X-Git-Url: https://wimlib.net/git/?p=wimlib;a=blobdiff_plain;f=include%2Fwimlib%2Fdecompress_common.h;h=a06ede1457359efe7a16de0573969f0418c6ffcc;hp=856c64117c6cf432cbdb3be761a0ea2f3433f70a;hb=32158cb5b4df58eb71a1986762e5aaf12bce9d30;hpb=56f882a80475fbe170f3d580400eb6f011ec5dfb diff --git a/include/wimlib/decompress_common.h b/include/wimlib/decompress_common.h index 856c6411..a06ede14 100644 --- a/include/wimlib/decompress_common.h +++ b/include/wimlib/decompress_common.h @@ -3,150 +3,195 @@ * * Header for decompression code shared by multiple compression formats. * - * The author dedicates this file to the public domain. - * You can do whatever you want with this file. + * The following copying information applies to this specific source code file: + * + * Written in 2012-2016 by Eric Biggers + * + * To the extent possible under law, the author(s) have dedicated all copyright + * and related and neighboring rights to this software to the public domain + * worldwide via the Creative Commons Zero 1.0 Universal Public Domain + * Dedication (the "CC0"). + * + * This software is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS + * FOR A PARTICULAR PURPOSE. See the CC0 for more details. + * + * You should have received a copy of the CC0 along with this software; if not + * see . */ #ifndef _WIMLIB_DECOMPRESS_COMMON_H #define _WIMLIB_DECOMPRESS_COMMON_H -#include "wimlib/assert.h" +#include + #include "wimlib/compiler.h" -#include "wimlib/endianness.h" #include "wimlib/types.h" +#include "wimlib/unaligned.h" -/* Structure to encapsulate a block of in-memory data that is being interpreted - * as a stream of bits. - * - * This is geared specifically towards the XPRESS and LZX compression formats - * with regards to the actual ordering the bits within the byte sequence. */ +/* Structure that encapsulates a block of in-memory data being interpreted as a + * stream of bits, optionally with interwoven literal bytes. Bits are assumed + * to be stored in little endian 16-bit coding units, with the bits ordered high + * to low. */ struct input_bitstream { - /* A variable of length at least 32 bits that is used to hold bits that - * have been read from the stream. The bits are ordered from high-order - * to low-order, and the next bit is always the high-order bit. */ + /* Bits that have been read from the input buffer. The bits are + * left-justified; the next bit is always bit 31. */ u32 bitbuf; - /* Number of bits in @bitbuf that are valid. */ - unsigned bitsleft; + /* Number of bits currently held in @bitbuf. */ + u32 bitsleft; - /* Pointer to the next byte to be retrieved from the input. */ - const u8 *data; + /* Pointer to the next byte to be retrieved from the input buffer. */ + const u8 *next; - /* Number of bytes of data that are left. */ - u32 data_bytes_left; + /* Pointer past the end of the input buffer. */ + const u8 *end; }; -/* Initializes a bitstream to receive its input from @data. */ +/* Initialize a bitstream to read from the specified input buffer. */ static inline void -init_input_bitstream(struct input_bitstream *istream, - const void *data, u32 num_data_bytes) +init_input_bitstream(struct input_bitstream *is, const void *buffer, u32 size) { - istream->bitbuf = 0; - istream->bitsleft = 0; - istream->data = data; - istream->data_bytes_left = num_data_bytes; + is->bitbuf = 0; + is->bitsleft = 0; + is->next = buffer; + is->end = is->next + size; } -/* Ensures the bit buffer variable for the bitstream contains at least @num_bits +/* Note: for performance reasons, the following methods don't return error codes + * to the caller if the input buffer is overrun. Instead, they just assume that + * all overrun data is zeroes. This has no effect on well-formed compressed + * data. The only disadvantage is that bad compressed data