranteed to be optimal due to the possibility of a
+ * larger offset costing less than a smaller offset to code, this is a
+ * very useful heuristic.
+ */
+static inline void
+lzx_consider_explicit_offset_matches(struct lzx_compressor *c,
+ struct lzx_mc_pos_data *cur_optimum_ptr,
+ const struct lz_match matches[],
+ unsigned num_matches)
+{
+ LZX_ASSERT(num_matches > 0);
+
+ unsigned i;
+ unsigned len;
+ unsigned offset_slot;
+ u32 position_cost;
+ u32 cost;
+ u32 offset_data;
+
+
+#if 1 /* Optimized version */
+
+ if (matches[num_matches - 1].offset < LZX_NUM_FAST_OFFSETS) {
+
+ /*
+ * Offset is small; the offset slot can be looked up directly in
+ * c->offset_slot_fast.
+ *
+ * Additional optimizations:
+ *
+ * - Since the offset is small, it falls in the exponential part
+ * of the offset slot bases and the number of extra offset
+ * bits can be calculated directly as (offset_slot >> 1) - 1.
+ *
+ * - Just consider the number of extra offset bits; don't
+ * account for the aligned offset code. Usually this has
+ * almost no effect on the compression ratio.
+ *
+ * - Start out in a loop optimized for small lengths. When the
+ * length becomes high enough that a length symbol will be
+ * needed, jump into a loop optimized for big lengths.
+ */
+
+ LZX_ASSERT(offset_slot <= 37); /* for extra bits formula */
+
+ len = 2;
+ i = 0;
+ do {
+ offset_slot = c->offset_slot_fast[matches[i].offset];
+ position_cost = cur_optimum_ptr->cost +
+ ((offset_slot >> 1) - 1);
+ offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+ do {
+ if (len >= LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS)
+ goto biglen;
+ cost = position_cost +
+ lzx_match_cost_raw_smalllen(len, offset_slot,
+ &c->costs);
+ if (cost < (cur_optimum_ptr + len)->cost) {
+ (cur_optimum_ptr + len)->cost = cost;
+ (cur_optimum_ptr + len)->mc_item_data =
+ (offset_data << MC_OFFSET_SHIFT) | len;
+ }
+ } while (++len <= matches[i].len);
+ } while (++i != num_matches);
+
+ return;
+
+ do {
+ offset_slot = c->offset_slot_fast[matches[i].offset];
+ biglen:
+ position_cost = cur_optimum_ptr->cost +
+ ((offset_slot >> 1) - 1) +
+ c->costs.main[LZX_NUM_CHARS +
+ ((offset_slot << 3) |
+ LZX_NUM_PRIMARY_LENS)];
+ offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+ do {
+ cost = position_cost +
+ c->costs.len[len - LZX_MIN_MATCH_LEN -
+ LZX_NUM_PRIMARY_LENS];
+ if (cost < (cur_optimum_ptr + len)->cost) {
+ (cur_optimum_ptr + len)->cost = cost;
+ (cur_optimum_ptr + len)->mc_item_data =
+ (offset_data << MC_OFFSET_SHIFT) | len;
+ }
+ } while (++len <= matches[i].len);
+ } while (++i != num_matches);
} else {
- longest_len = 1;
+ len = 2;
+ i = 0;
+ do {
+ offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+ offset_slot = lzx_get_offset_slot_raw(offset_data);
+ position_cost = cur_optimum_ptr->cost +
+ lzx_extra_offset_bits[offset_slot];
+ do {
+ cost = position_cost +
+ lzx_match_cost_raw(len, offset_slot, &c->costs);
+ if (cost < (cur_optimum_ptr + len)->cost) {
+ (cur_optimum_ptr + len)->cost = cost;
+ (cur_optimum_ptr + len)->mc_item_data =
+ (offset_data << MC_OFFSET_SHIFT) | len;
+ }
+ } while (++len <= matches[i].len);
+ } while (++i != num_matches);
}
- /* Calculate the cost to reach the next position by coding a literal. */
- optimum[1].queue = c->queue;
- optimum[1].cost = lzx_literal_cost(c->cur_window[c->match_window_pos - 1],
- &c->costs);
- optimum[1].prev.link = 0;
+#else /* Unoptimized version */
- /* Calculate the cost to reach any position up to and including that
- * reached by the longest match.
- *
- * Note: We consider only the lowest-offset match that reaches each
- * position.
- *
- * Note: Some of the cost calculation stays the same for each offset,
- * regardless of how many lengths it gets used for. Therefore, to
- * improve performance, we hand-code the cost calculation instead of
- * calling lzx_match_cost() to do a from-scratch cost evaluation at each
- * length. */
- for (unsigned i = 0, len = 2; i < num_matches; i++) {
- u32 offset;
- struct lzx_lru_queue queue;
- u32 position_cost;
- unsigned position_slot;
- unsigned num_extra_bits;
-
- offset = matches[i].offset;
- queue = c->queue;
- position_cost = 0;
-
- position_slot = lzx_get_position_slot(offset, &queue);
- num_extra_bits = lzx_get_num_extra_bits(position_slot);
+ unsigned num_extra_bits;
+
+ len = 2;
+ i = 0;
+ do {
+ offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+ position_cost = cur_optimum_ptr->cost;
+ offset_slot = lzx_get_offset_slot_raw(offset_data);
+ num_extra_bits = lzx_extra_offset_bits[offset_slot];
if (num_extra_bits >= 3) {
position_cost += num_extra_bits - 3;
- position_cost += c->costs.aligned[(offset + LZX_OFFSET_OFFSET) & 7];
+ position_cost += c->costs.aligned[offset_data & 7];
} else {
position_cost += num_extra_bits;
}
-
do {
- u32 cost;
- unsigned len_header;
- unsigned main_symbol;
-
- cost = position_cost;
-
- if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
- len_header = len - LZX_MIN_MATCH_LEN;
- } else {
- len_header = LZX_NUM_PRIMARY_LENS;
- cost += c->costs.len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
+ cost = position_cost +
+ lzx_match_cost_raw(len, offset_slot, &c->costs);
+ if (cost < (cur_optimum_ptr + len)->cost) {
+ (cur_optimum_ptr + len)->cost = cost;
+ (cur_optimum_ptr + len)->mc_item_data =
+ (offset_data << MC_OFFSET_SHIFT) | len;
}
-
- main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
- cost += c->costs.main[main_symbol];
-
- optimum[len].queue = queue;
- optimum[len].prev.link = 0;
- optimum[len].prev.match_offset = offset;
- optimum[len].cost = cost;
} while (++len <= matches[i].len);
- }
- end_pos = longest_len;
+ } while (++i != num_matches);
+#endif
+}
- if (longest_rep_len) {
+/*
+ * Search for repeat offset matches with the current position.
+ */
+static inline unsigned
+lzx_repsearch(const u8 * const strptr, const u32 bytes_remaining,
+ const struct lzx_lru_queue *queue, unsigned *rep_max_idx_ret)
+{
+ BUILD_BUG_ON(LZX_NUM_RECENT_OFFSETS != 3);
+ return lz_repsearch3(strptr, min(bytes_remaining, LZX_MAX_MATCH_LEN),
+ queue->R, rep_max_idx_ret);
+}
- LZX_ASSERT(longest_rep_len >= LZX_MIN_MATCH_LEN);
+/*
+ * The main near-optimal parsing routine.
+ *
+ * Briefly, the algorithm does an approximate minimum-cost path search to find a
+ * "near-optimal" sequence of matches and literals to output, based on the
+ * current cost model. The algorithm steps forward, position by position (byte
+ * by byte), and updates the minimum cost path to reach each later position that
+ * can be reached using a match or literal from the current position. This is
+ * essentially Dijkstra's algorithm in disguise: the graph nodes are positions,
+ * the graph edges are possible matches/literals to code, and the cost of each
+ * edge is the estimated number of bits that will be required to output the
+ * corresponding match or literal. But one difference is that we actually
+ * compute the lowest-cost path in pieces, where each piece is terminated when
+ * there are no choices to be made.
+ *
+ * This function will run this algorithm on the portion of the window from
+ * &c->cur_window[c->match_window_pos] to &c->cur_window[c->match_window_end].
+ *
+ * On entry, c->queue must be the current state of the match offset LRU queue,
+ * and c->costs must be the current cost model to use for Huffman symbols.
+ *
+ * On exit, c->queue will be the state that the LRU queue would be in if the
+ * chosen items were to be coded.
+ *
+ * If next_chosen_item != NULL, then all items chosen will be recorded (saved in
+ * the chosen_items array). Otherwise, all items chosen will only be tallied
+ * (symbol frequencies tallied in c->freqs).
+ */
+static void
+lzx_optim_pass(struct lzx_compressor *c, struct lzx_item **next_chosen_item)
+{
+ const u8 *block_end;
+ struct lzx_lru_queue *begin_queue;
+ const u8 *window_ptr;
+ struct lzx_mc_pos_data *cur_optimum_ptr;
+ struct lzx_mc_pos_data *end_optimum_ptr;
+ const struct lz_match *matches;
+ unsigned num_matches;
+ unsigned longest_len;
+ unsigned rep_max_len;
+ unsigned rep_max_idx;
+ unsigned literal;
+ unsigned len;
+ u32 cost;
+ u32 offset_data;
- u32 cost;
+ block_end = &c->cur_window[c->match_window_end];
+ begin_queue = &c->queue;
+begin:
+ /* Start building a new list of items, which will correspond to the next
+ * piece of the overall minimum-cost path.
