]> wimlib.net Git - wimlib/blobdiff - src/lzx_compress.c
lzx_common: make lzx_offset_slot_base hold unadjusted offsets
[wimlib] / src / lzx_compress.c
index 6032f1e26f55621bc40a2c622efd6875d6106145..fdbce434cf794d7ccd3881b39c70bcb61c6d454b 100644 (file)
@@ -1,11 +1,11 @@
 /*
  * lzx_compress.c
  *
- * A compressor for the LZX compression format, as used in WIM files.
+ * A compressor for the LZX compression format, as used in WIM archives.
  */
 
 /*
- * Copyright (C) 2012, 2013, 2014 Eric Biggers
+ * Copyright (C) 2012-2016 Eric Biggers
  *
  * This file is free software; you can redistribute it and/or modify it under
  * the terms of the GNU Lesser General Public License as published by the Free
  * This file contains a compressor for the LZX ("Lempel-Ziv eXtended")
  * compression format, as used in the WIM (Windows IMaging) file format.
  *
- * Two different parsing algorithms are implemented: "near-optimal" and "lazy".
- * "Near-optimal" is significantly slower than "lazy", but results in a better
- * compression ratio.  The "near-optimal" algorithm is used at the default
- * compression level.
+ * Two different LZX-compatible algorithms are implemented: "near-optimal" and
+ * "lazy".  "Near-optimal" is significantly slower than "lazy", but results in a
+ * better compression ratio.  The "near-optimal" algorithm is used at the
+ * default compression level.
  *
  * This file may need some slight modifications to be used outside of the WIM
  * format.  In particular, in other situations the LZX block header might be
- * slightly different, and a sliding window rather than a fixed-size window
- * might be required.
+ * slightly different, and sliding window support might be required.
  *
- * Note: LZX is a compression format derived from DEFLATE, the format used by
- * zlib and gzip.  Both LZX and DEFLATE use LZ77 matching and Huffman coding.
- * Certain details are quite similar, such as the method for storing Huffman
- * codes.  However, the main differences are:
+ * LZX is a compression format derived from DEFLATE, the format used by zlib and
+ * gzip.  Both LZX and DEFLATE use LZ77 matching and Huffman coding.  Certain
+ * details are quite similar, such as the method for storing Huffman codes.
+ * However, the main differences are:
  *
  * - LZX preprocesses the data to attempt to make x86 machine code slightly more
  *   compressible before attempting to compress it further.
  *   ("verbatim" and "aligned").
  *
  * - LZX has a minimum match length of 2 rather than 3.  Length 2 matches can be
- *   useful, but generally only if the parser is smart about choosing them.
+ *   useful, but generally only if the compressor is smart about choosing them.
  *
  * - In LZX, offset slots 0 through 2 actually represent entries in an LRU queue
  *   of match offsets.  This is very useful for certain types of files, such as
  *   binary files that have repeating records.
  */
 
+/******************************************************************************/
+/*                            General parameters                              */
+/*----------------------------------------------------------------------------*/
+
+/*
+ * The compressor uses the faster algorithm at levels <= MAX_FAST_LEVEL.  It
+ * uses the slower algorithm at levels > MAX_FAST_LEVEL.
+ */
+#define MAX_FAST_LEVEL                         34
+
+/*
+ * The compressor-side limits on the codeword lengths (in bits) for each Huffman
+ * code.  To make outputting bits slightly faster, some of these limits are
+ * lower than the limits defined by the LZX format.  This does not significantly
+ * affect the compression ratio.
+ */
+#define MAIN_CODEWORD_LIMIT                    16
+#define LENGTH_CODEWORD_LIMIT                  12
+#define ALIGNED_CODEWORD_LIMIT                 7
+#define PRE_CODEWORD_LIMIT                     7
+
+
+/******************************************************************************/
+/*                         Block splitting parameters                         */
+/*----------------------------------------------------------------------------*/
+
+/*
+ * The compressor always outputs blocks of at least this size in bytes, except
+ * for the last block which may need to be smaller.
+ */
+#define MIN_BLOCK_SIZE                         6500
+
+/*
+ * The compressor attempts to end a block when it reaches this size in bytes.
+ * The final size might be slightly larger due to matches extending beyond the
+ * end of the block.  Specifically:
+ *
+ *  - The near-optimal compressor may choose a match of up to LZX_MAX_MATCH_LEN
+ *    bytes starting at position 'SOFT_MAX_BLOCK_SIZE - 1'.
+ *
+ *  - The lazy compressor may choose a sequence of literals starting at position
+ *    'SOFT_MAX_BLOCK_SIZE - 1' when it sees a sequence of increasingly better
+ *    matches.  The final match may be up to LZX_MAX_MATCH_LEN bytes.  The
+ *    length of the literal sequence is approximately limited by the "nice match
+ *    length" parameter.
+ */
+#define SOFT_MAX_BLOCK_SIZE                    100000
+
+/*
+ * The number of observed items (matches and literals) that represents
+ * sufficient data for the compressor to decide whether the current block should
+ * be ended or not.
+ */
+#define NUM_OBSERVATIONS_PER_BLOCK_CHECK       400
+
+
+/******************************************************************************/
+/*                      Parameters for slower algorithm                       */
+/*----------------------------------------------------------------------------*/
+
+/*
+ * The log base 2 of the number of entries in the hash table for finding length
+ * 2 matches.  This could be as high as 16, but using a smaller hash table
+ * speeds up compression due to reduced cache pressure.
+ */
+#define BT_MATCHFINDER_HASH2_ORDER             12
+
+/*
+ * The number of lz_match structures in the match cache, excluding the extra
+ * "overflow" entries.  This value should be high enough so that nearly the
+ * time, all matches found in a given block can fit in the match cache.
+ * However, fallback behavior (immediately terminating the block) on cache
+ * overflow is still required.
+ */
+#define CACHE_LENGTH                           (SOFT_MAX_BLOCK_SIZE * 5)
+
+/*
+ * An upper bound on the number of matches that can ever be saved in the match
+ * cache for a single position.  Since each match we save for a single position
+ * has a distinct length, we can use the number of possible match lengths in LZX
+ * as this bound.  This bound is guaranteed to be valid in all cases, although
+ * if 'nice_match_length < LZX_MAX_MATCH_LEN', then it will never actually be
+ * reached.
+ */
+#define MAX_MATCHES_PER_POS                    LZX_NUM_LENS
+
+/*
+ * A scaling factor that makes it possible to consider fractional bit costs.  A
+ * single bit has a cost of BIT_COST.
+ *
+ * Note: this is only useful as a statistical trick for when the true costs are
+ * unknown.  Ultimately, each token in LZX requires a whole number of bits to
+ * output.
+ */
+#define BIT_COST                               64
+
+/*
+ * Should the compressor take into account the costs of aligned offset symbols
+ * instead of assuming that all are equally likely?
+ */
+#define CONSIDER_ALIGNED_COSTS                 1
+
+/*
+ * Should the "minimum" cost path search algorithm consider "gap" matches, where
+ * a normal match is followed by a literal, then by a match with the same
+ * offset?  This is one specific, somewhat common situation in which the true
+ * minimum cost path is often different from the path found by looking only one
+ * edge ahead.
+ */
+#define CONSIDER_GAP_MATCHES                   1
+
+/******************************************************************************/
+/*                                  Includes                                  */
+/*----------------------------------------------------------------------------*/
+
 #ifdef HAVE_CONFIG_H
 #  include "config.h"
 #endif
 
 #include "wimlib/compress_common.h"
 #include "wimlib/compressor_ops.h"
-#include "wimlib/endianness.h"
 #include "wimlib/error.h"
-#include "wimlib/lz_mf.h"
-#include "wimlib/lz_repsearch.h"
+#include "wimlib/lz_extend.h"
 #include "wimlib/lzx_common.h"
+#include "wimlib/unaligned.h"
 #include "wimlib/util.h"
 
-#include <string.h>
-#include <limits.h>
-
-#define LZX_OPTIM_ARRAY_LENGTH 4096
-
-#define LZX_DIV_BLOCK_SIZE     32768
+/* Note: BT_MATCHFINDER_HASH2_ORDER must be defined before including
+ * bt_matchfinder.h. */
 
-#define LZX_CACHE_PER_POS      8
+/* Matchfinders with 16-bit positions */
+#define mf_pos_t       u16
+#define MF_SUFFIX      _16
+#include "wimlib/bt_matchfinder.h"
+#include "wimlib/hc_matchfinder.h"
 
-#define LZX_MAX_MATCHES_PER_POS        (LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1)
+/* Matchfinders with 32-bit positions */
+#undef mf_pos_t
+#undef MF_SUFFIX
+#define mf_pos_t       u32
+#define MF_SUFFIX      _32
+#include "wimlib/bt_matchfinder.h"
+#include "wimlib/hc_matchfinder.h"
 
-#define LZX_CACHE_LEN (LZX_DIV_BLOCK_SIZE * (LZX_CACHE_PER_POS + 1))
+/******************************************************************************/
+/*                            Compressor structure                            */
+/*----------------------------------------------------------------------------*/
 
-struct lzx_compressor;
-
-/* Codewords for the LZX Huffman codes.  */
+/* Codewords for the Huffman codes */
 struct lzx_codewords {
        u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
        u32 len[LZX_LENCODE_NUM_SYMBOLS];
        u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* Codeword lengths (in bits) for the LZX Huffman codes.
- * A zero length means the corresponding codeword has zero frequency.  */
+/*
+ * Codeword lengths, in bits, for the Huffman codes.
+ *
+ * A codeword length of 0 means the corresponding codeword has zero frequency.
+ *
+ * The main and length codes each have one extra entry for use as a sentinel.
+ * See lzx_write_compressed_code().
+ */
 struct lzx_lens {
-       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
-       u8 len[LZX_LENCODE_NUM_SYMBOLS];
-       u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
-};
-
-/* Estimated cost, in bits, to output each symbol in the LZX Huffman codes.  */
-struct lzx_costs {
-       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
-       u8 len[LZX_LENCODE_NUM_SYMBOLS];
+       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS + 1];
+       u8 len[LZX_LENCODE_NUM_SYMBOLS + 1];
        u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* Codewords and lengths for the LZX Huffman codes.  */
+/* Codewords and lengths for the Huffman codes */
 struct lzx_codes {
        struct lzx_codewords codewords;
        struct lzx_lens lens;
 };
 
-/* Symbol frequency counters for the LZX Huffman codes.  */
+/* Symbol frequency counters for the Huffman-encoded alphabets */
 struct lzx_freqs {
        u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
        u32 len[LZX_LENCODE_NUM_SYMBOLS];
        u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* Intermediate LZX match/literal format  */
-struct lzx_item {
-
-       /* Bits 0  -  9: Main symbol
-        * Bits 10 - 17: Length symbol
-        * Bits 18 - 22: Number of extra offset bits
-        * Bits 23+    : Extra offset bits  */
-       u64 data;
+/* Block split statistics.  See the "Block splitting algorithm" section later in
+ * this file for details. */
+#define NUM_LITERAL_OBSERVATION_TYPES 8
+#define NUM_MATCH_OBSERVATION_TYPES 2
+#define NUM_OBSERVATION_TYPES (NUM_LITERAL_OBSERVATION_TYPES + \
+                              NUM_MATCH_OBSERVATION_TYPES)
+struct lzx_block_split_stats {
+       u32 new_observations[NUM_OBSERVATION_TYPES];
+       u32 observations[NUM_OBSERVATION_TYPES];
+       u32 num_new_observations;
+       u32 num_observations;
 };
 
-/* Internal compression parameters  */
-struct lzx_compressor_params {
-       u32 (*choose_items_for_block)(struct lzx_compressor *, u32, u32);
-       u32 num_optim_passes;
-       enum lz_mf_algo mf_algo;
-       u32 min_match_length;
-       u32 nice_match_length;
-       u32 max_search_depth;
+/*
+ * Represents a run of literals followed by a match or end-of-block.  This
+ * structure is needed to temporarily store items chosen by the compressor,
+ * since items cannot be written until all items for the block have been chosen
+ * and the block's Huffman codes have been computed.
+ */
+struct lzx_sequence {
+
+       /* The number of literals in the run.  This may be 0.  The literals are
+        * not stored explicitly in this structure; instead, they are read
+        * directly from the uncompressed data.  */
+       u16 litrunlen;
+
+       /* If the next field doesn't indicate end-of-block, then this is the
+        * match length minus LZX_MIN_MATCH_LEN.  */
+       u16 adjusted_length;
+
+       /* If bit 31 is clear, then this field contains the match header in bits
+        * 0-8, and either the match offset plus LZX_OFFSET_ADJUSTMENT or a
+        * recent offset code in bits 9-30.  Otherwise (if bit 31 is set), this
+        * sequence's literal run was the last literal run in the block, so
+        * there is no match that follows it.  */
+       u32 adjusted_offset_and_match_hdr;
 };
 
 /*
- * Match chooser position data:
+ * This structure represents a byte position in the input buffer and a node in
+ * the graph of possible match/literal choices.
  *
- * An array of these structures is used during the near-optimal match-choosing
- * algorithm.  They correspond to consecutive positions in the window and are
- * used to keep track of the cost to reach each position, and the match/literal
- * choices that need to be chosen to reach that position.
+ * Logically, each incoming edge to this node is labeled with a literal or a
+ * match that can be taken to reach this position from an earlier position; and
+ * each outgoing edge from this node is labeled with a literal or a match that
+ * can be taken to advance from this position to a later position.
  */
-struct lzx_mc_pos_data {
+struct lzx_optimum_node {
 
        /* The cost, in bits, of the lowest-cost path that has been found to
         * reach this position.  This can change as progressively lower cost
         * paths are found to reach this position.  */
        u32 cost;
-#define MC_INFINITE_COST UINT32_MAX
 
-       /* The match or literal that was taken to reach this position.  This can
-        * change as progressively lower cost paths are found to reach this
-        * position.
+       /*
+        * The best arrival to this node, i.e. the match or literal that was
+        * used to arrive to this position at the given 'cost'.  This can change
+        * as progressively lower cost paths are found to reach this position.
         *
-        * This variable is divided into two bitfields.
+        * For non-gap matches, this variable is divided into two bitfields
+        * whose meanings depend on the item type:
         *
         * Literals:
-        *      Low bits are 1, high bits are the literal.
+        *      Low bits are 0, high bits are the literal.
         *
         * Explicit offset matches:
-        *      Low bits are the match length, high bits are the offset plus 2.
+        *      Low bits are the match length, high bits are the offset plus
+        *      LZX_OFFSET_ADJUSTMENT.
         *
         * Repeat offset matches:
         *      Low bits are the match length, high bits are the queue index.
+        *
+        * For gap matches, identified by OPTIMUM_GAP_MATCH set, special
+        * behavior applies --- see the code.
         */
-       u32 mc_item_data;
-#define MC_OFFSET_SHIFT 9
-#define MC_LEN_MASK ((1 << MC_OFFSET_SHIFT) - 1)
+       u32 item;
+#define OPTIMUM_OFFSET_SHIFT 9
+#define OPTIMUM_LEN_MASK ((1 << OPTIMUM_OFFSET_SHIFT) - 1)
+#if CONSIDER_GAP_MATCHES
+#  define OPTIMUM_GAP_MATCH 0x80000000
+#endif
 
-       /* The state of the LZX recent match offsets queue at this position.
-        * This is filled in lazily, only after the minimum-cost path to this
-        * position is found.
-        *
-        * Note: the way we handle this adaptive state in the "minimum-cost"
-        * parse is actually only an approximation.  It's possible for the
-        * globally optimal, minimum cost path to contain a prefix, ending at a
-        * position, where that path prefix is *not* the minimum cost path to
-        * that position.  This can happen if such a path prefix results in a
-        * different adaptive state which results in lower costs later.  We do
-        * not solve this problem; we only consider the lowest cost to reach
-        * each position, which seems to be an acceptable approximation.  */
-       struct lzx_lru_queue queue _aligned_attribute(16);
-
-} _aligned_attribute(16);
-
-/* State of the LZX compressor  */
+} _aligned_attribute(8);
+
+/* The cost model for near-optimal parsing */
+struct lzx_costs {
+
+       /*
+        * 'match_cost[offset_slot][len - LZX_MIN_MATCH_LEN]' is the cost of a
+        * length 'len' match which has an offset belonging to 'offset_slot'.
+        * The cost includes the main symbol, the length symbol if required, and
+        * the extra offset bits if any, excluding any entropy-coded bits
+        * (aligned offset bits).  It does *not* include the cost of the aligned
+        * offset symbol which may be required.
+        */
+       u16 match_cost[LZX_MAX_OFFSET_SLOTS][LZX_NUM_LENS];
+
+       /* Cost of each symbol in the main code */
+       u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+
+       /* Cost of each symbol in the length code */
+       u32 len[LZX_LENCODE_NUM_SYMBOLS];
+
+#if CONSIDER_ALIGNED_COSTS
+       /* Cost of each symbol in the aligned offset code */
+       u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+#endif
+};
+
+struct lzx_output_bitstream;
+
+/* The main LZX compressor structure */
 struct lzx_compressor {
 
-       /* Internal compression parameters  */
-       struct lzx_compressor_params params;
+       /* The buffer for preprocessed input data, if not using destructive
+        * compression */
+       void *in_buffer;
 
-       /* The preprocessed buffer of data being compressed  */
-       u8 *cur_window;
+       /* If true, then the compressor need not preserve the input buffer if it
+        * compresses the data successfully */
+       bool destructive;
 
-       /* Number of bytes of data to be compressed, which is the number of
-        * bytes of data in @cur_window that are actually valid.  */
-       u32 cur_window_size;
+       /* Pointer to the compress() implementation chosen at allocation time */
+       void (*impl)(struct lzx_compressor *, const u8 *, size_t,
+                    struct lzx_output_bitstream *);
 
-       /* log2 order of the LZX window size for LZ match offset encoding
-        * purposes.  Will be >= LZX_MIN_WINDOW_ORDER and <=
-        * LZX_MAX_WINDOW_ORDER.
-        *
-        * Note: 1 << @window_order is normally equal to @max_window_size,
-        * a.k.a. the allocated size of @cur_window, but it will be greater than
-        * @max_window_size in the event that the compressor was created with a
-        * non-power-of-2 block size.  (See lzx_get_window_order().)  */
+       /* The log base 2 of the window size for match offset encoding purposes.
+        * This will be >= LZX_MIN_WINDOW_ORDER and <= LZX_MAX_WINDOW_ORDER. */
        unsigned window_order;
 
-       /* Number of symbols in the main alphabet.  This depends on
-        * @window_order, since @window_order determines the maximum possible
-        * offset.  It does not, however, depend on the *actual* size of the
-        * current data buffer being processed, which might be less than 1 <<
-        * @window_order.  */
+       /* The number of symbols in the main alphabet.  This depends on the
+        * window order, since the window order determines the maximum possible
+        * match offset. */
        unsigned num_main_syms;
 
-       /* Lempel-Ziv match-finder  */
-       struct lz_mf *mf;
+       /* The "nice" match length: if a match of this length is found, then it
+        * is chosen immediately without further consideration. */
+       unsigned nice_match_length;
 
-       /* Match-finder wrapper functions and data for near-optimal parsing.
-        *
-        * When doing more than one match-choosing pass over the data, matches
-        * found by the match-finder are cached to achieve a slight speedup when
-        * the same matches are needed on subsequent passes.  This is suboptimal
-        * because different matches may be preferred with different cost
-        * models, but it is a very worthwhile speedup.  */
-       unsigned (*get_matches_func)(struct lzx_compressor *, const struct lz_match **);
-       void (*skip_bytes_func)(struct lzx_compressor *, unsigned n);
-       u32 match_window_pos;
-       u32 match_window_end;
-       struct lz_match *cached_matches;
-       struct lz_match *cache_ptr;
-       struct lz_match *cache_limit;
-
-       /* Position data for near-optimal parsing.  */
-       struct lzx_mc_pos_data optimum[LZX_OPTIM_ARRAY_LENGTH + LZX_MAX_MATCH_LEN];
-
-       /* The cost model currently being used for near-optimal parsing.  */
-       struct lzx_costs costs;
-
-       /* The current match offset LRU queue.  */
-       struct lzx_lru_queue queue;
-
-       /* Frequency counters for the current block.  */
+       /* The maximum search depth: at most this many potential matches are
+        * considered at each position. */
+       unsigned max_search_depth;
+
+       /* The number of optimization passes per block */
+       unsigned num_optim_passes;
+
+       /* The symbol frequency counters for the current block */
        struct lzx_freqs freqs;
 
-       /* The Huffman codes for the current and previous blocks.  */
-       struct lzx_codes codes[2];
+       /* Block split statistics for the current block */
+       struct lzx_block_split_stats split_stats;
 
-       /* Which 'struct lzx_codes' is being used for the current block.  The
-        * other was used for the previous block (if this isn't the first
-        * block).  */
-       unsigned int codes_index;
+       /* The Huffman codes for the current and previous blocks.  The one with
+        * index 'codes_index' is for the current block, and the other one is
+        * for the previous block. */
+       struct lzx_codes codes[2];
+       unsigned codes_index;
+
+       /* The matches and literals that the compressor has chosen for the
+        * current block.  The required length of this array is limited by the
+        * maximum number of matches that can ever be chosen for a single block,
+        * plus one for the special entry at the end. */
+       struct lzx_sequence chosen_sequences[
+                      DIV_ROUND_UP(SOFT_MAX_BLOCK_SIZE, LZX_MIN_MATCH_LEN) + 1];
+
+       /* Tables for mapping adjusted offsets to offset slots */
+       u8 offset_slot_tab_1[32768]; /* offset slots [0, 29] */
+       u8 offset_slot_tab_2[128]; /* offset slots [30, 49] */
+
+       union {
+               /* Data for lzx_compress_lazy() */
+               struct {
+                       /* Hash chains matchfinder (MUST BE LAST!!!) */
+                       union {
+                               struct hc_matchfinder_16 hc_mf_16;
+                               struct hc_matchfinder_32 hc_mf_32;
+                       };
+               };
 
-       /* Dummy lengths that are always 0.  */
-       struct lzx_lens zero_lens;
+               /* Data for lzx_compress_near_optimal() */
+               struct {
+                       /*
+                        * Array of nodes, one per position, for running the
+                        * minimum-cost path algorithm.
+                        *
+                        * This array must be large enough to accommodate the
+                        * worst-case number of nodes, which occurs if the
+                        * compressor finds a match of length LZX_MAX_MATCH_LEN
+                        * at position 'SOFT_MAX_BLOCK_SIZE - 1', producing a
+                        * block of size 'SOFT_MAX_BLOCK_SIZE - 1 +
+                        * LZX_MAX_MATCH_LEN'.  Add one for the end-of-block
+                        * node.
+                        */
+                       struct lzx_optimum_node optimum_nodes[
+                                                   SOFT_MAX_BLOCK_SIZE - 1 +
+                                                   LZX_MAX_MATCH_LEN + 1];
 
