X-Git-Url: https://wimlib.net/git/?p=wimlib;a=blobdiff_plain;f=src%2Flzms-compress.c;h=da1904fc9f66cf8927db8a08cc31176a7e9c4c51;hp=871c12c7aac817e6ea1cecd29e7e7ea733b7ace9;hb=a5f0f107247cc6400c0bd25f41e49d658fd2b7d7;hpb=91b0f909393476f39ed5865dfe4b27c244ba3c48 diff --git a/src/lzms-compress.c b/src/lzms-compress.c index 871c12c7..da1904fc 100644 --- a/src/lzms-compress.c +++ b/src/lzms-compress.c @@ -1,47 +1,36 @@ /* * lzms-compress.c + * + * A compressor that produces output compatible with the LZMS compression format. */ /* * Copyright (C) 2013, 2014 Eric Biggers * - * This file is part of wimlib, a library for working with WIM files. - * - * wimlib is free software; you can redistribute it and/or modify it under the - * terms of the GNU General Public License as published by the Free - * Software Foundation; either version 3 of the License, or (at your option) - * any later version. + * This file is free software; you can redistribute it and/or modify it under + * the terms of the GNU Lesser General Public License as published by the Free + * Software Foundation; either version 3 of the License, or (at your option) any + * later version. * - * wimlib is distributed in the hope that it will be useful, but WITHOUT ANY - * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR - * A PARTICULAR PURPOSE. See the GNU General Public License for more + * This file is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * - * You should have received a copy of the GNU General Public License - * along with wimlib; if not, see http://www.gnu.org/licenses/. - */ - -/* This a compressor for the LZMS compression format. More details about this - * format can be found in lzms-decompress.c. - * - * Also see lzx-compress.c for general information about match-finding and - * match-choosing that also applies to this LZMS compressor. - * - * NOTE: this compressor currently does not code any delta matches. + * You should have received a copy of the GNU Lesser General Public License + * along with this file; if not, see http://www.gnu.org/licenses/. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif -#include "wimlib.h" -#include "wimlib/assert.h" -#include "wimlib/compiler.h" -#include "wimlib/compressor_ops.h" #include "wimlib/compress_common.h" +#include "wimlib/compressor_ops.h" #include "wimlib/endianness.h" #include "wimlib/error.h" #include "wimlib/lz_mf.h" +#include "wimlib/lz_repsearch.h" #include "wimlib/lzms.h" #include "wimlib/util.h" @@ -49,31 +38,28 @@ #include #include -/* Stucture used for writing raw bits to the end of the LZMS-compressed data as - * a series of 16-bit little endian coding units. */ +/* Stucture used for writing raw bits as a series of 16-bit little endian coding + * units. This starts at the *end* of the compressed data buffer and proceeds + * backwards. */ struct lzms_output_bitstream { - /* Buffer variable containing zero or more bits that have been logically - * written to the bitstream but not yet written to memory. This must be - * at least as large as the coding unit size. */ - u16 bitbuf; - /* Number of bits in @bitbuf that are valid. */ - unsigned num_free_bits; + /* Bits that haven't yet been written to the output buffer. */ + u64 bitbuf; + + /* Number of bits currently held in @bitbuf. */ + unsigned bitcount; /* Pointer to one past the next position in the compressed data buffer * at which to output a 16-bit coding unit. */ - le16 *out; - - /* Maximum number of 16-bit coding units that can still be output to - * the compressed data buffer. */ - size_t num_le16_remaining; + le16 *next; - /* Set to %true if not all coding units could be output due to - * insufficient space. */ - bool overrun; + /* Pointer to the beginning of the output buffer. (The "end" when + * writing backwards!) */ + le16 *begin; }; -/* Stucture used for range encoding (raw version). */ +/* Stucture used for range encoding (raw version). This starts at the + * *beginning* of the compressed data buffer and proceeds forward. */ struct lzms_range_encoder_raw { /* A 33-bit variable that holds the low boundary of the current range. @@ -91,25 +77,21 @@ struct lzms_range_encoder_raw { * subsequent such coding units are 0xffff. */ u32 cache_size; - /* Pointer to the next position in the compressed data buffer at which - * to output a 16-bit coding unit. */ - le16 *out; + /* Pointer to the beginning of the output buffer. */ + le16 *begin; - /* Maximum number of 16-bit coding units that can still be output to - * the compressed data buffer. */ - size_t num_le16_remaining; + /* Pointer to the position in the output buffer at which the next coding + * unit must be written. */ + le16 *next; - /* %true when the very first coding unit has not yet been output. */ - bool first; - - /* Set to %true if not all coding units could be output due to - * insufficient space. */ - bool overrun; + /* Pointer just past the end of the output buffer. */ + le16 *end; }; /* Structure used for range encoding. This wraps around `struct * lzms_range_encoder_raw' to use and maintain probability entries. */ struct lzms_range_encoder { + /* Pointer to the raw range encoder, which has no persistent knowledge * of probabilities. Multiple lzms_range_encoder's share the same * lzms_range_encoder_raw. */ @@ -157,6 +139,7 @@ struct lzms_huffman_encoder { u32 codewords[LZMS_MAX_NUM_SYMS]; }; +/* Internal compression parameters */ struct lzms_compressor_params { u32 min_match_length; u32 nice_match_length; @@ -164,44 +147,35 @@ struct lzms_compressor_params { u32 optim_array_length; }; -/* State of the LZMS compressor. */ +/* State of the LZMS compressor */ struct lzms_compressor { - /* Pointer to a buffer holding the preprocessed data to compress. */ - u8 *window; - /* Current position in @buffer. */ - u32 cur_window_pos; + /* Internal compression parameters */ + struct lzms_compressor_params params; - /* Size of the data in @buffer. */ - u32 window_size; + /* Data currently being compressed */ + u8 *cur_window; + u32 cur_window_size; - /* Lempel-Ziv match-finder. */ + /* Lempel-Ziv match-finder */ struct lz_mf *mf; - /* Temporary space to store found matches. */ + /* Temporary space to store found matches */ struct lz_match *matches; - /* Match-chooser data. */ + /* Per-position data for near-optimal parsing */ struct lzms_mc_pos_data *optimum; - unsigned optimum_cur_idx; - unsigned optimum_end_idx; - - /* Maximum block size this compressor instantiation allows. This is the - * allocated size of @window. */ - u32 max_block_size; - - /* Compression parameters. */ - struct lzms_compressor_params params; + struct lzms_mc_pos_data *optimum_end; /* Raw range encoder which outputs to the beginning of the compressed - * data buffer, proceeding forwards. */ + * data buffer, proceeding forwards */ struct lzms_range_encoder_raw rc; /* Bitstream which outputs to the end of the compressed data buffer, - * proceeding backwards. */ + * proceeding backwards */ struct lzms_output_bitstream os; - /* Range encoders. */ + /* Range encoders */ struct lzms_range_encoder main_range_encoder; struct lzms_range_encoder match_range_encoder; struct lzms_range_encoder lz_match_range_encoder; @@ -209,33 +183,79 @@ struct lzms_compressor { struct lzms_range_encoder delta_match_range_encoder; struct lzms_range_encoder delta_repeat_match_range_encoders[LZMS_NUM_RECENT_OFFSETS - 1]; - /* Huffman encoders. */ + /* Huffman encoders */ struct lzms_huffman_encoder literal_encoder; struct lzms_huffman_encoder lz_offset_encoder; struct lzms_huffman_encoder length_encoder; struct lzms_huffman_encoder delta_power_encoder; struct lzms_huffman_encoder delta_offset_encoder; - /* LRU (least-recently-used) queues for match information. */ - struct lzms_lru_queues lru; - - /* Used for preprocessing. */ + /* Used for preprocessing */ s32 last_target_usages[65536]; + +#define LZMS_NUM_FAST_LENGTHS 256 + /* Table: length => length slot for small lengths */ + u8 length_slot_fast[LZMS_NUM_FAST_LENGTHS]; + + /* Table: length => current cost for small match lengths */ + u32 length_cost_fast[LZMS_NUM_FAST_LENGTHS]; + +#define LZMS_NUM_FAST_OFFSETS 32768 + /* Table: offset => offset slot for small offsets */ + u8 offset_slot_fast[LZMS_NUM_FAST_OFFSETS]; }; +/* + * Match chooser position data: + * + * An array of these structures is used during the near-optimal match-choosing + * algorithm. They correspond to consecutive positions in the window and are + * used to keep track of the cost to reach each position, and the match/literal + * choices that need to be chosen to reach that position. + */ struct lzms_mc_pos_data { + + /* The cost, in bits, of the lowest-cost path that has been found to + * reach this position. This can change as progressively lower cost + * paths are found to reach this position. */ u32 cost; -#define MC_INFINITE_COST ((u32)~0UL) - union { - struct { - u32 