+ *
+ * *begin_queue is the current state of the match offset LRU queue. */
- while (end_pos < longest_rep_len)
- optimum[++end_pos].cost = MC_INFINITE_COST;
+ window_ptr = &c->cur_window[c->match_window_pos];
- cost = lzx_repmatch_cost(longest_rep_len, longest_rep_slot,
- &c->costs);
- if (cost <= optimum[longest_rep_len].cost) {
- optimum[longest_rep_len].queue = c->queue;
- swap(optimum[longest_rep_len].queue.R[0],
- optimum[longest_rep_len].queue.R[longest_rep_slot]);
- optimum[longest_rep_len].prev.link = 0;
- optimum[longest_rep_len].prev.match_offset =
- optimum[longest_rep_len].queue.R[0];
- optimum[longest_rep_len].cost = cost;
- }
+ if (window_ptr == block_end) {
+ c->queue = *begin_queue;
+ return;
}
- /* Step forward, calculating the estimated minimum cost to reach each
- * position. The algorithm may find multiple paths to reach each
- * position; only the lowest-cost path is saved.
- *
- * The progress of the parse is tracked in the @optimum array, which for
- * each position contains the minimum cost to reach that position, the
- * index of the start of the match/literal taken to reach that position
- * through the minimum-cost path, the offset of the match taken (not
- * relevant for literals), and the adaptive state that will exist at
- * that position after the minimum-cost path is taken. The @cur_pos
- * variable stores the position at which the algorithm is currently
- * considering coding choices, and the @end_pos variable stores the
- * greatest position at which the costs of coding choices have been
- * saved.
- *
- * The loop terminates when any one of the following conditions occurs:
- *
- * 1. A match with length greater than or equal to @nice_match_length is
- * found. When this occurs, the algorithm chooses this match
- * unconditionally, and consequently the near-optimal match/literal
- * sequence up to and including that match is fully determined and it
- * can begin returning the match/literal list.
- *
- * 2. @cur_pos reaches a position not overlapped by a preceding match.
- * In such cases, the near-optimal match/literal sequence up to
- * @cur_pos is fully determined and it can begin returning the
- * match/literal list.
- *
- * 3. Failing either of the above in a degenerate case, the loop
- * terminates when space in the @optimum array is exhausted.
- * This terminates the algorithm and forces it to start returning
- * matches/literals even though they may not be globally optimal.
- *
- * Upon loop termination, a nonempty list of matches/literals will have
- * been produced and stored in the @optimum array. These
- * matches/literals are linked in reverse order, so the last thing this
- * function does is reverse this list and return the first
- * match/literal, leaving the rest to be returned immediately by
- * subsequent calls to this function.
- */
- cur_pos = 0;
+ cur_optimum_ptr = c->optimum;
+ cur_optimum_ptr->cost = 0;
+ cur_optimum_ptr->queue = *begin_queue;
+
+ end_optimum_ptr = cur_optimum_ptr;
+
+ /* The following loop runs once for each per byte in the window, except
+ * in a couple shortcut cases. */
for (;;) {
- u32 cost;
-
- /* Advance to next position. */
- cur_pos++;
-
- /* Check termination conditions (2) and (3) noted above. */
- if (cur_pos == end_pos || cur_pos == LZX_OPTIM_ARRAY_LENGTH)
- return lzx_match_chooser_reverse_list(c, cur_pos);
-
- /* Search for matches at repeat offsets. Again, as a heuristic
- * we only keep the longest one. */
- longest_rep_len = lzx_repsearch(&c->cur_window[c->match_window_pos],
- c->match_window_end - c->match_window_pos,
- &optimum[cur_pos].queue,
- &longest_rep_slot);
-
- /* If we found a long match at a repeat offset, choose it
- * immediately. */
- if (longest_rep_len >= c->params.nice_match_length) {
- /* Build the list of matches to return and get
- * the first one. */
- match = lzx_match_chooser_reverse_list(c, cur_pos);
-
- /* Append the long match to the end of the list. */
- optimum[cur_pos].next.match_offset =
- optimum[cur_pos].queue.R[longest_rep_slot];
- optimum[cur_pos].next.link = cur_pos + longest_rep_len;
- c->optimum_end_idx = cur_pos + longest_rep_len;
-
- /* Skip over the remaining bytes of the long match. */
- lzx_skip_bytes(c, longest_rep_len);
-
- /* Return first match in the list. */
- return match;
- }
- /* Find other matches. */
+ /* Find explicit offset matches with the current position. */
num_matches = lzx_get_matches(c, &matches);
- /* If there's a long match, choose it immediately. */
if (num_matches) {
+ /*
+ * Find the longest repeat offset match with the current
+ * position.
+ *
+ * Heuristics:
+ *
+ * - Only search for repeat offset matches if the
+ * match-finder already found at least one match.
+ *
+ * - Only consider the longest repeat offset match. It
+ * seems to be rare for the optimal parse to include a
+ * repeat offset match that doesn't have the longest
+ * length (allowing for the possibility that not all
+ * of that length is actually used).
+ */
+ rep_max_len = lzx_repsearch(window_ptr,
+ block_end - window_ptr,
+ &cur_optimum_ptr->queue,
+ &rep_max_idx);
+
+ if (rep_max_len) {
+ /* If there's a very long repeat offset match,
+ * choose it immediately. */
+ if (rep_max_len >= c->params.nice_match_length) {
+
+ swap(cur_optimum_ptr->queue.R[0],
+ cur_optimum_ptr->queue.R[rep_max_idx]);
+ begin_queue = &cur_optimum_ptr->queue;
+
+ cur_optimum_ptr += rep_max_len;
+ cur_optimum_ptr->mc_item_data =
+ (rep_max_idx << MC_OFFSET_SHIFT) |
+ rep_max_len;
+
+ lzx_skip_bytes(c, rep_max_len - 1);
+ break;
+ }
+
+ /* If reaching any positions for the first time,
+ * initialize their costs to "infinity". */
+ while (end_optimum_ptr < cur_optimum_ptr + rep_max_len)
+ (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+
+ /* Consider coding a repeat offset match. */
+ lzx_consider_repeat_offset_match(c,
+ cur_optimum_ptr,
+ rep_max_len,
+ rep_max_idx);
+ }
+
longest_len = matches[num_matches - 1].len;
+
+ /* If there's a very long explicit offset match, choose
+ * it immediately. */
if (longest_len >= c->params.nice_match_length) {
- /* Build the list of matches to return and get
- * the first one. */
- match = lzx_match_chooser_reverse_list(c, cur_pos);
- /* Append the long match to the end of the list. */
- optimum[cur_pos].next.match_offset =
+ cur_optimum_ptr->queue.R[2] =
+ cur_optimum_ptr->queue.R[1];
+ cur_optimum_ptr->queue.R[1] =
+ cur_optimum_ptr->queue.R[0];
+ cur_optimum_ptr->queue.R[0] =
matches[num_matches - 1].offset;
- optimum[cur_pos].next.link = cur_pos + longest_len;
- c->optimum_end_idx = cur_pos + longest_len;
+ begin_queue = &cur_optimum_ptr->queue;
- /* Skip over the remaining bytes of the long match. */
- lzx_skip_bytes(c, longest_len - 1);
+ offset_data = matches[num_matches - 1].offset +
+ LZX_OFFSET_OFFSET;
+ cur_optimum_ptr += longest_len;
+ cur_optimum_ptr->mc_item_data =
+ (offset_data << MC_OFFSET_SHIFT) |
+ longest_len;
- /* Return first match in the list. */
- return match;
+ lzx_skip_bytes(c, longest_len - 1);
+ break;
}
+
+ /* If reaching any positions for the first time,
+ * initialize their costs to "infinity". */
+ while (end_optimum_ptr < cur_optimum_ptr + longest_len)
+ (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+
+ /* Consider coding an explicit offset match. */
+ lzx_consider_explicit_offset_matches(c, cur_optimum_ptr,
+ matches, num_matches);
} else {
- longest_len = 1;
+ /* No matches found. The only choice at this position
+ * is to code a literal. */
+
+ if (end_optimum_ptr == cur_optimum_ptr) {
+ #if 1
+ /* Optimization for single literals. */
+ if (likely(cur_optimum_ptr == c->optimum)) {
+ lzx_declare_literal(c, *window_ptr++,
+ next_chosen_item);
+ if (window_ptr == block_end) {
+ c->queue = cur_optimum_ptr->queue;
+ return;
+ }
+ continue;
+ }
+ #endif
+ (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+ }
}
- /* If we are reaching any positions for the first time, we need
- * to initialize their costs to infinity. */
- while (end_pos < cur_pos + longest_len)
- optimum[++end_pos].cost = MC_INFINITE_COST;
-
- /* Consider coding a literal. */
- cost = optimum[cur_pos].cost +
- lzx_literal_cost(c->cur_window[c->match_window_pos - 1],
- &c->costs);
- if (cost < optimum[cur_pos + 1].cost) {
- optimum[cur_pos + 1].queue = optimum[cur_pos].queue;
- optimum[cur_pos + 1].cost = cost;
- optimum[cur_pos + 1].prev.link = cur_pos;
- }
+ /* Consider coding a literal.
- /* Consider coding a match.
- *
- * The hard-coded cost calculation is done for the same reason
- * stated in the comment for the similar loop earlier.