may go undetected, + * but even this is irrelevant if higher level code checksums the uncompressed + * data anyway. */ + +/* Ensure the bit buffer variable for the bitstream contains at least @num_bits * bits. Following this, bitstream_peek_bits() and/or bitstream_remove_bits() - * may be called on the bitstream to peek or remove up to @num_bits bits. - * - * If the input data is exhausted, any further bits are assumed to be 0. */ + * may be called on the bitstream to peek or remove up to @num_bits bits. */ static inline void -bitstream_ensure_bits(struct input_bitstream *istream, const unsigned num_bits) +bitstream_ensure_bits(struct input_bitstream *is, const unsigned num_bits) { - u16 nextword; - unsigned shift; - /* This currently works for at most 17 bits. */ - wimlib_assert2(num_bits <= 17); - if (istream->bitsleft >= num_bits) + if (is->bitsleft >= num_bits) return; - if (unlikely(istream->data_bytes_left < 2)) { - istream->bitsleft = num_bits; - return; - } + if (unlikely(is->end - is->next < 2)) + goto overflow; - nextword = le16_to_cpu(*(const le16*)istream->data); - shift = sizeof(istream->bitbuf) * 8 - 16 - istream->bitsleft; - istream->bitbuf |= (u32)nextword << shift; - istream->data += 2; - istream->bitsleft += 16; - istream->data_bytes_left -= 2; - - /* Help the compiler: If it's known at compile-time that num_bits <= 16, - * a second word will never be needed. */ - if (!(is_constant(num_bits) && num_bits <= 16) && - unlikely(istream->bitsleft < num_bits)) - { - if (unlikely(istream->data_bytes_left < 2)) { - istream->bitsleft = num_bits; - return; - } - nextword = le16_to_cpu(*(const le16*)istream->data); - shift = sizeof(istream->bitbuf) * 8 - 16 - istream->bitsleft; - istream->bitbuf |= (u32)nextword << shift; - istream->data += 2; - istream->bitsleft += 16; - istream->data_bytes_left -= 2; + is->bitbuf |= (u32)get_unaligned_le16(is->next) << (16 - is->bitsleft); + is->next += 2; + is->bitsleft += 16; + + if (unlikely(num_bits == 17 && is->bitsleft == 16)) { + if (unlikely(is->end - is->next < 2)) + goto overflow; + + is->bitbuf |= (u32)get_unaligned_le16(is->next); + is->next += 2; + is->bitsleft = 32; } + + return; + +overflow: + is->bitsleft = 32; } -/* Returns the next @num_bits bits from the bitstream, without removing them. +/* Return the next @num_bits bits from the bitstream, without removing them. * There must be at least @num_bits remaining in the buffer variable, from a * previous call to bitstream_ensure_bits(). */ static inline u32 -bitstream_peek_bits(const struct input_bitstream *istream, unsigned num_bits) +bitstream_peek_bits(const struct input_bitstream *is, const unsigned num_bits) { - if (unlikely(num_bits == 0)) - return 0; - return istream->bitbuf >> (sizeof(istream->bitbuf) * 8 - num_bits); + return (is->bitbuf >> 1) >> (sizeof(is->bitbuf) * 8 - num_bits - 1); } -/* Removes @num_bits from the bitstream. There must be at least @num_bits +/* Remove @num_bits from the bitstream. There must be at least @num_bits * remaining in the buffer variable, from a previous call to * bitstream_ensure_bits(). */ static inline void -bitstream_remove_bits(struct input_bitstream *istream, unsigned num_bits) +bitstream_remove_bits(struct input_bitstream *is, unsigned num_bits) { - istream->bitbuf <<= num_bits; - istream->bitsleft -= num_bits; + is->bitbuf <<= num_bits; + is->bitsleft -= num_bits; } -/* Removes and returns @num_bits bits from the bitstream. There must be at - * least @num_bits remaining in the buffer variable, from a previous call to +/* Remove and return @num_bits bits from the bitstream. There must be at least + * @num_bits remaining in the buffer variable, from a previous call to * bitstream_ensure_bits(). */ static inline u32 -bitstream_pop_bits(struct input_bitstream *istream, unsigned