-       /* Matches/literals that were chosen for the current block.  */
-       struct lzx_item chosen_items[LZX_DIV_BLOCK_SIZE];
+                       /* The cost model for the current optimization pass */
+                       struct lzx_costs costs;
 
-       /* Table mapping match offset => offset slot for small offsets  */
-#define LZX_NUM_FAST_OFFSETS 32768
-       u8 offset_slot_fast[LZX_NUM_FAST_OFFSETS];
+                       /*
+                        * Cached matches for the current block.  This array
+                        * contains the matches that were found at each position
+                        * in the block.  Specifically, for each position, there
+                        * is a special 'struct lz_match' whose 'length' field
+                        * contains the number of matches that were found at
+                        * that position; this is followed by the matches
+                        * themselves, if any, sorted by strictly increasing
+                        * length.
+                        *
+                        * Note: in rare cases, there will be a very high number
+                        * of matches in the block and this array will overflow.
+                        * If this happens, we force the end of the current
+                        * block.  CACHE_LENGTH is the length at which we
+                        * actually check for overflow.  The extra slots beyond
+                        * this are enough to absorb the worst case overflow,
+                        * which occurs if starting at &match_cache[CACHE_LENGTH
+                        * - 1], we write the match count header, then write
+                        * MAX_MATCHES_PER_POS matches, then skip searching for
+                        * matches at 'LZX_MAX_MATCH_LEN - 1' positions and
+                        * write the match count header for each.
+                        */
+                       struct lz_match match_cache[CACHE_LENGTH +
+                                                   MAX_MATCHES_PER_POS +
+                                                   LZX_MAX_MATCH_LEN - 1];
+
+                       /* Binary trees matchfinder (MUST BE LAST!!!) */
+                       union {
+                               struct bt_matchfinder_16 bt_mf_16;
+                               struct bt_matchfinder_32 bt_mf_32;
+                       };
+               };
+       };
 };
 
+/******************************************************************************/
+/*                            Matchfinder utilities                           */
+/*----------------------------------------------------------------------------*/
+
+/*
+ * Will a matchfinder using 16-bit positions be sufficient for compressing
+ * buffers of up to the specified size?  The limit could be 65536 bytes, but we
+ * also want to optimize out the use of offset_slot_tab_2 in the 16-bit case.
+ * This requires that the limit be no more than the length of offset_slot_tab_1
+ * (currently 32768).
+ */
+static inline bool
+lzx_is_16_bit(size_t max_bufsize)
+{
+       STATIC_ASSERT(ARRAY_LEN(((struct lzx_compressor *)0)->offset_slot_tab_1) == 32768);
+       return max_bufsize <= 32768;
+}
+
+/*
+ * Return the offset slot for the specified adjusted match offset.
+ */
+static inline unsigned
+lzx_get_offset_slot(struct lzx_compressor *c, u32 adjusted_offset,
+                   bool is_16_bit)
+{
+       if (is_16_bit || adjusted_offset < ARRAY_LEN(c->offset_slot_tab_1))
+               return c->offset_slot_tab_1[adjusted_offset];
+       return c->offset_slot_tab_2[adjusted_offset >> 14];
+}
+
+/*
+ * The following macros call either the 16-bit or the 32-bit version of a
+ * matchfinder function based on the value of 'is_16_bit', which will be known
+ * at compilation time.
+ */
+
+#define CALL_HC_MF(is_16_bit, c, funcname, ...)                                      \
+       ((is_16_bit) ? CONCAT(funcname, _16)(&(c)->hc_mf_16, ##__VA_ARGS__) : \
+                      CONCAT(funcname, _32)(&(c)->hc_mf_32, ##__VA_ARGS__));
+
+#define CALL_BT_MF(is_16_bit, c, funcname, ...)                                      \
+       ((is_16_bit) ? CONCAT(funcname, _16)(&(c)->bt_mf_16, ##__VA_ARGS__) : \
+                      CONCAT(funcname, _32)(&(c)->bt_mf_32, ##__VA_ARGS__));
+
+/******************************************************************************/
+/*                             Output bitstream                               */
+/*----------------------------------------------------------------------------*/
+
+/*
+ * The LZX bitstream is encoded as a sequence of little endian 16-bit coding
+ * units.  Bits are ordered from most significant to least significant within
+ * each coding unit.
+ */
+
 /*
  * Structure to keep track of the current state of sending bits to the
  * compressed output buffer.
- *
- * The LZX bitstream is encoded as a sequence of 16-bit coding units.
  */
 struct lzx_output_bitstream {
 
-       /* Bits that haven't yet been written to the output buffer */
-       u32 bitbuf;
+       /* Bits that haven't yet been written to the output buffer */
+       machine_word_t bitbuf;
 
-       /* Number of bits currently held in @bitbuf */
-       u32 bitcount;
+       /* Number of bits currently held in @bitbuf */
+       machine_word_t bitcount;
 
-       /* Pointer to the start of the output buffer */
-       le16 *start;
+       /* Pointer to the start of the output buffer */
+       u8 *start;
 
        /* Pointer to the position in the output buffer at which the next coding
-        * unit should be written */
-       le16 *next;
+        * unit should be written */
+       u8 *next;
 
-       /* Pointer past the end of the output buffer.  */
-       le16 *end;
+       /* Pointer to just past the end of the output buffer, rounded down by
+        * one byte if needed to make 'end - start' a multiple of 2 */
+       u8 *end;
 };
 
-/*
- * Initialize the output bitstream.
- *
- * @os
- *     The output bitstream structure to initialize.
- * @buffer
- *     The buffer being written to.
- * @size
- *     Size of @buffer, in bytes.
- */
+/* Can the specified number of bits always be added to 'bitbuf' after all
+ * pending 16-bit coding units have been flushed?  */
+#define CAN_BUFFER(n)  ((n) <= WORDBITS - 15)
+
+/* Initialize the output bitstream to write to the specified buffer. */
 static void
-lzx_init_output(struct lzx_output_bitstream *os, void *buffer, u32 size)
+lzx_init_output(struct lzx_output_bitstream *os, void *buffer, size_t size)
 {
        os->bitbuf = 0;
        os->bitcount = 0;
        os->start = buffer;
-       os->next = os->start;
-       os->end = os->start + size / sizeof(le16);
+       os->next = buffer;
+       os->end = (u8 *)buffer + (size & ~1);
 }
 
 /*
- * Write some bits to the output bitstream.
- *
- * The bits are given by the low-order @num_bits bits of @bits.  Higher-order
- * bits in @bits cannot be set.  At most 17 bits can be written at once.
- *
- * @max_num_bits is a compile-time constant that specifies the maximum number of
- * bits that can ever be written at the call site.  Currently, it is used to
- * optimize away the conditional code for writing a second 16-bit coding unit
- * when writing fewer than 17 bits.
- *
- * If the output buffer space is exhausted, then the bits will be ignored, and
- * lzx_flush_output() will return 0 when it gets called.
+ * Add some bits to the bitbuffer variable of the output bitstream.  The caller
+ * must make sure there is enough room.
  */
 static inline void
-lzx_write_varbits(struct lzx_output_bitstream *os,
-                 const u32 bits, const unsigned int num_bits,
-                 const unsigned int max_num_bits)
+lzx_add_bits(struct lzx_output_bitstream *os, u32 bits, unsigned num_bits)
 {
-       /* This code is optimized for LZX, which never needs to write more than
-        * 17 bits at once.  */
-       LZX_ASSERT(num_bits <= 17);
-       LZX_ASSERT(num_bits <= max_num_bits);
-       LZX_ASSERT(os->bitcount <= 15);
-
-       /* Add the bits to the bit buffer variable.  @bitcount will be at most
-        * 15, so there will be just enough space for the maximum possible
-        * @num_bits of 17.  */
-       os->bitcount += num_bits;
        os->bitbuf = (os->bitbuf << num_bits) | bits;
+       os->bitcount += num_bits;
+}
 
-       /* Check whether any coding units need to be written.  */
-       if (os->bitcount >= 16) {
-
-               os->bitcount -= 16;
-
-               /* Write a coding unit, unless it would overflow the buffer.  */
-               if (os->next != os->end)
-                       put_unaligned_u16_le(os->bitbuf >> os->bitcount, os->next++);
+/*
+ * Flush bits from the bitbuffer variable to the output buffer.  'max_num_bits'
+ * specifies the maximum number of bits that may have been added since the last
+ * flush.
+ */
+static inline void
+lzx_flush_bits(struct lzx_output_bitstream *os, unsigned max_num_bits)
+{
+       /* Masking the number of bits to shift is only needed to avoid undefined
+        * behavior; we don't actually care about the results of bad shifts.  On
+        * x86, the explicit masking generates no extra code.  */
+       const u32 shift_mask = WORDBITS - 1;
 
-               /* If writing 17 bits, a second coding unit might need to be
-                * written.  But because 'max_num_bits' is a compile-time
-                * constant, the compiler will optimize away this code at most
-                * call sites.  */
-               if (max_num_bits == 17 && os->bitcount == 16) {
-                       if (os->next != os->end)
-                               put_unaligned_u16_le(os->bitbuf, os->next++);
-                       os->bitcount = 0;
-               }
-       }
+       if (os->end - os->next < 6)
+               return;
+       put_unaligned_le16(os->bitbuf >> ((os->bitcount - 16) &
+                                           shift_mask), os->next + 0);
+       if (max_num_bits > 16)
+               put_unaligned_le16(os->bitbuf >> ((os->bitcount - 32) &
+                                               shift_mask), os->next + 2);
+       if (max_num_bits > 32)
+               put_unaligned_le16(os->bitbuf >> ((os->bitcount - 48) &
+                                               shift_mask), os->next + 4);
+       os->next += (os->bitcount >> 4) << 1;
+       os->bitcount &= 15;
 }
 
-/* Use when @num_bits is a compile-time constant.  Otherwise use
- * lzx_write_varbits().  */
+/* Add at most 16 bits to the bitbuffer and flush it.  */
 static inline void
-lzx_write_bits(struct lzx_output_bitstream *os,
-              const u32 bits, const unsigned int num_bits)
+lzx_write_bits(struct lzx_output_bitstream *os, u32 bits, unsigned num_bits)
 {
-       lzx_write_varbits(os, bits, num_bits, num_bits);
+       lzx_add_bits(os, bits, num_bits);
+       lzx_flush_bits(os, 16);
 }
 
 /*
  * Flush the last coding unit to the output buffer if needed.  Return the total
  * number of bytes written to the output buffer, or 0 if an overflow occurred.
  */
-static u32
+static size_t
 lzx_flush_output(struct lzx_output_bitstream *os)
 {
-       if (os->next == os->end)
+       if (os->end - os->next < 6)
                return 0;
 
-       if (os->bitcount != 0)
-               put_unaligned_u16_le(os->bitbuf << (16 - os->bitcount), os->next++);
+       if (os->bitcount != 0) {
+               put_unaligned_le16(os->bitbuf << (16 - os->bitcount), os->next);
+               os->next += 2;
+       }
 
-       return (const u8 *)os->next - (const u8 *)os->start;
+       return os->next - os->start;
 }
 
-/* Build the main, length, and aligned offset Huffman codes used in LZX.
- *
- * This takes as input the frequency tables for each code and produces as output
- * a set of tables that map symbols to codewords and codeword lengths.  */
+/******************************************************************************/
+/*                           Preparing Huffman codes                          */
+/*----------------------------------------------------------------------------*/
+
+/*
+ * Build the Huffman codes.  This takes as input the frequency tables for each
+ * code and produces as output a set of tables that map symbols to codewords and
+ * codeword lengths.
+ */
 static void
-lzx_make_huffman_codes(const struct lzx_freqs *freqs, struct lzx_codes *codes,
-                      unsigned num_main_syms)
+lzx_build_huffman_codes(struct lzx_compressor *c)
 {
-       make_canonical_huffman_code(num_main_syms,
-                                   LZX_MAX_MAIN_CODEWORD_LEN,
+       const struct lzx_freqs *freqs = &c->freqs;
+       struct lzx_codes *codes = &c->codes[c->codes_index];
+
+       STATIC_ASSERT(MAIN_CODEWORD_LIMIT >= 9 &&
+                     MAIN_CODEWORD_LIMIT <= LZX_MAX_MAIN_CODEWORD_LEN);
+       make_canonical_huffman_code(c->num_main_syms,
+                                   MAIN_CODEWORD_LIMIT,
                                    freqs->main,
                                    codes->lens.main,
                                    codes->codewords.main);
 
+       STATIC_ASSERT(LENGTH_CODEWORD_LIMIT >= 8 &&
+                     LENGTH_CODEWORD_LIMIT <= LZX_MAX_LEN_CODEWORD_LEN);
        make_canonical_huffman_code(LZX_LENCODE_NUM_SYMBOLS,
-                                   LZX_MAX_LEN_CODEWORD_LEN,
+                                   LENGTH_CODEWORD_LIMIT,
                                    freqs->len,
                                    codes->lens.len,
                                    codes->codewords.len);
 
+       STATIC_ASSERT(ALIGNED_CODEWORD_LIMIT >= LZX_NUM_ALIGNED_OFFSET_BITS &&
+                     ALIGNED_CODEWORD_LIMIT <= LZX_MAX_ALIGNED_CODEWORD_LEN);
        make_canonical_huffman_code(LZX_ALIGNEDCODE_NUM_SYMBOLS,
-                                   LZX_MAX_ALIGNED_CODEWORD_LEN,
+                                   ALIGNED_CODEWORD_LIMIT,
                                    freqs->aligned,
                                    codes->lens.aligned,
                                    codes->codewords.aligned);
 }
 
+/* Reset the symbol frequencies for the current block. */
+static void
+lzx_reset_symbol_frequencies(struct lzx_compressor *c)
+{
+       memset(&c->freqs, 0, sizeof(c->freqs));
+}
+
 static unsigned
 lzx_compute_precode_items(const u8 lens[restrict],
                          const u8 prev_lens[restrict],
-                         const unsigned num_lens,
                          u32 precode_freqs[restrict],
                          unsigned precode_items[restrict])
 {
@@ -439,16 +696,17 @@ lzx_compute_precode_items(const u8 lens[restrict],
 
        itemptr = precode_items;
        run_start = 0;
-       do {
-               /* Find the next run of codeword lengths.  */
+
+       while (!((len = lens[run_start]) & 0x80)) {
 
                /* len = the length being repeated  */
-               len = lens[run_start];
+
+               /* Find the next run of codeword lengths.  */
 
                run_end = run_start + 1;
 
                /* Fast case for a single length.  */
-               if (likely(run_end == num_lens || len != lens[run_end])) {
+               if (likely(len != lens[run_end])) {
                        delta = prev_lens[run_start] - len;
                        if (delta < 0)
                                delta += 17;
@@ -461,14 +719,14 @@ lzx_compute_precode_items(const u8 lens[restrict],
                /* Extend the run.  */
                do {
                        run_end++;
-               } while (run_end != num_lens && len == lens[run_end]);
+               } while (len == lens[run_end]);
 
                if (len == 0) {
                        /* Run of zeroes.  */
 
                        /* Symbol 18: RLE 20 to 51 zeroes at a time.  */
                        while ((run_end - run_start) >= 20) {
-                               extra_bits = min((run_end - run_start) - 20, 0x1f);
+                               extra_bits = min((run_end - run_start) - 20, 0x1F);
                                precode_freqs[18]++;
                                *itemptr++ = 18 | (extra_bits << 5);
                                run_start += 20 + extra_bits;
@@ -476,7 +734,7 @@ lzx_compute_precode_items(const u8 lens[restrict],
 
                        /* Symbol 17: RLE 4 to 19 zeroes at a time.  */
                        if ((run_end - run_start) >= 4) {
-                               extra_bits = min((run_end - run_start) - 4, 0xf);
+                               extra_bits = min((run_end - run_start) - 4, 0xF);
                                precode_freqs[17]++;
                                *itemptr++ = 17 | (extra_bits << 5);
                                run_start += 4 + extra_bits;
@@ -507,11 +765,15 @@ lzx_compute_precode_items(const u8 lens[restrict],
                        *itemptr++ = delta;
                        run_start++;
                }
-       } while (run_start != num_lens);
+       }
 
        return itemptr - precode_items;
 }
 
+/******************************************************************************/
+/*                          Outputting compressed data                        */
+/*----------------------------------------------------------------------------*/
+
 /*
  * Output a Huffman code in the compressed form used in LZX.
  *
@@ -555,6 +817,8 @@ lzx_write_compressed_code(struct lzx_output_bitstream *os,
        unsigned precode_item;
        unsigned precode_sym;
        unsigned i;
+       u8 saved = lens[num_lens];
+       *(u8 *)(lens + num_lens) = 0x80;
 
        for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
                precode_freqs[i] = 0;
@@ -563,13 +827,13 @@ lzx_write_compressed_code(struct lzx_output_bitstream *os,
         * the codeword lengths in the larger code will be output.  */
        num_precode_items = lzx_compute_precode_items(lens,
                                                      prev_lens,
-                                                     num_lens,
                                                      precode_freqs,
                                                      precode_items);
 
        /* Build the precode.  */
-       make_canonical_huffman_code(LZX_PRECODE_NUM_SYMBOLS,
-                                   LZX_MAX_PRE_CODEWORD_LEN,
+       STATIC_ASSERT(PRE_CODEWORD_LIMIT >= 5 &&
+                     PRE_CODEWORD_LIMIT <= LZX_MAX_PRE_CODEWORD_LEN);
+       make_canonical_huffman_code(LZX_PRECODE_NUM_SYMBOLS, PRE_CODEWORD_LIMIT,
                                    precode_freqs, precode_lens,
                                    precode_codewords);
 
@@ -581,76 +845,25 @@ lzx_write_compressed_code(struct lzx_output_bitstream *os,
        for (i = 0; i < num_precode_items; i++) {
                precode_item = precode_items[i];
                precode_sym = precode_item & 0x1F;
-               lzx_write_varbits(os, precode_codewords[precode_sym],
-                                 precode_lens[precode_sym],
-                                 LZX_MAX_PRE_CODEWORD_LEN);
+               lzx_add_bits(os, precode_codewords[precode_sym],
+                            precode_lens[precode_sym]);
                if (precode_sym >= 17) {
                        if (precode_sym == 17) {
-                               lzx_write_bits(os, precode_item >> 5, 4);
+                               lzx_add_bits(os, precode_item >> 5, 4);
                        } else if (precode_sym == 18) {
-                               lzx_write_bits(os, precode_item >> 5, 5);
+                               lzx_add_bits(os, precode_item >> 5, 5);
                        } else {
-                               lzx_write_bits(os, (precode_item >> 5) & 1, 1);
+                               lzx_add_bits(os, (precode_item >> 5) & 1, 1);
                                precode_sym = precode_item >> 6;
-                               lzx_write_varbits(os, precode_codewords[precode_sym],
-                                                 precode_lens[precode_sym],
-                                                 LZX_MAX_PRE_CODEWORD_LEN);
+                               lzx_add_bits(os, precode_codewords[precode_sym],
+                                            precode_lens[precode_sym]);
                        }
                }
-       }
-}
-
-/* Output a match or literal.  */
-static inline void
-lzx_write_item(struct lzx_output_bitstream *os, struct lzx_item item,
-              unsigned ones_if_aligned, const struct lzx_codes *codes)
-{
-       u64 data = item.data;
-       unsigned main_symbol;
-       unsigned len_symbol;
-       unsigned num_extra_bits;
-       u32 extra_bits;
-
-       main_symbol = data & 0x3FF;
-
-       lzx_write_varbits(os, codes->codewords.main[main_symbol],
-                         codes->lens.main[main_symbol],
-                         LZX_MAX_MAIN_CODEWORD_LEN);
-
-       if (main_symbol < LZX_NUM_CHARS)  /* Literal?  */
-               return;
-
-       len_symbol = (data >> 10) & 0xFF;
-
-       if (len_symbol != LZX_LENCODE_NUM_SYMBOLS) {
-               lzx_write_varbits(os, codes->codewords.len[len_symbol],
-                                 codes->lens.len[len_symbol],
-                                 LZX_MAX_LEN_CODEWORD_LEN);
+               STATIC_ASSERT(CAN_BUFFER(2 * PRE_CODEWORD_LIMIT + 1));
+               lzx_flush_bits(os, 2 * PRE_CODEWORD_LIMIT + 1);
        }
 
-       num_extra_bits = (data >> 18) & 0x1F;
-       if (num_extra_bits == 0)  /* Small offset or repeat offset match?  */
-               return;
-
-       extra_bits = data >> 23;
-
-       /*if (block_type == LZX_BLOCKTYPE_ALIGNED && num_extra_bits >= 3) {*/
-       if ((num_extra_bits & ones_if_aligned) >= 3) {
-
-               /* Aligned offset blocks: The low 3 bits of the extra offset
-                * bits are Huffman-encoded using the aligned offset code.  The
-                * remaining bits are output literally.  */
-
-               lzx_write_varbits(os, extra_bits >> 3, num_extra_bits - 3, 14);
-
-               lzx_write_varbits(os, codes->codewords.aligned[extra_bits & 7],
-                                 codes->lens.aligned[extra_bits & 7],
-                                 LZX_MAX_ALIGNED_CODEWORD_LEN);
-       } else {
-               /* Verbatim blocks, or fewer than 3 extra bits:  All extra
-                * offset bits are output literally.  */
-               lzx_write_varbits(os, extra_bits, num_extra_bits, 17);
-       }
+       *(u8 *)(lens + num_lens) = saved;
 }
 