- * Actually, it is *this* one that has the biggest effect on
- * performance; overall LZX compression is > 10% faster with
- * this code compared to calling lzx_match_cost() with each
- * length. */
- for (unsigned i = 0, len = 2; i < num_matches; i++) {
- u32 offset;
- u32 position_cost;
- unsigned position_slot;
- unsigned num_extra_bits;
-
- offset = matches[i].offset;
- position_cost = optimum[cur_pos].cost;
-
- /* Yet another optimization: instead of calling
- * lzx_get_position_slot(), hand-inline the search of
- * the repeat offset queue. Then we can omit the
- * extra_bits calculation for repeat offset matches, and
- * also only compute the updated queue if we actually do
- * find a new lowest cost path. */
- for (position_slot = 0; position_slot < LZX_NUM_RECENT_OFFSETS; position_slot++)
- if (offset == optimum[cur_pos].queue.R[position_slot])
- goto have_position_cost;
-
- position_slot = lzx_get_position_slot_raw(offset + LZX_OFFSET_OFFSET);
-
- num_extra_bits = lzx_get_num_extra_bits(position_slot);
- if (num_extra_bits >= 3) {
- position_cost += num_extra_bits - 3;
- position_cost += c->costs.aligned[
- (offset + LZX_OFFSET_OFFSET) & 7];
- } else {
- position_cost += num_extra_bits;
- }
+ * To avoid an extra unpredictable brench, actually checking the
+ * preferability of coding a literal is integrated into the
+ * queue update code below. */
+ literal = *window_ptr++;
+ cost = cur_optimum_ptr->cost + lzx_literal_cost(literal, &c->costs);
- have_position_cost:
+ /* Advance to the next position. */
+ cur_optimum_ptr++;
- do {
- u32 cost;
- unsigned len_header;
- unsigned main_symbol;
-
- cost = position_cost;
-
- if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
- len_header = len - LZX_MIN_MATCH_LEN;
- } else {
- len_header = LZX_NUM_PRIMARY_LENS;
- cost += c->costs.len[len -
- LZX_MIN_MATCH_LEN -
- LZX_NUM_PRIMARY_LENS];
- }
+ /* The lowest-cost path to the current position is now known.
+ * Finalize the recent offsets queue that results from taking
+ * this lowest-cost path. */
- main_symbol = ((position_slot << 3) | len_header) +
- LZX_NUM_CHARS;
- cost += c->costs.main[main_symbol];
-
- if (cost < optimum[cur_pos + len].cost) {
- if (position_slot < LZX_NUM_RECENT_OFFSETS) {
- optimum[cur_pos + len].queue = optimum[cur_pos].queue;
- swap(optimum[cur_pos + len].queue.R[0],
- optimum[cur_pos + len].queue.R[position_slot]);
- } else {
- optimum[cur_pos + len].queue.R[0] = offset;
- optimum[cur_pos + len].queue.R[1] = optimum[cur_pos].queue.R[0];
- optimum[cur_pos + len].queue.R[2] = optimum[cur_pos].queue.R[1];
- }
- optimum[cur_pos + len].prev.link = cur_pos;
- optimum[cur_pos + len].prev.match_offset = offset;
- optimum[cur_pos + len].cost = cost;
- }
- } while (++len <= matches[i].len);
+ if (cost < cur_optimum_ptr->cost) {
+ /* Literal: queue remains unchanged. */
+ cur_optimum_ptr->cost = cost;
+ cur_optimum_ptr->mc_item_data = (literal << MC_OFFSET_SHIFT) | 1;
+ cur_optimum_ptr->queue = (cur_optimum_ptr - 1)->queue;
+ } else {
+ /* Match: queue update is needed. */
+ len = cur_optimum_ptr->mc_item_data & MC_LEN_MASK;
+ offset_data = cur_optimum_ptr->mc_item_data >> MC_OFFSET_SHIFT;
+ if (offset_data >= LZX_NUM_RECENT_OFFSETS) {
+ /* Explicit offset match: offset is inserted at front */
+ cur_optimum_ptr->queue.R[0] = offset_data - LZX_OFFSET_OFFSET;
+ cur_optimum_ptr->queue.R[1] = (cur_optimum_ptr - len)->queue.R[0];
+ cur_optimum_ptr->queue.R[2] = (cur_optimum_ptr - len)->queue.R[1];
+ } else {
+ /* Repeat offset match: offset is swapped to front */
+ cur_optimum_ptr->queue = (cur_optimum_ptr - len)->queue;
+ swap(cur_optimum_ptr->queue.R[0],
+ cur_optimum_ptr->queue.R[offset_data]);
+ }
}
- /* Consider coding a repeat offset match.
+ /*
+ * This loop will terminate when either of the following
+ * conditions is true:
+ *
+ * (1) cur_optimum_ptr == end_optimum_ptr
*
- * As a heuristic, we only consider the longest length of the
- * longest repeat offset match. This does not, however,
- * necessarily mean that we will never consider any other repeat
- * offsets, because above we detect repeat offset matches that
- * were found by the regular match-finder. Therefore, this
- * special handling of the longest repeat-offset match is only
- * helpful for coding a repeat offset match that was *not* found
- * by the match-finder, e.g. due to being obscured by a less
- * distant match that is at least as long.
+ * There are no paths that extend beyond the current
+ * position. In this case, any path to a later position
+ * must pass through the current position, so we can go
+ * ahead and choose the list of items that led to this
+ * position.
*
- * Note: an alternative, used in LZMA, is to consider every
- * length of every repeat offset match. This is a more thorough
- * search, and it makes it unnecessary to detect repeat offset
- * matches that were found by the regular match-finder. But by
- * my tests, for LZX the LZMA method slows down the compressor
- * by ~10% and doesn't actually help the compression ratio too
- * much.
+ * (2) cur_optimum_ptr == &c->optimum[LZX_OPTIM_ARRAY_LENGTH]
*
- * Also tested a compromise approach: consider every 3rd length
- * of the longest repeat offset match. Still didn't seem quite
- * worth it, though.
+ * This bounds the number of times the algorithm can step
+ * forward before it is guaranteed to start choosing items.
+ * This limits the memory usage. But
+ * LZX_OPTIM_ARRAY_LENGTH is high enough that on most
+ * inputs this limit is never reached.
+ *
+ * Note: no check for end-of-block is needed because
+ * end-of-block will trigger condition (1).
*/
- if (longest_rep_len) {
-
- LZX_ASSERT(longest_rep_len >= LZX_MIN_MATCH_LEN);
-
- while (end_pos < cur_pos + longest_rep_len)
- optimum[++end_pos].cost = MC_INFINITE_COST;
-
- cost = optimum[cur_pos].cost +
- lzx_repmatch_cost(longest_rep_len, longest_rep_slot,
- &c->costs);
- if (cost <= optimum[cur_pos + longest_rep_len].cost) {
- optimum[cur_pos + longest_rep_len].queue =
- optimum[cur_pos].queue;
- swap(optimum[cur_pos + longest_rep_len].queue.R[0],
- optimum[cur_pos + longest_rep_len].queue.R[longest_rep_slot]);
- optimum[cur_pos + longest_rep_len].prev.link =
- cur_pos;
- optimum[cur_pos + longest_rep_len].prev.match_offset =
- optimum[cur_pos + longest_rep_len].queue.R[0];
- optimum[cur_pos + longest_rep_len].cost =
- cost;
- }
+ if (cur_optimum_ptr == end_optimum_ptr ||
+ cur_optimum_ptr == &c->optimum[LZX_OPTIM_ARRAY_LENGTH])
+ {
+ begin_queue = &cur_optimum_ptr->queue;
+ break;
}
}
+
+ /* Choose the current list of items that constitute the minimum-cost
+ * path to the current position. */
+ lzx_declare_item_list(c, cur_optimum_ptr, next_chosen_item);
+ goto begin;
}
-static struct lz_match
-lzx_choose_lazy_item(struct lzx_compressor *c)
+/* Fast heuristic scoring for lazy parsing: how "good" is this match? */
+static inline unsigned
+lzx_explicit_offset_match_score(unsigned len, u32 adjusted_offset)
{
- const struct lz_match *matches;
- struct lz_match cur_match;
- struct lz_match next_match;
- u32 num_matches;
-
- if (c->prev_match.len) {
- cur_match = c->prev_match;
- c->prev_match.len = 0;
- } else {
- num_matches = lzx_get_matches(c, &matches);
- if (num_matches == 0 ||
- (matches[num_matches - 1].len <= 3 &&
- (matches[num_matches - 1].len <= 2 ||
- matches[num_matches - 1].offset > 4096)))
- {
- return (struct lz_match) { };
- }
-
- cur_match = matches[num_matches - 1];
- }
-
- if (cur_match.len >= c->params.nice_match_length) {
- lzx_skip_bytes(c, cur_match.len - 1);
- return cur_match;
- }
+ unsigned score = len;
- num_matches = lzx_get_matches(c, &matches);
- if (num_matches == 0 ||
- (matches[num_matches - 1].len <= 3 &&
- (matches[num_matches - 1].len <= 2 ||
- matches[num_matches - 1].offset > 4096)))
- {
- lzx_skip_bytes(c, cur_match.len - 2);
- return cur_match;
- }
+ if (adjusted_offset < 2048)
+ score++;
- next_match = matches[num_matches - 1];
+ if (adjusted_offset < 1024)
+ score++;
- if (next_match.len <= cur_match.len) {
- lzx_skip_bytes(c, cur_match.len - 2);
- return cur_match;
- } else {
- c->prev_match = next_match;
- return (struct lz_match) { };
- }
+ return score;
}
-/*
- * Return the next match or literal to use, delegating to the currently selected
- * match-choosing algorithm.
- *
- * If the length of the returned 'struct lz_match' is less than
- * LZX_MIN_MATCH_LEN, then it is really a literal.