link; - u32 match_offset; - } prev; - struct { - u32 link; - u32 match_offset; - } next; - }; +#define MC_INFINITE_COST UINT32_MAX + + /* The match or literal that was taken to reach this position. This can + * change as progressively lower cost paths are found to reach this + * position. + * + * This variable is divided into two bitfields. + * + * Literals: + * Low bits are 1, high bits are the literal. + * + * Explicit offset matches: + * Low bits are the match length, high bits are the offset plus 2. + * + * Repeat offset matches: + * Low bits are the match length, high bits are the queue index. + */ + u64 mc_item_data; +#define MC_OFFSET_SHIFT 32 +#define MC_LEN_MASK (((u64)1 << MC_OFFSET_SHIFT) - 1) + + /* The LZMS adaptive state that exists at this position. This is filled + * in lazily, only after the minimum-cost path to this position is + * found. + * + * Note: the way we handle this adaptive state in the "minimum-cost" + * parse is actually only an approximation. It's possible for the + * globally optimal, minimum cost path to contain a prefix, ending at a + * position, where that path prefix is *not* the minimum cost path to + * that position. This can happen if such a path prefix results in a + * different adaptive state which results in lower costs later. We do + * not solve this problem; we only consider the lowest cost to reach + * each position, which seems to be an acceptable approximation. + * + * Note: this adaptive state also does not include the probability + * entries or current Huffman codewords. Those aren't maintained + * per-position and are only updated occassionally. */ struct lzms_adaptive_state { struct lzms_lz_lru_queues lru; u8 main_state; @@ -245,60 +265,101 @@ struct lzms_mc_pos_data { } state; }; -/* Initialize the output bitstream @os to write forwards to the specified +static void +lzms_init_fast_slots(struct lzms_compressor *c) +{ + /* Create table mapping small lengths to length slots. */ + for (unsigned slot = 0, i = 0; i < LZMS_NUM_FAST_LENGTHS; i++) { + while (i >= lzms_length_slot_base[slot + 1]) + slot++; + c->length_slot_fast[i] = slot; + } + + /* Create table mapping small offsets to offset slots. */ + for (unsigned slot = 0, i = 0; i < LZMS_NUM_FAST_OFFSETS; i++) { + while (i >= lzms_offset_slot_base[slot + 1]) + slot++; + c->offset_slot_fast[i] = slot; + } +} + +static inline unsigned +lzms_get_length_slot_fast(const struct lzms_compressor *c, u32 length) +{ + if (likely(length < LZMS_NUM_FAST_LENGTHS)) + return c->length_slot_fast[length]; + else + return lzms_get_length_slot(length); +} + +static inline unsigned +lzms_get_offset_slot_fast(const struct lzms_compressor *c, u32 offset) +{ + if (offset < LZMS_NUM_FAST_OFFSETS) + return c->offset_slot_fast[offset]; + else + return lzms_get_offset_slot(offset); +} + +/* Initialize the output bitstream @os to write backwards to the specified * compressed data buffer @out that is @out_limit 16-bit integers long. */ static void lzms_output_bitstream_init(struct lzms_output_bitstream *os, le16 *out, size_t out_limit) { os->bitbuf = 0; - os->num_free_bits = 16; - os->out = out + out_limit; - os->num_le16_remaining = out_limit; - os->overrun = false; + os->bitcount = 0; + os->next = out + out_limit; + os->begin = out; } -/* Write @num_bits bits, contained in the low @num_bits bits of @bits (ordered - * from high-order to low-order), to the output bitstream @os. */ -static void -lzms_output_bitstream_put_bits(struct lzms_output_bitstream *os, - u32 bits, unsigned num_bits) +/* + * Write some bits, contained in the low @num_bits bits of @bits (ordered from + * high-order to low-order), to the output bitstream @os. + * + * @max_num_bits is a compile-time constant that specifies the maximum number of + * bits that can ever be written at this call site. + */ +static inline void +lzms_output_bitstream_put_varbits(struct lzms_output_bitstream *os, + u32 bits, unsigned num_bits, + unsigned max_num_bits) { - bits &= (1U << num_bits) - 1; + LZMS_ASSERT(num_bits <= 48); - while (num_bits > os->num_free_bits) { + /* Add the bits to the bit buffer variable. */ + os->bitcount += num_bits; + os->bitbuf = (os->bitbuf << num_bits) | bits; - if (unlikely(os->num_le16_remaining == 0)) { - os->overrun = true; - return; - } + /* Check whether any coding units need to be written. */ + while (os->bitcount >= 16) { - unsigned num_fill_bits = os->num_free_bits; + os->bitcount -= 16; - os->bitbuf <<= num_fill_bits; - os->bitbuf |= bits >> (num_bits - num_fill_bits); + /* Write a coding unit, unless it would underflow the buffer. */ + if (os->next != os->begin) + *--os->next = cpu_to_le16(os->bitbuf >> os->bitcount); - *--os->out = cpu_to_le16(os->bitbuf); - --os->num_le16_remaining; - - os->num_free_bits = 16; - num_bits -= num_fill_bits; - bits &= (1U << num_bits) - 1; + /* Optimization for call sites that never write more than 16 + * bits at once. */ + if (max_num_bits <= 16) + break; } - os->bitbuf <<= num_bits; - os->bitbuf |= bits; - os->num_free_bits -= num_bits; } /* Flush the output bitstream, ensuring that all bits written to it have been - * written to memory. Returns %true if all bits were output successfully, or - * %false if an overrun occurred. */ + * written to memory. Returns %true if all bits have been output successfully, + * or %false if an overrun occurred. */ static bool lzms_output_bitstream_flush(struct lzms_output_bitstream *os) { - if (os->num_free_bits != 16) - lzms_output_bitstream_put_bits(os, 0, os->num_free_bits + 1); - return !os->overrun; + if (os->next == os->begin) + return false; + + if (os->bitcount != 0) + *--os->next = cpu_to_le16(os->bitbuf << (16 - os->bitcount)); + + return true; } /* Initialize the range encoder @rc to write forwards to the specified @@ -311,10 +372,9 @@ lzms_range_encoder_raw_init(struct lzms_range_encoder_raw *rc, rc->range = 0xffffffff; rc->cache = 0; rc->cache_size = 1; - rc->out = out; - rc->num_le16_remaining = out_limit; - rc->first = true; - rc->overrun = false; + rc->begin = out; + rc->next = out - 1; + rc->end = out + out_limit; } /* @@ -334,26 +394,19 @@ lzms_range_encoder_raw_init(struct lzms_range_encoder_raw *rc, static void lzms_range_encoder_raw_shift_low(struct lzms_range_encoder_raw *rc) { - LZMS_DEBUG("low=%"PRIx64", cache=%"PRIx64", cache_size=%u", - rc->low, rc->cache, rc->cache_size); if ((u32)(rc->low) < 0xffff0000 || (u32)(rc->low >> 32) != 0) { /* Carry not needed (rc->low < 0xffff0000), or carry occurred * ((rc->low >> 32) != 0, a.k.a. the carry bit is 1). */ do { - if (!rc->first) { - if (rc->num_le16_remaining == 0) { - rc->overrun = true; - return; - } - *rc->out++ = cpu_to_le16(rc->cache + - (u16)(rc->low >> 32)); - --rc->num_le16_remaining; + if (likely(rc->next >= rc->begin)) { + if (rc->next != rc->end) + *rc->next++ = cpu_to_le16(rc->cache + + (u16)(rc->low >> 32)); } else { - rc->first = false; + rc->next++; } - rc->cache = 0xffff; } while (--rc->cache_size != 0); @@ -377,15 +430,15 @@ lzms_range_encoder_raw_flush(struct lzms_range_encoder_raw *rc) { for (unsigned i = 0; i < 4; i++) lzms_range_encoder_raw_shift_low(rc); - return !rc->overrun; + return rc->next != rc->end; } /* Encode the next bit using the range encoder (raw version). * * @prob is the chance out of LZMS_PROBABILITY_MAX that the next bit is 0. */ -static void -lzms_range_encoder_raw_encode_bit(struct lzms_range_encoder_raw *rc, int bit, - u32 prob) +static inline void +lzms_range_encoder_raw_encode_bit(struct lzms_range_encoder_raw *rc, + int bit, u32 prob) { lzms_range_encoder_raw_normalize(rc); @@ -400,7 +453,7 @@ lzms_range_encoder_raw_encode_bit(struct lzms_range_encoder_raw *rc, int bit, /* Encode a bit using the specified range encoder. This wraps around * lzms_range_encoder_raw_encode_bit() to handle using and updating the - * appropriate probability table. */ + * appropriate state and probability entry. */ static void lzms_range_encode_bit(struct lzms_range_encoder *enc, int bit) { @@ -410,207 +463,197 @@ lzms_range_encode_bit(struct lzms_range_encoder *enc, int bit) /* Load the probability entry corresponding to the current state. */ prob_entry = &enc->prob_entries[enc->state]; - /* Treat the number of zero bits in the most recently encoded - * LZMS_PROBABILITY_MAX bits with this probability entry as the chance, - * out of LZMS_PROBABILITY_MAX, that the next bit will be a 0. However, - * don't allow 0% or 100% probabilities. */ - prob = prob_entry->num_recent_zero_bits; - if (prob == 0) - prob = 1; - else if (prob == LZMS_PROBABILITY_MAX) - prob = LZMS_PROBABILITY_MAX - 1; - - /* Encode the next bit. */ + /* Update the state based on the next bit. */ + enc->state = ((enc->state << 1) | bit) & enc->mask; + + /* Get the probability that the bit is 0. */ + prob = lzms_get_probability(prob_entry); + + /* Update the probability entry. */ + lzms_update_probability_entry(prob_entry, bit); + + /* Encode the bit. */ lzms_range_encoder_raw_encode_bit(enc->rc, bit, prob); +} - /* Update the state based on the newly encoded bit. */ - enc->state = ((enc->state << 1) | bit) & enc->mask; +/* Called when an adaptive Huffman code needs to be rebuilt. */ +static void +lzms_rebuild_huffman_code(struct lzms_huffman_encoder *enc) +{ + make_canonical_huffman_code(enc->num_syms, + LZMS_MAX_CODEWORD_LEN, + enc->sym_freqs, + enc->lens, + enc->codewords); - /* Update the recent bits, including the cached count of 0's. */ - BUILD_BUG_ON(LZMS_PROBABILITY_MAX > sizeof(prob_entry->recent_bits) * 8); - if (bit == 0) { - if (prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1))) { - /* Replacing 1 bit with 0 bit; increment the zero count. - */ - prob_entry->num_recent_zero_bits++; - } - } else { - if (!(prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1)))) { - /* Replacing 0 bit with 1 bit; decrement the zero count. - */ - prob_entry->num_recent_zero_bits--; - } + /* Dilute the frequencies. */ + for (unsigned i = 0; i < enc->num_syms; i++) { + enc->sym_freqs[i] >>= 1; + enc->sym_freqs[i] += 1; } - prob_entry->recent_bits = (prob_entry->recent_bits << 1) | bit; + enc->num_syms_written = 0; } /* Encode a symbol using the specified Huffman encoder. */ -static void -lzms_huffman_encode_symbol(struct lzms_huffman_encoder *enc, u32 sym) +static inline void +lzms_huffman_encode_symbol(struct lzms_huffman_encoder *enc, unsigned sym) { - LZMS_ASSERT(sym < enc->num_syms); - lzms_output_bitstream_put_bits(enc->os, - enc->codewords[sym], - enc->lens[sym]); + lzms_output_bitstream_put_varbits(enc->os, + enc->codewords[sym], + enc->lens[sym], + LZMS_MAX_CODEWORD_LEN); ++enc->sym_freqs[sym]; - if (++enc->num_syms_written == enc->rebuild_freq) { - /* Adaptive code needs to be rebuilt. */ - LZMS_DEBUG("Rebuilding code (num_syms=%u)", enc->num_syms); - make_canonical_huffman_code(enc->num_syms, - LZMS_MAX_CODEWORD_LEN, - enc->sym_freqs, - enc->lens, - enc->codewords); - - /* Dilute the frequencies. */ - for (unsigned i = 0; i < enc->num_syms; i++) { - enc->sym_freqs[i] >>= 1; - enc->sym_freqs[i] += 1; - } - enc->num_syms_written = 0; - } + if (++enc->num_syms_written == enc->rebuild_freq) + lzms_rebuild_huffman_code(enc); } static void -lzms_encode_length(struct lzms_huffman_encoder *enc, u32 length) +lzms_update_fast_length_costs(struct lzms_compressor *c); + +/* Encode a match length. */ +static void +lzms_encode_length(struct lzms_compressor *c, u32 length) { unsigned slot; unsigned num_extra_bits; u32 extra_bits; - slot = lzms_get_length_slot(length); + slot = lzms_get_length_slot_fast(c, length); + extra_bits = length - lzms_length_slot_base[slot]; num_extra_bits = lzms_extra_length_bits[slot]; - extra_bits = length - lzms_length_slot_base[slot]; + lzms_huffman_encode_symbol(&c->length_encoder, slot); + if (c->length_encoder.num_syms_written == 0) + lzms_update_fast_length_costs(c); - lzms_huffman_encode_symbol(enc, slot); - lzms_output_bitstream_put_bits(enc->os, extra_bits, num_extra_bits); + lzms_output_bitstream_put_varbits(c->length_encoder.os, + extra_bits, num_extra_bits, 30); } +/* Encode an LZ match offset. */ static void -lzms_encode_offset(struct lzms_huffman_encoder *enc, u32 offset) +lzms_encode_lz_offset(struct lzms_compressor *c, u32 offset) { unsigned slot; unsigned num_extra_bits; u32 extra_bits; - slot = lzms_get_position_slot(offset); - - num_extra_bits = lzms_extra_position_bits[slot]; + slot = lzms_get_offset_slot_fast(c, offset); - extra_bits = offset - lzms_position_slot_base[slot]; + extra_bits = offset - lzms_offset_slot_base[slot]; + num_extra_bits = lzms_extra_offset_bits[slot]; - lzms_huffman_encode_symbol(enc, slot); - lzms_output_bitstream_put_bits(enc->os, extra_bits, num_extra_bits); -} - -static void -lzms_begin_encode_item(struct lzms_compressor *ctx) -{ - ctx->lru.lz.upcoming_offset = 0; - ctx->lru.delta.upcoming_offset = 0; - ctx->lru.delta.upcoming_power = 0; -} - -static void -lzms_end_encode_item(struct lzms_compressor *ctx, u32 length) -{ - LZMS_ASSERT(ctx->window_size - ctx->cur_window_pos >= length); - ctx->cur_window_pos += length; - lzms_update_lru_queues(&ctx->lru); + lzms_huffman_encode_symbol(&c->lz_offset_encoder, slot); + lzms_output_bitstream_put_varbits(c->lz_offset_encoder.os, + extra_bits, num_extra_bits, 30); } /* Encode a literal byte. */ static void -lzms_encode_literal(struct lzms_compressor *ctx, u8 literal) +lzms_encode_literal(struct lzms_compressor *c, unsigned literal) { - LZMS_DEBUG("Position %u: Encoding literal 0x%02x ('%c')", - ctx->cur_window_pos, literal, literal); - - lzms_begin_encode_item(ctx); - /* Main bit: 0 = a literal, not a match. */ - lzms_range_encode_bit(&ctx->main_range_encoder, 0); + lzms_range_encode_bit(&c->main_range_encoder, 0); /* Encode the literal using the current literal Huffman code. */ - lzms_huffman_encode_symbol(&ctx->literal_encoder, literal); - - lzms_end_encode_item(ctx, 1); + lzms_huffman_encode_symbol(&c->literal_encoder, literal); } -/* Encode a (length, offset) pair (LZ match). */ +/* Encode an LZ repeat offset match. */ static void -lzms_encode_lz_match(struct lzms_compressor *ctx, u32 length, u32 offset) +lzms_encode_lz_repeat_offset_match(struct lzms_compressor *c, + u32 length, unsigned rep_index) { - int recent_offset_idx; - - LZMS_DEBUG("Position %u: Encoding LZ match {length=%u, offset=%u}", - ctx->cur_window_pos, length, offset); - - LZMS_ASSERT(length <= ctx->window_size - ctx->cur_window_pos); - LZMS_ASSERT(offset <= ctx->cur_window_pos); - LZMS_ASSERT(!memcmp(&ctx->window[ctx->cur_window_pos], - &ctx->window[ctx->cur_window_pos - offset], - length)); - - lzms_begin_encode_item(ctx); + unsigned i; /* Main bit: 1 = a match, not a literal. */ - lzms_range_encode_bit(&ctx->main_range_encoder, 1); + lzms_range_encode_bit(&c->main_range_encoder, 1); /* Match bit: 0 = an LZ match, not a delta match. */ - lzms_range_encode_bit(&ctx->match_range_encoder, 0); - - /* Determine if the offset can be represented as a recent offset. */ - for (recent_offset_idx = 0; - recent_offset_idx < LZMS_NUM_RECENT_OFFSETS; - recent_offset_idx++) - if (offset == ctx->lru.lz.recent_offsets[recent_offset_idx]) - break; + lzms_range_encode_bit(&c->match_range_encoder, 0); - if (recent_offset_idx == LZMS_NUM_RECENT_OFFSETS) { - /* Explicit offset. */ + /* LZ match bit: 1 = repeat offset, not an explicit offset. */ + lzms_range_encode_bit(&c->lz_match_range_encoder, 1); - /* LZ match bit: 0 = explicit offset, not a recent offset. */ - lzms_range_encode_bit(&ctx->lz_match_range_encoder, 0); + /* Encode the repeat offset index. A 1 bit is encoded for each index + * passed up. This sequence of 1 bits is terminated by a 0 bit, or + * automatically when (LZMS_NUM_RECENT_OFFSETS - 1) 1 bits have been + * encoded. */ + for (i = 0; i < rep_index; i++) + lzms_range_encode_bit(&c->lz_repeat_match_range_encoders[i], 1); - /* Encode the match offset. */ - lzms_encode_offset(&ctx->lz_offset_encoder, offset); - } else { - int i; + if (i < LZMS_NUM_RECENT_OFFSETS - 1) + lzms_range_encode_bit(&c->lz_repeat_match_range_encoders[i], 0); - /* Recent offset. */ + /* Encode the match length. */ + lzms_encode_length(c, length); +} - /* LZ match bit: 1 = recent offset, not an explicit offset. */ - lzms_range_encode_bit(&ctx->lz_match_range_encoder, 1); +/* Encode an LZ explicit offset match. */ +static void +lzms_encode_lz_explicit_offset_match(struct lzms_compressor *c, + u32 length, u32 offset) +{ + /* Main bit: 1 = a match, not a literal. */ + lzms_range_encode_bit(&c->main_range_encoder, 1); - /* Encode the recent offset index. A 1 bit is encoded for each - * index passed up. This sequence of 1 bits is terminated by a - * 0 bit, or automatically when (LZMS_NUM_RECENT_OFFSETS - 1) 1 - * bits have been encoded. */ - for (i = 0; i < recent_offset_idx; i++) - lzms_range_encode_bit(&ctx->lz_repeat_match_range_encoders[i], 1); + /* Match bit: 0 = an LZ match, not a delta match. */ + lzms_range_encode_bit(&c->match_range_encoder, 0); - if (i < LZMS_NUM_RECENT_OFFSETS - 1) - lzms_range_encode_bit(&ctx->lz_repeat_match_range_encoders[i], 0); + /* LZ match bit: 0 = explicit offset, not a repeat offset. */ + lzms_range_encode_bit(&c->lz_match_range_encoder, 0); - /* Initial update of the LZ match offset LRU queue. */ - for (; i < LZMS_NUM_RECENT_OFFSETS; i++) - ctx->lru.lz.recent_offsets[i] = ctx->lru.lz.recent_offsets[i + 1]; - } + /* Encode the match offset. */ + lzms_encode_lz_offset(c, offset); /* Encode the match length. */ - lzms_encode_length(&ctx->length_encoder, length); + lzms_encode_length(c, length); +} - /* Save the match offset for later insertion at the front of the LZ - * match offset LRU queue. */ - ctx->lru.lz.upcoming_offset = offset; +static void +lzms_encode_item(struct