 /*
@@ -663,59 +876,194 @@ lzx_write_item(struct lzx_output_bitstream *os, struct lzx_item item,
  * @block_type
  *     The chosen type of the LZX compressed block (LZX_BLOCKTYPE_ALIGNED or
  *     LZX_BLOCKTYPE_VERBATIM).
- * @items
- *     The array of matches/literals to output.
- * @num_items
- *     Number of matches/literals to output (length of @items).
+ * @block_data
+ *     The uncompressed data of the block.
+ * @sequences
+ *     The matches and literals to output, given as a series of sequences.
  * @codes
- *     The main, length, and aligned offset Huffman codes for the current
- *     LZX compressed block.
+ *     The main, length, and aligned offset Huffman codes for the block.
  */
 static void
-lzx_write_items(struct lzx_output_bitstream *os, int block_type,
-               const struct lzx_item items[], u32 num_items,
-               const struct lzx_codes *codes)
+lzx_write_sequences(struct lzx_output_bitstream *os, int block_type,
+                   const u8 *block_data, const struct lzx_sequence sequences[],
+                   const struct lzx_codes *codes)
 {
-       unsigned ones_if_aligned = 0U - (block_type == LZX_BLOCKTYPE_ALIGNED);
+       const struct lzx_sequence *seq = sequences;
+       u32 ones_if_aligned = 0 - (block_type == LZX_BLOCKTYPE_ALIGNED);
+
+       for (;;) {
+               /* Output the next sequence.  */
+
+               unsigned litrunlen = seq->litrunlen;
+               unsigned match_hdr;
+               unsigned main_symbol;
+               unsigned adjusted_length;
+               u32 adjusted_offset;
+               unsigned offset_slot;
+               unsigned num_extra_bits;
+               u32 extra_bits;
+
+               /* Output the literal run of the sequence.  */
+
+               if (litrunlen) {  /* Is the literal run nonempty?  */
+
+                       /* Verify optimization is enabled on 64-bit  */
+                       STATIC_ASSERT(WORDBITS < 64 ||
+                                     CAN_BUFFER(3 * MAIN_CODEWORD_LIMIT));
+
+                       if (CAN_BUFFER(3 * MAIN_CODEWORD_LIMIT)) {
+
+                               /* 64-bit: write 3 literals at a time.  */
+                               while (litrunlen >= 3) {
+                                       unsigned lit0 = block_data[0];
+                                       unsigned lit1 = block_data[1];
+                                       unsigned lit2 = block_data[2];
+                                       lzx_add_bits(os, codes->codewords.main[lit0],
+                                                    codes->lens.main[lit0]);
+                                       lzx_add_bits(os, codes->codewords.main[lit1],
+                                                    codes->lens.main[lit1]);
+                                       lzx_add_bits(os, codes->codewords.main[lit2],
+                                                    codes->lens.main[lit2]);
+                                       lzx_flush_bits(os, 3 * MAIN_CODEWORD_LIMIT);
+                                       block_data += 3;
+                                       litrunlen -= 3;
+                               }
+                               if (litrunlen--) {
+                                       unsigned lit = *block_data++;
+                                       lzx_add_bits(os, codes->codewords.main[lit],
+                                                    codes->lens.main[lit]);
+                                       if (litrunlen--) {
+                                               unsigned lit = *block_data++;
+                                               lzx_add_bits(os, codes->codewords.main[lit],
+                                                            codes->lens.main[lit]);
+                                               lzx_flush_bits(os, 2 * MAIN_CODEWORD_LIMIT);
+                                       } else {
+                                               lzx_flush_bits(os, 1 * MAIN_CODEWORD_LIMIT);
+                                       }
+                               }
+                       } else {
+                               /* 32-bit: write 1 literal at a time.  */
+                               do {
+                                       unsigned lit = *block_data++;
+                                       lzx_add_bits(os, codes->codewords.main[lit],
+                                                    codes->lens.main[lit]);
+                                       lzx_flush_bits(os, MAIN_CODEWORD_LIMIT);
+                               } while (--litrunlen);
+                       }
+               }
+
+               /* Was this the last literal run?  */
+               if (seq->adjusted_offset_and_match_hdr & 0x80000000)
+                       return;
+
+               /* Nope; output the match.  */
+
+               match_hdr = seq->adjusted_offset_and_match_hdr & 0x1FF;
+               main_symbol = LZX_NUM_CHARS + match_hdr;
+               adjusted_length = seq->adjusted_length;
+
+               block_data += adjusted_length + LZX_MIN_MATCH_LEN;
+
+               offset_slot = match_hdr / LZX_NUM_LEN_HEADERS;
+               adjusted_offset = seq->adjusted_offset_and_match_hdr >> 9;
+
+               num_extra_bits = lzx_extra_offset_bits[offset_slot];
+               extra_bits = adjusted_offset - (lzx_offset_slot_base[offset_slot] +
+                                               LZX_OFFSET_ADJUSTMENT);
+
+       #define MAX_MATCH_BITS  (MAIN_CODEWORD_LIMIT + LENGTH_CODEWORD_LIMIT + \
+                                14 + ALIGNED_CODEWORD_LIMIT)
+
+               /* Verify optimization is enabled on 64-bit  */
+               STATIC_ASSERT(WORDBITS < 64 || CAN_BUFFER(MAX_MATCH_BITS));
+
+               /* Output the main symbol for the match.  */
+
+               lzx_add_bits(os, codes->codewords.main[main_symbol],
+                            codes->lens.main[main_symbol]);
+               if (!CAN_BUFFER(MAX_MATCH_BITS))
+                       lzx_flush_bits(os, MAIN_CODEWORD_LIMIT);
+
+               /* If needed, output the length symbol for the match.  */
+
+               if (adjusted_length >= LZX_NUM_PRIMARY_LENS) {
+                       lzx_add_bits(os, codes->codewords.len[adjusted_length -
+                                                             LZX_NUM_PRIMARY_LENS],
+                                    codes->lens.len[adjusted_length -
+                                                    LZX_NUM_PRIMARY_LENS]);
+                       if (!CAN_BUFFER(MAX_MATCH_BITS))
+                               lzx_flush_bits(os, LENGTH_CODEWORD_LIMIT);
+               }
+
+               /* Output the extra offset bits for the match.  In aligned
+                * offset blocks, the lowest 3 bits of the adjusted offset are
+                * Huffman-encoded using the aligned offset code, provided that
+                * there are at least extra 3 offset bits required.  All other
+                * extra offset bits are output verbatim.  */
+
+               if ((adjusted_offset & ones_if_aligned) >= 16) {
+
+                       lzx_add_bits(os, extra_bits >> LZX_NUM_ALIGNED_OFFSET_BITS,
+                                    num_extra_bits - LZX_NUM_ALIGNED_OFFSET_BITS);
+                       if (!CAN_BUFFER(MAX_MATCH_BITS))
+                               lzx_flush_bits(os, 14);
+
+                       lzx_add_bits(os, codes->codewords.aligned[adjusted_offset &
+                                                                 LZX_ALIGNED_OFFSET_BITMASK],
+                                    codes->lens.aligned[adjusted_offset &
+                                                        LZX_ALIGNED_OFFSET_BITMASK]);
+                       if (!CAN_BUFFER(MAX_MATCH_BITS))
+                               lzx_flush_bits(os, ALIGNED_CODEWORD_LIMIT);
+               } else {
+                       STATIC_ASSERT(CAN_BUFFER(17));
 
-       for (u32 i = 0; i < num_items; i++)
-               lzx_write_item(os, items[i], ones_if_aligned, codes);
+                       lzx_add_bits(os, extra_bits, num_extra_bits);
+                       if (!CAN_BUFFER(MAX_MATCH_BITS))
+                               lzx_flush_bits(os, 17);
+               }
+
+               if (CAN_BUFFER(MAX_MATCH_BITS))
+                       lzx_flush_bits(os, MAX_MATCH_BITS);
+
+               /* Advance to the next sequence.  */
+               seq++;
+       }
 }
 
-/* Write an LZX aligned offset or verbatim block to the output bitstream.  */
 static void
-lzx_write_compressed_block(int block_type,
+lzx_write_compressed_block(const u8 *block_begin,
+                          int block_type,
                           u32 block_size,
                           unsigned window_order,
                           unsigned num_main_syms,
-                          struct lzx_item * chosen_items,
-                          u32 num_chosen_items,
+                          const struct lzx_sequence sequences[],
                           const struct lzx_codes * codes,
                           const struct lzx_lens * prev_lens,
                           struct lzx_output_bitstream * os)
 {
-       LZX_ASSERT(block_type == LZX_BLOCKTYPE_ALIGNED ||
-                  block_type == LZX_BLOCKTYPE_VERBATIM);
-
        /* The first three bits indicate the type of block and are one of the
         * LZX_BLOCKTYPE_* constants.  */
        lzx_write_bits(os, block_type, 3);
 
-       /* Output the block size.
+       /*
+        * Output the block size.
         *
-        * The original LZX format seemed to always encode the block size in 3
-        * bytes.  However, the implementation in WIMGAPI, as used in WIM files,
-        * uses the first bit to indicate whether the block is the default size
-        * (32768) or a different size given explicitly by the next 16 bits.
+        * The original LZX format encoded the block size in 24 bits.  However,
+        * the LZX format used in WIM archives uses 1 bit to specify whether the
+        * block has the default size of 32768 bytes, then optionally 16 bits to
+        * specify a non-default size.  This works fine for Microsoft's WIM
+        * software (WIMGAPI), which never compresses more than 32768 bytes at a
+        * time with LZX.  However, as an extension, our LZX compressor supports
+        * compressing up to 2097152 bytes, with a corresponding increase in
+        * window size.  It is possible for blocks in these larger buffers to
+        * exceed 65535 bytes; such blocks cannot have their size represented in
+        * 16 bits.
         *
-        * By default, this compressor uses a window size of 32768 and therefore
-        * follows the WIMGAPI behavior.  However, this compressor also supports
-        * window sizes greater than 32768 bytes, which do not appear to be
-        * supported by WIMGAPI.  In such cases, we retain the default size bit
-        * to mean a size of 32768 bytes but output non-default block size in 24
-        * bits rather than 16.  The compatibility of this behavior is unknown
-        * because WIMs created with chunk size greater than 32768 can seemingly
-        * only be opened by wimlib anyway.  */
+        * The chosen solution was to use 24 bits for the block size when
+        * possibly required --- specifically, when the compressor has been
+        * allocated to be capable of compressing more than 32768 bytes at once
+        * (which also causes the number of main symbols to be increased).
+        */
        if (block_size == LZX_DEFAULT_BLOCK_SIZE) {
                lzx_write_bits(os, 1, 1);
        } else {
@@ -749,1579 +1097,1868 @@ lzx_write_compressed_block(int block_type,
                                  LZX_LENCODE_NUM_SYMBOLS);
 
        /* Output the compressed matches and literals.  */
-       lzx_write_items(os, block_type, chosen_items, num_chosen_items, codes);
+       lzx_write_sequences(os, block_type, block_begin, sequences, codes);
 }
 
-/* Don't allow matches to span the end of an LZX block.  */
-static inline unsigned
-maybe_truncate_matches(struct lz_match matches[], unsigned num_matches,
-                      struct lzx_compressor *c)
+/*
+ * Given the frequencies of symbols in an LZX-compressed block and the
+ * corresponding Huffman codes, return LZX_BLOCKTYPE_ALIGNED or
+ * LZX_BLOCKTYPE_VERBATIM if an aligned offset or verbatim block, respectively,
+ * will take fewer bits to output.
+ */
+static int
+lzx_choose_verbatim_or_aligned(const struct lzx_freqs * freqs,
+                              const struct lzx_codes * codes)
 {
-       if (c->match_window_end < c->cur_window_size && num_matches != 0) {
-               u32 limit = c->match_window_end - c->match_window_pos;
+       u32 verbatim_cost = 0;
+       u32 aligned_cost = 0;
 
-               if (limit >= LZX_MIN_MATCH_LEN) {
+       /* A verbatim block requires 3 bits in each place that an aligned offset
+        * symbol would be used in an aligned offset block.  */
+       for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+               verbatim_cost += LZX_NUM_ALIGNED_OFFSET_BITS * freqs->aligned[i];
+               aligned_cost += codes->lens.aligned[i] * freqs->aligned[i];
+       }
 
-                       unsigned i = num_matches - 1;
-                       do {
-                               if (matches[i].len >= limit) {
-                                       matches[i].len = limit;
+       /* Account for the cost of sending the codeword lengths of the aligned
+        * offset code.  */
+       aligned_cost += LZX_ALIGNEDCODE_ELEMENT_SIZE *
+                       LZX_ALIGNEDCODE_NUM_SYMBOLS;
 
-                                       /* Truncation might produce multiple
-                                        * matches with length 'limit'.  Keep at
-                                        * most 1.  */
-                                       num_matches = i + 1;
-                               }
-                       } while (i--);
-               } else {
-                       num_matches = 0;
-               }
-       }
-       return num_matches;
+       if (aligned_cost < verbatim_cost)
+               return LZX_BLOCKTYPE_ALIGNED;
+       else
+               return LZX_BLOCKTYPE_VERBATIM;
 }
 
-static unsigned
-lzx_get_matches_fillcache_singleblock(struct lzx_compressor *c,
-                                     const struct lz_match **matches_ret)
+/*
+ * Flush an LZX block:
+ *
+ * 1. Build the Huffman codes.
+ * 2. Decide whether to output the block as VERBATIM or ALIGNED.
+ * 3. Write the block.
+ * 4. Swap the indices of the current and previous Huffman codes.
+ *
+ * Note: we never output UNCOMPRESSED blocks.  This probably should be
+ * implemented sometime, but it doesn't make much difference.
+ */
+static void
+lzx_flush_block(struct lzx_compressor *c, struct lzx_output_bitstream *os,
+               const u8 *block_begin, u32 block_size, u32 seq_idx)
 {
-       struct lz_match *cache_ptr;
-       struct lz_match *matches;
-       unsigned num_matches;
-
-       cache_ptr = c->cache_ptr;
-       matches = cache_ptr + 1;
-       if (likely(cache_ptr <= c->cache_limit)) {
-               num_matches = lz_mf_get_matches(c->mf, matches);
-               cache_ptr->len = num_matches;
-               c->cache_ptr = matches + num_matches;
-       } else {
-               num_matches = 0;
-       }
-       c->match_window_pos++;
-       *matches_ret = matches;
-       return num_matches;
-}
+       int block_type;
 
-static unsigned
-lzx_get_matches_fillcache_multiblock(struct lzx_compressor *c,
-                                    const struct lz_match **matches_ret)
-{
-       struct lz_match *cache_ptr;
-       struct lz_match *matches;
-       unsigned num_matches;
-
-       cache_ptr = c->cache_ptr;
-       matches = cache_ptr + 1;
-       if (likely(cache_ptr <= c->cache_limit)) {
-               num_matches = lz_mf_get_matches(c->mf, matches);
-               num_matches = maybe_truncate_matches(matches, num_matches, c);
-               cache_ptr->len = num_matches;
-               c->cache_ptr = matches + num_matches;
-       } else {
-               num_matches = 0;
-       }
-       c->match_window_pos++;
-       *matches_ret = matches;
-       return num_matches;
+       lzx_build_huffman_codes(c);
+
+       block_type = lzx_choose_verbatim_or_aligned(&c->freqs,
+                                                   &c->codes[c->codes_index]);
+       lzx_write_compressed_block(block_begin,
+                                  block_type,
+                                  block_size,
+                                  c->window_order,
+                                  c->num_main_syms,
+                                  &c->chosen_sequences[seq_idx],
+                                  &c->codes[c->codes_index],
+                                  &c->codes[c->codes_index ^ 1].lens,
+                                  os);
+       c->codes_index ^= 1;
 }
 
-static unsigned
-lzx_get_matches_usecache(struct lzx_compressor *c,
-                        const struct lz_match **matches_ret)
+/******************************************************************************/
+/*                          Block splitting algorithm                         */
+/*----------------------------------------------------------------------------*/
+
+/*
+ * The problem of block splitting is to decide when it is worthwhile to start a
+ * new block with new entropy codes.  There is a theoretically optimal solution:
+ * recursively consider every possible block split, considering the exact cost
+ * of each block, and choose the minimum cost approach.  But this is far too
+ * slow.  Instead, as an approximation, we can count symbols and after every N
+ * symbols, compare the expected distribution of symbols based on the previous
+ * data with the actual distribution.  If they differ "by enough", then start a
+ * new block.
+ *
+ * As an optimization and heuristic, we don't distinguish between every symbol
+ * but rather we combine many symbols into a single "observation type".  For
+ * literals we only look at the high bits and low bits, and for matches we only
+ * look at whether the match is long or not.  The assumption is that for typical
+ * "real" data, places that are good block boundaries will tend to be noticable
+ * based only on changes in these aggregate frequencies, without looking for
+ * subtle differences in individual symbols.  For example, a change from ASCII
+ * bytes to non-ASCII bytes, or from few matches (generally less compressible)
+ * to many matches (generally more compressible), would be easily noticed based
+ * on the aggregates.
+ *
+ * For determining whether the frequency distributions are "different enough" to
+ * start a new block, the simply heuristic of splitting when the sum of absolute
+ * differences exceeds a constant seems to be good enough.
+ *
+ * Finally, for an approximation, it is not strictly necessary that the exact
+ * symbols being used are considered.  With "near-optimal parsing", for example,
+ * the actual symbols that will be used are unknown until after the block
+ * boundary is chosen and the block has been optimized.  Since the final choices
+ * cannot be used, we can use preliminary "greedy" choices instead.
+ */
+
+/* Initialize the block split statistics when starting a new block. */
+static void
+lzx_init_block_split_stats(struct lzx_block_split_stats *stats)
 {
-       struct lz_match *cache_ptr;
-       struct lz_match *matches;
-       unsigned num_matches;
-
-       cache_ptr = c->cache_ptr;
-       matches = cache_ptr + 1;
-       if (cache_ptr <= c->cache_limit) {
-               num_matches = cache_ptr->len;
-               c->cache_ptr = matches + num_matches;
-       } else {
-               num_matches = 0;
-       }
-       c->match_window_pos++;
-       *matches_ret = matches;
-       return num_matches;
+       memset(stats, 0, sizeof(*stats));
 }
 
-static unsigned
-lzx_get_matches_usecache_nocheck(struct lzx_compressor *c,
-                                const struct lz_match **matches_ret)
+/* Literal observation.  Heuristic: use the top 2 bits and low 1 bits of the
+ * literal, for 8 possible literal observation types.  */
+static inline void
+lzx_observe_literal(struct lzx_block_split_stats *stats, u8 lit)
 {
-       struct lz_match *cache_ptr;
-       struct lz_match *matches;
-       unsigned num_matches;
-
-       cache_ptr = c->cache_ptr;
-       matches = cache_ptr + 1;
-       num_matches = cache_ptr->len;
-       c->cache_ptr = matches + num_matches;
-       c->match_window_pos++;
-       *matches_ret = matches;
-       return num_matches;
+       stats->new_observations[((lit >> 5) & 0x6) | (lit & 1)]++;
+       stats->num_new_observations++;
 }
 
-static unsigned
-lzx_get_matches_nocache_singleblock(struct lzx_compressor *c,
-                                   const struct lz_match **matches_ret)
+/* Match observation.  Heuristic: use one observation type for "short match" and
+ * one observation type for "long match".  */
+static inline void
+lzx_observe_match(struct lzx_block_split_stats *stats, unsigned length)
 {
-       struct lz_match *matches;
-       unsigned num_matches;
-
-       matches = c->cache_ptr;
-       num_matches = lz_mf_get_matches(c->mf, matches);
-       c->match_window_pos++;
-       *matches_ret = matches;
-       return num_matches;
+       stats->new_observations[NUM_LITERAL_OBSERVATION_TYPES + (length >= 5)]++;
+       stats->num_new_observations++;
 }
 
-static unsigned
-lzx_get_matches_nocache_multiblock(struct lzx_compressor *c,
-                                  const struct lz_match **matches_ret)
+static bool
+lzx_should_end_block(struct lzx_block_split_stats *stats)
 {
-       struct lz_match *matches;
-       unsigned num_matches;
-
-       matches = c->cache_ptr;
-       num_matches = lz_mf_get_matches(c->mf, matches);
-       num_matches = maybe_truncate_matches(matches, num_matches, c);
-       c->match_window_pos++;
-       *matches_ret = matches;
-       return num_matches;
+       if (stats->num_observations > 0) {
+
+               /* Note: to avoid slow divisions, we do not divide by
+                * 'num_observations', but rather do all math with the numbers
+                * multiplied by 'num_observations'. */
+               u32 total_delta = 0;
+               for (int i = 0; i < NUM_OBSERVATION_TYPES; i++) {
+                       u32 expected = stats->observations[i] *
+                                      stats->num_new_observations;
+                       u32 actual = stats->new_observations[i] *
+                                    stats->num_observations;
+                       u32 delta = (actual > expected) ? actual - expected :
+                                                         expected - actual;
+                       total_delta += delta;
+               }
+
+               /* Ready to end the block? */
+               if (total_delta >=
+                   stats->num_new_observations * 7 / 8 * stats->num_observations)
+                       return true;
+       }
+
+       for (int i = 0; i < NUM_OBSERVATION_TYPES; i++) {
+               stats->num_observations += stats->new_observations[i];
+               stats->observations[i] += stats->new_observations[i];
+               stats->new_observations[i] = 0;
+       }
+       stats->num_new_observations = 0;
+       return false;
 }
 
+/******************************************************************************/
+/*                   Slower ("near-optimal") compression algorithm            */
+/*----------------------------------------------------------------------------*/
+
 /*
- * Find matches at the next position in the window.
+ * Least-recently-used queue for match offsets.
  *
- * This uses a wrapper function around the underlying match-finder.
- *
- * Returns the number of matches found and sets *matches_ret to point to the
- * matches array.  The matches will be sorted by strictly increasing length and
- * offset.
+ * This is represented as a 64-bit integer for efficiency.  There are three
+ * offsets of 21 bits each.  Bit 64 is garbage.
  */
-static inline unsigned
-lzx_get_matches(struct lzx_compressor *c, const struct lz_match **matches_ret)
+struct lzx_lru_queue {
+       u64 R;
+} _aligned_attribute(8);
+
+#define LZX_QUEUE_OFFSET_SHIFT 21
+#define LZX_QUEUE_OFFSET_MASK  (((u64)1 << LZX_QUEUE_OFFSET_SHIFT) - 1)
+
+#define LZX_QUEUE_R0_SHIFT (0 * LZX_QUEUE_OFFSET_SHIFT)
+#define LZX_QUEUE_R1_SHIFT (1 * LZX_QUEUE_OFFSET_SHIFT)
+#define LZX_QUEUE_R2_SHIFT (2 * LZX_QUEUE_OFFSET_SHIFT)
+
+#define LZX_QUEUE_R0_MASK (LZX_QUEUE_OFFSET_MASK << LZX_QUEUE_R0_SHIFT)
+#define LZX_QUEUE_R1_MASK (LZX_QUEUE_OFFSET_MASK << LZX_QUEUE_R1_SHIFT)
+#define LZX_QUEUE_R2_MASK (LZX_QUEUE_OFFSET_MASK << LZX_QUEUE_R2_SHIFT)
+
+#define LZX_QUEUE_INITIALIZER {                        \
+       ((u64)1 << LZX_QUEUE_R0_SHIFT) |        \
+       ((u64)1 << LZX_QUEUE_R1_SHIFT) |        \
+       ((u64)1 << LZX_QUEUE_R2_SHIFT) }
+
+static inline u64
+lzx_lru_queue_R0(struct lzx_lru_queue queue)
 {
-       return (*c->get_matches_func)(c, matches_ret);
+       return (queue.R >> LZX_QUEUE_R0_SHIFT) & LZX_QUEUE_OFFSET_MASK;
 }
 