- */
-static inline struct lz_match
-lzx_choose_item(struct lzx_compressor *c)
+static inline unsigned
+lzx_repeat_offset_match_score(unsigned len, unsigned slot)
{
- return (*c->params.choose_item_func)(c);
+ return len + 3;
}
-/* Set default symbol costs for the LZX Huffman codes. */
-static void
-lzx_set_default_costs(struct lzx_costs * costs, unsigned num_main_syms)
+/* Lazy parsing */
+static u32
+lzx_choose_lazy_items_for_block(struct lzx_compressor *c,
+ u32 block_start_pos, u32 block_size)
{
- unsigned i;
+ const u8 *window_ptr;
+ const u8 *block_end;
+ struct lz_mf *mf;
+ struct lz_match *matches;
+ unsigned num_matches;
+ unsigned cur_len;
+ u32 cur_offset_data;
+ unsigned cur_score;
+ unsigned rep_max_len;
+ unsigned rep_max_idx;
+ unsigned rep_score;
+ unsigned prev_len;
+ unsigned prev_score;
+ u32 prev_offset_data;
+ unsigned skip_len;
+ struct lzx_item *next_chosen_item;
- /* Main code (part 1): Literal symbols */
- for (i = 0; i < LZX_NUM_CHARS; i++)
- costs->main[i] = 8;
+ window_ptr = &c->cur_window[block_start_pos];
+ block_end = window_ptr + block_size;
+ matches = c->cached_matches;
+ mf = c->mf;
+ next_chosen_item = c->chosen_items;
- /* Main code (part 2): Match header symbols */
- for (; i < num_main_syms; i++)
- costs->main[i] = 10;
+ prev_len = 0;
+ prev_offset_data = 0;
+ prev_score = 0;
- /* Length code */
- for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
- costs->len[i] = 8;
+ while (window_ptr != block_end) {
- /* Aligned offset code */
- for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
- costs->aligned[i] = 3;
+ /* Find explicit offset matches with the current position. */
+ num_matches = lz_mf_get_matches(mf, matches);
+ window_ptr++;
+
+ if (num_matches == 0 ||
+ (matches[num_matches - 1].len == 3 &&
+ matches[num_matches - 1].offset >= 8192 - LZX_OFFSET_OFFSET &&
+ matches[num_matches - 1].offset != c->queue.R[0] &&
+ matches[num_matches - 1].offset != c->queue.R[1] &&
+ matches[num_matches - 1].offset != c->queue.R[2]))
+ {
+ /* No match found, or the only match found was a distant
+ * length 3 match. Output the previous match if there
+ * is one; otherwise output a literal. */
+
+ if (prev_len) {
+ skip_len = prev_len - 2;
+ goto output_prev_match;
+ } else {
+ lzx_declare_literal(c, *(window_ptr - 1),
+ &next_chosen_item);
+ continue;
+ }
+ }
+
+ /* Find the longest repeat offset match with the current
+ * position. */
+ if (likely(block_end - (window_ptr - 1) >= 2)) {
+ rep_max_len = lzx_repsearch((window_ptr - 1),
+ block_end - (window_ptr - 1),
+ &c->queue, &rep_max_idx);
+ } else {
+ rep_max_len = 0;
+ }
+
+ cur_len = matches[num_matches - 1].len;
+ cur_offset_data = matches[num_matches - 1].offset + LZX_OFFSET_OFFSET;
+ cur_score = lzx_explicit_offset_match_score(cur_len, cur_offset_data);
+
+ /* Select the better of the explicit and repeat offset matches. */
+ if (rep_max_len >= 3 &&
+ (rep_score = lzx_repeat_offset_match_score(rep_max_len,
+ rep_max_idx)) >= cur_score)
+ {
+ cur_len = rep_max_len;
+ cur_offset_data = rep_max_idx;
+ cur_score = rep_score;
+ }
+
+ if (unlikely(cur_len > block_end - (window_ptr - 1))) {
+ /* Nearing end of block. */
+ cur_len = block_end - (window_ptr - 1);
+ if (cur_len < 3) {
+ lzx_declare_literal(c, *(window_ptr - 1), &next_chosen_item);
+ prev_len = 0;
+ continue;
+ }
+ }
+
+ if (prev_len == 0 || cur_score > prev_score) {
+ /* No previous match, or the current match is better
+ * than the previous match.
+ *
+ * If there's a previous match, then output a literal in
+ * its place.
+ *
+ * In both cases, if the current match is very long,
+ * then output it immediately. Otherwise, attempt a
+ * lazy match by waiting to see if there's a better
+ * match at the next position. */
+
+ if (prev_len)
+ lzx_declare_literal(c, *(window_ptr - 2), &next_chosen_item);
+
+ prev_len = cur_len;
+ prev_offset_data = cur_offset_data;
+ prev_score = cur_score;
+
+ if (prev_len >= c->params.nice_match_length) {
+ skip_len = prev_len - 1;
+ goto output_prev_match;
+ }
+ continue;
+ }
+
+ /* Current match is not better than the previous match, so
+ * output the previous match. */
+
+ skip_len = prev_len - 2;
+
+ output_prev_match:
+ if (prev_offset_data < LZX_NUM_RECENT_OFFSETS) {
+ lzx_declare_repeat_offset_match(c, prev_len,
+ prev_offset_data,
+ &next_chosen_item);
+ swap(c->queue.R[0], c->queue.R[prev_offset_data]);
+ } else {
+ lzx_declare_explicit_offset_match(c, prev_len,
+ prev_offset_data - LZX_OFFSET_OFFSET,
+ &next_chosen_item);
+ c->queue.R[2] = c->queue.R[1];
+ c->queue.R[1] = c->queue.R[0];
+ c->queue.R[0] = prev_offset_data - LZX_OFFSET_OFFSET;
+ }
+ lz_mf_skip_positions(mf, skip_len);
+ window_ptr += skip_len;
+ prev_len = 0;
+ }
+
+ return next_chosen_item - c->chosen_items;
}
/* Given the frequencies of symbols in an LZX-compressed block and the
unsigned aligned_cost = 0;
unsigned verbatim_cost = 0;
- /* Verbatim blocks have a constant 3 bits per position footer. Aligned
- * offset blocks have an aligned offset symbol per position footer, plus
- * an extra 24 bits per block to output the lengths necessary to
- * reconstruct the aligned offset code itself. */
+ /* A verbatim block require 3 bits in each place that an aligned symbol
+ * was used. */
for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
verbatim_cost += 3 * freqs->aligned[i];
aligned_cost += codes->lens.aligned[i] * freqs->aligned[i];
}
+
+ /* Account for output of the aligned offset code. */
aligned_cost += LZX_ALIGNEDCODE_ELEMENT_SIZE * LZX_ALIGNEDCODE_NUM_SYMBOLS;
+
if (aligned_cost < verbatim_cost)
return LZX_BLOCKTYPE_ALIGNED;
else
return LZX_BLOCKTYPE_VERBATIM;
}
-/* Find a sequence of matches/literals with which to output the specified LZX
- * block, then set the block's type to that which has the minimum cost to output
- * (either verbatim or aligned). */
-static void
-lzx_choose_items_for_block(struct lzx_compressor *c, struct lzx_block_spec *spec)
+/* Near-optimal parsing */
+static u32
+lzx_choose_near_optimal_items_for_block(struct lzx_compressor *c,
+ u32 block_start_pos, u32 block_size)
{
- const struct lzx_lru_queue orig_queue = c->queue;
u32 num_passes_remaining = c->params.num_optim_passes;
- struct lzx_freqs freqs;
- const u8 *window_ptr;
- const u8 *window_end;
+ struct lzx_lru_queue orig_queue;
struct lzx_item *next_chosen_item;
- struct lz_match lz_match;
- struct lzx_item lzx_item;
-
- LZX_ASSERT(num_passes_remaining >= 1);
- LZX_ASSERT(lz_mf_get_position(c->mf) == spec->window_pos);
-
- c->match_window_end = spec->window_pos + spec->block_size;
+ struct lzx_item **next_chosen_item_ptr;
- if (c->params.num_optim_passes > 1) {
- if (spec->block_size == c->cur_window_size)
+ /* Choose appropriate match-finder wrapper functions. */
+ if (num_passes_remaining > 1) {
+ if (block_size == c->cur_window_size)
c->get_matches_func = lzx_get_matches_fillcache_singleblock;
else
c->get_matches_func = lzx_get_matches_fillcache_multiblock;
c->skip_bytes_func = lzx_skip_bytes_fillcache;
} else {
- if (spec->block_size == c->cur_window_size)
+ if (block_size == c->cur_window_size)
c->get_matches_func = lzx_get_matches_nocache_singleblock;
else
c->get_matches_func = lzx_get_matches_nocache_multiblock;
c->skip_bytes_func = lzx_skip_bytes_nocache;
}
- /* The first optimal parsing pass is done using the cost model already
- * set in c->costs. Each later pass is done using a cost model
- * computed from the previous pass.
+ /* No matches will extend beyond the end of the block. */
+ c->match_window_end = block_start_pos + block_size;
+
+ /* The first optimization pass will use a default cost model. Each
+ * additional optimization pass will use a cost model computed from the
+ * previous pass.