lzms_compressor *c, u64 mc_item_data) +{ + u32 len = mc_item_data & MC_LEN_MASK; + u32 offset_data = mc_item_data >> MC_OFFSET_SHIFT; - lzms_end_encode_item(ctx, length); + if (len == 1) + lzms_encode_literal(c, offset_data); + else if (offset_data < LZMS_NUM_RECENT_OFFSETS) + lzms_encode_lz_repeat_offset_match(c, len, offset_data); + else + lzms_encode_lz_explicit_offset_match(c, len, offset_data - LZMS_OFFSET_OFFSET); } -#define LZMS_COST_SHIFT 5 +/* Encode a list of matches and literals chosen by the parsing algorithm. */ +static void +lzms_encode_item_list(struct lzms_compressor *c, + struct lzms_mc_pos_data *cur_optimum_ptr) +{ + struct lzms_mc_pos_data *end_optimum_ptr; + u64 saved_item; + u64 item; + + /* The list is currently in reverse order (last item to first item). + * Reverse it. */ + end_optimum_ptr = cur_optimum_ptr; + saved_item = cur_optimum_ptr->mc_item_data; + do { + item = saved_item; + cur_optimum_ptr -= item & MC_LEN_MASK; + saved_item = cur_optimum_ptr->mc_item_data; + cur_optimum_ptr->mc_item_data = item; + } while (cur_optimum_ptr != c->optimum); + + /* Walk the list of items from beginning to end, encoding each item. */ + do { + lzms_encode_item(c, cur_optimum_ptr->mc_item_data); + cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK; + } while (cur_optimum_ptr != end_optimum_ptr); +} + +/* Each bit costs 1 << LZMS_COST_SHIFT units. */ +#define LZMS_COST_SHIFT 6 /*#define LZMS_RC_COSTS_USE_FLOATING_POINT*/ @@ -662,7 +705,7 @@ lzms_do_init_rc_costs(void) for (u32 j = 0; j < LZMS_COST_SHIFT; j++) { w *= w; bit_count <<= 1; - while (w >= (1U << 16)) { + while (w >= ((u32)1 << 16)) { w >>= 1; ++bit_count; } @@ -681,24 +724,14 @@ lzms_init_rc_costs(void) pthread_once(&once, lzms_do_init_rc_costs); } -/* - * Return the cost to range-encode the specified bit when in the specified - * state. - * - * @enc The range encoder to use. - * @cur_state Current state, which indicates the probability entry to choose. - * Updated by this function. - * @bit The bit to encode (0 or 1). - */ -static u32 -lzms_rc_bit_cost(const struct lzms_range_encoder *enc, u8 *cur_state, int bit) +/* Return the cost to range-encode the specified bit from the specified state.*/ +static inline u32 +lzms_rc_bit_cost(const struct lzms_range_encoder *enc, u8 cur_state, int bit) { u32 prob_zero; u32 prob_correct; - prob_zero = enc->prob_entries[*cur_state & enc->mask].num_recent_zero_bits; - - *cur_state = (*cur_state << 1) | bit; + prob_zero = enc->prob_entries[cur_state].num_recent_zero_bits; if (bit == 0) prob_correct = prob_zero; @@ -708,447 +741,486 @@ lzms_rc_bit_cost(const struct lzms_range_encoder *enc, u8 *cur_state, int bit) return lzms_rc_costs[prob_correct]; } -static u32 -lzms_huffman_symbol_cost(const struct lzms_huffman_encoder *enc, u32 sym) +/* Return the cost to Huffman-encode the specified symbol. */ +static inline u32 +lzms_huffman_symbol_cost(const struct lzms_huffman_encoder *enc, unsigned sym) { - return enc->lens[sym] << LZMS_COST_SHIFT; + return (u32)enc->lens[sym] << LZMS_COST_SHIFT; } -static u32 -lzms_offset_cost(const struct lzms_huffman_encoder *enc, u32 offset) +/* Return the cost to encode the specified literal byte. */ +static inline u32 +lzms_literal_cost(const struct lzms_compressor *c, unsigned literal, + const struct lzms_adaptive_state *state) { - u32 slot; - u32 num_extra_bits; + return lzms_rc_bit_cost(&c->main_range_encoder, state->main_state, 0) + + lzms_huffman_symbol_cost(&c->literal_encoder, literal); +} + +/* Update the table that directly provides the costs for small lengths. */ +static void +lzms_update_fast_length_costs(struct lzms_compressor *c) +{ + u32 len; + int slot = -1; u32 cost = 0; - slot = lzms_get_position_slot(offset); + for (len = 1; len < LZMS_NUM_FAST_LENGTHS; len++) { - cost += lzms_huffman_symbol_cost(enc, slot); + while (len >= lzms_length_slot_base[slot + 1]) { + slot++; + cost = (u32)(c->length_encoder.lens[slot] + + lzms_extra_length_bits[slot]) << LZMS_COST_SHIFT; + } - num_extra_bits = lzms_extra_position_bits[slot]; + c->length_cost_fast[len] = cost; + } +} + +/* Return the cost to encode the specified match length, which must be less than + * LZMS_NUM_FAST_LENGTHS. */ +static inline u32 +lzms_fast_length_cost(const struct lzms_compressor *c, u32 length) +{ + LZMS_ASSERT(length < LZMS_NUM_FAST_LENGTHS); + return c->length_cost_fast[length]; +} - cost += num_extra_bits << LZMS_COST_SHIFT; +/* Return the cost to encode the specified LZ match offset. */ +static inline u32 +lzms_lz_offset_cost(const struct lzms_compressor *c, u32 offset) +{ + unsigned slot = lzms_get_offset_slot_fast(c, offset); - return cost; + return (u32)(c->lz_offset_encoder.lens[slot] + + lzms_extra_offset_bits[slot]) << LZMS_COST_SHIFT; } -static u32 -lzms_get_length_cost(const struct lzms_huffman_encoder *enc, u32 length) +/* + * Consider coding the match at repeat offset index @rep_idx. Consider each + * length from the minimum (2) to the full match length (@rep_len). + */ +static inline void +lzms_consider_lz_repeat_offset_match(const struct lzms_compressor *c, + struct lzms_mc_pos_data *cur_optimum_ptr, + u32 rep_len, unsigned rep_idx) { - u32 slot; - u32 num_extra_bits; - u32 cost = 0; + u32 len; + u32 base_cost; + u32 cost; + unsigned i; - slot = lzms_get_length_slot(length); + base_cost = cur_optimum_ptr->cost; - cost += lzms_huffman_symbol_cost(enc, slot); + base_cost += lzms_rc_bit_cost(&c->main_range_encoder, + cur_optimum_ptr->state.main_state, 1); - num_extra_bits = lzms_extra_length_bits[slot]; + base_cost += lzms_rc_bit_cost(&c->match_range_encoder, + cur_optimum_ptr->state.match_state, 0); + + base_cost += lzms_rc_bit_cost(&c->lz_match_range_encoder, + cur_optimum_ptr->state.lz_match_state, 1); + + for (i = 0; i < rep_idx; i++) + base_cost += lzms_rc_bit_cost(&c->lz_repeat_match_range_encoders[i], + cur_optimum_ptr->state.lz_repeat_match_state[i], 1); - cost += num_extra_bits << LZMS_COST_SHIFT; + if (i < LZMS_NUM_RECENT_OFFSETS - 1) + base_cost += lzms_rc_bit_cost(&c->lz_repeat_match_range_encoders[i], + cur_optimum_ptr->state.lz_repeat_match_state[i], 0); - return cost; + len = 2; + do { + cost = base_cost + lzms_fast_length_cost(c, len); + if (cost < (cur_optimum_ptr + len)->cost) { + (cur_optimum_ptr + len)->mc_item_data = + ((u64)rep_idx << MC_OFFSET_SHIFT) | len; + (cur_optimum_ptr + len)->cost = cost; + } + } while (++len <= rep_len); } -static u32 -lzms_get_matches(struct lzms_compressor *ctx, struct lz_match **matches_ret) +/* + * Consider coding each match in @matches as an explicit offset match. + * + * @matches must be sorted by strictly increasing length and strictly increasing + * offset. This is guaranteed by the match-finder. + * + * We consider each length from the minimum (2) to the longest + * (matches[num_matches - 1].len). For each length, we consider only the + * smallest offset for which that length is available. Although this is not + * guaranteed to be optimal due to the possibility of a larger offset costing + * less than a smaller offset to code, this is a very useful heuristic. + */ +static inline void +lzms_consider_lz_explicit_offset_matches(const struct lzms_compressor *c, + struct lzms_mc_pos_data *cur_optimum_ptr, + const struct lz_match matches[], + u32 num_matches) { - *matches_ret = ctx->matches; - return lz_mf_get_matches(ctx->mf, ctx->matches); + u32 len; + u32 i; + u32 base_cost; + u32 position_cost; + u32 cost; + + base_cost = cur_optimum_ptr->cost; + + base_cost += lzms_rc_bit_cost(&c->main_range_encoder, + cur_optimum_ptr->state.main_state, 1); + + base_cost += lzms_rc_bit_cost(&c->match_range_encoder, + cur_optimum_ptr->state.match_state, 0); + + base_cost += lzms_rc_bit_cost(&c->lz_match_range_encoder, + cur_optimum_ptr->state.lz_match_state, 0); + len = 2; + i = 0; + do { + position_cost = base_cost + lzms_lz_offset_cost(c, matches[i].offset); + do { + cost = position_cost + lzms_fast_length_cost(c, len); + if (cost < (cur_optimum_ptr + len)->cost) { + (cur_optimum_ptr + len)->mc_item_data = + ((u64)(matches[i].offset + LZMS_OFFSET_OFFSET) + << MC_OFFSET_SHIFT) | len; + (cur_optimum_ptr + len)->cost = cost; + } + } while (++len <= matches[i].len); + } while (++i != num_matches); } static void -lzms_skip_bytes(struct lzms_compressor *ctx, u32 n) +lzms_init_adaptive_state(struct lzms_adaptive_state *state) { - lz_mf_skip_positions(ctx->mf, n); + unsigned i; + + lzms_init_lz_lru_queues(&state->lru); + state->main_state = 0; + state->match_state = 0; + state->lz_match_state = 0; + for (i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++) + state->lz_repeat_match_state[i] = 0; } -static u32 -lzms_get_literal_cost(struct lzms_compressor *ctx, - struct lzms_adaptive_state *state, u8 literal) +static inline void +lzms_update_main_state(struct lzms_adaptive_state *state, int is_match) { - u32 cost = 