-static void
-lzx_skip_bytes_fillcache(struct lzx_compressor *c, unsigned n)
+static inline u64
+lzx_lru_queue_R1(struct lzx_lru_queue queue)
 {
-       struct lz_match *cache_ptr;
-
-       cache_ptr = c->cache_ptr;
-       c->match_window_pos += n;
-       lz_mf_skip_positions(c->mf, n);
-       if (cache_ptr <= c->cache_limit) {
-               do {
-                       cache_ptr->len = 0;
-                       cache_ptr += 1;
-               } while (--n && cache_ptr <= c->cache_limit);
-       }
-       c->cache_ptr = cache_ptr;
+       return (queue.R >> LZX_QUEUE_R1_SHIFT) & LZX_QUEUE_OFFSET_MASK;
 }
 
-static void
-lzx_skip_bytes_usecache(struct lzx_compressor *c, unsigned n)
+static inline u64
+lzx_lru_queue_R2(struct lzx_lru_queue queue)
 {
-       struct lz_match *cache_ptr;
-
-       cache_ptr = c->cache_ptr;
-       c->match_window_pos += n;
-       if (cache_ptr <= c->cache_limit) {
-               do {
-                       cache_ptr += 1 + cache_ptr->len;
-               } while (--n && cache_ptr <= c->cache_limit);
-       }
-       c->cache_ptr = cache_ptr;
+       return (queue.R >> LZX_QUEUE_R2_SHIFT) & LZX_QUEUE_OFFSET_MASK;
 }
 
-static void
-lzx_skip_bytes_usecache_nocheck(struct lzx_compressor *c, unsigned n)
+/* Push a match offset onto the front (most recently used) end of the queue.  */
+static inline struct lzx_lru_queue
+lzx_lru_queue_push(struct lzx_lru_queue queue, u32 offset)
 {
-       struct lz_match *cache_ptr;
+       return (struct lzx_lru_queue) {
+               .R = (queue.R << LZX_QUEUE_OFFSET_SHIFT) | offset,
+       };
+}
 
-       cache_ptr = c->cache_ptr;
-       c->match_window_pos += n;
-       do {
-               cache_ptr += 1 + cache_ptr->len;
-       } while (--n);
-       c->cache_ptr = cache_ptr;
+/* Swap a match offset to the front of the queue.  */
+static inline struct lzx_lru_queue
+lzx_lru_queue_swap(struct lzx_lru_queue queue, unsigned idx)
+{
+       unsigned shift = idx * 21;
+       const u64 mask = LZX_QUEUE_R0_MASK;
+       const u64 mask_high = mask << shift;
+
+       return (struct lzx_lru_queue) {
+               (queue.R & ~(mask | mask_high)) |
+               ((queue.R & mask_high) >> shift) |
+               ((queue.R & mask) << shift)
+       };
 }
 
-static void
-lzx_skip_bytes_nocache(struct lzx_compressor *c, unsigned n)
+static inline u32
+lzx_walk_item_list(struct lzx_compressor *c, u32 block_size, bool is_16_bit,
+                  bool record)
 {
-       c->match_window_pos += n;
-       lz_mf_skip_positions(c->mf, n);
+       u32 node_idx = block_size;
+       u32 seq_idx = ARRAY_LEN(c->chosen_sequences) - 1;
+       u32 lit_start_node;
+
+       if (record) {
+               /* Special value to mark last sequence  */
+               c->chosen_sequences[seq_idx].adjusted_offset_and_match_hdr = 0x80000000;
+               lit_start_node = node_idx;
+       }
+
+       for (;;) {
+               u32 item;
+               u32 len;
+               u32 adjusted_offset;
+               unsigned v;
+               unsigned offset_slot;
+
+               /* Tally literals until either a match or the beginning of the
+                * block is reached.  Note: the item in the node at the
+                * beginning of the block has all bits set, causing this loop to
+                * end when it is reached. */
+               for (;;) {
+                       item = c->optimum_nodes[node_idx].item;
+                       if (item & OPTIMUM_LEN_MASK)
+                               break;
+                       c->freqs.main[item >> OPTIMUM_OFFSET_SHIFT]++;
+                       node_idx--;
+               }
+
+       #if CONSIDER_GAP_MATCHES
+               if (item & OPTIMUM_GAP_MATCH) {
+
+                       if (node_idx == 0)
+                               break;
+
+                       /* Record the literal run length for the next sequence
+                        * (the "previous sequence" when walking backwards). */
+                       len = item & OPTIMUM_LEN_MASK;
+                       if (record) {
+                               c->chosen_sequences[seq_idx--].litrunlen =
+                                               lit_start_node - node_idx;
+                               lit_start_node = node_idx - len;
+                       }
+
+                       /* Tally the rep0 match after the gap. */
+                       v = len - LZX_MIN_MATCH_LEN;
+                       if (record)
+                               c->chosen_sequences[seq_idx].adjusted_length = v;
+                       if (v >= LZX_NUM_PRIMARY_LENS) {
+                               c->freqs.len[v - LZX_NUM_PRIMARY_LENS]++;
+                               v = LZX_NUM_PRIMARY_LENS;
+                       }
+                       c->freqs.main[LZX_NUM_CHARS + v]++;
+                       if (record)
+                               c->chosen_sequences[seq_idx].adjusted_offset_and_match_hdr = v;
+
+                       /* Tally the literal in the gap. */
+                       c->freqs.main[(u8)(item >> OPTIMUM_OFFSET_SHIFT)]++;
+
+                       /* Fall through and tally the match before the gap.
+                        * (It was temporarily saved in the 'cost' field of the
+                        * previous node, which was free to reuse.) */
+                       item = c->optimum_nodes[--node_idx].cost;
+                       node_idx -= len;
+               }
+       #else /* CONSIDER_GAP_MATCHES */
+               if (node_idx == 0)
+                       break;
+       #endif /* !CONSIDER_GAP_MATCHES */
+
+               len = item & OPTIMUM_LEN_MASK;
+               adjusted_offset = item >> OPTIMUM_OFFSET_SHIFT;
+
+               /* Record the literal run length for the next sequence (the
+                * "previous sequence" when walking backwards). */
+               if (record) {
+                       c->chosen_sequences[seq_idx--].litrunlen =
+                                       lit_start_node - node_idx;
+                       node_idx -= len;
+                       lit_start_node = node_idx;
+               } else {
+                       node_idx -= len;
+               }
+
+               /* Record a match. */
+
+               /* Tally the aligned offset symbol if needed. */
+               if (adjusted_offset >= 16)
+                       c->freqs.aligned[adjusted_offset & LZX_ALIGNED_OFFSET_BITMASK]++;
+
+               /* Record the adjusted length. */
+               v = len - LZX_MIN_MATCH_LEN;
+               if (record)
+                       c->chosen_sequences[seq_idx].adjusted_length = v;
+
+               /* Tally the length symbol if needed. */
+               if (v >= LZX_NUM_PRIMARY_LENS) {
+                       c->freqs.len[v - LZX_NUM_PRIMARY_LENS]++;
+                       v = LZX_NUM_PRIMARY_LENS;
+               }
+
+               /* Tally the main symbol. */
+               offset_slot = lzx_get_offset_slot(c, adjusted_offset, is_16_bit);
+               v += offset_slot * LZX_NUM_LEN_HEADERS;
+               c->freqs.main[LZX_NUM_CHARS + v]++;
+
+               /* Record the adjusted offset and match header. */
+               if (record) {
+                       c->chosen_sequences[seq_idx].adjusted_offset_and_match_hdr =
+                                       (adjusted_offset << 9) | v;
+               }
+       }
+
+       /* Record the literal run length for the first sequence. */
+       if (record)
+               c->chosen_sequences[seq_idx].litrunlen = lit_start_node - node_idx;
+
+       /* Return the index in chosen_sequences at which the sequences begin. */
+       return seq_idx;
 }
 
 /*
- * Skip the specified number of positions in the window (don't search for
- * matches at them).
+ * Given the minimum-cost path computed through the item graph for the current
+ * block, walk the path and count how many of each symbol in each Huffman-coded
+ * alphabet would be required to output the items (matches and literals) along
+ * the path.
  *
- * This uses a wrapper function around the underlying match-finder.
+ * Note that the path will be walked backwards (from the end of the block to the
+ * beginning of the block), but this doesn't matter because this function only
+ * computes frequencies.
  */
 static inline void
-lzx_skip_bytes(struct lzx_compressor *c, unsigned n)
+lzx_tally_item_list(struct lzx_compressor *c, u32 block_size, bool is_16_bit)
 {
-       return (*c->skip_bytes_func)(c, n);
+       lzx_walk_item_list(c, block_size, is_16_bit, false);
 }
 
-/* Tally, and optionally record, the specified literal byte.  */
-static inline void
-lzx_declare_literal(struct lzx_compressor *c, unsigned literal,
-                   struct lzx_item **next_chosen_item)
+/*
+ * Like lzx_tally_item_list(), but this function also generates the list of
+ * lzx_sequences for the minimum-cost path and writes it to c->chosen_sequences,
+ * ready to be output to the bitstream after the Huffman codes are computed.
+ * The lzx_sequences will be written to decreasing memory addresses as the path
+ * is walked backwards, which means they will end up in the expected
+ * first-to-last order.  The return value is the index in c->chosen_sequences at
+ * which the lzx_sequences begin.
+ */
+static inline u32
+lzx_record_item_list(struct lzx_compressor *c, u32 block_size, bool is_16_bit)
 {
-       unsigned main_symbol = literal;
-
-       c->freqs.main[main_symbol]++;
-
-       if (next_chosen_item) {
-               *(*next_chosen_item)++ = (struct lzx_item) {
-                       .data = main_symbol,
-               };
-       }
+       return lzx_walk_item_list(c, block_size, is_16_bit, true);
 }
 
-/* Tally, and optionally record, the specified repeat offset match.  */
-static inline void
-lzx_declare_repeat_offset_match(struct lzx_compressor *c,
-                               unsigned len, unsigned rep_index,
-                               struct lzx_item **next_chosen_item)
+/*
+ * Find an inexpensive path through the graph of possible match/literal choices
+ * for the current block.  The nodes of the graph are
+ * c->optimum_nodes[0...block_size].  They correspond directly to the bytes in
+ * the current block, plus one extra node for end-of-block.  The edges of the
+ * graph are matches and literals.  The goal is to find the minimum cost path
+ * from 'c->optimum_nodes[0]' to 'c->optimum_nodes[block_size]', given the cost
+ * model 'c->costs'.
+ *
+ * The algorithm works forwards, starting at 'c->optimum_nodes[0]' and
+ * proceeding forwards one node at a time.  At each node, a selection of matches
+ * (len >= 2), as well as the literal byte (len = 1), is considered.  An item of
+ * length 'len' provides a new path to reach the node 'len' bytes later.  If
+ * such a path is the lowest cost found so far to reach that later node, then
+ * that later node is updated with the new cost and the "arrival" which provided
+ * that cost.
+ *
+ * Note that although this algorithm is based on minimum cost path search, due
+ * to various simplifying assumptions the result is not guaranteed to be the
+ * true minimum cost, or "optimal", path over the graph of all valid LZX
+ * representations of this block.
+ *
+ * Also, note that because of the presence of the recent offsets queue (which is
+ * a type of adaptive state), the algorithm cannot work backwards and compute
+ * "cost to end" instead of "cost to beginning".  Furthermore, the way the
+ * algorithm handles this adaptive state in the "minimum cost" parse is actually
+ * only an approximation.  It's possible for the globally optimal, minimum cost
+ * path to contain a prefix, ending at a position, where that path prefix is
+ * *not* the minimum cost path to that position.  This can happen if such a path
+ * prefix results in a different adaptive state which results in lower costs
+ * later.  The algorithm does not solve this problem in general; it only looks
+ * one step ahead, with the exception of special consideration for "gap
+ * matches".
+ */
+static inline struct lzx_lru_queue
+lzx_find_min_cost_path(struct lzx_compressor * const restrict c,
+                      const u8 * const restrict block_begin,
+                      const u32 block_size,
+                      const struct lzx_lru_queue initial_queue,
+                      bool is_16_bit)
 {
-       unsigned len_header;
-       unsigned main_symbol;
-       unsigned len_symbol;
+       struct lzx_optimum_node *cur_node = c->optimum_nodes;
+       struct lzx_optimum_node * const end_node = cur_node + block_size;
+       struct lz_match *cache_ptr = c->match_cache;
+       const u8 *in_next = block_begin;
+       const u8 * const block_end = block_begin + block_size;
+
+       /*
+        * Instead of storing the match offset LRU queues in the
+        * 'lzx_optimum_node' structures, we save memory (and cache lines) by
+        * storing them in a smaller array.  This works because the algorithm
+        * only requires a limited history of the adaptive state.  Once a given
+        * state is more than LZX_MAX_MATCH_LEN bytes behind the current node
+        * (more if gap match consideration is enabled; we just round up to 512
+        * so it's a power of 2), it is no longer needed.
+        *
+        * The QUEUE() macro finds the queue for the given node.  This macro has
+        * been optimized by taking advantage of 'struct lzx_lru_queue' and
+        * 'struct lzx_optimum_node' both being 8 bytes in size and alignment.
+        */
+       struct lzx_lru_queue queues[512];
+       STATIC_ASSERT(ARRAY_LEN(queues) >= LZX_MAX_MATCH_LEN + 1);
+       STATIC_ASSERT(sizeof(c->optimum_nodes[0]) == sizeof(queues[0]));
+#define QUEUE(node) \
+       (*(struct lzx_lru_queue *)((char *)queues + \
+                       ((uintptr_t)(node) % (ARRAY_LEN(queues) * sizeof(queues[0])))))
+       /*(queues[(uintptr_t)(node) / sizeof(*(node)) % ARRAY_LEN(queues)])*/
+
+#if CONSIDER_GAP_MATCHES
+       u32 matches_before_gap[ARRAY_LEN(queues)];
+#define MATCH_BEFORE_GAP(node) \
+       (matches_before_gap[(uintptr_t)(node) / sizeof(*(node)) % \
+                           ARRAY_LEN(matches_before_gap)])
+#endif
 
-       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
-               len_header = len - LZX_MIN_MATCH_LEN;
-               len_symbol = LZX_LENCODE_NUM_SYMBOLS;
-       } else {
-               len_header = LZX_NUM_PRIMARY_LENS;
-               len_symbol = len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS;
-               c->freqs.len[len_symbol]++;
-       }
+       /*
+        * Initially, the cost to reach each node is "infinity".
+        *
+        * The first node actually should have cost 0, but "infinity"
+        * (0xFFFFFFFF) works just as well because it immediately overflows.
+        *
+        * The following statement also intentionally sets the 'item' of the
+        * first node, which would otherwise have no meaning, to 0xFFFFFFFF for
+        * use as a sentinel.  See lzx_walk_item_list().
+        */
+       memset(c->optimum_nodes, 0xFF,
+              (block_size + 1) * sizeof(c->optimum_nodes[0]));
 
-       main_symbol = LZX_NUM_CHARS + ((rep_index << 3) | len_header);
+       /* Initialize the recent offsets queue for the first node. */
+       QUEUE(cur_node) = initial_queue;
 
-       c->freqs.main[main_symbol]++;
+       do { /* For each node in the block in position order... */
 
-       if (next_chosen_item) {
-               *(*next_chosen_item)++ = (struct lzx_item) {
-                       .data = (u64)main_symbol | ((u64)len_symbol << 10),
-               };
-       }
-}
+               unsigned num_matches;
+               unsigned literal;
+               u32 cost;
 
-/* Tally, and optionally record, the specified explicit offset match.  */
-static inline void
-lzx_declare_explicit_offset_match(struct lzx_compressor *c, unsigned len, u32 offset,
-                                 struct lzx_item **next_chosen_item)
-{
-       unsigned len_header;
-       unsigned main_symbol;
-       unsigned len_symbol;
-       unsigned offset_slot;
-       unsigned num_extra_bits;
-       u32 extra_bits;
+               /*
+                * A selection of matches for the block was already saved in
+                * memory so that we don't have to run the uncompressed data
+                * through the matchfinder on every optimization pass.  However,
+                * we still search for repeat offset matches during each
+                * optimization pass because we cannot predict the state of the
+                * recent offsets queue.  But as a heuristic, we don't bother
+                * searching for repeat offset matches if the general-purpose
+                * matchfinder failed to find any matches.
+                *
+                * Note that a match of length n at some offset implies there is
+                * also a match of length l for LZX_MIN_MATCH_LEN <= l <= n at
+                * that same offset.  In other words, we don't necessarily need
+                * to use the full length of a match.  The key heuristic that
+                * saves a significicant amount of time is that for each
+                * distinct length, we only consider the smallest offset for
+                * which that length is available.  This heuristic also applies
+                * to repeat offsets, which we order specially: R0 < R1 < R2 <
+                * any explicit offset.  Of course, this heuristic may be
+                * produce suboptimal results because offset slots in LZX are
+                * subject to entropy encoding, but in practice this is a useful
+                * heuristic.
+                */
 
-       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
-               len_header = len - LZX_MIN_MATCH_LEN;
-               len_symbol = LZX_LENCODE_NUM_SYMBOLS;
-       } else {
-               len_header = LZX_NUM_PRIMARY_LENS;
-               len_symbol = len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS;
-               c->freqs.len[len_symbol]++;
-       }
+               num_matches = cache_ptr->length;
+               cache_ptr++;
 
-       offset_slot = lzx_get_offset_slot_raw(offset + LZX_OFFSET_OFFSET);
+               if (num_matches) {
+                       struct lz_match *end_matches = cache_ptr + num_matches;
+                       unsigned next_len = LZX_MIN_MATCH_LEN;
+                       unsigned max_len = min(block_end - in_next, LZX_MAX_MATCH_LEN);
+                       const u8 *matchptr;
+
+                       /* Consider rep0 matches. */
+                       matchptr = in_next - lzx_lru_queue_R0(QUEUE(cur_node));
+                       if (load_u16_unaligned(matchptr) != load_u16_unaligned(in_next))
+                               goto rep0_done;
+                       STATIC_ASSERT(LZX_MIN_MATCH_LEN == 2);
+                       do {
+                               u32 cost = cur_node->cost +
+                                          c->costs.match_cost[0][
+                                                       next_len - LZX_MIN_MATCH_LEN];
+                               if (cost <= (cur_node + next_len)->cost) {
+                                       (cur_node + next_len)->cost = cost;
+                                       (cur_node + next_len)->item =
+                                               (0 << OPTIMUM_OFFSET_SHIFT) | next_len;
+                               }
+                               if (unlikely(++next_len > max_len)) {
+                                       cache_ptr = end_matches;
+                                       goto done_matches;
+                               }
+                       } while (in_next[next_len - 1] == matchptr[next_len - 1]);
+
+               rep0_done:
+
+                       /* Consider rep1 matches. */
+                       matchptr = in_next - lzx_lru_queue_R1(QUEUE(cur_node));
+                       if (load_u16_unaligned(matchptr) != load_u16_unaligned(in_next))
+                               goto rep1_done;
+                       if (matchptr[next_len - 1] != in_next[next_len - 1])
+                               goto rep1_done;
+                       for (unsigned len = 2; len < next_len - 1; len++)
+                               if (matchptr[len] != in_next[len])
+                                       goto rep1_done;
+                       do {
+                               u32 cost = cur_node->cost +
+                                          c->costs.match_cost[1][
+                                                       next_len - LZX_MIN_MATCH_LEN];
+                               if (cost <= (cur_node + next_len)->cost) {
+                                       (cur_node + next_len)->cost = cost;
+                                       (cur_node + next_len)->item =
+                                               (1 << OPTIMUM_OFFSET_SHIFT) | next_len;
+                               }
+                               if (unlikely(++next_len > max_len)) {
+                                       cache_ptr = end_matches;
+                                       goto done_matches;
+                               }
+                       } while (in_next[next_len - 1] == matchptr[next_len - 1]);
+
+               rep1_done:
+
+                       /* Consider rep2 matches. */
+                       matchptr = in_next - lzx_lru_queue_R2(QUEUE(cur_node));
+                       if (load_u16_unaligned(matchptr) != load_u16_unaligned(in_next))
+                               goto rep2_done;
+                       if (matchptr[next_len - 1] != in_next[next_len - 1])
+                               goto rep2_done;
+                       for (unsigned len = 2; len < next_len - 1; len++)
+                               if (matchptr[len] != in_next[len])
+                                       goto rep2_done;
+                       do {
+                               u32 cost = cur_node->cost +
+                                          c->costs.match_cost[2][
+                                                       next_len - LZX_MIN_MATCH_LEN];
+                               if (cost <= (cur_node + next_len)->cost) {
+                                       (cur_node + next_len)->cost = cost;
+                                       (cur_node + next_len)->item =
+                                               (2 << OPTIMUM_OFFSET_SHIFT) | next_len;
+                               }
+                               if (unlikely(++next_len > max_len)) {
+                                       cache_ptr = end_matches;
+                                       goto done_matches;
+                               }
+                       } while (in_next[next_len - 1] == matchptr[next_len - 1]);
+
+               rep2_done:
+
+                       while (next_len > cache_ptr->length)
+                               if (++cache_ptr == end_matches)
+                                       goto done_matches;
+
+                       /* Consider explicit offset matches. */
+                       for (;;) {
+                               u32 offset = cache_ptr->offset;
+                               u32 adjusted_offset = offset + LZX_OFFSET_ADJUSTMENT;
+                               unsigned offset_slot = lzx_get_offset_slot(c, adjusted_offset, is_16_bit);
+                               u32 base_cost = cur_node->cost;
+                               u32 cost;
+
+                       #if CONSIDER_ALIGNED_COSTS
+                               if (offset >= 16 - LZX_OFFSET_ADJUSTMENT)
+                                       base_cost += c->costs.aligned[adjusted_offset &
+                                                                     LZX_ALIGNED_OFFSET_BITMASK];
+                       #endif
+                               do {
+                                       cost = base_cost +
+                                              c->costs.match_cost[offset_slot][
+                                                               next_len - LZX_MIN_MATCH_LEN];
+                                       if (cost < (cur_node + next_len)->cost) {
+                                               (cur_node + next_len)->cost = cost;
+                                               (cur_node + next_len)->item =
+                                                       (adjusted_offset << OPTIMUM_OFFSET_SHIFT) | next_len;
+                                       }
+                               } while (++next_len <= cache_ptr->length);
+
+                               if (++cache_ptr == end_matches) {
+                               #if CONSIDER_GAP_MATCHES
+                                       /* Also consider the longest explicit
+                                        * offset match as a "gap match": match
+                                        * + lit + rep0. */
+                                       s32 remaining = (block_end - in_next) - (s32)next_len;
+                                       if (likely(remaining >= 2)) {
+                                               const u8 *strptr = in_next + next_len;
+                                               const u8 *matchptr = strptr - offset;
+                                               if (load_u16_unaligned(strptr) == load_u16_unaligned(matchptr)) {
+                                                       STATIC_ASSERT(ARRAY_LEN(queues) - LZX_MAX_MATCH_LEN - 2 >= 250);
+                                                       STATIC_ASSERT(ARRAY_LEN(queues) == ARRAY_LEN(matches_before_gap));
+                                                       unsigned limit = min(remaining,
+                                                                            min(ARRAY_LEN(queues) - LZX_MAX_MATCH_LEN - 2,
+                                                                                LZX_MAX_MATCH_LEN));
+                                                       unsigned rep0_len = lz_extend(strptr, matchptr, 2, limit);
+                                                       u8 lit = strptr[-1];
+                                                       cost += c->costs.main[lit] +
+                                                               c->costs.match_cost[0][rep0_len - LZX_MIN_MATCH_LEN];
+                                                       unsigned total_len = next_len + rep0_len;
+                                                       if (cost < (cur_node + total_len)->cost) {
+                                                               (cur_node + total_len)->cost = cost;
+                                                               (cur_node + total_len)->item =
+                                                                       OPTIMUM_GAP_MATCH |
+                                                                       ((u32)lit << OPTIMUM_OFFSET_SHIFT) |
+                                                                       rep0_len;
+                                                               MATCH_BEFORE_GAP(cur_node + total_len) =
+                                                                       (adjusted_offset << OPTIMUM_OFFSET_SHIFT) |
+                                                                       (next_len - 1);
+                                                       }
+                                               }
+                                       }
+                               #endif /* CONSIDER_GAP_MATCHES */
+                                       break;
+                               }
+                       }
+               }
 
-       main_symbol = LZX_NUM_CHARS + ((offset_slot << 3) | len_header);
+       done_matches:
 
-       c->freqs.main[main_symbol]++;
+               /* Consider coding a literal.
 