*
* To improve performance we only generate the array containing the
- * matches and literals in intermediate form on the final pass. */
+ * matches and literals in intermediate form on the final pass. For
+ * earlier passes, tallying symbol frequencies is sufficient. */
+ lzx_set_default_costs(&c->costs, c->num_main_syms);
- while (--num_passes_remaining) {
- c->match_window_pos = spec->window_pos;
+ next_chosen_item_ptr = NULL;
+ orig_queue = c->queue;
+ do {
+ /* Reset the match-finder wrapper. */
+ c->match_window_pos = block_start_pos;
c->cache_ptr = c->cached_matches;
- memset(&freqs, 0, sizeof(freqs));
- window_ptr = &c->cur_window[spec->window_pos];
- window_end = window_ptr + spec->block_size;
- while (window_ptr != window_end) {
+ if (num_passes_remaining == 1) {
+ /* Last pass: actually generate the items. */
+ next_chosen_item = c->chosen_items;
+ next_chosen_item_ptr = &next_chosen_item;
+ }
- lz_match = lzx_choose_item(c);
+ /* Choose the items. */
+ lzx_optim_pass(c, next_chosen_item_ptr);
- LZX_ASSERT(!(lz_match.len == LZX_MIN_MATCH_LEN &&
- lz_match.offset == c->max_window_size -
- LZX_MIN_MATCH_LEN));
- if (lz_match.len >= LZX_MIN_MATCH_LEN) {
- lzx_tally_match(lz_match.len, lz_match.offset,
- &freqs, &c->queue);
- window_ptr += lz_match.len;
- } else {
- lzx_tally_literal(*window_ptr, &freqs);
- window_ptr += 1;
- }
- }
- lzx_make_huffman_codes(&freqs, &spec->codes, c->num_main_syms);
- lzx_set_costs(c, &spec->codes.lens, 15);
- c->queue = orig_queue;
- if (c->cache_ptr <= c->cache_limit) {
- c->get_matches_func = lzx_get_matches_usecache_nocheck;
- c->skip_bytes_func = lzx_skip_bytes_usecache_nocheck;
- } else {
- c->get_matches_func = lzx_get_matches_usecache;
- c->skip_bytes_func = lzx_skip_bytes_usecache;
- }
- }
+ if (num_passes_remaining > 1) {
+ /* This isn't the last pass. */
- c->match_window_pos = spec->window_pos;
- c->cache_ptr = c->cached_matches;
- memset(&freqs, 0, sizeof(freqs));
- window_ptr = &c->cur_window[spec->window_pos];
- window_end = window_ptr + spec->block_size;
+ /* Make the Huffman codes from the symbol frequencies. */
+ lzx_make_huffman_codes(&c->freqs, &c->codes[c->codes_index],
+ c->num_main_syms);
- spec->chosen_items = &c->chosen_items[spec->window_pos];
- next_chosen_item = spec->chosen_items;
+ /* Update symbol costs. */
+ lzx_set_costs(c, &c->codes[c->codes_index].lens);
- unsigned unseen_cost = 9;
- while (window_ptr != window_end) {
+ /* Reset symbol frequencies. */
+ memset(&c->freqs, 0, sizeof(c->freqs));
- lz_match = lzx_choose_item(c);
+ /* Reset the match offset LRU queue to what it was at
+ * the beginning of the block. */
+ c->queue = orig_queue;
- LZX_ASSERT(!(lz_match.len == LZX_MIN_MATCH_LEN &&
- lz_match.offset == c->max_window_size -
- LZX_MIN_MATCH_LEN));
- if (lz_match.len >= LZX_MIN_MATCH_LEN) {
- lzx_item.data = lzx_tally_match(lz_match.len,
- lz_match.offset,
- &freqs, &c->queue);
- window_ptr += lz_match.len;
- } else {
- lzx_item.data = lzx_tally_literal(*window_ptr, &freqs);
- window_ptr += 1;
+ /* Choose appopriate match-finder wrapper functions. */
+ if (c->cache_ptr <= c->cache_limit) {
+ c->get_matches_func = lzx_get_matches_usecache_nocheck;
+ c->skip_bytes_func = lzx_skip_bytes_usecache_nocheck;
+ } else {
+ c->get_matches_func = lzx_get_matches_usecache;
+ c->skip_bytes_func = lzx_skip_bytes_usecache;
+ }
}
- *next_chosen_item++ = lzx_item;
+ } while (--num_passes_remaining);
- /* When doing one-pass "near-optimal" parsing, update the cost
- * model occassionally. */
- if (unlikely((next_chosen_item - spec->chosen_items) % 2048 == 0) &&
- c->params.choose_item_func == lzx_choose_near_optimal_item &&
- c->params.num_optim_passes == 1)
- {
- lzx_make_huffman_codes(&freqs, &spec->codes, c->num_main_syms);
- lzx_set_costs(c, &spec->codes.lens, unseen_cost);
- if (unseen_cost < 15)
- unseen_cost++;
- }
- }
- spec->num_chosen_items = next_chosen_item - spec->chosen_items;
- lzx_make_huffman_codes(&freqs, &spec->codes, c->num_main_syms);
- spec->block_type = lzx_choose_verbatim_or_aligned(&freqs, &spec->codes);
+ /* Return the number of items chosen. */
+ return next_chosen_item - c->chosen_items;
+}
+
+/*
+ * Choose the matches/literals with which to output the block of data beginning
+ * at '&c->cur_window[block_start_pos]' and extending for 'block_size' bytes.
+ *
+ * The frequences of the Huffman symbols in the block will be tallied in
+ * 'c->freqs'.
+ *
+ * 'c->queue' must specify the state of the queue at the beginning of this block.
+ * This function will update it to the state of the queue at the end of this
+ * block.
+ *
+ * Returns the number of matches/literals that were chosen and written to
+ * 'c->chosen_items' in the 'struct lzx_item' intermediate representation.
+ */
+static u32
+lzx_choose_items_for_block(struct lzx_compressor *c,
+ u32 block_start_pos, u32 block_size)
+{
+ return (*c->params.choose_items_for_block)(c, block_start_pos, block_size);
}
-/* Prepare the input window into one or more LZX blocks ready to be output. */
+/* Initialize c->offset_slot_fast. */
static void
-lzx_prepare_blocks(struct lzx_compressor *c)
+lzx_init_offset_slot_fast(struct lzx_compressor *c)
{
- /* Set up a default cost model. */
- if (c->params.choose_item_func == lzx_choose_near_optimal_item)
- lzx_set_default_costs(&c->costs, c->num_main_syms);
+ u8 slot = 0;
- /* Set up the block specifications.
- * TODO: The compression ratio could be slightly improved by performing
- * data-dependent block splitting instead of using fixed-size blocks.
- * Doing so well is a computationally hard problem, however. */
- c->num_blocks = DIV_ROUND_UP(c->cur_window_size, LZX_DIV_BLOCK_SIZE);
- for (unsigned i = 0; i < c->num_blocks; i++) {
- u32 pos = LZX_DIV_BLOCK_SIZE * i;
- c->block_specs[i].window_pos = pos;
- c->block_specs[i].block_size = min(c->cur_window_size - pos,
- LZX_DIV_BLOCK_SIZE);
- }
+ for (u32 offset = 0; offset < LZX_NUM_FAST_OFFSETS; offset++) {
- /* Load the window into the match-finder. */
- lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
+ while (offset + LZX_OFFSET_OFFSET >= lzx_offset_slot_base[slot + 1])
+ slot++;
- /* Determine sequence of matches/literals to output for each block. */
- lzx_lru_queue_init(&c->queue);
- c->optimum_cur_idx = 0;
- c->optimum_end_idx = 0;
- c->prev_match.len = 0;
- for (unsigned i = 0; i < c->num_blocks; i++)
- lzx_choose_items_for_block(c, &c->block_specs[i]);
+ c->offset_slot_fast[offset] = slot;
+ }
}
+/* Set internal compression parameters for the specified compression level and
+ * maximum window size. */
static void
-lzx_build_params(unsigned int compression_level,
- u32 max_window_size,
+lzx_build_params(unsigned int compression_level, u32 max_window_size,
struct lzx_compressor_params *lzx_params)
{
if (compression_level < 25) {
- lzx_params->choose_item_func = lzx_choose_lazy_item;
- lzx_params->num_optim_passes = 1;
+
+ /* Fast compression: Use lazy parsing. */
+
+ lzx_params->choose_items_for_block = lzx_choose_lazy_items_for_block;
+ lzx_params->num_optim_passes = 1;
+
+ /* When lazy parsing, the hash chain match-finding algorithm is
+ * fastest unless the window is too large.
+ *
+ * TODO: something like hash arrays would actually be better
+ * than binary trees on large windows. */
if (max_window_size <= 262144)
lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
else
lzx_params->mf_algo = LZ_MF_BINARY_TREES;
- lzx_params->min_match_length = 3;
+
+ /* When lazy parsing, don't bother with length 2 matches. */
+ lzx_params->min_match_length = 3;
+
+ /* Scale nice_match_length and max_search_depth with the
+ * compression level. */
lzx_params->nice_match_length = 25 + compression_level * 2;
- lzx_params->max_search_depth = 25 + compression_level;
+ lzx_params->max_search_depth = 25 + compression_level;
} else {
- lzx_params->choose_item_func = lzx_choose_near_optimal_item;
- lzx_params->num_optim_passes = compression_level / 20;
+
+ /* Normal / high compression: Use near-optimal parsing. */
+
+ lzx_params->choose_items_for_block = lzx_choose_near_optimal_items_for_block;
+
+ /* Set a number of optimization passes appropriate for the
+ * compression level. */
+
+ lzx_params->num_optim_passes = 1;
+
+ if (compression_level >= 40)
+ lzx_params->num_optim_passes++;
+
+ /* Use more optimization passes for higher compression levels.