0; - - state->lru.upcoming_offset = 0; - lzms_update_lz_lru_queues(&state->lru); - - cost += lzms_rc_bit_cost(&ctx->main_range_encoder, - &state->main_state, 0); - - cost += lzms_huffman_symbol_cost(&ctx->literal_encoder, literal); + state->main_state = ((state->main_state << 1) | is_match) % LZMS_NUM_MAIN_STATES; +} - return cost; +static inline void +lzms_update_match_state(struct lzms_adaptive_state *state, int is_delta) +{ + state->match_state = ((state->match_state << 1) | is_delta) % LZMS_NUM_MATCH_STATES; } -static u32 -lzms_get_lz_match_cost_nolen(struct lzms_compressor *ctx, - struct lzms_adaptive_state *state, u32 offset) +static inline void +lzms_update_lz_match_state(struct lzms_adaptive_state *state, int is_repeat_offset) { - u32 cost = 0; - int recent_offset_idx; + state->lz_match_state = ((state->lz_match_state << 1) | is_repeat_offset) % LZMS_NUM_LZ_MATCH_STATES; +} - cost += lzms_rc_bit_cost(&ctx->main_range_encoder, - &state->main_state, 1); - cost += lzms_rc_bit_cost(&ctx->match_range_encoder, - &state->match_state, 0); +static inline void +lzms_update_lz_repeat_match_state(struct lzms_adaptive_state *state, int rep_idx) +{ + int i; - for (recent_offset_idx = 0; - recent_offset_idx < LZMS_NUM_RECENT_OFFSETS; - recent_offset_idx++) - if (offset == state->lru.recent_offsets[recent_offset_idx]) - break; + for (i = 0; i < rep_idx; i++) + state->lz_repeat_match_state[i] = + ((state->lz_repeat_match_state[i] << 1) | 1) % + LZMS_NUM_LZ_REPEAT_MATCH_STATES; - if (recent_offset_idx == LZMS_NUM_RECENT_OFFSETS) { - /* Explicit offset. */ - cost += lzms_rc_bit_cost(&ctx->lz_match_range_encoder, - &state->lz_match_state, 0); + if (i < LZMS_NUM_RECENT_OFFSETS - 1) + state->lz_repeat_match_state[i] = + ((state->lz_repeat_match_state[i] << 1) | 0) % + LZMS_NUM_LZ_REPEAT_MATCH_STATES; +} - cost += lzms_offset_cost(&ctx->lz_offset_encoder, offset); - } else { - int i; +/* + * The main near-optimal parsing routine. + * + * Briefly, the algorithm does an approximate minimum-cost path search to find a + * "near-optimal" sequence of matches and literals to output, based on the + * current cost model. The algorithm steps forward, position by position (byte + * by byte), and updates the minimum cost path to reach each later position that + * can be reached using a match or literal from the current position. This is + * essentially Dijkstra's algorithm in disguise: the graph nodes are positions, + * the graph edges are possible matches/literals to code, and the cost of each + * edge is the estimated number of bits that will be required to output the + * corresponding match or literal. But one difference is that we actually + * compute the lowest-cost path in pieces, where each piece is terminated when + * there are no choices to be made. + * + * Notes: + * + * - This does not output any delta matches. + * + * - The costs of literals and matches are estimated using the range encoder + * states and the semi-adaptive Huffman codes. Except for range encoding + * states, costs are assumed to be constant throughout a single run of the + * parsing algorithm, which can parse up to @optim_array_length bytes of data. + * This introduces a source of inaccuracy because the probabilities and + * Huffman codes can change over this part of the data. + */ +static void +lzms_near_optimal_parse(struct lzms_compressor *c) +{ + const u8 *window_ptr; + const u8 *window_end; + struct lzms_mc_pos_data *cur_optimum_ptr; + struct lzms_mc_pos_data *end_optimum_ptr; + u32 num_matches; + u32 longest_len; + u32 rep_max_len; + unsigned rep_max_idx; + unsigned literal; + unsigned i; + u32 cost; + u32 len; + u32 offset_data; - /* Recent offset. */ - cost += lzms_rc_bit_cost(&ctx->lz_match_range_encoder, - &state->lz_match_state, 1); + window_ptr = c->cur_window; + window_end = window_ptr + c->cur_window_size; - for (i = 0; i < recent_offset_idx; i++) - cost += lzms_rc_bit_cost(&ctx->lz_repeat_match_range_encoders[i], - &state->lz_repeat_match_state[i], 0); + lzms_init_adaptive_state(&c->optimum[0].state); - if (i < LZMS_NUM_RECENT_OFFSETS - 1) - cost += lzms_rc_bit_cost(&ctx->lz_repeat_match_range_encoders[i], - &state->lz_repeat_match_state[i], 1); +begin: + /* Start building a new list of items, which will correspond to the next + * piece of the overall minimum-cost path. */ + cur_optimum_ptr = c->optimum; + cur_optimum_ptr->cost = 0; + end_optimum_ptr = cur_optimum_ptr; - /* Initial update of the LZ match offset LRU queue. */ - for (; i < LZMS_NUM_RECENT_OFFSETS; i++) - state->lru.recent_offsets[i] = state->lru.recent_offsets[i + 1]; - } + /* States should currently be consistent with the encoders. */ + LZMS_ASSERT(cur_optimum_ptr->state.main_state == c->main_range_encoder.state); + LZMS_ASSERT(cur_optimum_ptr->state.match_state == c->match_range_encoder.state); + LZMS_ASSERT(cur_optimum_ptr->state.lz_match_state == c->lz_match_range_encoder.state); + for (i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++) + LZMS_ASSERT(cur_optimum_ptr->state.lz_repeat_match_state[i] == + c->lz_repeat_match_range_encoders[i].state); + if (window_ptr == window_end) + return; - state->lru.upcoming_offset = offset; - lzms_update_lz_lru_queues(&state->lru); + /* The following loop runs once for each per byte in the window, except + * in a couple shortcut cases. */ + for (;;) { - return cost; -} + /* Find explicit offset matches with the current position. */ + num_matches = lz_mf_get_matches(c->mf, c->matches); -static u32 -lzms_get_lz_match_cost(struct lzms_compressor *ctx, - struct lzms_adaptive_state *state, - u32 length, u32 offset) -{ - return lzms_get_lz_match_cost_nolen(ctx, state, offset) + - lzms_get_length_cost(&ctx->length_encoder, length); -} + if (num_matches) { + /* + * Find the longest repeat offset match with the current + * position. + * + * Heuristics: + * + * - Only search for repeat offset matches if the + * match-finder already found at least one match. + * + * - Only consider the longest repeat offset match. It + * seems to be rare for the optimal parse to include a + * repeat offset match that doesn't have the longest + * length (allowing for the possibility that not all + * of that length is actually used). + */ + if (likely(window_ptr - c->cur_window >= LZMS_MAX_INIT_RECENT_OFFSET)) { + BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3); + rep_max_len = lz_repsearch3(window_ptr, + window_end - window_ptr, + cur_optimum_ptr->state.lru.recent_offsets, + &rep_max_idx); + } else { + rep_max_len = 0; + } -static struct lz_match -lzms_match_chooser_reverse_list(struct lzms_compressor *ctx, unsigned cur_pos) -{ - unsigned prev_link, saved_prev_link; - unsigned prev_match_offset, saved_prev_match_offset; + if (rep_max_len) { + /* If there's a very long repeat offset match, + * choose it immediately. */ + if (rep_max_len >= c->params.nice_match_length) { - ctx->optimum_end_idx = cur_pos; + lz_mf_skip_positions(c->mf, rep_max_len - 1); + window_ptr += rep_max_len; - saved_prev_link = ctx->optimum[cur_pos].prev.link; - saved_prev_match_offset = ctx->optimum[cur_pos].prev.match_offset; + if (cur_optimum_ptr != c->optimum) + lzms_encode_item_list(c, cur_optimum_ptr); - do { - prev_link = saved_prev_link; - prev_match_offset = saved_prev_match_offset; + lzms_encode_lz_repeat_offset_match(c, rep_max_len, + rep_max_idx); - saved_prev_link = ctx->optimum[prev_link].prev.link; - saved_prev_match_offset = ctx->optimum[prev_link].prev.match_offset; + c->optimum[0].state = cur_optimum_ptr->state; - ctx->optimum[prev_link].next.link = cur_pos; - ctx->optimum[prev_link].next.match_offset = prev_match_offset; + lzms_update_main_state(&c->optimum[0].state, 1); + lzms_update_match_state(&c->optimum[0].state, 0); + lzms_update_lz_match_state(&c->optimum[0].state, 1); + lzms_update_lz_repeat_match_state(&c->optimum[0].state, + rep_max_idx); - cur_pos = prev_link; - } while (cur_pos != 0); + c->optimum[0].state.lru.upcoming_offset = + c->optimum[0].state.lru.recent_offsets[rep_max_idx]; - ctx->optimum_cur_idx = ctx->optimum[0].next.link; + for (i = rep_max_idx; i < LZMS_NUM_RECENT_OFFSETS; i++) + c->optimum[0].state.lru.recent_offsets[i] = + c->optimum[0].state.lru.recent_offsets[i + 1]; - return (struct lz_match) - { .len = ctx->optimum_cur_idx, - .offset = ctx->optimum[0].next.match_offset, - }; -} + lzms_update_lz_lru_queue(&c->optimum[0].state.lru); + goto begin; + } -/* This is similar to lzx_choose_near_optimal_item() in lzx-compress.c. - * Read that one if you want to understand it. */ -static struct lz_match -lzms_get_near_optimal_item(struct lzms_compressor *ctx) -{ - u32 num_matches; - struct lz_match *matches; - struct lz_match match; - u32 longest_len; - u32 longest_rep_len; - u32 longest_rep_offset; - unsigned cur_pos; - unsigned end_pos; - struct lzms_adaptive_state initial_state; - - if (ctx->optimum_cur_idx != ctx->optimum_end_idx) { - match.len = ctx->optimum[ctx->optimum_cur_idx].next.link - - ctx->optimum_cur_idx; - match.offset = ctx->optimum[ctx->optimum_cur_idx].next.match_offset; - - ctx->optimum_cur_idx = ctx->optimum[ctx->optimum_cur_idx].next.link; - return match; - } + /* If reaching any positions for the first time, + * initialize their costs to "infinity". */ + while (end_optimum_ptr < cur_optimum_ptr + rep_max_len) + (++end_optimum_ptr)->cost = MC_INFINITE_COST; - ctx->optimum_cur_idx = 0; - ctx->optimum_end_idx = 0; - - longest_rep_len = ctx->params.min_match_length - 1; - if (lz_mf_get_position(ctx->mf) >= LZMS_MAX_INIT_RECENT_OFFSET) { - u32 limit = lz_mf_get_bytes_remaining(ctx->mf); - for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS; i++) { - u32 offset = ctx->lru.lz.recent_offsets[i]; - const u8 *strptr = lz_mf_get_window_ptr(ctx->mf); - const u8 *matchptr = strptr - offset; - u32 len = 0; - while (len < limit && strptr[len] == matchptr[len]) - len++; - if (len > longest_rep_len) { - longest_rep_len = len; - longest_rep_offset = offset; + /* Consider coding a repeat offset match. */ + lzms_consider_lz_repeat_offset_match(c, cur_optimum_ptr, + rep_max_len, rep_max_idx); } - } - } - if (longest_rep_len >= ctx->params.nice_match_length) { - lzms_skip_bytes(ctx, longest_rep_len); - return (struct lz_match) { - .len = longest_rep_len, - .offset = longest_rep_offset, - }; - } + longest_len = c->matches[num_matches - 1].len; - num_matches = lzms_get_matches(ctx, &matches); + /* If there's a very long explicit offset match, choose + * it immediately. */ + if (longest_len >= c->params.nice_match_length) { - if (num_matches) { - longest_len = matches[num_matches - 1].len; - if (longest_len >= ctx->params.nice_match_length) { - lzms_skip_bytes(ctx, longest_len - 1); - return matches[num_matches - 1]; - } - } else { - longest_len = 1; - } + lz_mf_skip_positions(c->mf, longest_len - 1); + window_ptr += longest_len; - initial_state.lru = ctx->lru.lz; - initial_state.main_state = ctx->main_range_encoder.state; - initial_state.match_state = ctx->match_range_encoder.state; - initial_state.lz_match_state = ctx->lz_match_range_encoder.state; - for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++) - initial_state.lz_repeat_match_state[i] = ctx->lz_repeat_match_range_encoders[i].state; + if (cur_optimum_ptr != c->optimum) + lzms_encode_item_list(c, cur_optimum_ptr); - ctx->optimum[1].state = initial_state; - ctx->optimum[1].cost = lzms_get_literal_cost(ctx, - &ctx->optimum[1].state, - *(lz_mf_get_window_ptr(ctx->mf) - 1)); - ctx->optimum[1].prev.link = 0; + lzms_encode_lz_explicit_offset_match(c, longest_len, + c->matches[num_matches - 1].offset); - for (u32 i = 0, len = 2; i < num_matches; i++) { - u32 offset = matches[i].offset; - struct lzms_adaptive_state state; - u32 position_cost; + c->optimum[0].state = cur_optimum_ptr->state; - state = initial_state; - position_cost = 0; - position_cost += lzms_get_lz_match_cost_nolen(ctx, &state, offset); + lzms_update_main_state(&c->optimum[0].state, 1); + lzms_update_match_state(&c->optimum[0].state, 0); + lzms_update_lz_match_state(&c->optimum[0].state, 0); - do { - u32 cost; + c->optimum[0].state.lru.upcoming_offset = + c->matches[num_matches - 1].offset; - cost = position_cost; - cost += lzms_get_length_cost(&ctx->length_encoder, len); + lzms_update_lz_lru_queue(&c->optimum[0].state.lru); + goto begin; + } - ctx->optimum[len].state = state; - ctx->optimum[len].prev.link = 0; - ctx->optimum[len].prev.match_offset = offset; - ctx->optimum[len].cost = cost; - } while (++len <= matches[i].len); - } - end_pos = longest_len; - - if (longest_rep_len >= ctx->params.min_match_length) { - struct lzms_adaptive_state state; - u32 cost; - - while (end_pos < longest_rep_len) - ctx->optimum[++end_pos].cost = MC_INFINITE_COST; - - state = initial_state; - cost = lzms_get_lz_match_cost(ctx, - &state, - longest_rep_len, - longest_rep_offset); - if (cost <= ctx->optimum[longest_rep_len].cost) { - ctx->optimum[longest_rep_len].state = state; - ctx->optimum[longest_rep_len].prev.link = 0; - ctx->optimum[longest_rep_len].prev.match_offset = longest_rep_offset; - ctx->optimum[longest_rep_len].cost = cost; - } - } + /* If reaching any positions for the first time, + * initialize their costs to "infinity". */ + while (end_optimum_ptr < cur_optimum_ptr + longest_len) + (++end_optimum_ptr)->cost = MC_INFINITE_COST; - cur_pos = 0; - for (;;) { - u32 cost; - struct lzms_adaptive_state state; - - cur_pos++; - - if (cur_pos == end_pos || cur_pos == ctx->params.optim_array_length) - return lzms_match_chooser_reverse_list(ctx, cur_pos); - - longest_rep_len = ctx->params.min_match_length - 1; - if (lz_mf_get_position(ctx->mf) >= LZMS_MAX_INIT_RECENT_OFFSET) { - u32 limit = lz_mf_get_bytes_remaining(ctx->mf); - for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS; i++) { - u32 offset = ctx->optimum[cur_pos].state.lru.recent_offsets[i]; - const u8 *strptr = lz_mf_get_window_ptr(ctx->mf); - const u8 *matchptr = strptr - offset; - u32 len = 0; - while (len < limit && strptr[len] == matchptr[len]) - len++; - if (len > longest_rep_len) { - longest_rep_len = len; - longest_rep_offset = offset; - } - } - } + /* Consider coding an explicit offset match. */ + lzms_consider_lz_explicit_offset_matches(c, cur_optimum_ptr, + c->matches, num_matches); + } else { + /* No matches found. The only choice at this position + * is to code a literal. */ - if (longest_rep_len >= ctx->params.nice_match_length) { - match = lzms_match_chooser_reverse_list(ctx, cur_pos); + if (end_optimum_ptr == cur_optimum_ptr) + (++end_optimum_ptr)->cost = MC_INFINITE_COST; + } - ctx->optimum[cur_pos].next.match_offset = longest_rep_offset; - ctx->optimum[cur_pos].next.link = cur_pos + longest_rep_len; - ctx->optimum_end_idx = cur_pos + longest_rep_len; + /* Consider coding a literal. - lzms_skip_bytes(ctx, longest_rep_len); + * To avoid an extra unpredictable brench, actually checking the + * preferability of coding a literal is integrated into the + * adaptive state update code below. */ + literal = *window_ptr++; + cost = cur_optimum_ptr->cost + + lzms_literal_cost(c, literal, &cur_optimum_ptr->state); - return match; - } + /* Advance to the next position. */ + cur_optimum_ptr++; - num_matches = lzms_get_matches(ctx, &matches); + /* The lowest-cost path to the current position is now known. + * Finalize the adaptive state that results from taking this + * lowest-cost path. */ - if (num_matches) { - longest_len = matches[num_matches - 1].len; - if (longest_len >= ctx->params.nice_match_length) { - match = lzms_match_chooser_reverse_list(ctx, cur_pos); + if (cost < cur_optimum_ptr->cost) { + /* Literal */ + cur_optimum_ptr->cost = cost; + cur_optimum_ptr->mc_item_data = ((u64)literal << MC_OFFSET_SHIFT) | 1; - ctx->optimum[cur_pos].next.match_offset = - matches[num_matches - 1].offset; - ctx->optimum[cur_pos].next.link = cur_pos + longest_len; - ctx->optimum_end_idx = cur_pos + longest_len; + cur_optimum_ptr->state = (cur_optimum_ptr - 1)->state; - lzms_skip_bytes(ctx, longest_len - 1); + lzms_update_main_state(&cur_optimum_ptr->state, 0); - return match; - } + cur_optimum_ptr->state.lru.upcoming_offset = 0; } else { - longest_len = 1; - } + /* LZ match */ + len = cur_optimum_ptr->mc_item_data & MC_LEN_MASK; + offset_data = cur_optimum_ptr->mc_item_data >> MC_OFFSET_SHIFT; - while (end_pos < cur_pos + longest_len) - ctx->optimum[++end_pos].cost = MC_INFINITE_COST; - - state = ctx->optimum[cur_pos].state; - cost = ctx->optimum[cur_pos].cost + - lzms_get_literal_cost(ctx, - &state, - *(lz_mf_get_window_ptr(ctx->mf) - 1)); - if (cost < ctx->optimum[cur_pos + 1].cost) { - ctx->optimum[cur_pos + 1].state = state; - ctx->optimum[cur_pos + 1].cost = cost; - ctx->optimum[cur_pos + 1].prev.link = cur_pos; - } - - for (u32 i = 0, len = 2; i < num_matches; i++) { - u32 offset = matches[i].offset; - struct lzms_adaptive_state state; - u32 position_cost; + cur_optimum_ptr->state = (cur_optimum_ptr - len)->state; - state = ctx->optimum[cur_pos].state; - position_cost = ctx->optimum[cur_pos].cost; - position_cost += lzms_get_lz_match_cost_nolen(ctx, &state, offset); + lzms_update_main_state(&cur_optimum_ptr->state, 1); + lzms_update_match_state(&cur_optimum_ptr->state, 0); - do { - u32 cost; + if (offset_data >= LZMS_NUM_RECENT_OFFSETS) { - cost = position_cost; - cost += lzms_get_length_cost(&ctx->length_encoder, len); + /* Explicit offset LZ match */ - if (cost < ctx->optimum[cur_pos + len].cost) { - ctx->optimum[cur_pos + len].state = state; - ctx->optimum[cur_pos + len].prev.link = cur_pos; - ctx->optimum[cur_pos + len].prev.match_offset = offset; - ctx->optimum[cur_pos + len].cost = cost; - } - } while (++len <= matches[i].len); - } + lzms_update_lz_match_state(&cur_optimum_ptr->state, 0); - if (longest_rep_len >= ctx->params.min_match_length) { - - while (end_pos < cur_pos + longest_rep_len) - ctx->optimum[++end_pos].cost = MC_INFINITE_COST; - - state = ctx->optimum[cur_pos].state; - - cost = ctx->optimum[cur_pos].cost + - lzms_get_lz_match_cost(ctx, - &state, - longest_rep_len, - longest_rep_offset); - if (cost <= ctx->optimum[cur_pos + longest_rep_len].cost) { - ctx->optimum[cur_pos + longest_rep_len].state = - state; - ctx->optimum[cur_pos + longest_rep_len].prev.link = - cur_pos; - ctx->optimum[cur_pos + longest_rep_len].prev.match_offset = - longest_rep_offset; - ctx->optimum[cur_pos + longest_rep_len].cost = - cost; - } - } - } -} + cur_optimum_ptr->state.lru.upcoming_offset = + offset_data - LZMS_OFFSET_OFFSET; + } else { + /* Repeat offset LZ match */ -/* - * The main loop for the LZMS compressor. - * - * Notes: - * - * - This does not output any delta matches. - * - * - The costs of literals and matches are estimated using the range encoder - * states and the semi-adaptive Huffman codes. Except for range encoding - * states, costs are assumed to be constant throughout a single run of the - * parsing algorithm, which can parse up to @optim_array_length bytes of data. - * This introduces a source of inaccuracy because the probabilities and - * Huffman codes can change over this part of the data. - */ -static void -lzms_encode(struct lzms_compressor *ctx) -{ - struct lz_match item; + lzms_update_lz_match_state(&cur_optimum_ptr->state, 1); + lzms_update_lz_repeat_match_state(&cur_optimum_ptr->state, + offset_data); - /* Load window into the match-finder. */ - lz_mf_load_window(ctx->mf, ctx->window, ctx->window_size); + cur_optimum_ptr->state.lru.upcoming_offset = + cur_optimum_ptr->state.lru.recent_offsets[offset_data]; - /* Reset the match-chooser. */ - ctx->optimum_cur_idx = 0; - ctx->optimum_end_idx = 0; + for (i = offset_data; i < LZMS_NUM_RECENT_OFFSETS; i++) + cur_optimum_ptr->state.lru.recent_offsets[i] = + cur_optimum_ptr->state.lru.recent_offsets[i + 1]; + } + } - while (ctx->cur_window_pos != ctx->window_size) { - item = lzms_get_near_optimal_item(ctx); - if (item.len <= 1) - lzms_encode_literal(ctx, ctx->window[ctx->cur_window_pos]); - else - lzms_encode_lz_match(ctx, item.len, item.offset); + lzms_update_lz_lru_queue(&cur_optimum_ptr->state.lru); + + /* + * This loop will terminate when either of the following + * conditions is true: + * + * (1) cur_optimum_ptr == end_optimum_ptr + * + * There are no paths that extend beyond the current + * position. In this case, any path to a later position + * must pass through the current position, so we can go + * ahead and choose the list of items that led to this + * position. + * + * (2) cur_optimum_ptr == c->optimum_end + * + * This bounds the number of times the algorithm can step + * forward before it is guaranteed to start choosing items. + * This limits the memory usage. It also guarantees that + * the parser will not go too long without updating the + * probability tables. + * + * Note: no check for end-of-window is needed because + * end-of-window will trigger condition (1). + */ + if (cur_optimum_ptr == end_optimum_ptr || + cur_optimum_ptr == c->optimum_end) + { + c->optimum[0].state = cur_optimum_ptr->state; + break; + } } + + /* Output the current list of items that constitute the minimum-cost + * path to the current position. */ + lzms_encode_item_list(c, cur_optimum_ptr); + goto begin; } static void @@ -1157,6 +1229,7 @@ lzms_init_range_encoder(struct lzms_range_encoder *enc, { enc->rc = rc; enc->state = 0; + LZMS_ASSERT(is_power_of_2(num_states)); enc->mask = num_states - 1; for (u32 i = 0; i < num_states; i++) { enc->prob_entries[i].num_recent_zero_bits = LZMS_INITIAL_PROBABILITY; @@ -1184,77 +1257,72 @@ lzms_init_huffman_encoder(struct lzms_huffman_encoder *enc, enc->codewords); } -/* Initialize the LZMS compressor. */ +/* Prepare the LZMS compressor for compressing a block of data. */ static void -lzms_init_compressor(struct lzms_compressor *ctx, const u8 *udata, u32 ulen, - le16 *cdata, u32 clen16) +lzms_prepare_compressor(struct lzms_compressor *c, const u8 *udata, u32 ulen, + le16 *cdata, u32 clen16) { - unsigned num_position_slots; + unsigned num_offset_slots; - /* Copy the uncompressed data into the @ctx->window buffer. */ - memcpy(ctx->window, udata, ulen); - ctx->cur_window_pos = 0; - ctx->window_size = ulen; + /* Copy the uncompressed data into the @c->cur_window buffer. */ + memcpy(c->cur_window, udata, ulen); + c->cur_window_size = ulen; /* Initialize the raw range encoder (writing forwards). */ - lzms_range_encoder_raw_init(&ctx->rc, cdata, clen16); + lzms_range_encoder_raw_init(&c->rc, cdata, clen16); /* Initialize the output bitstream for Huffman symbols and verbatim bits * (writing backwards). */ - lzms_output_bitstream_init(&ctx->os, cdata, clen16); - - /* Calculate the number of position slots needed for this compressed - * block. */ - num_position_slots = lzms_get_position_slot(ulen - 1) + 1; + lzms_output_bitstream_init(&c->os, cdata, clen16); - LZMS_DEBUG("Using %u position slots", num_position_slots); + /* Calculate the number of offset slots required. */ + num_offset_slots = lzms_get_offset_slot(ulen - 1) + 1; - /* Initialize Huffman encoders for each alphabet used in the compressed - * representation. */ - lzms_init_huffman_encoder(&ctx->literal_encoder, &ctx->os, + /* Initialize a Huffman encoder for each alphabet. */ + lzms_init_huffman_encoder(&c->literal_encoder, &c->os, LZMS_NUM_LITERAL_SYMS, LZMS_LITERAL_CODE_REBUILD_FREQ); - lzms_init_huffman_encoder(&ctx->lz_offset_encoder, &ctx->os, - num_position_slots, + lzms_init_huffman_encoder(&c->lz_offset_encoder, &c->os, + num_offset_slots, LZMS_LZ_OFFSET_CODE_REBUILD_FREQ); - lzms_init_huffman_encoder(&ctx->length_encoder, &ctx->os, + lzms_init_huffman_encoder(&c->length_encoder, &c->os, LZMS_NUM_LEN_SYMS, LZMS_LENGTH_CODE_REBUILD_FREQ); - lzms_init_huffman_encoder(&ctx->delta_offset_encoder, &ctx->os, - num_position_slots, + lzms_init_huffman_encoder(&c->delta_offset_encoder, &c->os, + num_offset_slots, LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ); - lzms_init_huffman_encoder(&ctx->delta_power_encoder, &ctx->os, + lzms_init_huffman_encoder(&c->delta_power_encoder, &c->os, LZMS_NUM_DELTA_POWER_SYMS, LZMS_DELTA_POWER_CODE_REBUILD_FREQ); /* Initialize range encoders, all of which wrap around the same * lzms_range_encoder_raw. */ - lzms_init_range_encoder(&ctx->main_range_encoder, - &ctx->rc, LZMS_NUM_MAIN_STATES); + lzms_init_range_encoder(&c->main_range_encoder, + &c->rc, LZMS_NUM_MAIN_STATES); - lzms_init_range_encoder(&ctx->match_range_encoder, - &ctx->rc, LZMS_NUM_MATCH_STATES); + lzms_init_range_encoder(&c->match_range_encoder, + &c->rc, LZMS_NUM_MATCH_STATES); - lzms_init_range_encoder(&ctx->lz_match_range_encoder, - &ctx->rc, LZMS_NUM_LZ_MATCH_STATES); + lzms_init_range_encoder(&c->lz_match_range_encoder, + &c->rc, LZMS_NUM_LZ_MATCH_STATES); - for (size_t i = 0; i < ARRAY_LEN(ctx->lz_repeat_match_range_encoders); i++) - lzms_init_range_encoder(&ctx->lz_repeat_match_range_encoders[i], - &ctx->rc, LZMS_NUM_LZ_REPEAT_MATCH_STATES); + for (unsigned i = 0; i < ARRAY_LEN(c->lz_repeat_match_range_encoders); i++) + lzms_init_range_encoder(&c->lz_repeat_match_range_encoders[i], + &c->rc, LZMS_NUM_LZ_REPEAT_MATCH_STATES); - lzms_init_range_encoder(&ctx->delta_match_range_encoder, - &ctx->rc, LZMS_NUM_DELTA_MATCH_STATES); + lzms_init_range_encoder(&c->delta_match_range_encoder, + &c->rc, LZMS_NUM_DELTA_MATCH_STATES); - for (size_t i = 0; i < ARRAY_LEN(ctx->delta_repeat_match_range_encoders); i++) - lzms_init_range_encoder(&ctx->delta_repeat_match_range_encoders[i], - &ctx->rc, LZMS_NUM_DELTA_REPEAT_MATCH_STATES); + for (unsigned i = 0; i < ARRAY_LEN(c->delta_repeat_match_range_encoders); i++) + lzms_init_range_encoder(&c->delta_repeat_match_range_encoders[i], + &c->rc, LZMS_NUM_DELTA_REPEAT_MATCH_STATES); - /* Initialize LRU match information. */ - lzms_init_lru_queues(&ctx->lru); + /* Set initial length costs for lengths < LZMS_NUM_FAST_LENGTHS. */ + lzms_update_fast_length_costs(c); } /* Flush the output streams, prepare the final compressed data, and return its @@ -1263,65 +1331,77 @@ lzms_init_compressor(struct lzms_compressor *ctx, const u8 *udata, u32 ulen, * A return value of 0 indicates that the data could not be compressed to fit in * the available space. */ static size_t -lzms_finalize(struct lzms_compressor *ctx, u8 *cdata, size_t csize_avail) +lzms_finalize(struct lzms_compressor *c, u8 *cdata, size_t csize_avail) { size_t num_forwards_bytes; size_t num_backwards_bytes; - size_t compressed_size; /* Flush both the forwards and backwards streams, and make sure they * didn't cross each other and start overwriting each other's data. */ - if (!lzms_output_bitstream_flush(&ctx->os)) { - LZMS_DEBUG("Backwards