-       if (offset_slot >= 8)
-               c->freqs.aligned[(offset + LZX_OFFSET_OFFSET) & 7]++;
+                * To avoid an extra branch, actually checking the preferability
+                * of coding the literal is integrated into the queue update
+                * code below. */
+               literal = *in_next++;
+               cost = cur_node->cost + c->costs.main[literal];
 
-       if (next_chosen_item) {
+               /* Advance to the next position. */
+               cur_node++;
 
-               num_extra_bits = lzx_extra_offset_bits[offset_slot];
+               /* The lowest-cost path to the current position is now known.
+                * Finalize the recent offsets queue that results from taking
+                * this lowest-cost path. */
 
-               extra_bits = (offset + LZX_OFFSET_OFFSET) -
-                            lzx_offset_slot_base[offset_slot];
+               if (cost <= cur_node->cost) {
+                       /* Literal: queue remains unchanged. */
+                       cur_node->cost = cost;
+                       cur_node->item = (u32)literal << OPTIMUM_OFFSET_SHIFT;
+                       QUEUE(cur_node) = QUEUE(cur_node - 1);
+               } else {
+                       /* Match: queue update is needed. */
+                       unsigned len = cur_node->item & OPTIMUM_LEN_MASK;
+               #if CONSIDER_GAP_MATCHES
+                       s32 adjusted_offset = (s32)cur_node->item >> OPTIMUM_OFFSET_SHIFT;
+                       STATIC_ASSERT(OPTIMUM_GAP_MATCH == 0x80000000); /* assuming sign extension */
+               #else
+                       u32 adjusted_offset = cur_node->item >> OPTIMUM_OFFSET_SHIFT;
+               #endif
+
+                       if (adjusted_offset >= LZX_NUM_RECENT_OFFSETS) {
+                               /* Explicit offset match: insert offset at front. */
+                               QUEUE(cur_node) =
+                                       lzx_lru_queue_push(QUEUE(cur_node - len),
+                                                          adjusted_offset - LZX_OFFSET_ADJUSTMENT);
+                       }
+               #if CONSIDER_GAP_MATCHES
+                       else if (adjusted_offset < 0) {
+                               /* "Gap match": Explicit offset match, then a
+                                * literal, then rep0 match.  Save the explicit
+                                * offset match information in the cost field of
+                                * the previous node, which isn't needed
+                                * anymore.  Then insert the offset at the front
+                                * of the queue. */
+                               u32 match_before_gap = MATCH_BEFORE_GAP(cur_node);
+                               (cur_node - 1)->cost = match_before_gap;
+                               QUEUE(cur_node) =
+                                       lzx_lru_queue_push(QUEUE(cur_node - len - 1 -
+                                                                (match_before_gap & OPTIMUM_LEN_MASK)),
+                                                          (match_before_gap >> OPTIMUM_OFFSET_SHIFT) -
+                                                          LZX_OFFSET_ADJUSTMENT);
+                       }
+               #endif
+                       else {
+                               /* Repeat offset match: swap offset to front. */
+                               QUEUE(cur_node) =
+                                       lzx_lru_queue_swap(QUEUE(cur_node - len),
+                                                          adjusted_offset);
+                       }
+               }
+       } while (cur_node != end_node);
 
-               *(*next_chosen_item)++ = (struct lzx_item) {
-                       .data = (u64)main_symbol |
-                               ((u64)len_symbol << 10) |
-                               ((u64)num_extra_bits << 18) |
-                               ((u64)extra_bits << 23),
-               };
-       }
+       /* Return the recent offsets queue at the end of the path. */
+       return QUEUE(cur_node);
 }
 
-/* Tally, and optionally record, the specified match or literal.  */
-static inline void
-lzx_declare_item(struct lzx_compressor *c, u32 mc_item_data,
-                struct lzx_item **next_chosen_item)
+/*
+ * Given the costs for the main and length codewords (c->costs.main and
+ * c->costs.len), initialize the match cost array (c->costs.match_cost) which
+ * directly provides the cost of every possible (length, offset slot) pair.
+ */
+static void
+lzx_compute_match_costs(struct lzx_compressor *c)
 {
-       u32 len = mc_item_data & MC_LEN_MASK;
-       u32 offset_data = mc_item_data >> MC_OFFSET_SHIFT;
-
-       if (len == 1)
-               lzx_declare_literal(c, offset_data, next_chosen_item);
-       else if (offset_data < LZX_NUM_RECENT_OFFSETS)
-               lzx_declare_repeat_offset_match(c, len, offset_data,
-                                               next_chosen_item);
-       else
-               lzx_declare_explicit_offset_match(c, len,
-                                                 offset_data - LZX_OFFSET_OFFSET,
-                                                 next_chosen_item);
-}
+       unsigned num_offset_slots = (c->num_main_syms - LZX_NUM_CHARS) /
+                                       LZX_NUM_LEN_HEADERS;
+       struct lzx_costs *costs = &c->costs;
+       unsigned main_symbol = LZX_NUM_CHARS;
+
+       for (unsigned offset_slot = 0; offset_slot < num_offset_slots;
+            offset_slot++)
+       {
+               u32 extra_cost = lzx_extra_offset_bits[offset_slot] * BIT_COST;
+               unsigned i;
+
+       #if CONSIDER_ALIGNED_COSTS
+               if (offset_slot >= 8)
+                       extra_cost -= LZX_NUM_ALIGNED_OFFSET_BITS * BIT_COST;
+       #endif
+
+               for (i = 0; i < LZX_NUM_PRIMARY_LENS; i++) {
+                       costs->match_cost[offset_slot][i] =
+                               costs->main[main_symbol++] + extra_cost;
+               }
 
-static inline void
-lzx_record_item_list(struct lzx_compressor *c,
-                    struct lzx_mc_pos_data *cur_optimum_ptr,
-                    struct lzx_item **next_chosen_item)
-{
-       struct lzx_mc_pos_data *end_optimum_ptr;
-       u32 saved_item;
-       u32 item;
+               extra_cost += costs->main[main_symbol++];
 
-       /* The list is currently in reverse order (last item to first item).
-        * Reverse it.  */
-       end_optimum_ptr = cur_optimum_ptr;
-       saved_item = cur_optimum_ptr->mc_item_data;
-       do {
-               item = saved_item;
-               cur_optimum_ptr -= item & MC_LEN_MASK;
-               saved_item = cur_optimum_ptr->mc_item_data;
-               cur_optimum_ptr->mc_item_data = item;
-       } while (cur_optimum_ptr != c->optimum);
-
-       /* Walk the list of items from beginning to end, tallying and recording
-        * each item.  */
-       do {
-               lzx_declare_item(c, cur_optimum_ptr->mc_item_data, next_chosen_item);
-               cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK;
-       } while (cur_optimum_ptr != end_optimum_ptr);
+               for (; i < LZX_NUM_LENS; i++) {
+                       costs->match_cost[offset_slot][i] =
+                               costs->len[i - LZX_NUM_PRIMARY_LENS] +
+                               extra_cost;
+               }
+       }
 }
 
-static inline void
-lzx_tally_item_list(struct lzx_compressor *c, struct lzx_mc_pos_data *cur_optimum_ptr)
+/*
+ * Fast approximation for log2f(x).  This is not as accurate as the standard C
+ * version.  It does not need to be perfectly accurate because it is only used
+ * for estimating symbol costs, which is very approximate anyway.
+ */
+static float
+log2f_fast(float x)
 {
-       /* Since we're just tallying the items, we don't need to reverse the
-        * list.  Processing the items in reverse order is fine.  */
-       do {
-               lzx_declare_item(c, cur_optimum_ptr->mc_item_data, NULL);
-               cur_optimum_ptr -= (cur_optimum_ptr->mc_item_data & MC_LEN_MASK);
-       } while (cur_optimum_ptr != c->optimum);
+        union {
+               float f;
+               s32 i;
+       } u = { .f = x };
+
+       /* Extract the exponent and subtract 127 to remove the bias.  This gives
+        * the integer part of the result. */
+        float res = ((u.i >> 23) & 0xFF) - 127;
+
+       /* Set the exponent to 0 (plus bias of 127).  This transforms the number
+        * to the range [1, 2) while retaining the same mantissa. */
+       u.i = (u.i & ~(0xFF << 23)) | (127 << 23);
+
+       /*
+        * Approximate the log2 of the transformed number using a degree 2
+        * interpolating polynomial for log2(x) over the interval [1, 2).  Then
+        * add this to the extracted exponent to produce the final approximation
+        * of log2(x).
+        *
+        * The coefficients of the interpolating polynomial used here were found
+        * using the script tools/log2_interpolation.r.
+        */
+        return res - 1.653124006f + u.f * (1.9941812f - u.f * 0.3347490189f);
+
 }
 
-/* Tally, and optionally (if next_chosen_item != NULL) record, in order, all
- * items in the current list of items found by the match-chooser.  */
-static void
-lzx_declare_item_list(struct lzx_compressor *c, struct lzx_mc_pos_data *cur_optimum_ptr,
-                     struct lzx_item **next_chosen_item)
+/*
+ * Return the estimated cost of a symbol which has been estimated to have the
+ * given probability.
+ */
+static u32
+lzx_cost_for_probability(float prob)
 {
-       if (next_chosen_item)
-               lzx_record_item_list(c, cur_optimum_ptr, next_chosen_item);
-       else
-               lzx_tally_item_list(c, cur_optimum_ptr);
+       /*
+        * The basic formula is:
+        *
+        *      entropy = -log2(probability)
+        *
+        * Use this to get the cost in fractional bits.  Then multiply by our
+        * scaling factor of BIT_COST and truncate to a u32.
+        *
+        * In addition, the minimum cost is BIT_COST (one bit) because the
+        * entropy coding method will be Huffman codes.
+        */
+       u32 cost = -log2f_fast(prob) * BIT_COST;
+       return max(cost, BIT_COST);
 }
 
-/* Set the cost model @c->costs from the Huffman codeword lengths specified in
- * @lens.
+/*
+ * Mapping: number of used literals => heuristic probability of a literal times
+ * 6870.  Generated by running this R command:
  *
- * The cost model and codeword lengths are almost the same thing, but the
- * Huffman codewords with length 0 correspond to symbols with zero frequency
- * that still need to be assigned actual costs.  The specific values assigned
- * are arbitrary, but they should be fairly high (near the maximum codeword
- * length) to take into account the fact that uses of these symbols are expected
- * to be rare.  */
-static void
-lzx_set_costs(struct lzx_compressor *c, const struct lzx_lens * lens)
-{
-       unsigned i;
-
-       /* Main code  */
-       for (i = 0; i < c->num_main_syms; i++)
-               c->costs.main[i] = lens->main[i] ? lens->main[i] : 15;
-
-       /* Length code  */
-       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
-               c->costs.len[i] = lens->len[i] ? lens->len[i] : 15;
+ *     cat(paste(round(6870*2^-((304+(0:256))/64)), collapse=", "))
+ */
+static const u8 literal_scaled_probs[257] = {
+       255, 253, 250, 247, 244, 242, 239, 237, 234, 232, 229, 227, 224, 222,
+       219, 217, 215, 212, 210, 208, 206, 203, 201, 199, 197, 195, 193, 191,
+       189, 186, 184, 182, 181, 179, 177, 175, 173, 171, 169, 167, 166, 164,
+       162, 160, 159, 157, 155, 153, 152, 150, 149, 147, 145, 144, 142, 141,
+       139, 138, 136, 135, 133, 132, 130, 129, 128, 126, 125, 124, 122, 121,
+       120, 118, 117, 116, 115, 113, 112, 111, 110, 109, 107, 106, 105, 104,
+       103, 102, 101, 100, 98, 97, 96, 95, 94, 93, 92, 91, 90, 89, 88, 87, 86,
+       86, 85, 84, 83, 82, 81, 80, 79, 78, 78, 77, 76, 75, 74, 73, 73, 72, 71,
+       70, 70, 69, 68, 67, 67, 66, 65, 65, 64, 63, 62, 62, 61, 60, 60, 59, 59,
+       58, 57, 57, 56, 55, 55, 54, 54, 53, 53, 52, 51, 51, 50, 50, 49, 49, 48,
+       48, 47, 47, 46, 46, 45, 45, 44, 44, 43, 43, 42, 42, 41, 41, 40, 40, 40,
+       39, 39, 38, 38, 38, 37, 37, 36, 36, 36, 35, 35, 34, 34, 34, 33, 33, 33,
+       32, 32, 32, 31, 31, 31, 30, 30, 30, 29, 29, 29, 28, 28, 28, 27, 27, 27,
+       27, 26, 26, 26, 25, 25, 25, 25, 24, 24, 24, 24, 23, 23, 23, 23, 22, 22,
+       22, 22, 21, 21, 21, 21, 20, 20, 20, 20, 20, 19, 19, 19, 19, 19, 18, 18,
+       18, 18, 18, 17, 17, 17, 17, 17, 16, 16, 16, 16
+};
 
-       /* Aligned offset code  */
-       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
-               c->costs.aligned[i] = lens->aligned[i] ? lens->aligned[i] : 7;
-}
+/*
+ * Mapping: length symbol => default cost of that symbol.  This is derived from
+ * sample data but has been slightly edited to add more bias towards the
+ * shortest lengths, which are the most common.
+ */
+static const u16 lzx_default_len_costs[LZX_LENCODE_NUM_SYMBOLS] = {
+       300, 310, 320, 330, 360, 396, 399, 416, 451, 448, 463, 466, 505, 492,
+       503, 514, 547, 531, 566, 561, 589, 563, 592, 586, 623, 602, 639, 627,
+       659, 643, 657, 650, 685, 662, 661, 672, 685, 686, 696, 680, 657, 682,
+       666, 699, 674, 699, 679, 709, 688, 712, 692, 714, 694, 716, 698, 712,
+       706, 727, 714, 727, 713, 723, 712, 718, 719, 719, 720, 735, 725, 735,
+       728, 740, 727, 739, 727, 742, 716, 733, 733, 740, 738, 746, 737, 747,
+       738, 745, 736, 748, 742, 749, 745, 749, 743, 748, 741, 752, 745, 752,
+       747, 750, 747, 752, 748, 753, 750, 752, 753, 753, 749, 744, 752, 755,
+       753, 756, 745, 748, 746, 745, 723, 757, 755, 758, 755, 758, 752, 757,
+       754, 757, 755, 759, 755, 758, 753, 755, 755, 758, 757, 761, 755, 750,
+       758, 759, 759, 760, 758, 751, 757, 757, 759, 759, 758, 759, 758, 761,
+       750, 761, 758, 760, 759, 761, 758, 761, 760, 752, 759, 760, 759, 759,
+       757, 762, 760, 761, 761, 748, 761, 760, 762, 763, 752, 762, 762, 763,
+       762, 762, 763, 763, 762, 763, 762, 763, 762, 763, 763, 764, 763, 762,
+       763, 762, 762, 762, 764, 764, 763, 764, 763, 763, 763, 762, 763, 763,
+       762, 764, 764, 763, 762, 763, 763, 763, 763, 762, 764, 763, 762, 764,
+       764, 763, 763, 765, 764, 764, 762, 763, 764, 765, 763, 764, 763, 764,
+       762, 764, 764, 754, 763, 764, 763, 763, 762, 763, 584,
+};
 
-/* Set default LZX Huffman symbol costs to bootstrap the iterative optimization
- * algorithm.  */
+/* Set default costs to bootstrap the iterative optimization algorithm. */
 static void
-lzx_set_default_costs(struct lzx_costs * costs, unsigned num_main_syms)
+lzx_set_default_costs(struct lzx_compressor *c)
 {
        unsigned i;
+       u32 num_literals = 0;
+       u32 num_used_literals = 0;
+       float inv_num_matches = 1.0f / c->freqs.main[LZX_NUM_CHARS];
+       float inv_num_items;
+       float prob_match = 1.0f;
+       u32 match_cost;
+       float base_literal_prob;
+
+       /* Some numbers here have been hardcoded to assume a bit cost of 64. */
+       STATIC_ASSERT(BIT_COST == 64);
+
+       /* Estimate the number of literals that will used.  'num_literals' is
+        * the total number, whereas 'num_used_literals' is the number of
+        * distinct symbols. */
+       for (i = 0; i < LZX_NUM_CHARS; i++) {
+               num_literals += c->freqs.main[i];
+               num_used_literals += (c->freqs.main[i] != 0);
+       }
 
-       /* Main code (part 1): Literal symbols  */
-       for (i = 0; i < LZX_NUM_CHARS; i++)
-               costs->main[i] = 8;
-
-       /* Main code (part 2): Match header symbols  */
-       for (; i < num_main_syms; i++)
-               costs->main[i] = 10;
+       /* Note: all match headers were tallied as symbol 'LZX_NUM_CHARS'.  We
+        * don't attempt to estimate which ones will be used. */
+
+       inv_num_items = 1.0f / (num_literals + c->freqs.main[LZX_NUM_CHARS]);
+       base_literal_prob = literal_scaled_probs[num_used_literals] *
+                           (1.0f / 6870.0f);
+
+       /* Literal costs.  We use two different methods to compute the
+        * probability of each literal and mix together their results. */
+       for (i = 0; i < LZX_NUM_CHARS; i++) {
+               u32 freq = c->freqs.main[i];
+               if (freq != 0) {
+                       float prob = 0.5f * ((freq * inv_num_items) +
+                                            base_literal_prob);
+                       c->costs.main[i] = lzx_cost_for_probability(prob);
+                       prob_match -= prob;
+               } else {
+                       c->costs.main[i] = 11 * BIT_COST;
+               }
+       }
 
-       /* Length code  */
+       /* Match header costs.  We just assume that all match headers are
+        * equally probable, but we do take into account the relative cost of a
+        * match header vs. a literal depending on how common matches are
+        * expected to be vs. literals. */
+       prob_match = max(prob_match, 0.15f);
+       match_cost = lzx_cost_for_probability(prob_match / (c->num_main_syms -
+                                                           LZX_NUM_CHARS));
+       for (; i < c->num_main_syms; i++)
+               c->costs.main[i] = match_cost;
+
+       /* Length symbol costs.  These are just set to fixed values which
+        * reflect the fact the smallest lengths are typically the most common,
+        * and therefore are typically the cheapest. */
        for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
-               costs->len[i] = 8;
-
-       /* Aligned offset code  */
-       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
-               costs->aligned[i] = 3;
-}
-
-/* Return the cost, in bits, to output a literal byte using the specified cost
- * model.  */
-static inline u32
-lzx_literal_cost(unsigned literal, const struct lzx_costs * costs)
-{
-       return costs->main[literal];
+               c->costs.len[i] = lzx_default_len_costs[i];
+
+#if CONSIDER_ALIGNED_COSTS
+       /* Aligned offset symbol costs.  These are derived from the estimated
+        * probability of each aligned offset symbol. */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+               /* We intentionally tallied the frequencies in the wrong slots,
+                * not accounting for LZX_OFFSET_ADJUSTMENT, since doing the
+                * fixup here is faster: a constant 8 subtractions here vs. one
+                * addition for every match. */
+               unsigned j = (i - LZX_OFFSET_ADJUSTMENT) & LZX_ALIGNED_OFFSET_BITMASK;
+               if (c->freqs.aligned[j] != 0) {
+                       float prob = c->freqs.aligned[j] * inv_num_matches;
+                       c->costs.aligned[i] = lzx_cost_for_probability(prob);
+               } else {
+                       c->costs.aligned[i] =
+                               (2 * LZX_NUM_ALIGNED_OFFSET_BITS) * BIT_COST;
+               }
+       }
+#endif
 }
 
-/* Return the cost, in bits, to output a match of the specified length and
- * offset slot using the specified cost model.  Does not take into account
- * extra offset bits.  */
-static inline u32
-lzx_match_cost_raw(unsigned len, unsigned offset_slot,
-                  const struct lzx_costs *costs)
+/* Update the current cost model to reflect the computed Huffman codes.  */
+static void
+lzx_set_costs_from_codes(struct lzx_compressor *c)
 {
-       u32 cost;
-       unsigned len_header;
-       unsigned main_symbol;
-
-       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
-               len_header = len - LZX_MIN_MATCH_LEN;
-               cost = 0;
-       } else {
-               len_header = LZX_NUM_PRIMARY_LENS;
+       unsigned i;
+       const struct lzx_lens *lens = &c->codes[c->codes_index].lens;
 
-               /* Account for length symbol.  */
-               cost = costs->len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
+       for (i = 0; i < c->num_main_syms; i++) {
+               c->costs.main[i] = (lens->main[i] ? lens->main[i] :
+                                   MAIN_CODEWORD_LIMIT) * BIT_COST;
        }
 
-       /* Account for main symbol.  */
-       main_symbol = LZX_NUM_CHARS + ((offset_slot << 3) | len_header);
-       cost += costs->main[main_symbol];
-
-       return cost;
-}
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++) {
+               c->costs.len[i] = (lens->len[i] ? lens->len[i] :
+                                  LENGTH_CODEWORD_LIMIT) * BIT_COST;
+       }
 
-/* Equivalent to lzx_match_cost_raw(), but assumes the length is small enough
- * that it doesn't require a length symbol.  */
-static inline u32
-lzx_match_cost_raw_smalllen(unsigned len, unsigned offset_slot,
-                           const struct lzx_costs *costs)
-{
-       LZX_ASSERT(len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS);
-       return costs->main[LZX_NUM_CHARS +
-                          ((offset_slot << 3) | (len - LZX_MIN_MATCH_LEN))];
+#if CONSIDER_ALIGNED_COSTS
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+               c->costs.aligned[i] = (lens->aligned[i] ? lens->aligned[i] :
+                                      ALIGNED_CODEWORD_LIMIT) * BIT_COST;
+       }
+#endif
 }
 