+ * But the more passes there are, the less they help --- so
+ * don't add them linearly. */
+ if (compression_level >= 70) {
+ lzx_params->num_optim_passes++;
+ if (compression_level >= 100)
+ lzx_params->num_optim_passes++;
+ if (compression_level >= 150)
+ lzx_params->num_optim_passes++;
+ if (compression_level >= 200)
+ lzx_params->num_optim_passes++;
+ if (compression_level >= 300)
+ lzx_params->num_optim_passes++;
+ }
+
+ /* When doing near-optimal parsing, the hash chain match-finding
+ * algorithm is good if the window size is small and we're only
+ * doing one optimization pass. Otherwise, the binary tree
+ * algorithm is the way to go. */
if (max_window_size <= 32768 && lzx_params->num_optim_passes == 1)
lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
else
lzx_params->mf_algo = LZ_MF_BINARY_TREES;
- lzx_params->min_match_length = (compression_level >= 45) ? 2 : 3;
+
+ /* When doing near-optimal parsing, allow length 2 matches if
+ * the compression level is sufficiently high. */
+ if (compression_level >= 45)
+ lzx_params->min_match_length = 2;
+ else
+ lzx_params->min_match_length = 3;
+
+ /* Scale nice_match_length and max_search_depth with the
+ * compression level. */
lzx_params->nice_match_length = min(((u64)compression_level * 32) / 50,
LZX_MAX_MATCH_LEN);
- lzx_params->max_search_depth = min(((u64)compression_level * 50) / 50,
- LZX_MAX_MATCH_LEN);
+ lzx_params->max_search_depth = min(((u64)compression_level * 50) / 50,
+ LZX_MAX_MATCH_LEN);
}
}
+/* Given the internal compression parameters and maximum window size, build the
+ * Lempel-Ziv match-finder parameters. */
static void
lzx_build_mf_params(const struct lzx_compressor_params *lzx_params,
u32 max_window_size, struct lz_mf_params *mf_params)
size += sizeof(struct lzx_compressor);
+ /* cur_window */
size += max_window_size;
- size += DIV_ROUND_UP(max_window_size, LZX_DIV_BLOCK_SIZE) *
- sizeof(struct lzx_block_spec);
-
- size += max_window_size * sizeof(struct lzx_item);
-
+ /* mf */
size += lz_mf_get_needed_memory(params.mf_algo, max_window_size);
- if (params.choose_item_func == lzx_choose_near_optimal_item) {
- size += (LZX_OPTIM_ARRAY_LENGTH + params.nice_match_length) *
- sizeof(struct lzx_mc_pos_data);
- }
+
+ /* cached_matches */
if (params.num_optim_passes > 1)
size += LZX_CACHE_LEN * sizeof(struct lz_match);
else
c->params = params;
c->num_main_syms = lzx_get_num_main_syms(window_order);
- c->max_window_size = max_window_size;
c->window_order = window_order;
+ /* The window is allocated as 16-byte aligned to speed up memcpy() and
+ * enable lzx_e8_filter() optimization on x86_64. */
c->cur_window = ALIGNED_MALLOC(max_window_size, 16);
if (!c->cur_window)
goto oom;
- c->block_specs = MALLOC(DIV_ROUND_UP(max_window_size,
- LZX_DIV_BLOCK_SIZE) *
- sizeof(struct lzx_block_spec));
- if (!c->block_specs)
- goto oom;
-
- c->chosen_items = MALLOC(max_window_size * sizeof(struct lzx_item));
- if (!c->chosen_items)
- goto oom;
-
c->mf = lz_mf_alloc(&mf_params);
if (!c->mf)
goto oom;
- if (params.choose_item_func == lzx_choose_near_optimal_item) {
- c->optimum = MALLOC((LZX_OPTIM_ARRAY_LENGTH +
- params.nice_match_length) *
- sizeof(struct lzx_mc_pos_data));
- if (!c->optimum)
- goto oom;
- }
-
if (params.num_optim_passes > 1) {
c->cached_matches = MALLOC(LZX_CACHE_LEN *
sizeof(struct lz_match));
goto oom;
}
+ lzx_init_offset_slot_fast(c);
+
*c_ret = c;
return 0;
{
struct lzx_compressor *c = _c;
struct lzx_output_bitstream os;
+ u32 num_chosen_items;
+ const struct lzx_lens *prev_lens;
+ u32 block_start_pos;
+ u32 block_size;
+ int block_type;
/* Don't bother compressing very small inputs. */
if (uncompressed_size < 100)
return 0;
/* The input data must be preprocessed. To avoid changing the original
- * input, copy it to a temporary buffer. */
+ * input data, copy it to a temporary buffer. */
memcpy(c->cur_window, uncompressed_data, uncompressed_size);
c->cur_window_size = uncompressed_size;
/* Preprocess the data. */
lzx_do_e8_preprocessing(c->cur_window, c->cur_window_size);
- /* Prepare the compressed data. */
- lzx_prepare_blocks(c);
+ /* Load the window into the match-finder. */
+ lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
+
+ /* Initialize the match offset LRU queue. */
+ lzx_lru_queue_init(&c->queue);
- /* Generate the compressed data and return its size, or 0 if an overflow
- * occurred. */
+ /* Initialize the output bitstream. */
lzx_init_output(&os, compressed_data, compressed_size_avail);
- lzx_write_all_blocks(c, &os);
+
+ /* Compress the data block by block.
+ *
+ * TODO: The compression ratio could be slightly improved by performing
+ * data-dependent block splitting instead of using fixed-size blocks.
+ * Doing so well is a computationally hard problem, however. */
+ block_start_pos = 0;
+ c->codes_index = 0;
+ prev_lens = &c->zero_lens;
+ do {
+ /* Compute the block size. */
+ block_size = min(LZX_DIV_BLOCK_SIZE,
+ uncompressed_size - block_start_pos);
+
+ /* Reset symbol frequencies. */
+ memset(&c->freqs, 0, sizeof(c->freqs));
+
+ /* Prepare the matches/literals for the block. */
+ num_chosen_items = lzx_choose_items_for_block(c,
+ block_start_pos,
+ block_size);
+
+ /* Make the Huffman codes from the symbol frequencies. */
+ lzx_make_huffman_codes(&c->freqs, &c->codes[c->codes_index],
+ c->num_main_syms);
+
+ /* Choose the best block type.
+ *
+ * Note: we currently don't consider uncompressed blocks. */
+ block_type = lzx_choose_verbatim_or_aligned(&c->freqs,
+ &c->codes[c->codes_index]);
+
+ /* Write the compressed block to the output buffer. */
+ lzx_write_compressed_block(block_type,
+ block_size,
+ c->window_order,
+ c->num_main_syms,
+ c->chosen_items,
+ num_chosen_items,
+ &c->codes[c->codes_index],
+ prev_lens,
+ &os);
+
+ /* The current codeword lengths become the previous lengths. */
+ prev_lens = &c->codes[c->codes_index].lens;
+ c->codes_index ^= 1;
+
+ block_start_pos += block_size;
+
+ } while (block_start_pos != uncompressed_size);
+
return lzx_flush_output(&os);
}
if (c) {
ALIGNED_FREE(c->cur_window);
- FREE(c->block_specs);
- FREE(c->chosen_items);
lz_mf_free(c->mf);
- FREE(c->optimum);
FREE(c->cached_matches);
FREE(c);
}
u8 *window_end = window_ptr + block_size;
unsigned mainsym;
u32 match_len;
- unsigned position_slot;
+ unsigned offset_slot;
u32 match_offset;
unsigned num_extra_bits;
unsigned ones_if_aligned = 0U - (block_type == LZX_BLOCKTYPE_ALIGNED);
/* Match */
- /* Decode the length header and position slot. */
+ /* Decode the length header and offset slot. */
mainsym -= LZX_NUM_CHARS;
match_len = mainsym & 0x7;
- position_slot = mainsym >> 3;
+ offset_slot = mainsym >> 3;
/* If needed, read a length symbol to decode the full length. */
if (match_len == 0x7)
match_len += read_huffsym_using_lencode(istream, tables);
match_len += LZX_MIN_MATCH_LEN;
- if (position_slot <= 2) {
+ if (offset_slot <= 2) {
/* Repeat offset */
/* Note: This isn't a real LRU queue, since using the R2
* offset doesn't bump the R1 offset down to R2. This
* quirk allows all 3 recent offsets to be handled by
* the same code. (For R0, the swap is a no-op.) */
- match_offset = queue->R[position_slot];
- queue->R[position_slot] = queue->R[0];
+ match_offset = queue->R[offset_slot];
+ queue->R[offset_slot] = queue->R[0];
queue->R[0] = match_offset;
} else {
/* Explicit offset */
/* Look up the number of extra bits that need to be read
- * to decode offsets with this position slot. */
- num_extra_bits = lzx_get_num_extra_bits(position_slot);
+ * to decode offsets with this offset slot. */
+ num_extra_bits = lzx_extra_offset_bits[offset_slot];
- /* Start with the position slot base value. */
- match_offset = lzx_position_base[position_slot];
+ /* Start with the offset slot base value. */
+ match_offset = lzx_offset_slot_base[offset_slot];
/* In aligned offset blocks, the low-order 3 bits of
* each offset are encoded using the aligned offset
# include "config.h"
#endif
-#include "wimlib/compressor_ops.h"
#include "wimlib/compress_common.h"
+#include "wimlib/compressor_ops.h"
#include "wimlib/endianness.h"
#include "wimlib/error.h"
#include "wimlib/lz_mf.h"
#include "wimlib/xpress.h"
#include <string.h>
+#include <limits.h>
#define XPRESS_CACHE_PER_POS 8
#define XPRESS_OPTIM_ARRAY_LENGTH 4096
struct xpress_item;
struct xpress_mc_pos_data;
+/* Internal compression parameters */
struct xpress_compressor_params {
- /* Only used when choose_items_func == xpress_choose_items_near_optimal */
- u32 num_optim_passes;
+ /* See xpress_choose_items() */
+ u32 (*choose_items_func)(struct xpress_compressor *);
- /* Given the data to compress (c->cur_window, c->cur_window_size),
- * 'choose_items_func' fills in c->chosen_items with the intermediate
- * representation of the match/literal sequence to output. Also fills
- * in c->codewords and c->lens to provide the Huffman code with which
- * these items should be output.
- *
- * Returns the number of items written to c->chosen_items. This can be
- * at most c->cur_window_size. (The worst case is all literals, no
- * matches.) */
- u32 (*choose_items_func)(struct xpress_compressor *c);
+ /* For near-optimal parsing only */
+ u32 num_optim_passes;
/* Match-finding algorithm and parameters */
enum lz_mf_algo mf_algo;
u32 nice_match_length;
};
-/* XPRESS compressor state. */
+/* State of the XPRESS compressor */
struct xpress_compressor {
- /* Parameters determined based on the compression level. */
+ /* Internal compression parameters */
struct xpress_compressor_params params;
+ /* Data currently being compressed */
+ const u8 *cur_window;
+ u32 cur_window_size;
+
/* Lempel-Ziv match-finder */
struct lz_mf *mf;
/* Optimal parsing data */
unsigned (*get_matches_func)(struct xpress_compressor *,
const struct lz_match **);
- void (*skip_bytes_func)(struct xpress_compressor *, u32 n);
- const u8 *cur_window_ptr;
+ void (*skip_bytes_func)(struct xpress_compressor *, unsigned n);
struct lz_match *cached_matches;
struct lz_match *cache_ptr;
struct lz_match *cache_limit;
struct xpress_mc_pos_data *optimum;
- unsigned optimum_cur_idx;
- unsigned optimum_end_idx;
u8 costs[XPRESS_NUM_SYMBOLS];
/* The selected sequence of matches/literals */
struct xpress_item *chosen_items;
- /* Data currently being compressed */
- const u8 *cur_window;
- u32 cur_window_size;
-
/* Symbol frequency counters */
u32 freqs[XPRESS_NUM_SYMBOLS];
u8 lens[XPRESS_NUM_SYMBOLS];
};
-/* Match-chooser position data.