num_bits) +bitstream_pop_bits(struct input_bitstream *is, unsigned num_bits) { - u32 n = bitstream_peek_bits(istream, num_bits); - bitstream_remove_bits(istream, num_bits); - return n; + u32 bits = bitstream_peek_bits(is, num_bits); + bitstream_remove_bits(is, num_bits); + return bits; } -/* Reads and returns the next @num_bits bits from the bitstream. - * If the input data is exhausted, the bits are assumed to be 0. */ +/* Read and return the next @num_bits bits from the bitstream. */ static inline u32 -bitstream_read_bits(struct input_bitstream *istream, unsigned num_bits) +bitstream_read_bits(struct input_bitstream *is, unsigned num_bits) { - bitstream_ensure_bits(istream, num_bits); - return bitstream_pop_bits(istream, num_bits); + bitstream_ensure_bits(is, num_bits); + return bitstream_pop_bits(is, num_bits); } -/* Reads and returns the next literal byte embedded in the bitstream. - * If the input data is exhausted, the byte is assumed to be 0. */ +/* Read and return the next literal byte embedded in the bitstream. */ static inline u8 -bitstream_read_byte(struct input_bitstream *istream) +bitstream_read_byte(struct input_bitstream *is) +{ + if (unlikely(is->end == is->next)) + return 0; + return *is->next++; +} + +/* Read and return the next 16-bit integer embedded in the bitstream. */ +static inline u16 +bitstream_read_u16(struct input_bitstream *is) +{ + u16 v; + + if (unlikely(is->end - is->next < 2)) + return 0; + v = get_unaligned_le16(is->next); + is->next += 2; + return v; +} + +/* Read and return the next 32-bit integer embedded in the bitstream. */ +static inline u32 +bitstream_read_u32(struct input_bitstream *is) { - if (unlikely(istream->data_bytes_left == 0)) + u32 v; + + if (unlikely(is->end - is->next < 4)) return 0; - istream->data_bytes_left--; - return *istream->data++; + v = get_unaligned_le32(is->next); + is->next += 4; + return v; +} + +/* Read into @dst_buffer an array of literal bytes embedded in the bitstream. + * Return either a pointer to the byte past the last written, or NULL if the + * read overflows the input buffer. */ +static inline void * +bitstream_read_bytes(struct input_bitstream *is, void *dst_buffer, size_t count) +{ + if (unlikely(is->end - is->next < count)) + return NULL; + memcpy(dst_buffer, is->next, count); + is->next += count; + return (u8 *)dst_buffer + count; } +/* Align the input bitstream on a coding-unit boundary. */ +static inline void +bitstream_align(struct input_bitstream *is) +{ + is->bitsleft = 0; + is->bitbuf = 0; +} /* Needed alignment of decode_table parameter to make_huffman_decode_table(). * @@ -179,14 +224,14 @@ bitstream_read_byte(struct input_bitstream *istream) * input data is exhausted, the Huffman symbol is decoded as if the missing bits * are all zeroes. * - * XXX: This is mostly duplicated in lzms_huffman_decode_symbol() in - * lzms-decompress.c. */ -static inline u16 + * XXX: This is mostly duplicated in lzms_decode_huffman_symbol() in + * lzms_decompress.c. */ +static inline unsigned read_huffsym(struct input_bitstream *istream, const u16 decode_table[], unsigned table_bits, unsigned max_codeword_len) { - u16 entry; - u16 key_bits; + unsigned entry; + unsigned key_bits; bitstream_ensure_bits(istream, max_codeword_len); @@ -218,9 +263,28 @@ make_huffman_decode_table(u16 decode_table[], unsigned num_syms, unsigned num_bits, const u8 lens[], unsigned max_codeword_len); +static inline void +copy_word_unaligned(const void *src, void *dst) +{ + store_word_unaligned(load_word_unaligned(src), dst); +} + +static inline machine_word_t +repeat_byte(u8 b) +{ + machine_word_t v; + + STATIC_ASSERT(WORDBITS == 32 || WORDBITS == 64); + + v = b; + v |= v << 8; + v |= v << 16; + v |= v << ((WORDBITS == 64) ? 