 /*
- * Consider coding the match at repeat offset index @rep_idx.  Consider each
- * length from the minimum (2) to the full match length (@rep_len).
+ * Choose a "near-optimal" literal/match sequence to use for the current block,
+ * then flush the block.  Because the cost of each Huffman symbol is unknown
+ * until the Huffman codes have been built and the Huffman codes themselves
+ * depend on the symbol frequencies, this uses an iterative optimization
+ * algorithm to approximate an optimal solution.  The first optimization pass
+ * for the block uses default costs; additional passes use costs derived from
+ * the Huffman codes computed in the previous pass.
  */
-static inline void
-lzx_consider_repeat_offset_match(struct lzx_compressor *c,
-                                struct lzx_mc_pos_data *cur_optimum_ptr,
-                                unsigned rep_len, unsigned rep_idx)
+static inline struct lzx_lru_queue
+lzx_optimize_and_flush_block(struct lzx_compressor * const restrict c,
+                            struct lzx_output_bitstream * const restrict os,
+                            const u8 * const restrict block_begin,
+                            const u32 block_size,
+                            const struct lzx_lru_queue initial_queue,
+                            bool is_16_bit)
 {
-       u32 base_cost = cur_optimum_ptr->cost;
-       u32 cost;
-       unsigned len;
+       unsigned num_passes_remaining = c->num_optim_passes;
+       struct lzx_lru_queue new_queue;
+       u32 seq_idx;
 
-#if 1   /* Optimized version */
+       lzx_set_default_costs(c);
 
-       if (rep_len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS) {
-               /* All lengths being considered are small.  */
-               len = 2;
-               do {
-                       cost = base_cost +
-                              lzx_match_cost_raw_smalllen(len, rep_idx, &c->costs);
-                       if (cost < (cur_optimum_ptr + len)->cost) {
-                               (cur_optimum_ptr + len)->mc_item_data =
-                                       (rep_idx << MC_OFFSET_SHIFT) | len;
-                               (cur_optimum_ptr + len)->cost = cost;
-                       }
-               } while (++len <= rep_len);
-       } else {
-               /* Some lengths being considered are small, and some are big.
-                * Start with the optimized loop for small lengths, then switch
-                * to the optimized loop for big lengths.  */
-               len = 2;
-               do {
-                       cost = base_cost +
-                              lzx_match_cost_raw_smalllen(len, rep_idx, &c->costs);
-                       if (cost < (cur_optimum_ptr + len)->cost) {
-                               (cur_optimum_ptr + len)->mc_item_data =
-                                       (rep_idx << MC_OFFSET_SHIFT) | len;
-                               (cur_optimum_ptr + len)->cost = cost;
-                       }
-               } while (++len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS);
+       for (;;) {
+               lzx_compute_match_costs(c);
+               new_queue = lzx_find_min_cost_path(c, block_begin, block_size,
+                                                  initial_queue, is_16_bit);
 
-               /* The main symbol is now fixed.  */
-               base_cost += c->costs.main[LZX_NUM_CHARS +
-                                          ((rep_idx << 3) | LZX_NUM_PRIMARY_LENS)];
-               do {
-                       cost = base_cost +
-                              c->costs.len[len - LZX_MIN_MATCH_LEN -
-                                           LZX_NUM_PRIMARY_LENS];
-                       if (cost < (cur_optimum_ptr + len)->cost) {
-                               (cur_optimum_ptr + len)->mc_item_data =
-                                       (rep_idx << MC_OFFSET_SHIFT) | len;
-                               (cur_optimum_ptr + len)->cost = cost;
-                       }
-               } while (++len <= rep_len);
-       }
+               if (--num_passes_remaining == 0)
+                       break;
 
-#else   /* Unoptimized version  */
+               /* At least one optimization pass remains.  Update the costs. */
+               lzx_reset_symbol_frequencies(c);
+               lzx_tally_item_list(c, block_size, is_16_bit);
+               lzx_build_huffman_codes(c);
+               lzx_set_costs_from_codes(c);
+       }
 
-       len = 2;
-       do {
-               cost = base_cost +
-                      lzx_match_cost_raw(len, rep_idx, &c->costs);
-               if (cost < (cur_optimum_ptr + len)->cost) {
-                       (cur_optimum_ptr + len)->mc_item_data =
-                               (rep_idx << MC_OFFSET_SHIFT) | len;
-                       (cur_optimum_ptr + len)->cost = cost;
-               }
-       } while (++len <= rep_len);
-#endif
+       /* Done optimizing.  Generate the sequence list and flush the block. */
+       lzx_reset_symbol_frequencies(c);
+       seq_idx = lzx_record_item_list(c, block_size, is_16_bit);
+       lzx_flush_block(c, os, block_begin, block_size, seq_idx);
+       return new_queue;
 }
 
 /*
- * Consider coding each match in @matches as an explicit offset match.
+ * This is the "near-optimal" LZX compressor.
  *
- * @matches must be sorted by strictly increasing length and strictly
- * increasing offset.  This is guaranteed by the match-finder.
+ * For each block, it performs a relatively thorough graph search to find an
+ * inexpensive (in terms of compressed size) way to output the block.
  *
- * We consider each length from the minimum (2) to the longest
- * (matches[num_matches - 1].len).  For each length, we consider only
- * the smallest offset for which that length is available.  Although
- * this is not guaranteed to be optimal due to the possibility of a
- * larger offset costing less than a smaller offset to code, this is a
- * very useful heuristic.
+ * Note: there are actually many things this algorithm leaves on the table in
+ * terms of compression ratio.  So although it may be "near-optimal", it is
+ * certainly not "optimal".  The goal is not to produce the optimal compression
+ * ratio, which for LZX is probably impossible within any practical amount of
+ * time, but rather to produce a compression ratio significantly better than a
+ * simpler "greedy" or "lazy" parse while still being relatively fast.
  */
 static inline void
-lzx_consider_explicit_offset_matches(struct lzx_compressor *c,
-                                    struct lzx_mc_pos_data *cur_optimum_ptr,
-                                    const struct lz_match matches[],
-                                    unsigned num_matches)
+lzx_compress_near_optimal(struct lzx_compressor * restrict c,
+                         const u8 * const restrict in_begin, size_t in_nbytes,
+                         struct lzx_output_bitstream * restrict os,
+                         bool is_16_bit)
 {
-       LZX_ASSERT(num_matches > 0);
-
-       unsigned i;
-       unsigned len;
-       unsigned offset_slot;
-       u32 position_cost;
-       u32 cost;
-       u32 offset_data;
+       const u8 *       in_next = in_begin;
+       const u8 * const in_end  = in_begin + in_nbytes;
+       u32 max_len = LZX_MAX_MATCH_LEN;
+       u32 nice_len = min(c->nice_match_length, max_len);
+       u32 next_hashes[2] = {0, 0};
+       struct lzx_lru_queue queue = LZX_QUEUE_INITIALIZER;
 
+       /* Initialize the matchfinder. */
+       CALL_BT_MF(is_16_bit, c, bt_matchfinder_init);
 
-#if 1  /* Optimized version */
-
-       if (matches[num_matches - 1].offset < LZX_NUM_FAST_OFFSETS) {
+       do {
+               /* Starting a new block */
+
+               const u8 * const in_block_begin = in_next;
+               const u8 * const in_max_block_end =
+                       in_next + min(SOFT_MAX_BLOCK_SIZE, in_end - in_next);
+               struct lz_match *cache_ptr = c->match_cache;
+               const u8 *next_search_pos = in_next;
+               const u8 *next_observation = in_next;
+               const u8 *next_pause_point =
+                       min(in_next + min(MIN_BLOCK_SIZE,
+                                         in_max_block_end - in_next),
+                           in_max_block_end - min(LZX_MAX_MATCH_LEN - 1,
+                                                  in_max_block_end - in_next));
+
+               lzx_init_block_split_stats(&c->split_stats);
+               lzx_reset_symbol_frequencies(c);
+
+               if (in_next >= next_pause_point)
+                       goto pause;
 
                /*
-                * Offset is small; the offset slot can be looked up directly in
-                * c->offset_slot_fast.
-                *
-                * Additional optimizations:
-                *
-                * - Since the offset is small, it falls in the exponential part
-                *   of the offset slot bases and the number of extra offset
-                *   bits can be calculated directly as (offset_slot >> 1) - 1.
+                * Run the input buffer through the matchfinder, caching the
+                * matches, until we decide to end the block.
                 *
-                * - Just consider the number of extra offset bits; don't
-                *   account for the aligned offset code.  Usually this has
-                *   almost no effect on the compression ratio.
-                *
-                * - Start out in a loop optimized for small lengths.  When the
-                *   length becomes high enough that a length symbol will be
-                *   needed, jump into a loop optimized for big lengths.
+                * For a tighter matchfinding loop, we compute a "pause point",
+                * which is the next position at which we may need to check
+                * whether to end the block or to decrease max_len.  We then
+                * only do these extra checks upon reaching the pause point.
                 */
-
-               LZX_ASSERT(offset_slot <= 37); /* for extra bits formula  */
-
-               len = 2;
-               i = 0;
+       resume_matchfinding:
                do {
-                       offset_slot = c->offset_slot_fast[matches[i].offset];
-                       position_cost = cur_optimum_ptr->cost +
-                                       ((offset_slot >> 1) - 1);
-                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
-                       do {
-                               if (len >= LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS)
-                                       goto biglen;
-                               cost = position_cost +
-                                      lzx_match_cost_raw_smalllen(len, offset_slot,
-                                                                  &c->costs);
-                               if (cost < (cur_optimum_ptr + len)->cost) {
-                                       (cur_optimum_ptr + len)->cost = cost;
-                                       (cur_optimum_ptr + len)->mc_item_data =
-                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                       if (in_next >= next_search_pos) {
+                               /* Search for matches at this position. */
+                               struct lz_match *lz_matchptr;
+                               u32 best_len;
+
+                               lz_matchptr = CALL_BT_MF(is_16_bit, c,
+                                                        bt_matchfinder_get_matches,
+                                                        in_begin,
+                                                        in_next - in_begin,
+                                                        max_len,
+                                                        nice_len,
+                                                        c->max_search_depth,
+                                                        next_hashes,
+                                                        &best_len,
+                                                        cache_ptr + 1);
+                               cache_ptr->length = lz_matchptr - (cache_ptr + 1);
+                               cache_ptr = lz_matchptr;
+
+                               /* Accumulate literal/match statistics for block
+                                * splitting and for generating the initial cost
+                                * model. */
+                               if (in_next >= next_observation) {
+                                       best_len = cache_ptr[-1].length;
+                                       if (best_len >= 3) {
+                                               /* Match (len >= 3) */
+
+                                               /*
+                                                * Note: for performance reasons this has
+                                                * been simplified significantly:
+                                                *
+                                                * - We wait until later to account for
+                                                *   LZX_OFFSET_ADJUSTMENT.
+                                                * - We don't account for repeat offsets.
+                                                * - We don't account for different match headers.
+                                                */
+                                               c->freqs.aligned[cache_ptr[-1].offset &
+                                                       LZX_ALIGNED_OFFSET_BITMASK]++;
+                                               c->freqs.main[LZX_NUM_CHARS]++;
+
+                                               lzx_observe_match(&c->split_stats, best_len);
+                                               next_observation = in_next + best_len;
+                                       } else {
+                                               /* Literal */
+                                               c->freqs.main[*in_next]++;
+                                               lzx_observe_literal(&c->split_stats, *in_next);
+                                               next_observation = in_next + 1;
+                                       }
                                }
-                       } while (++len <= matches[i].len);
-               } while (++i != num_matches);
-
-               return;
 
-               do {
-                       offset_slot = c->offset_slot_fast[matches[i].offset];
-       biglen:
-                       position_cost = cur_optimum_ptr->cost +
-                                       ((offset_slot >> 1) - 1) +
-                                       c->costs.main[LZX_NUM_CHARS +
-                                                     ((offset_slot << 3) |
-                                                      LZX_NUM_PRIMARY_LENS)];
-                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
-                       do {
-                               cost = position_cost +
-                                      c->costs.len[len - LZX_MIN_MATCH_LEN -
-                                                   LZX_NUM_PRIMARY_LENS];
-                               if (cost < (cur_optimum_ptr + len)->cost) {
-                                       (cur_optimum_ptr + len)->cost = cost;
-                                       (cur_optimum_ptr + len)->mc_item_data =
-                                               (offset_data << MC_OFFSET_SHIFT) | len;
-                               }
-                       } while (++len <= matches[i].len);
-               } while (++i != num_matches);
-       } else {
-               len = 2;
-               i = 0;
-               do {
-                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
-                       offset_slot = lzx_get_offset_slot_raw(offset_data);
-                       position_cost = cur_optimum_ptr->cost +
-                                       lzx_extra_offset_bits[offset_slot];
-                       do {
-                               cost = position_cost +
-                                      lzx_match_cost_raw(len, offset_slot, &c->costs);
-                               if (cost < (cur_optimum_ptr + len)->cost) {
-                                       (cur_optimum_ptr + len)->cost = cost;
-                                       (cur_optimum_ptr + len)->mc_item_data =
-                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               /*
+                                * If there was a very long match found, then
+                                * don't cache any matches for the bytes covered
+                                * by that match.  This avoids degenerate
+                                * behavior when compressing highly redundant
+                                * data, where the number of matches can be very
+                                * large.
+                                *
+                                * This heuristic doesn't actually hurt the
+                                * compression ratio *too* much.  If there's a
+                                * long match, then the data must be highly
+                                * compressible, so it doesn't matter as much
+                                * what we do.
+                                */
+                               if (best_len >= nice_len)
+                                       next_search_pos = in_next + best_len;
+                       } else {
+                               /* Don't search for matches at this position. */
+                               CALL_BT_MF(is_16_bit, c,
+                                          bt_matchfinder_skip_position,
+                                          in_begin,
+                                          in_next - in_begin,
+                                          nice_len,
+                                          c->max_search_depth,
+                                          next_hashes);
+                               cache_ptr->length = 0;
+                               cache_ptr++;
+                       }
+               } while (++in_next < next_pause_point &&
+                        likely(cache_ptr < &c->match_cache[CACHE_LENGTH]));
+
+       pause:
+
+               /* Adjust max_len and nice_len if we're nearing the end of the
+                * input buffer.  In addition, if we are so close to the end of
+                * the input buffer that there cannot be any more matches, then
+                * just advance through the last few positions and record no
+                * matches. */
+               if (unlikely(max_len > in_end - in_next)) {
+                       max_len = in_end - in_next;
+                       nice_len = min(max_len, nice_len);
+                       if (max_len < BT_MATCHFINDER_REQUIRED_NBYTES) {
+                               while (in_next != in_end) {
+                                       cache_ptr->length = 0;
+                                       cache_ptr++;
+                                       in_next++;
                                }
-                       } while (++len <= matches[i].len);
-               } while (++i != num_matches);
-       }
+                       }
+               }
 
-#else  /* Unoptimized version */
+               /* End the block if the match cache may overflow. */
+               if (unlikely(cache_ptr >= &c->match_cache[CACHE_LENGTH]))
+                       goto end_block;
+
+               /* End the block if the soft maximum size has been reached. */
+               if (in_next >= in_max_block_end)
+                       goto end_block;
+
+               /* End the block if the block splitting algorithm thinks this is
+                * a good place to do so. */
+               if (c->split_stats.num_new_observations >=
+                               NUM_OBSERVATIONS_PER_BLOCK_CHECK &&
+                   in_max_block_end - in_next >= MIN_BLOCK_SIZE &&
+                   lzx_should_end_block(&c->split_stats))
+                       goto end_block;
+
+               /* It's not time to end the block yet.  Compute the next pause
+                * point and resume matchfinding. */
+               next_pause_point =
+                       min(in_next + min(NUM_OBSERVATIONS_PER_BLOCK_CHECK * 2 -
+                                           c->split_stats.num_new_observations,
+                                         in_max_block_end - in_next),
+                           in_max_block_end - min(LZX_MAX_MATCH_LEN - 1,
+                                                  in_max_block_end - in_next));
+               goto resume_matchfinding;
+
+       end_block:
+               /* We've decided on a block boundary and cached matches.  Now
+                * choose a match/literal sequence and flush the block. */
+               queue = lzx_optimize_and_flush_block(c, os, in_block_begin,
+                                                    in_next - in_block_begin,
+                                                    queue, is_16_bit);
+       } while (in_next != in_end);
+}
 
-       unsigned num_extra_bits;
+static void
+lzx_compress_near_optimal_16(struct lzx_compressor *c, const u8 *in,
+                            size_t in_nbytes, struct lzx_output_bitstream *os)
+{
+       lzx_compress_near_optimal(c, in, in_nbytes, os, true);
+}
 
-       len = 2;
-       i = 0;
-       do {
-               offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
-               position_cost = cur_optimum_ptr->cost;
-               offset_slot = lzx_get_offset_slot_raw(offset_data);
-               num_extra_bits = lzx_extra_offset_bits[offset_slot];
-               if (num_extra_bits >= 3) {
-                       position_cost += num_extra_bits - 3;
-                       position_cost += c->costs.aligned[offset_data & 7];
-               } else {
-                       position_cost += num_extra_bits;
-               }
-               do {
-                       cost = position_cost +
-                              lzx_match_cost_raw(len, offset_slot, &c->costs);
-                       if (cost < (cur_optimum_ptr + len)->cost) {
-                               (cur_optimum_ptr + len)->cost = cost;
-                               (cur_optimum_ptr + len)->mc_item_data =
-                                       (offset_data << MC_OFFSET_SHIFT) | len;
-                       }
-               } while (++len <= matches[i].len);
-       } while (++i != num_matches);
-#endif
+static void
+lzx_compress_near_optimal_32(struct lzx_compressor *c, const u8 *in,
+                            size_t in_nbytes, struct lzx_output_bitstream *os)
+{
+       lzx_compress_near_optimal(c, in, in_nbytes, os, false);
 }
 
+/******************************************************************************/
+/*                     Faster ("lazy") compression algorithm                  */
+/*----------------------------------------------------------------------------*/
+
 /*
- * Search for repeat offset matches with the current position.
+ * Called when the compressor chooses to use a literal.  This tallies the
+ * Huffman symbol for the literal, increments the current literal run length,
+ * and "observes" the literal for the block split statistics.
  */
-static inline unsigned
-lzx_repsearch(const u8 * const strptr, const u32 bytes_remaining,
-             const struct lzx_lru_queue *queue, unsigned *rep_max_idx_ret)
+static inline void
+lzx_choose_literal(struct lzx_compressor *c, unsigned literal, u32 *litrunlen_p)
 {
-       BUILD_BUG_ON(LZX_NUM_RECENT_OFFSETS != 3);
-       return lz_repsearch3(strptr, min(bytes_remaining, LZX_MAX_MATCH_LEN),
-                            queue->R, rep_max_idx_ret);
+       lzx_observe_literal(&c->split_stats, literal);
+       c->freqs.main[literal]++;
+       ++*litrunlen_p;
 }
 
 /*
- * The main near-optimal parsing routine.
- *
- * Briefly, the algorithm does an approximate minimum-cost path search to find a
- * "near-optimal" sequence of matches and literals to output, based on the
- * current cost model.  The algorithm steps forward, position by position (byte
- * by byte), and updates the minimum cost path to reach each later position that
- * can be reached using a match or literal from the current position.  This is
- * essentially Dijkstra's algorithm in disguise: the graph nodes are positions,
- * the graph edges are possible matches/literals to code, and the cost of each
- * edge is the estimated number of bits that will be required to output the
- * corresponding match or literal.  But one difference is that we actually
- * compute the lowest-cost path in pieces, where each piece is terminated when
- * there are no choices to be made.
- *
- * This function will run this algorithm on the portion of the window from
- * &c->cur_window[c->match_window_pos] to &c->cur_window[c->match_window_end].
- *
- * On entry, c->queue must be the current state of the match offset LRU queue,
- * and c->costs must be the current cost model to use for Huffman symbols.
- *
- * On exit, c->queue will be the state that the LRU queue would be in if the
- * chosen items were to be coded.
- *
- * If next_chosen_item != NULL, then all items chosen will be recorded (saved in
- * the chosen_items array).  Otherwise, all items chosen will only be tallied
- * (symbol frequencies tallied in c->freqs).
+ * Called when the compressor chooses to use a match.  This tallies the Huffman
+ * symbol(s) for a match, saves the match data and the length of the preceding
+ * literal run, updates the recent offsets queue, and "observes" the match for
+ * the block split statistics.
  */
-static void
-lzx_optim_pass(struct lzx_compressor *c, struct lzx_item **next_chosen_item)
+static inline void
+lzx_choose_match(struct lzx_compressor *c, unsigned length, u32 adjusted_offset,
+                u32 recent_offsets[LZX_NUM_RECENT_OFFSETS], bool is_16_bit,
+                u32 *litrunlen_p, struct lzx_sequence **next_seq_p)
 {
-       const u8 *block_end;
-       struct lzx_lru_queue *begin_queue;
-       const u8 *window_ptr;
-       struct lzx_mc_pos_data *cur_optimum_ptr;
-       struct lzx_mc_pos_data *end_optimum_ptr;
-       const struct lz_match *matches;
-       unsigned num_matches;
-       unsigned longest_len;
-       unsigned rep_max_len;
-       unsigned rep_max_idx;
-       unsigned literal;
-       unsigned len;
-       u32 cost;
-       u32 offset_data;
-
-       block_end = &c->cur_window[c->match_window_end];
-       begin_queue = &c->queue;
-begin:
-       /* Start building a new list of items, which will correspond to the next
-        * piece of the overall minimum-cost path.
-        *
-        * *begin_queue is the current state of the match offset LRU queue.  */
-
-       window_ptr = &c->cur_window[c->match_window_pos];
-
-       if (window_ptr == block_end) {
-               c->queue = *begin_queue;
-               return;
-       }
-
-       cur_optimum_ptr = c->optimum;
-       cur_optimum_ptr->cost = 0;
-       cur_optimum_ptr->queue = *begin_queue;
-
-       end_optimum_ptr = cur_optimum_ptr;
-
-       /* The following loop runs once for each per byte in the window, except
-        * in a couple shortcut cases.  */
-       for (;;) {
-
-               /* Find explicit offset matches with the current position.  */
-               num_matches = lzx_get_matches(c, &matches);
+       u32 litrunlen = *litrunlen_p;
+       struct lzx_sequence *next_seq = *next_seq_p;
+       unsigned offset_slot;
+       unsigned v;
 