- * See corresponding declaration in lzx-compress.c for more information. */
+/* Intermediate XPRESS match/literal format */
+struct xpress_item {
+
+ /* Bits 0 - 8: Symbol
+ * Bits 9 - 24: Length - XPRESS_MIN_MATCH_LEN
+ * Bits 25 - 28: Number of extra offset bits
+ * Bits 29+ : Extra offset bits */
+
+ u64 data;
+};
+
+/*
+ * Match chooser position data:
+ *
+ * An array of these structures is used during the near-optimal match-choosing
+ * algorithm. They correspond to consecutive positions in the window and are
+ * used to keep track of the cost to reach each position, and the match/literal
+ * choices that need to be chosen to reach that position.
+ */
struct xpress_mc_pos_data {
+
+ /* The cost, in bits, of the lowest-cost path that has been found to
+ * reach this position. This can change as progressively lower cost
+ * paths are found to reach this position. */
u32 cost;
-#define MC_INFINITE_COST ((u32)~0UL)
-
- union {
- struct {
- u32 link;
- u32 match_offset;
- } prev;
- struct {
- u32 link;
- u32 match_offset;
- } next;
- };
-};
+#define MC_INFINITE_COST UINT32_MAX
-/* Intermediate XPRESS match/literal representation. */
-struct xpress_item {
- u16 adjusted_len; /* Match length minus XPRESS_MIN_MATCH_LEN */
- u16 offset; /* Match offset */
- /* For literals, offset == 0 and adjusted_len is the literal byte. */
+ /* The match or literal that was taken to reach this position. This can
+ * change as progressively lower cost paths are found to reach this
+ * position.
+ *
+ * This variable is divided into two bitfields.
+ *
+ * Literals:
+ * Low bits are 1, high bits are the literal.
+ *
+ * Matches:
+ * Low bits are the match length, high bits are the offset.
+ */
+ u32 mc_item_data;
+#define MC_OFFSET_SHIFT 16
+#define MC_LEN_MASK ((1 << MC_OFFSET_SHIFT) - 1)
};
+
/*
* Structure to keep track of the current state of sending data to the
* compressed output buffer.
* If the output buffer space is exhausted, then the bits will be ignored, and
* xpress_flush_output() will return 0 when it gets called.
*/
-static _always_inline_attribute void
+static inline void
xpress_write_bits(struct xpress_output_bitstream *os,
const u32 bits, const unsigned int num_bits)
{
/*
* Interweave a literal byte into the output bitstream.
*/
-static _always_inline_attribute void
+static inline void
xpress_write_byte(struct xpress_output_bitstream *os, u8 byte)
{
if (os->next_byte < os->end)
return os->next_byte - os->start;
}
-/* Output an XPRESS match. */
-static void
-xpress_write_match(struct xpress_item match, struct xpress_output_bitstream *os,
- const u32 codewords[], const u8 lens[])
+/* Output a match or literal. */
+static inline void
+xpress_write_item(struct xpress_item item, struct xpress_output_bitstream *os,
+ const u32 codewords[], const u8 lens[])
{
- unsigned len_hdr = min(match.adjusted_len, 0xf);
- unsigned offset_bsr = bsr32(match.offset);
- unsigned sym = XPRESS_NUM_CHARS + ((offset_bsr << 4) | len_hdr);
+ u64 data = item.data;
+ unsigned symbol;
+ unsigned adjusted_len;
+ unsigned num_extra_bits;
+ unsigned extra_bits;
- /* Huffman symbol */
- xpress_write_bits(os, codewords[sym], lens[sym]);
+ symbol = data & 0x1FF;
+
+ xpress_write_bits(os, codewords[symbol], lens[symbol]);
+
+ if (symbol < XPRESS_NUM_CHARS) /* Literal? */
+ return;
+
+ adjusted_len = (data >> 9) & 0xFFFF;
/* If length >= 18, one extra length byte.
* If length >= 273, three (total) extra length bytes. */
- if (match.adjusted_len >= 0xf) {
- u8 byte1 = min(match.adjusted_len - 0xf, 0xff);
+ if (adjusted_len >= 0xf) {
+ u8 byte1 = min(adjusted_len - 0xf, 0xff);
xpress_write_byte(os, byte1);
if (byte1 == 0xff) {
- xpress_write_byte(os, match.adjusted_len & 0xff);
- xpress_write_byte(os, match.adjusted_len >> 8);
+ xpress_write_byte(os, adjusted_len & 0xff);
+ xpress_write_byte(os, adjusted_len >> 8);
}
}
- /* Offset bits */
- xpress_write_bits(os, match.offset ^ (1U << offset_bsr), offset_bsr);
+ num_extra_bits = (data >> 25) & 0xF;
+ extra_bits = data >> 29;
+
+ xpress_write_bits(os, extra_bits, num_extra_bits);
}
/* Output a sequence of XPRESS matches and literals. */
const struct xpress_item items[], u32 num_items,
const u32 codewords[], const u8 lens[])
{
- for (u32 i = 0; i < num_items; i++) {
- if (items[i].offset) {
- /* Match */
- xpress_write_match(items[i], os, codewords, lens);
- } else {
- /* Literal */
- unsigned lit = items[i].adjusted_len;
- xpress_write_bits(os, codewords[lit], lens[lit]);
- }
- }
+ for (u32 i = 0; i < num_items; i++)
+ xpress_write_item(items[i], os, codewords, lens);
+
/* End-of-data symbol (required for MS compatibility) */
xpress_write_bits(os, codewords[XPRESS_END_OF_DATA], lens[XPRESS_END_OF_DATA]);
}
c->freqs, c->lens, c->codewords);
}
-/* Account for the Huffman symbol that would be produced by outputting the
- * specified literal. Returns the intermediate representation of the literal.
- */
-static inline struct xpress_item
-xpress_tally_literal(u8 lit, u32 freqs[])
+/* Tally, and optionally record, the specified literal byte. */
+static inline void
+xpress_declare_literal(struct xpress_compressor *c, unsigned literal,
+ struct xpress_item **next_chosen_item)
{
- freqs[lit]++;
- return (struct xpress_item) { .offset = 0, .adjusted_len = lit };
+ c->freqs[literal]++;
+
+ if (next_chosen_item) {
+ *(*next_chosen_item)++ = (struct xpress_item) {
+ .data = literal,
+ };
+ }
}
-/* Account for the Huffman symbol that would be produced by outputting the
- * specified match. Returns the intermediate representation of the match. */
-static inline struct xpress_item
-xpress_tally_match(u32 len, u32 offset, u32 freqs[])
+/* Tally, and optionally record, the specified match. */
+static inline void
+xpress_declare_match(struct xpress_compressor *c,
+ unsigned len, unsigned offset,
+ struct xpress_item **next_chosen_item)
{
- u32 adjusted_len = len - XPRESS_MIN_MATCH_LEN;
+ unsigned adjusted_len = len - XPRESS_MIN_MATCH_LEN;
unsigned len_hdr = min(adjusted_len, 0xf);
- unsigned sym = XPRESS_NUM_CHARS + ((bsr32(offset) << 4) | len_hdr);
+ unsigned offset_bsr = bsr32(offset);
+ unsigned sym = XPRESS_NUM_CHARS + ((offset_bsr << 4) | len_hdr);
+
+ c->freqs[sym]++;
+
+ if (next_chosen_item) {
+ *(*next_chosen_item)++ = (struct xpress_item) {
+ .data = (u64)sym |
+ ((u64)adjusted_len << 9) |
+ ((u64)offset_bsr << 25) |
+ ((u64)(offset ^ (1U << offset_bsr)) << 29),
+ };
+ }
+}
- freqs[sym]++;
- return (struct xpress_item) { .offset = offset,
- .adjusted_len = adjusted_len };
+/* Tally, and optionally record, the specified match or literal. */
+static inline void
+xpress_declare_item(struct xpress_compressor *c, u32 mc_item_data,
+ struct xpress_item **next_chosen_item)
+{
+ unsigned len = mc_item_data & MC_LEN_MASK;
+ unsigned offset_data = mc_item_data >> MC_OFFSET_SHIFT;
+
+ if (len == 1)
+ xpress_declare_literal(c, offset_data, next_chosen_item);
+ else
+ xpress_declare_match(c, len, offset_data, next_chosen_item);
+}
+
+static inline void
+xpress_record_item_list(struct xpress_compressor *c,
+ struct xpress_mc_pos_data *cur_optimum_ptr,
+ struct xpress_item **next_chosen_item)
+{
+ struct xpress_mc_pos_data *end_optimum_ptr;
+ u32 saved_item;
+ u32 item;
+
+ /* The list is currently in reverse order (last item to first item).