bitstream overrun."); + if (!lzms_output_bitstream_flush(&c->os)) return 0; - } - if (!lzms_range_encoder_raw_flush(&ctx->rc)) { - LZMS_DEBUG("Forwards bitstream overrun."); + if (!lzms_range_encoder_raw_flush(&c->rc)) return 0; - } - if (ctx->rc.out > ctx->os.out) { - LZMS_DEBUG("Two bitstreams crossed."); + if (c->rc.next > c->os.next) return 0; - } /* Now the compressed buffer contains the data output by the forwards * bitstream, then empty space, then data output by the backwards * bitstream. Move the data output by the backwards bitstream to be * adjacent to the data output by the forward bitstream, and calculate * the compressed size that this results in. */ - num_forwards_bytes = (u8*)ctx->rc.out - (u8*)cdata; - num_backwards_bytes = ((u8*)cdata + csize_avail) - (u8*)ctx->os.out; + num_forwards_bytes = (u8*)c->rc.next - (u8*)cdata; + num_backwards_bytes = ((u8*)cdata + csize_avail) - (u8*)c->os.next; - memmove(cdata + num_forwards_bytes, ctx->os.out, num_backwards_bytes); + memmove(cdata + num_forwards_bytes, c->os.next, num_backwards_bytes); - compressed_size = num_forwards_bytes + num_backwards_bytes; - LZMS_DEBUG("num_forwards_bytes=%zu, num_backwards_bytes=%zu, " - "compressed_size=%zu", - num_forwards_bytes, num_backwards_bytes, compressed_size); - LZMS_ASSERT(compressed_size % 2 == 0); - return compressed_size; + return num_forwards_bytes + num_backwards_bytes; } - +/* Set internal compression parameters for the specified compression level and + * maximum window size. */ static void lzms_build_params(unsigned int compression_level, - struct lzms_compressor_params *lzms_params) + struct lzms_compressor_params *params) { - lzms_params->min_match_length = (compression_level >= 50) ? 2 : 3; - lzms_params->nice_match_length = ((u64)compression_level * 32) / 50; - lzms_params->max_search_depth = ((u64)compression_level * 50) / 50; - lzms_params->optim_array_length = 224 + compression_level * 16; + /* Allow length 2 matches if the compression level is sufficiently high. + */ + if (compression_level >= 45) + params->min_match_length = 2; + else + params->min_match_length = 3; + + /* Scale nice_match_length and max_search_depth with the compression + * level. But to allow an optimization on length cost calculations, + * don't allow nice_match_length to exceed LZMS_NUM_FAST_LENGTH. */ + params->nice_match_length = ((u64)compression_level * 32) / 50; + if (params->nice_match_length < params->min_match_length) + params->nice_match_length = params->min_match_length; + if (params->nice_match_length > LZMS_NUM_FAST_LENGTHS) + params->nice_match_length = LZMS_NUM_FAST_LENGTHS; + params->max_search_depth = compression_level; + + params->optim_array_length = 1024; } +/* Given the internal compression parameters and maximum window size, build the + * Lempel-Ziv match-finder parameters. */ static void lzms_build_mf_params(const struct lzms_compressor_params *lzms_params, u32 max_window_size, struct lz_mf_params *mf_params) { memset(mf_params, 0, sizeof(*mf_params)); - mf_params->algorithm = LZ_MF_DEFAULT; + /* Choose an appropriate match-finding algorithm. */ + if (max_window_size <= 2097152) + mf_params->algorithm = LZ_MF_BINARY_TREES; + else if (max_window_size <= 33554432) + mf_params->algorithm = LZ_MF_LCP_INTERVAL_TREE; + else + mf_params->algorithm = LZ_MF_LINKED_SUFFIX_ARRAY; + mf_params->max_window_size = max_window_size; mf_params->min_match_len = lzms_params->min_match_length; mf_params->max_search_depth = lzms_params->max_search_depth; @@ -1329,21 +1409,34 @@ lzms_build_mf_params(const struct lzms_compressor_params *lzms_params, } static void -lzms_free_compressor(void *_ctx); +lzms_free_compressor(void *_c); static u64 lzms_get_needed_memory(size_t max_block_size, unsigned int compression_level) { struct lzms_compressor_params params; + struct lz_mf_params mf_params; + u64 size = 0; - lzms_build_params(compression_level, ¶ms); + if (max_block_size >= INT32_MAX) + return 0; - u64 size = 0; + lzms_build_params(compression_level, ¶ms); + lzms_build_mf_params(¶ms, max_block_size, &mf_params); size += sizeof(struct lzms_compressor); + + /* cur_window */ size += max_block_size; - size += lz_mf_get_needed_memory(LZ_MF_DEFAULT, max_block_size); - size += params.max_search_depth * sizeof(struct lz_match); + + /* mf */ + size += lz_mf_get_needed_memory(mf_params.algorithm, max_block_size); + + /* matches */ + size += min(params.max_search_depth, params.nice_match_length) * + sizeof(struct lz_match); + + /* optimum */ size += (params.optim_array_length + params.nice_match_length) * sizeof(struct lzms_mc_pos_data); @@ -1354,7 +1447,7 @@ static int lzms_create_compressor(size_t max_block_size, unsigned int compression_level, void **ctx_ret) { - struct lzms_compressor *ctx; + struct lzms_compressor *c; struct lzms_compressor_params params; struct lz_mf_params mf_params; @@ -1366,60 +1459,56 @@ lzms_create_compressor(size_t max_block_size, unsigned int compression_level, if (!lz_mf_params_valid(&mf_params)) return WIMLIB_ERR_INVALID_PARAM; - ctx = CALLOC(1, sizeof(struct lzms_compressor)); - if (!ctx) + c = CALLOC(1, sizeof(struct lzms_compressor)); + if (!c) goto oom; - ctx->params = params; - ctx->max_block_size = max_block_size; + c->params = params; - ctx->window = MALLOC(max_block_size); - if (!ctx->window) + c->cur_window = MALLOC(max_block_size); + if (!c->cur_window) goto oom; - ctx->mf = lz_mf_alloc(&mf_params); - if (!ctx->mf) + c->mf = lz_mf_alloc(&mf_params); + if (!c->mf) goto oom; - ctx->matches = MALLOC(params.max_search_depth * sizeof(struct lz_match)); - if (!ctx->matches) + c->matches = MALLOC(min(params.max_search_depth, + params.nice_match_length) * + sizeof(struct lz_match)); + if (!c->matches) goto oom; - ctx->optimum = MALLOC((params.optim_array_length + - params.nice_match_length) * - sizeof(struct lzms_mc_pos_data)); - if (!ctx->optimum) + c->optimum = MALLOC((params.optim_array_length + + params.nice_match_length) * + sizeof(struct lzms_mc_pos_data)); + if (!c->optimum) goto oom; + c->optimum_end = &c->optimum[params.optim_array_length]; - /* Initialize position and length slot data if not done already. */ lzms_init_slots(); - /* Initialize range encoding cost table if not done already. */ lzms_init_rc_costs(); - *ctx_ret = ctx; + lzms_init_fast_slots(c); + + *ctx_ret = c; return 0; oom: - lzms_free_compressor(ctx); + lzms_free_compressor(c); return WIMLIB_ERR_NOMEM; } static size_t lzms_compress(const void *uncompressed_data, size_t uncompressed_size, - void *compressed_data, size_t compressed_size_avail, void *_ctx) + void *compressed_data, size_t compressed_size_avail, void *_c) { - struct lzms_compressor *ctx = _ctx; - size_t compressed_size; - - LZMS_DEBUG("uncompressed_size=%zu, compressed_size_avail=%zu", - uncompressed_size, compressed_size_avail); + struct lzms_compressor *c = _c; /* Don't bother compressing extremely small inputs. */ - if (uncompressed_size < 4) { - LZMS_DEBUG("Input too small to bother compressing."); + if (uncompressed_size < 4) return 0; - } /* Cap the available compressed size to a 32-bit integer and round it * down to the nearest multiple of 2. */ @@ -1429,43 +1518,35 @@ lzms_compress(const void *uncompressed_data, size_t uncompressed_size, compressed_size_avail--; /* Initialize the compressor structures. */ - lzms_init_compressor(ctx, uncompressed_data, uncompressed_size, - compressed_data, compressed_size_avail / 2); + lzms_prepare_compressor(c, uncompressed_data, uncompressed_size, + compressed_data, compressed_size_avail / 2); /* Preprocess the uncompressed data. */ - lzms_x86_filter(ctx->window, ctx->window_size, - ctx->last_target_usages, false); + lzms_x86_filter(c->cur_window, c->cur_window_size, + c->last_target_usages, false); + + /* Load the window into the match-finder. */ + lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size); /* Compute and encode a literal/match sequence that decompresses to the * preprocessed data. */ - lzms_encode(ctx); - - /* Get and return the compressed data size. */ - compressed_size = lzms_finalize(ctx, compressed_data, - compressed_size_avail); - - if (compressed_size == 0) { - LZMS_DEBUG("Data did not compress to requested size or less."); - return 0; - } - - LZMS_DEBUG("Compressed %zu => %zu bytes", - uncompressed_size, compressed_size); + lzms_near_optimal_parse(c); - return compressed_size; + /* Return the compressed data size or 0. */ + return lzms_finalize(c, compressed_data, compressed_size_avail); } static void -lzms_free_compressor(void *_ctx) +lzms_free_compressor(void *_c) { - struct lzms_compressor *ctx = _ctx; - - if (ctx) { - FREE(ctx->window); - lz_mf_free(ctx->mf); - FREE(ctx->matches); - FREE(ctx->optimum); - FREE(ctx); + struct lzms_compressor *c = _c; + + if (c) { + FREE(c->cur_window); + lz_mf_free(c->mf); + FREE(c->matches); + FREE(c->optimum); + FREE(c); } }