-               if (num_matches) {
-                       /*
-                        * Find the longest repeat offset match with the current
-                        * position.
-                        *
-                        * Heuristics:
-                        *
-                        * - Only search for repeat offset matches if the
-                        *   match-finder already found at least one match.
-                        *
-                        * - Only consider the longest repeat offset match.  It
-                        *   seems to be rare for the optimal parse to include a
-                        *   repeat offset match that doesn't have the longest
-                        *   length (allowing for the possibility that not all
-                        *   of that length is actually used).
-                        */
-                       rep_max_len = lzx_repsearch(window_ptr,
-                                                   block_end - window_ptr,
-                                                   &cur_optimum_ptr->queue,
-                                                   &rep_max_idx);
-
-                       if (rep_max_len) {
-                               /* If there's a very long repeat offset match,
-                                * choose it immediately.  */
-                               if (rep_max_len >= c->params.nice_match_length) {
-
-                                       swap(cur_optimum_ptr->queue.R[0],
-                                            cur_optimum_ptr->queue.R[rep_max_idx]);
-                                       begin_queue = &cur_optimum_ptr->queue;
-
-                                       cur_optimum_ptr += rep_max_len;
-                                       cur_optimum_ptr->mc_item_data =
-                                               (rep_max_idx << MC_OFFSET_SHIFT) |
-                                               rep_max_len;
-
-                                       lzx_skip_bytes(c, rep_max_len - 1);
-                                       break;
-                               }
+       lzx_observe_match(&c->split_stats, length);
 
-                               /* If reaching any positions for the first time,
-                                * initialize their costs to "infinity".  */
-                               while (end_optimum_ptr < cur_optimum_ptr + rep_max_len)
-                                       (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+       v = length - LZX_MIN_MATCH_LEN;
 
-                               /* Consider coding a repeat offset match.  */
-                               lzx_consider_repeat_offset_match(c,
-                                                                cur_optimum_ptr,
-                                                                rep_max_len,
-                                                                rep_max_idx);
-                       }
+       /* Save the literal run length and adjusted length. */
+       next_seq->litrunlen = litrunlen;
+       next_seq->adjusted_length = v;
 
-                       longest_len = matches[num_matches - 1].len;
+       /* Compute the length header, then tally the length symbol if needed. */
+       if (v >= LZX_NUM_PRIMARY_LENS) {
+               c->freqs.len[v - LZX_NUM_PRIMARY_LENS]++;
+               v = LZX_NUM_PRIMARY_LENS;
+       }
 
-                       /* If there's a very long explicit offset match, choose
-                        * it immediately.  */
-                       if (longest_len >= c->params.nice_match_length) {
+       /* Compute the offset slot. */
+       offset_slot = lzx_get_offset_slot(c, adjusted_offset, is_16_bit);
 
-                               cur_optimum_ptr->queue.R[2] =
-                                       cur_optimum_ptr->queue.R[1];
-                               cur_optimum_ptr->queue.R[1] =
-                                       cur_optimum_ptr->queue.R[0];
-                               cur_optimum_ptr->queue.R[0] =
-                                       matches[num_matches - 1].offset;
-                               begin_queue = &cur_optimum_ptr->queue;
+       /* Compute the match header. */
+       v += offset_slot * LZX_NUM_LEN_HEADERS;
 
-                               offset_data = matches[num_matches - 1].offset +
-                                             LZX_OFFSET_OFFSET;
-                               cur_optimum_ptr += longest_len;
-                               cur_optimum_ptr->mc_item_data =
-                                       (offset_data << MC_OFFSET_SHIFT) |
-                                       longest_len;
+       /* Save the adjusted offset and match header. */
+       next_seq->adjusted_offset_and_match_hdr = (adjusted_offset << 9) | v;
 
-                               lzx_skip_bytes(c, longest_len - 1);
-                               break;
-                       }
+       /* Tally the main symbol. */
+       c->freqs.main[LZX_NUM_CHARS + v]++;
 
-                       /* If reaching any positions for the first time,
-                        * initialize their costs to "infinity".  */
-                       while (end_optimum_ptr < cur_optimum_ptr + longest_len)
-                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+       /* Update the recent offsets queue. */
+       if (adjusted_offset < LZX_NUM_RECENT_OFFSETS) {
+               /* Repeat offset match. */
+               swap(recent_offsets[0], recent_offsets[adjusted_offset]);
+       } else {
+               /* Explicit offset match. */
 
-                       /* Consider coding an explicit offset match.  */
-                       lzx_consider_explicit_offset_matches(c, cur_optimum_ptr,
-                                                            matches, num_matches);
-               } else {
-                       /* No matches found.  The only choice at this position
-                        * is to code a literal.  */
-
-                       if (end_optimum_ptr == cur_optimum_ptr) {
-                       #if 1
-                               /* Optimization for single literals.  */
-                               if (likely(cur_optimum_ptr == c->optimum)) {
-                                       lzx_declare_literal(c, *window_ptr++,
-                                                           next_chosen_item);
-                                       if (window_ptr == block_end) {
-                                               c->queue = cur_optimum_ptr->queue;
-                                               return;
-                                       }
-                                       continue;
-                               }
-                       #endif
-                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
-                       }
-               }
+               /* Tally the aligned offset symbol if needed. */
+               if (adjusted_offset >= 16)
+                       c->freqs.aligned[adjusted_offset & LZX_ALIGNED_OFFSET_BITMASK]++;
 
-               /* Consider coding a literal.
+               recent_offsets[2] = recent_offsets[1];
+               recent_offsets[1] = recent_offsets[0];
+               recent_offsets[0] = adjusted_offset - LZX_OFFSET_ADJUSTMENT;
+       }
 
-                * To avoid an extra unpredictable brench, actually checking the
-                * preferability of coding a literal is integrated into the
-                * queue update code below.  */
-               literal = *window_ptr++;
-               cost = cur_optimum_ptr->cost + lzx_literal_cost(literal, &c->costs);
+       /* Reset the literal run length and advance to the next sequence. */
+       *next_seq_p = next_seq + 1;
+       *litrunlen_p = 0;
+}
 
-               /* Advance to the next position.  */
-               cur_optimum_ptr++;
+/*
+ * Called when the compressor ends a block.  This finshes the last lzx_sequence,
+ * which is just a literal run with no following match.  This literal run might
+ * be empty.
+ */
+static inline void
+lzx_finish_sequence(struct lzx_sequence *last_seq, u32 litrunlen)
+{
+       last_seq->litrunlen = litrunlen;
 
-               /* The lowest-cost path to the current position is now known.
-                * Finalize the recent offsets queue that results from taking
-                * this lowest-cost path.  */
+       /* Special value to mark last sequence */
+       last_seq->adjusted_offset_and_match_hdr = 0x80000000;
+}
 
-               if (cost < cur_optimum_ptr->cost) {
-                       /* Literal: queue remains unchanged.  */
-                       cur_optimum_ptr->cost = cost;
-                       cur_optimum_ptr->mc_item_data = (literal << MC_OFFSET_SHIFT) | 1;
-                       cur_optimum_ptr->queue = (cur_optimum_ptr - 1)->queue;
-               } else {
-                       /* Match: queue update is needed.  */
-                       len = cur_optimum_ptr->mc_item_data & MC_LEN_MASK;
-                       offset_data = cur_optimum_ptr->mc_item_data >> MC_OFFSET_SHIFT;
-                       if (offset_data >= LZX_NUM_RECENT_OFFSETS) {
-                               /* Explicit offset match: offset is inserted at front  */
-                               cur_optimum_ptr->queue.R[0] = offset_data - LZX_OFFSET_OFFSET;
-                               cur_optimum_ptr->queue.R[1] = (cur_optimum_ptr - len)->queue.R[0];
-                               cur_optimum_ptr->queue.R[2] = (cur_optimum_ptr - len)->queue.R[1];
-                       } else {
-                               /* Repeat offset match: offset is swapped to front  */
-                               cur_optimum_ptr->queue = (cur_optimum_ptr - len)->queue;
-                               swap(cur_optimum_ptr->queue.R[0],
-                                    cur_optimum_ptr->queue.R[offset_data]);
-                       }
+/*
+ * Find the longest repeat offset match with the current position.  If a match
+ * is found, return its length and set *best_rep_idx_ret to the index of its
+ * offset in @recent_offsets.  Otherwise, return 0.
+ *
+ * Don't bother with length 2 matches; consider matches of length >= 3 only.
+ * Also assume that max_len >= 3.
+ */
+static unsigned
+lzx_find_longest_repeat_offset_match(const u8 * const in_next,
+                                    const u32 recent_offsets[],
+                                    const unsigned max_len,
+                                    unsigned *best_rep_idx_ret)
+{
+       STATIC_ASSERT(LZX_NUM_RECENT_OFFSETS == 3); /* loop is unrolled */
+
+       const u32 seq3 = load_u24_unaligned(in_next);
+       const u8 *matchptr;
+       unsigned best_rep_len = 0;
+       unsigned best_rep_idx = 0;
+       unsigned rep_len;
+
+       /* Check for rep0 match (most recent offset) */
+       matchptr = in_next - recent_offsets[0];
+       if (load_u24_unaligned(matchptr) == seq3)
+               best_rep_len = lz_extend(in_next, matchptr, 3, max_len);
+
+       /* Check for rep1 match (second most recent offset) */
+       matchptr = in_next - recent_offsets[1];
+       if (load_u24_unaligned(matchptr) == seq3) {
+               rep_len = lz_extend(in_next, matchptr, 3, max_len);
+               if (rep_len > best_rep_len) {
+                       best_rep_len = rep_len;
+                       best_rep_idx = 1;
                }
+       }
 
-               /*
-                * This loop will terminate when either of the following
-                * conditions is true:
-                *
-                * (1) cur_optimum_ptr == end_optimum_ptr
-                *
-                *      There are no paths that extend beyond the current
-                *      position.  In this case, any path to a later position
-                *      must pass through the current position, so we can go
-                *      ahead and choose the list of items that led to this
-                *      position.
-                *
-                * (2) cur_optimum_ptr == &c->optimum[LZX_OPTIM_ARRAY_LENGTH]
-                *
-                *      This bounds the number of times the algorithm can step
-                *      forward before it is guaranteed to start choosing items.
-                *      This limits the memory usage.  But
-                *      LZX_OPTIM_ARRAY_LENGTH is high enough that on most
-                *      inputs this limit is never reached.
-                *
-                * Note: no check for end-of-block is needed because
-                * end-of-block will trigger condition (1).
-                */
-               if (cur_optimum_ptr == end_optimum_ptr ||
-                   cur_optimum_ptr == &c->optimum[LZX_OPTIM_ARRAY_LENGTH])
-               {
-                       begin_queue = &cur_optimum_ptr->queue;
-                       break;
+       /* Check for rep2 match (third most recent offset) */
+       matchptr = in_next - recent_offsets[2];
+       if (load_u24_unaligned(matchptr) == seq3) {
+               rep_len = lz_extend(in_next, matchptr, 3, max_len);
+               if (rep_len > best_rep_len) {
+                       best_rep_len = rep_len;
+                       best_rep_idx = 2;
                }
        }
 
-       /* Choose the current list of items that constitute the minimum-cost
-        * path to the current position.  */
-       lzx_declare_item_list(c, cur_optimum_ptr, next_chosen_item);
-       goto begin;
+       *best_rep_idx_ret = best_rep_idx;
+       return best_rep_len;
 }
 
-/* Fast heuristic scoring for lazy parsing: how "good" is this match?  */
+/*
+ * Fast heuristic scoring for lazy parsing: how "good" is this match?
+ * This is mainly determined by the length: longer matches are better.
+ * However, we also give a bonus to close (small offset) matches and to repeat
+ * offset matches, since those require fewer bits to encode.
+ */
+
 static inline unsigned
 lzx_explicit_offset_match_score(unsigned len, u32 adjusted_offset)
 {
        unsigned score = len;
 
-       if (adjusted_offset < 2048)
+       if (adjusted_offset < 4096)
                score++;
-
-       if (adjusted_offset < 1024)
+       if (adjusted_offset < 256)
                score++;
 
        return score;
 }
 
 static inline unsigned
-lzx_repeat_offset_match_score(unsigned len, unsigned slot)
+lzx_repeat_offset_match_score(unsigned rep_len, unsigned rep_idx)
 {
-       return len + 3;
+       return rep_len + 3;
 }
 
-/* Lazy parsing  */
-static u32
-lzx_choose_lazy_items_for_block(struct lzx_compressor *c,
-                               u32 block_start_pos, u32 block_size)
+/*
+ * This is the "lazy" LZX compressor.  The basic idea is that before it chooses
+ * a match, it checks to see if there's a longer match at the next position.  If
+ * yes, it chooses a literal and continues to the next position.  If no, it
+ * chooses the match.
+ *
+ * Some additional heuristics are used as well.  Repeat offset matches are
+ * considered favorably and sometimes are chosen immediately.  In addition, long
+ * matches (at least "nice_len" bytes) are chosen immediately as well.  Finally,
+ * when we decide whether a match is "better" than another, we take the offset
+ * into consideration as well as the length.
+ */
+static inline void
+lzx_compress_lazy(struct lzx_compressor * restrict c,
+                 const u8 * const restrict in_begin, size_t in_nbytes,
+                 struct lzx_output_bitstream * restrict os, bool is_16_bit)
 {
-       const u8 *window_ptr;
-       const u8 *block_end;
-       struct lz_mf *mf;
-       struct lz_match *matches;
-       unsigned num_matches;
-       unsigned cur_len;
-       u32 cur_offset_data;
-       unsigned cur_score;
-       unsigned rep_max_len;
-       unsigned rep_max_idx;
-       unsigned rep_score;
-       unsigned prev_len;
-       unsigned prev_score;
-       u32 prev_offset_data;
-       unsigned skip_len;
-       struct lzx_item *next_chosen_item;
-
-       window_ptr = &c->cur_window[block_start_pos];
-       block_end = window_ptr + block_size;
-       matches = c->cached_matches;
-       mf = c->mf;
-       next_chosen_item = c->chosen_items;
-
-       prev_len = 0;
-       prev_offset_data = 0;
-       prev_score = 0;
-
-       while (window_ptr != block_end) {
-
-               /* Find explicit offset matches with the current position.  */
-               num_matches = lz_mf_get_matches(mf, matches);
-               window_ptr++;
-
-               if (num_matches == 0 ||
-                   (matches[num_matches - 1].len == 3 &&
-                    matches[num_matches - 1].offset >= 8192 - LZX_OFFSET_OFFSET &&
-                    matches[num_matches - 1].offset != c->queue.R[0] &&
-                    matches[num_matches - 1].offset != c->queue.R[1] &&
-                    matches[num_matches - 1].offset != c->queue.R[2]))
-               {
-                       /* No match found, or the only match found was a distant
-                        * length 3 match.  Output the previous match if there
-                        * is one; otherwise output a literal.  */
-
-               no_match_found:
-
-                       if (prev_len) {
-                               skip_len = prev_len - 2;
-                               goto output_prev_match;
-                       } else {
-                               lzx_declare_literal(c, *(window_ptr - 1),
-                                                   &next_chosen_item);
-                               continue;
-                       }
-               }
-
-               /* Find the longest repeat offset match with the current
-                * position.  */
-               if (likely(block_end - (window_ptr - 1) >= 2)) {
-                       rep_max_len = lzx_repsearch((window_ptr - 1),
-                                                   block_end - (window_ptr - 1),
-                                                   &c->queue, &rep_max_idx);
-               } else {
-                       rep_max_len = 0;
-               }
-
-               cur_len = matches[num_matches - 1].len;
-               cur_offset_data = matches[num_matches - 1].offset + LZX_OFFSET_OFFSET;
-               cur_score = lzx_explicit_offset_match_score(cur_len, cur_offset_data);
-
-               /* Select the better of the explicit and repeat offset matches.  */
-               if (rep_max_len >= 3 &&
-                   (rep_score = lzx_repeat_offset_match_score(rep_max_len,
-                                                              rep_max_idx)) >= cur_score)
-               {
-                       cur_len = rep_max_len;
-                       cur_offset_data = rep_max_idx;
-                       cur_score = rep_score;
-               }
-
-               if (unlikely(cur_len > block_end - (window_ptr - 1))) {
-                       /* Nearing end of block.  */
-                       cur_len = block_end - (window_ptr - 1);
-                       if (cur_len < 3)
-                               goto no_match_found;
-               }
-
-               if (prev_len == 0 || cur_score > prev_score) {
-                       /* No previous match, or the current match is better
-                        * than the previous match.
-                        *
-                        * If there's a previous match, then output a literal in
-                        * its place.
-                        *
-                        * In both cases, if the current match is very long,
-                        * then output it immediately.  Otherwise, attempt a
-                        * lazy match by waiting to see if there's a better
-                        * match at the next position.  */
+       const u8 *       in_next = in_begin;
+       const u8 * const in_end  = in_begin + in_nbytes;
+       unsigned max_len = LZX_MAX_MATCH_LEN;
+       unsigned nice_len = min(c->nice_match_length, max_len);
+       STATIC_ASSERT(LZX_NUM_RECENT_OFFSETS == 3);
+       u32 recent_offsets[LZX_NUM_RECENT_OFFSETS] = {1, 1, 1};
+       u32 next_hashes[2] = {0, 0};
 
-                       if (prev_len)
-                               lzx_declare_literal(c, *(window_ptr - 2), &next_chosen_item);
+       /* Initialize the matchfinder. */
+       CALL_HC_MF(is_16_bit, c, hc_matchfinder_init);
 
-                       prev_len = cur_len;
-                       prev_offset_data = cur_offset_data;
-                       prev_score = cur_score;
+       do {
+               /* Starting a new block */
+
+               const u8 * const in_block_begin = in_next;
+               const u8 * const in_max_block_end =
+                       in_next + min(SOFT_MAX_BLOCK_SIZE, in_end - in_next);
+               struct lzx_sequence *next_seq = c->chosen_sequences;
+               u32 litrunlen = 0;
+               unsigned cur_len;
+               u32 cur_offset;
+               u32 cur_adjusted_offset;
+               unsigned cur_score;
+               unsigned next_len;
+               u32 next_offset;
+               u32 next_adjusted_offset;
+               unsigned next_score;
+               unsigned best_rep_len;
+               unsigned best_rep_idx;
+               unsigned rep_score;
+               unsigned skip_len;
+
+               lzx_reset_symbol_frequencies(c);
+               lzx_init_block_split_stats(&c->split_stats);
 
-                       if (prev_len >= c->params.nice_match_length) {
-                               skip_len = prev_len - 1;
-                               goto output_prev_match;
+               do {
+                       /* Adjust max_len and nice_len if we're nearing the end
+                        * of the input buffer. */
+                       if (unlikely(max_len > in_end - in_next)) {
+                               max_len = in_end - in_next;
+                               nice_len = min(max_len, nice_len);
                        }
-                       continue;
-               }
-
-               /* Current match is not better than the previous match, so
-                * output the previous match.  */
-
-               skip_len = prev_len - 2;
-
-       output_prev_match:
-               if (prev_offset_data < LZX_NUM_RECENT_OFFSETS) {
-                       lzx_declare_repeat_offset_match(c, prev_len,
-                                                       prev_offset_data,
-                                                       &next_chosen_item);
-                       swap(c->queue.R[0], c->queue.R[prev_offset_data]);
-               } else {
-                       lzx_declare_explicit_offset_match(c, prev_len,
-                                                         prev_offset_data - LZX_OFFSET_OFFSET,
-                                                         &next_chosen_item);
-                       c->queue.R[2] = c->queue.R[1];
-                       c->queue.R[1] = c->queue.R[0];
-                       c->queue.R[0] = prev_offset_data - LZX_OFFSET_OFFSET;
-               }
-               lz_mf_skip_positions(mf, skip_len);
-               window_ptr += skip_len;
-               prev_len = 0;
-       }
 
-       return next_chosen_item - c->chosen_items;
-}
-
-/* Given the frequencies of symbols in an LZX-compressed block and the
- * corresponding Huffman codes, return LZX_BLOCKTYPE_ALIGNED or
- * LZX_BLOCKTYPE_VERBATIM if an aligned offset or verbatim block, respectively,
- * will take fewer bits to output.  */
-static int
-lzx_choose_verbatim_or_aligned(const struct lzx_freqs * freqs,
-                              const struct lzx_codes * codes)
-{
-       u32 aligned_cost = 0;
-       u32 verbatim_cost = 0;
-
-       /* A verbatim block requires 3 bits in each place that an aligned symbol
-        * would be used in an aligned offset block.  */
-       for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
-               verbatim_cost += 3 * freqs->aligned[i];
-               aligned_cost += codes->lens.aligned[i] * freqs->aligned[i];
-       }
-
-       /* Account for output of the aligned offset code.  */
-       aligned_cost += LZX_ALIGNEDCODE_ELEMENT_SIZE * LZX_ALIGNEDCODE_NUM_SYMBOLS;
-
-       if (aligned_cost < verbatim_cost)
-               return LZX_BLOCKTYPE_ALIGNED;
-       else
-               return LZX_BLOCKTYPE_VERBATIM;
-}
-
-/* Near-optimal parsing  */
-static u32
-lzx_choose_near_optimal_items_for_block(struct lzx_compressor *c,
-                                       u32 block_start_pos, u32 block_size)
-{
-       u32 num_passes_remaining = c->params.num_optim_passes;
-       struct lzx_lru_queue orig_queue;
-       struct lzx_item *next_chosen_item;
-       struct lzx_item **next_chosen_item_ptr;
-
-       /* Choose appropriate match-finder wrapper functions.  */
-       if (num_passes_remaining > 1) {
-               if (block_size == c->cur_window_size)
-                       c->get_matches_func = lzx_get_matches_fillcache_singleblock;
-               else
-                       c->get_matches_func = lzx_get_matches_fillcache_multiblock;
-               c->skip_bytes_func = lzx_skip_bytes_fillcache;
-       } else {
-               if (block_size == c->cur_window_size)
-                       c->get_matches_func = lzx_get_matches_nocache_singleblock;
-               else
-                       c->get_matches_func = lzx_get_matches_nocache_multiblock;
-               c->skip_bytes_func = lzx_skip_bytes_nocache;
-       }
-
-       /* No matches will extend beyond the end of the block.  */
-       c->match_window_end = block_start_pos + block_size;
-
-       /* The first optimization pass will use a default cost model.  Each
-        * additional optimization pass will use a cost model computed from the
-        * previous pass.
-        *
-        * To improve performance we only generate the array containing the
-        * matches and literals in intermediate form on the final pass.  For
-        * earlier passes, tallying symbol frequencies is sufficient.  */
-       lzx_set_default_costs(&c->costs, c->num_main_syms);
-
-       next_chosen_item_ptr = NULL;
-       orig_queue = c->queue;
-       do {
-               /* Reset the match-finder wrapper.  */
-               c->match_window_pos = block_start_pos;
-               c->cache_ptr = c->cached_matches;
-
-               if (num_passes_remaining == 1) {
-                       /* Last pass: actually generate the items.  */
-                       next_chosen_item = c->chosen_items;
-                       next_chosen_item_ptr = &next_chosen_item;
-               }
+                       /* Find the longest match (subject to the
+                        * max_search_depth cutoff parameter) with the current
+                        * position.  Don't bother with length 2 matches; only
+                        * look for matches of length >= 3. */
+                       cur_len = CALL_HC_MF(is_16_bit, c,
+                                            hc_matchfinder_longest_match,
+                                            in_begin,
+                                            in_next - in_begin,
+                                            2,
+                                            max_len,
+                                            nice_len,
+                                            c->max_search_depth,
+                                            next_hashes,
+                                            &cur_offset);
+
+                       /* If there was no match found, or the only match found
+                        * was a distant short match, then choose a literal. */
+                       if (cur_len < 3 ||
+                           (cur_len == 3 &&
+                            cur_offset >= 8192 - LZX_OFFSET_ADJUSTMENT &&
+                            cur_offset != recent_offsets[0] &&
+                            cur_offset != recent_offsets[1] &&
+                            cur_offset != recent_offsets[2]))
+                       {
+                               lzx_choose_literal(c, *in_next, &litrunlen);
+                               in_next++;
+                               continue;
+                       }
 