+ * Reverse it. */
+ end_optimum_ptr = cur_optimum_ptr;
+ saved_item = cur_optimum_ptr->mc_item_data;
+ do {
+ item = saved_item;
+ cur_optimum_ptr -= item & MC_LEN_MASK;
+ saved_item = cur_optimum_ptr->mc_item_data;
+ cur_optimum_ptr->mc_item_data = item;
+ } while (cur_optimum_ptr != c->optimum);
+
+ /* Walk the list of items from beginning to end, tallying and recording
+ * each item. */
+ do {
+ xpress_declare_item(c, cur_optimum_ptr->mc_item_data, next_chosen_item);
+ cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK;
+ } while (cur_optimum_ptr != end_optimum_ptr);
+}
+
+static inline void
+xpress_tally_item_list(struct xpress_compressor *c,
+ struct xpress_mc_pos_data *cur_optimum_ptr)
+{
+ /* Since we're just tallying the items, we don't need to reverse the
+ * list. Processing the items in reverse order is fine. */
+ do {
+ xpress_declare_item(c, cur_optimum_ptr->mc_item_data, NULL);
+ cur_optimum_ptr -= (cur_optimum_ptr->mc_item_data & MC_LEN_MASK);
+ } while (cur_optimum_ptr != c->optimum);
+}
+
+/* Tally, and optionally (if next_chosen_item != NULL) record, in order, all
+ * items in the current list of items found by the match-chooser. */
+static void
+xpress_declare_item_list(struct xpress_compressor *c,
+ struct xpress_mc_pos_data *cur_optimum_ptr,
+ struct xpress_item **next_chosen_item)
+{
+ if (next_chosen_item)
+ xpress_record_item_list(c, cur_optimum_ptr, next_chosen_item);
+ else
+ xpress_tally_item_list(c, cur_optimum_ptr);
}
static unsigned
} else {
num_matches = 0;
}
- c->cur_window_ptr++;
*matches_ret = matches;
return num_matches;
}
cache_ptr = c->cache_ptr;
matches = cache_ptr + 1;
- if (likely(cache_ptr <= c->cache_limit)) {
+ if (cache_ptr <= c->cache_limit) {
num_matches = cache_ptr->len;
c->cache_ptr = matches + num_matches;
} else {
num_matches = 0;
}
- c->cur_window_ptr++;
*matches_ret = matches;
return num_matches;
}
matches = cache_ptr + 1;
num_matches = cache_ptr->len;
c->cache_ptr = matches + num_matches;
- c->cur_window_ptr++;
*matches_ret = matches;
return num_matches;
}
xpress_get_matches_noncaching(struct xpress_compressor *c,
const struct lz_match **matches_ret)
{
- c->cur_window_ptr++;
*matches_ret = c->cached_matches;
return lz_mf_get_matches(c->mf, c->cached_matches);
}
/*
* Find matches at the next position in the window.
*
+ * This uses a wrapper function around the underlying match-finder.
+ *
* Returns the number of matches found and sets *matches_ret to point to the
* matches array. The matches will be sorted by strictly increasing length and
* offset.
}
static void
-xpress_skip_bytes_fillcache(struct xpress_compressor *c, u32 n)
+xpress_skip_bytes_fillcache(struct xpress_compressor *c, unsigned n)
{
struct lz_match *cache_ptr;
- c->cur_window_ptr += n;
cache_ptr = c->cache_ptr;
lz_mf_skip_positions(c->mf, n);
- if (likely(cache_ptr <= c->cache_limit)) {
+ if (cache_ptr <= c->cache_limit) {
do {
cache_ptr->len = 0;
cache_ptr += 1;
}
static void
-xpress_skip_bytes_usecache(struct xpress_compressor *c, u32 n)
+xpress_skip_bytes_usecache(struct xpress_compressor *c, unsigned n)
{
struct lz_match *cache_ptr;
- c->cur_window_ptr += n;
cache_ptr = c->cache_ptr;
if (likely(cache_ptr <= c->cache_limit)) {
do {
}
static void
-xpress_skip_bytes_usecache_nocheck(struct xpress_compressor *c, u32 n)
+xpress_skip_bytes_usecache_nocheck(struct xpress_compressor *c, unsigned n)
{
struct lz_match *cache_ptr;
- c->cur_window_ptr += n;
cache_ptr = c->cache_ptr;
do {
cache_ptr += 1 + cache_ptr->len;
}
static void
-xpress_skip_bytes_noncaching(struct xpress_compressor *c, u32 n)
+xpress_skip_bytes_noncaching(struct xpress_compressor *c, unsigned n)
{
- c->cur_window_ptr += n;
lz_mf_skip_positions(c->mf, n);
}
/*
* Skip the specified number of positions in the window (don't search for
* matches at them).
+ *
+ * This uses a wrapper function around the underlying match-finder.
*/
static inline void
-xpress_skip_bytes(struct xpress_compressor *c, u32 n)
+xpress_skip_bytes(struct xpress_compressor *c, unsigned n)
{
return (*c->skip_bytes_func)(c, n);
}
-/*
- * Returns the cost, in bits, required to output the literal from the previous
- * window position (the position at which matches were last searched).
- */
-static inline u32
-xpress_prev_literal_cost(const struct xpress_compressor *c)
+/* Set default XPRESS Huffman symbol costs to bootstrap the iterative
+ * optimization algorithm. */
+static void
+xpress_set_default_costs(u8 costs[])
+{
+ unsigned i;
+
+ /* Literal symbols */
+ for (i = 0; i < XPRESS_NUM_CHARS; i++)
+ costs[i] = 8;
+
+ /* Match symbols */
+ for (; i < XPRESS_NUM_SYMBOLS; i++)
+ costs[i] = 10;
+}
+
+/* Copy the Huffman codeword lengths array @lens to the Huffman symbol costs
+ * array @costs, but also assign a default cost to each 0-length (unused)
+ * codeword. */
+static void
+xpress_set_costs(u8 costs[], const u8 lens[])
{
- return c->costs[*(c->cur_window_ptr - 1)];
+ for (unsigned i = 0; i < XPRESS_NUM_SYMBOLS; i++)
+ costs[i] = lens[i] ? lens[i] : XPRESS_MAX_CODEWORD_LEN;
}
/*
- * Reverse the linked list of near-optimal matches so that they can be returned
- * in forwards order.
+ * Consider coding each match in @matches.
*
- * Returns the first match in the list.
+ * @matches must be sorted by strictly increasing length and strictly
+ * increasing offset. This is guaranteed by the match-finder.
+ *
+ * We consider each length from the minimum (2) to the longest
+ * (matches[num_matches - 1].len). For each length, we consider only
+ * the smallest offset for which that length is available. Although
+ * this is not guaranteed to be optimal due to the possibility of a
+ * larger offset costing less than a smaller offset to code, this is a
+ * very useful heuristic.
*/
-static struct lz_match
-xpress_match_chooser_reverse_list(struct xpress_compressor *c, unsigned cur_pos)
+static inline void
+xpress_consider_matches(struct xpress_compressor *c,
+ struct xpress_mc_pos_data *cur_optimum_ptr,
+ const struct lz_match matches[],
+ unsigned num_matches)
{
- unsigned prev_link, saved_prev_link;
- u32 prev_match_offset, saved_prev_match_offset;
-
- c->optimum_end_idx = cur_pos;
-
- saved_prev_link = c->optimum[cur_pos].prev.link;
- saved_prev_match_offset = c->optimum[cur_pos].prev.match_offset;
-
- do {
- prev_link = saved_prev_link;
- prev_match_offset = saved_prev_match_offset;
-
- saved_prev_link = c->optimum[prev_link].prev.link;
- saved_prev_match_offset = c->optimum[prev_link].prev.match_offset;
-
- c->optimum[prev_link].next.link = cur_pos;
- c->optimum[prev_link].next.match_offset = prev_match_offset;
-
- cur_pos = prev_link;
- } while (cur_pos != 0);
-
- c->optimum_cur_idx = c->optimum[0].next.link;
+ unsigned i = 0;
+ unsigned len = XPRESS_MIN_MATCH_LEN;
+ u32 cost;
+ u32 position_cost;
+ unsigned offset;
+ unsigned offset_bsr;
+ unsigned adjusted_len;
+ unsigned len_hdr;
+ unsigned sym;
+
+ if (matches[num_matches - 1].len < 0xf + XPRESS_MIN_MATCH_LEN) {
+ /* All lengths are small. Optimize accordingly. */
+ do {
+ offset = matches[i].offset;
+ offset_bsr = bsr32(offset);
+ len_hdr = len - XPRESS_MIN_MATCH_LEN;
+ sym = XPRESS_NUM_CHARS + ((offset_bsr << 4) | len_hdr);
- return (struct lz_match)
- { .len = c->optimum_cur_idx,
- .offset = c->optimum[0].next.match_offset,
- };
+ position_cost = cur_optimum_ptr->cost + offset_bsr;
+ do {
+ cost = position_cost + c->costs[sym];
+ if (cost < (cur_optimum_ptr + len)->cost) {
+ (cur_optimum_ptr + len)->cost = cost;
+ (cur_optimum_ptr + len)->mc_item_data =
+ (offset << MC_OFFSET_SHIFT) | len;
+ }
+ sym++;
+ } while (++len <= matches[i].len);
+ } while (++i != num_matches);
+ } else {
+ /* Some lengths are big. */
+ do {
+ offset = matches[i].offset;
+ offset_bsr = bsr32(offset);
+ position_cost = cur_optimum_ptr->cost + offset_bsr;
+ do {
+ adjusted_len = len - XPRESS_MIN_MATCH_LEN;
+ len_hdr = min(adjusted_len, 0xf);
+ sym = XPRESS_NUM_CHARS + ((offset_bsr << 4) | len_hdr);
+
+ cost = position_cost + c->costs[sym];
+ if (adjusted_len >= 0xf) {
+ cost += 8;
+ if (adjusted_len - 0xf >= 0xff)
+ cost += 16;
+ }
+
+ if (cost < (cur_optimum_ptr + len)->cost) {
+ (cur_optimum_ptr + len)->cost = cost;
+ (cur_optimum_ptr + len)->mc_item_data =
+ (offset << MC_OFFSET_SHIFT) | len;
+ }
+ } while (++len <= matches[i].len);
+