32 : 0); + return v; +} /* - * Copy a LZ77 match at (dst - offset) to dst. + * Copy an LZ77 match at (dst - offset) to dst. * * The length and offset must be already validated --- that is, (dst - offset) * can't underrun the output buffer, and (dst + length) can't overrun the output @@ -230,41 +294,86 @@ make_huffman_decode_table(u16 decode_table[], unsigned num_syms, * This function won't write any data beyond this position. */ static inline void -lz_copy(u8 *dst, u32 length, u32 offset, const u8 *winend) +lz_copy(u8 *dst, u32 length, u32 offset, const u8 *winend, u32 min_length) { const u8 *src = dst - offset; -#if defined(__x86_64__) || defined(__i386__) - /* Copy one 'unsigned long' at a time. On i386 and x86_64 this is + const u8 * const end = dst + length; + + /* + * Try to copy one machine word at a time. On i386 and x86_64 this is * faster than copying one byte at a time, unless the data is * near-random and all the matches have very short lengths. Note that * since this requires unaligned memory accesses, it won't necessarily * be faster on every architecture. * * Also note that we might copy more than the length of the match. For - * example, if an 'unsigned long' is 8 bytes and the match is of length - * 5, then we'll simply copy 8 bytes. This is okay as long as we don't - * write beyond the end of the output buffer, hence the check for - * (winend - (dst + length) >= sizeof(unsigned long) - 1). */ - if (offset >= sizeof(unsigned long) && - winend - (dst + length) >= sizeof(unsigned long) - 1) - { - /* Access memory through a packed struct. This tricks the - * compiler into allowing unaligned memory accesses. */ - struct ulong_wrapper { - unsigned long v; - } _packed_attribute; - - const u8 *end = dst + length; - do { - unsigned long v = ((struct ulong_wrapper *)src)->v; - ((struct ulong_wrapper *)dst)->v = v; - dst += sizeof(unsigned long); - src += sizeof(unsigned long); - } while (dst < end); + * example, if a word is 8 bytes and the match is of length 5, then + * we'll simply copy 8 bytes. This is okay as long as we don't write + * beyond the end of the output buffer, hence the check for (winend - + * end >= WORDBYTES - 1). + */ + if (UNALIGNED_ACCESS_IS_FAST && likely(winend - end >= WORDBYTES - 1)) { + + if (offset >= WORDBYTES) { + /* The source and destination words don't overlap. */ + + /* To improve branch prediction, one iteration of this + * loop is unrolled. Most matches are short and will + * fail the first check. But if that check passes, then + * it becomes increasing likely that the match is long + * and we'll need to continue copying. */ + + copy_word_unaligned(src, dst); + src += WORDBYTES; + dst += WORDBYTES; + + if (dst < end) { + do { + copy_word_unaligned(src, dst); + src += WORDBYTES; + dst += WORDBYTES; + } while (dst < end); + } + return; + } else if (offset == 1) { + + /* Offset 1 matches are equivalent to run-length + * encoding of the previous byte. This case is common + * if the data contains many repeated bytes. */ + + machine_word_t v = repeat_byte(*(dst - 1)); + do { + store_word_unaligned(v, dst); + src += WORDBYTES; + dst += WORDBYTES; + } while (dst < end); + return; + } + /* + * We don't bother with special cases for other 'offset < + * WORDBYTES', which are usually rarer than 'offset == 1'. + * Extra checks will just slow things down. Actually, it's + * possible to handle all the 'offset < WORDBYTES' cases using + * the same code, but it still becomes more complicated doesn't + * seem any faster overall; it definitely slows down the more + * common 'offset == 1' case. + */ + } - return; + /* Fall back to a bytewise copy. */ + + if (min_length >= 2) { + *dst++ = *src++; + length--; + } + if (min_length >= 3) { + *dst++ = *src++; + length--; + } + if (min_length >= 4) { + *dst++ = *src++; + length--; } -#endif do { *dst++ = *src++; } while (--length);