-               /* Choose the items.  */
-               lzx_optim_pass(c, next_chosen_item_ptr);
+                       /* Heuristic: if this match has the most recent offset,
+                        * then go ahead and choose it as a rep0 match. */
+                       if (cur_offset == recent_offsets[0]) {
+                               in_next++;
+                               skip_len = cur_len - 1;
+                               cur_adjusted_offset = 0;
+                               goto choose_cur_match;
+                       }
 
-               if (num_passes_remaining > 1) {
-                       /* This isn't the last pass.  */
+                       /* Compute the longest match's score as an explicit
+                        * offset match. */
+                       cur_adjusted_offset = cur_offset + LZX_OFFSET_ADJUSTMENT;
+                       cur_score = lzx_explicit_offset_match_score(cur_len, cur_adjusted_offset);
+
+                       /* Find the longest repeat offset match at this
+                        * position.  If we find one and it's "better" than the
+                        * explicit offset match we found, then go ahead and
+                        * choose the repeat offset match immediately. */
+                       best_rep_len = lzx_find_longest_repeat_offset_match(in_next,
+                                                                           recent_offsets,
+                                                                           max_len,
+                                                                           &best_rep_idx);
+                       in_next++;
+
+                       if (best_rep_len != 0 &&
+                           (rep_score = lzx_repeat_offset_match_score(best_rep_len,
+                                                                      best_rep_idx)) >= cur_score)
+                       {
+                               cur_len = best_rep_len;
+                               cur_adjusted_offset = best_rep_idx;
+                               skip_len = best_rep_len - 1;
+                               goto choose_cur_match;
+                       }
 
-                       /* Make the Huffman codes from the symbol frequencies.  */
-                       lzx_make_huffman_codes(&c->freqs, &c->codes[c->codes_index],
-                                              c->num_main_syms);
+               have_cur_match:
+                       /*
+                        * We have a match at the current position.  If the
+                        * match is very long, then choose it immediately.
+                        * Otherwise, see if there's a better match at the next
+                        * position.
+                        */
 
-                       /* Update symbol costs.  */
-                       lzx_set_costs(c, &c->codes[c->codes_index].lens);
+                       if (cur_len >= nice_len) {
+                               skip_len = cur_len - 1;
+                               goto choose_cur_match;
+                       }
 
-                       /* Reset symbol frequencies.  */
-                       memset(&c->freqs, 0, sizeof(c->freqs));
+                       if (unlikely(max_len > in_end - in_next)) {
+                               max_len = in_end - in_next;
+                               nice_len = min(max_len, nice_len);
+                       }
 
-                       /* Reset the match offset LRU queue to what it was at
-                        * the beginning of the block.  */
-                       c->queue = orig_queue;
+                       next_len = CALL_HC_MF(is_16_bit, c,
+                                             hc_matchfinder_longest_match,
+                                             in_begin,
+                                             in_next - in_begin,
+                                             cur_len - 2,
+                                             max_len,
+                                             nice_len,
+                                             c->max_search_depth / 2,
+                                             next_hashes,
+                                             &next_offset);
+
+                       if (next_len <= cur_len - 2) {
+                               /* No potentially better match was found. */
+                               in_next++;
+                               skip_len = cur_len - 2;
+                               goto choose_cur_match;
+                       }
 
-                       /* Choose appopriate match-finder wrapper functions.  */
-                       if (c->cache_ptr <= c->cache_limit) {
-                               c->get_matches_func = lzx_get_matches_usecache_nocheck;
-                               c->skip_bytes_func = lzx_skip_bytes_usecache_nocheck;
+                       next_adjusted_offset = next_offset + LZX_OFFSET_ADJUSTMENT;
+                       next_score = lzx_explicit_offset_match_score(next_len, next_adjusted_offset);
+
+                       best_rep_len = lzx_find_longest_repeat_offset_match(in_next,
+                                                                           recent_offsets,
+                                                                           max_len,
+                                                                           &best_rep_idx);
+                       in_next++;
+
+                       if (best_rep_len != 0 &&
+                           (rep_score = lzx_repeat_offset_match_score(best_rep_len,
+                                                                      best_rep_idx)) >= next_score)
+                       {
+
+                               if (rep_score > cur_score) {
+                                       /* The next match is better, and it's a
+                                        * repeat offset match. */
+                                       lzx_choose_literal(c, *(in_next - 2),
+                                                          &litrunlen);
+                                       cur_len = best_rep_len;
+                                       cur_adjusted_offset = best_rep_idx;
+                                       skip_len = cur_len - 1;
+                                       goto choose_cur_match;
+                               }
                        } else {
-                               c->get_matches_func = lzx_get_matches_usecache;
-                               c->skip_bytes_func = lzx_skip_bytes_usecache;
+                               if (next_score > cur_score) {
+                                       /* The next match is better, and it's an
+                                        * explicit offset match. */
+                                       lzx_choose_literal(c, *(in_next - 2),
+                                                          &litrunlen);
+                                       cur_len = next_len;
+                                       cur_adjusted_offset = next_adjusted_offset;
+                                       cur_score = next_score;
+                                       goto have_cur_match;
+                               }
                        }
-               }
-       } while (--num_passes_remaining);
 
-       /* Return the number of items chosen.  */
-       return next_chosen_item - c->chosen_items;
+                       /* The original match was better; choose it. */
+                       skip_len = cur_len - 2;
+
+               choose_cur_match:
+                       /* Choose a match and have the matchfinder skip over its
+                        * remaining bytes. */
+                       lzx_choose_match(c, cur_len, cur_adjusted_offset,
+                                        recent_offsets, is_16_bit,
+                                        &litrunlen, &next_seq);
+                       in_next = CALL_HC_MF(is_16_bit, c,
+                                            hc_matchfinder_skip_positions,
+                                            in_begin,
+                                            in_next - in_begin,
+                                            in_end - in_begin,
+                                            skip_len,
+                                            next_hashes);
+
+                       /* Keep going until it's time to end the block. */
+               } while (in_next < in_max_block_end &&
+                        !(c->split_stats.num_new_observations >=
+                                       NUM_OBSERVATIONS_PER_BLOCK_CHECK &&
+                          in_next - in_block_begin >= MIN_BLOCK_SIZE &&
+                          in_end - in_next >= MIN_BLOCK_SIZE &&
+                          lzx_should_end_block(&c->split_stats)));
+
+               /* Flush the block. */
+               lzx_finish_sequence(next_seq, litrunlen);
+               lzx_flush_block(c, os, in_block_begin, in_next - in_block_begin, 0);
+
+               /* Keep going until we've reached the end of the input buffer. */
+       } while (in_next != in_end);
 }
 
-/*
- * Choose the matches/literals with which to output the block of data beginning
- * at '&c->cur_window[block_start_pos]' and extending for 'block_size' bytes.
- *
- * The frequences of the Huffman symbols in the block will be tallied in
- * 'c->freqs'.
- *
- * 'c->queue' must specify the state of the queue at the beginning of this block.
- * This function will update it to the state of the queue at the end of this
- * block.
- *
- * Returns the number of matches/literals that were chosen and written to
- * 'c->chosen_items' in the 'struct lzx_item' intermediate representation.
- */
-static u32
-lzx_choose_items_for_block(struct lzx_compressor *c,
-                          u32 block_start_pos, u32 block_size)
+static void
+lzx_compress_lazy_16(struct lzx_compressor *c, const u8 *in, size_t in_nbytes,
+                    struct lzx_output_bitstream *os)
 {
-       return (*c->params.choose_items_for_block)(c, block_start_pos, block_size);
+       lzx_compress_lazy(c, in, in_nbytes, os, true);
 }
 
-/* Initialize c->offset_slot_fast.  */
 static void
-lzx_init_offset_slot_fast(struct lzx_compressor *c)
+lzx_compress_lazy_32(struct lzx_compressor *c, const u8 *in, size_t in_nbytes,
+                    struct lzx_output_bitstream *os)
 {
-       u8 slot = 0;
+       lzx_compress_lazy(c, in, in_nbytes, os, false);
+}
 
-       for (u32 offset = 0; offset < LZX_NUM_FAST_OFFSETS; offset++) {
+/******************************************************************************/
+/*                          Compressor operations                             */
+/*----------------------------------------------------------------------------*/
 
-               while (offset + LZX_OFFSET_OFFSET >= lzx_offset_slot_base[slot + 1])
+/*
+ * Generate tables for mapping match offsets (actually, "adjusted" match
+ * offsets) to offset slots.
+ */
+static void
+lzx_init_offset_slot_tabs(struct lzx_compressor *c)
+{
+       u32 adjusted_offset = 0;
+       unsigned slot = 0;
+
+       /* slots [0, 29] */
+       for (; adjusted_offset < ARRAY_LEN(c->offset_slot_tab_1);
+            adjusted_offset++)
+       {
+               if (adjusted_offset >= lzx_offset_slot_base[slot + 1] +
+                                      LZX_OFFSET_ADJUSTMENT)
                        slot++;
+               c->offset_slot_tab_1[adjusted_offset] = slot;
+       }
 
-               c->offset_slot_fast[offset] = slot;
+       /* slots [30, 49] */
+       for (; adjusted_offset < LZX_MAX_WINDOW_SIZE;
+            adjusted_offset += (u32)1 << 14)
+       {
+               if (adjusted_offset >= lzx_offset_slot_base[slot + 1] +
+                                      LZX_OFFSET_ADJUSTMENT)
+                       slot++;
+               c->offset_slot_tab_2[adjusted_offset >> 14] = slot;
        }
 }
 
-/* Set internal compression parameters for the specified compression level and
- * maximum window size.  */
-static void
-lzx_build_params(unsigned int compression_level, u32 max_window_size,
-                struct lzx_compressor_params *lzx_params)
+static size_t
+lzx_get_compressor_size(size_t max_bufsize, unsigned compression_level)
 {
-       if (compression_level < 25) {
-
-               /* Fast compression: Use lazy parsing.  */
-
-               lzx_params->choose_items_for_block = lzx_choose_lazy_items_for_block;
-               lzx_params->num_optim_passes = 1;
-
-               /* When lazy parsing, the hash chain match-finding algorithm is
-                * fastest unless the window is too large.
-                *
-                * TODO: something like hash arrays would actually be better
-                * than binary trees on large windows.  */
-               if (max_window_size <= 262144)
-                       lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
+       if (compression_level <= MAX_FAST_LEVEL) {
+               if (lzx_is_16_bit(max_bufsize))
+                       return offsetof(struct lzx_compressor, hc_mf_16) +
+                              hc_matchfinder_size_16(max_bufsize);
                else
-                       lzx_params->mf_algo = LZ_MF_BINARY_TREES;
-
-               /* When lazy parsing, don't bother with length 2 matches.  */
-               lzx_params->min_match_length = 3;
-
-               /* Scale nice_match_length and max_search_depth with the
-                * compression level.  */
-               lzx_params->nice_match_length = 25 + compression_level * 2;
-               lzx_params->max_search_depth = 25 + compression_level;
+                       return offsetof(struct lzx_compressor, hc_mf_32) +
+                              hc_matchfinder_size_32(max_bufsize);
        } else {
-
-               /* Normal / high compression: Use near-optimal parsing.  */
-
-               lzx_params->choose_items_for_block = lzx_choose_near_optimal_items_for_block;
-
-               /* Set a number of optimization passes appropriate for the
-                * compression level.  */
-
-               lzx_params->num_optim_passes = 1;
-
-               if (compression_level >= 40)
-                       lzx_params->num_optim_passes++;
-
-               /* Use more optimization passes for higher compression levels.
-                * But the more passes there are, the less they help --- so
-                * don't add them linearly.  */
-               if (compression_level >= 70) {
-                       lzx_params->num_optim_passes++;
-                       if (compression_level >= 100)
-                               lzx_params->num_optim_passes++;
-                       if (compression_level >= 150)
-                               lzx_params->num_optim_passes++;
-                       if (compression_level >= 200)
-                               lzx_params->num_optim_passes++;
-                       if (compression_level >= 300)
-                               lzx_params->num_optim_passes++;
-               }
-
-               /* When doing near-optimal parsing, the hash chain match-finding
-                * algorithm is good if the window size is small and we're only
-                * doing one optimization pass.  Otherwise, the binary tree
-                * algorithm is the way to go.  */
-               if (max_window_size <= 32768 && lzx_params->num_optim_passes == 1)
-                       lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
+               if (lzx_is_16_bit(max_bufsize))
+                       return offsetof(struct lzx_compressor, bt_mf_16) +
+                              bt_matchfinder_size_16(max_bufsize);
                else
-                       lzx_params->mf_algo = LZ_MF_BINARY_TREES;
-
-               /* When doing near-optimal parsing, allow length 2 matches if
-                * the compression level is sufficiently high.  */
-               if (compression_level >= 45)
-                       lzx_params->min_match_length = 2;
-               else
-                       lzx_params->min_match_length = 3;
-
-               /* Scale nice_match_length and max_search_depth with the
-                * compression level.  */
-               lzx_params->nice_match_length = min(((u64)compression_level * 32) / 50,
-                                                   LZX_MAX_MATCH_LEN);
-               lzx_params->max_search_depth = min(((u64)compression_level * 50) / 50,
-                                                  LZX_MAX_MATCH_LEN);
+                       return offsetof(struct lzx_compressor, bt_mf_32) +
+                              bt_matchfinder_size_32(max_bufsize);
        }
 }
 
-/* Given the internal compression parameters and maximum window size, build the
- * Lempel-Ziv match-finder parameters.  */
-static void
-lzx_build_mf_params(const struct lzx_compressor_params *lzx_params,
-                   u32 max_window_size, struct lz_mf_params *mf_params)
-{
-       memset(mf_params, 0, sizeof(*mf_params));
-
-       mf_params->algorithm = lzx_params->mf_algo;
-       mf_params->max_window_size = max_window_size;
-       mf_params->min_match_len = lzx_params->min_match_length;
-       mf_params->max_match_len = LZX_MAX_MATCH_LEN;
-       mf_params->max_search_depth = lzx_params->max_search_depth;
-       mf_params->nice_match_len = lzx_params->nice_match_length;
-}
-
-static void
-lzx_free_compressor(void *_c);
-
+/* Compute the amount of memory needed to allocate an LZX compressor. */
 static u64
-lzx_get_needed_memory(size_t max_block_size, unsigned int compression_level)
+lzx_get_needed_memory(size_t max_bufsize, unsigned compression_level,
+                     bool destructive)
 {
-       struct lzx_compressor_params params;
        u64 size = 0;
-       unsigned window_order;
-       u32 max_window_size;
 
-       window_order = lzx_get_window_order(max_block_size);
-       if (window_order == 0)
+       if (max_bufsize > LZX_MAX_WINDOW_SIZE)
                return 0;
-       max_window_size = max_block_size;
-
-       lzx_build_params(compression_level, max_window_size, &params);
 
-       size += sizeof(struct lzx_compressor);
-
-       /* cur_window */
-       size += max_window_size;
-
-       /* mf */
-       size += lz_mf_get_needed_memory(params.mf_algo, max_window_size);
-
-       /* cached_matches */
-       if (params.num_optim_passes > 1)
-               size += LZX_CACHE_LEN * sizeof(struct lz_match);
-       else
-               size += LZX_MAX_MATCHES_PER_POS * sizeof(struct lz_match);
+       size += lzx_get_compressor_size(max_bufsize, compression_level);
+       if (!destructive)
+               size += max_bufsize; /* account for in_buffer */
        return size;
 }
 
+/* Allocate an LZX compressor. */
 static int
-lzx_create_compressor(size_t max_block_size, unsigned int compression_level,
-                     void **c_ret)
+lzx_create_compressor(size_t max_bufsize, unsigned compression_level,
+                     bool destructive, void **c_ret)
 {
-       struct lzx_compressor *c;
-       struct lzx_compressor_params params;
-       struct lz_mf_params mf_params;
        unsigned window_order;
-       u32 max_window_size;
+       struct lzx_compressor *c;
 
-       window_order = lzx_get_window_order(max_block_size);
+       /* Validate the maximum buffer size and get the window order from it. */
+       window_order = lzx_get_window_order(max_bufsize);
        if (window_order == 0)
                return WIMLIB_ERR_INVALID_PARAM;
-       max_window_size = max_block_size;
-
-       lzx_build_params(compression_level, max_window_size, &params);
-       lzx_build_mf_params(&params, max_window_size, &mf_params);
-       if (!lz_mf_params_valid(&mf_params))
-               return WIMLIB_ERR_INVALID_PARAM;
 
-       c = CALLOC(1, sizeof(struct lzx_compressor));
+       /* Allocate the compressor. */
+       c = MALLOC(lzx_get_compressor_size(max_bufsize, compression_level));
        if (!c)
-               goto oom;
+               goto oom0;
 
-       c->params = params;
-       c->num_main_syms = lzx_get_num_main_syms(window_order);
        c->window_order = window_order;
+       c->num_main_syms = lzx_get_num_main_syms(window_order);
+       c->destructive = destructive;
+
+       /* Allocate the buffer for preprocessed data if needed. */
+       if (!c->destructive) {
+               c->in_buffer = MALLOC(max_bufsize);
+               if (!c->in_buffer)
+                       goto oom1;
+       }
+
+       if (compression_level <= MAX_FAST_LEVEL) {
+
+               /* Fast compression: Use lazy parsing. */
+               if (lzx_is_16_bit(max_bufsize))
+                       c->impl = lzx_compress_lazy_16;
+               else
+                       c->impl = lzx_compress_lazy_32;
+
+               /* Scale max_search_depth and nice_match_length with the
+                * compression level. */
+               c->max_search_depth = (60 * compression_level) / 20;
+               c->nice_match_length = (80 * compression_level) / 20;
 
-       /* The window is allocated as 16-byte aligned to speed up memcpy() and
-        * enable lzx_e8_filter() optimization on x86_64.  */
-       c->cur_window = ALIGNED_MALLOC(max_window_size, 16);
-       if (!c->cur_window)
-               goto oom;
-
-       c->mf = lz_mf_alloc(&mf_params);
-       if (!c->mf)
-               goto oom;
-
-       if (params.num_optim_passes > 1) {
-               c->cached_matches = MALLOC(LZX_CACHE_LEN *
-                                          sizeof(struct lz_match));
-               if (!c->cached_matches)
-                       goto oom;
-               c->cache_limit = c->cached_matches + LZX_CACHE_LEN -
-                                (LZX_MAX_MATCHES_PER_POS + 1);
+               /* lzx_compress_lazy() needs max_search_depth >= 2 because it
+                * halves the max_search_depth when attempting a lazy match, and
+                * max_search_depth must be at least 1. */
+               c->max_search_depth = max(c->max_search_depth, 2);
        } else {
-               c->cached_matches = MALLOC(LZX_MAX_MATCHES_PER_POS *
-                                          sizeof(struct lz_match));
-               if (!c->cached_matches)
-                       goto oom;
+
+               /* Normal / high compression: Use near-optimal parsing. */
+               if (lzx_is_16_bit(max_bufsize))
+                       c->impl = lzx_compress_near_optimal_16;
+               else
+                       c->impl = lzx_compress_near_optimal_32;
+
+               /* Scale max_search_depth and nice_match_length with the
+                * compression level. */
+               c->max_search_depth = (24 * compression_level) / 50;
+               c->nice_match_length = (48 * compression_level) / 50;
+
+               /* Also scale num_optim_passes with the compression level.  But
+                * the more passes there are, the less they help --- so don't
+                * add them linearly.  */
+               c->num_optim_passes = 1;
+               c->num_optim_passes += (compression_level >= 45);
+               c->num_optim_passes += (compression_level >= 70);
+               c->num_optim_passes += (compression_level >= 100);
+               c->num_optim_passes += (compression_level >= 150);
+               c->num_optim_passes += (compression_level >= 200);
+               c->num_optim_passes += (compression_level >= 300);
+
+               /* max_search_depth must be at least 1. */
+               c->max_search_depth = max(c->max_search_depth, 1);
        }
 
-       lzx_init_offset_slot_fast(c);
+       /* Prepare the offset => offset slot mapping. */
+       lzx_init_offset_slot_tabs(c);
 
        *c_ret = c;
        return 0;
 
-oom:
-       lzx_free_compressor(c);
+oom1:
+       FREE(c);
+oom0:
        return WIMLIB_ERR_NOMEM;
 }
 
+/* Compress a buffer of data. */
 static size_t
-lzx_compress(const void *uncompressed_data, size_t uncompressed_size,
-            void *compressed_data, size_t compressed_size_avail, void *_c)
+lzx_compress(const void *restrict in, size_t in_nbytes,
+            void *restrict out, size_t out_nbytes_avail, void *restrict _c)
 {
        struct lzx_compressor *c = _c;
        struct lzx_output_bitstream os;
-       u32 num_chosen_items;
-       const struct lzx_lens *prev_lens;
-       u32 block_start_pos;
-       u32 block_size;
-       int block_type;
+       size_t result;
 
-       /* Don't bother compressing very small inputs.  */
-       if (uncompressed_size < 100)
+       /* Don't bother trying to compress very small inputs. */
+       if (in_nbytes < 64)
                return 0;
 
-       /* The input data must be preprocessed.  To avoid changing the original
-        * input data, copy it to a temporary buffer.  */
-       memcpy(c->cur_window, uncompressed_data, uncompressed_size);
-       c->cur_window_size = uncompressed_size;
-
-       /* Preprocess the data.  */
-       lzx_do_e8_preprocessing(c->cur_window, c->cur_window_size);
-
-       /* Load the window into the match-finder.  */
-       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
-
-       /* Initialize the match offset LRU queue.  */
-       lzx_lru_queue_init(&c->queue);
+       /* If the compressor is in "destructive" mode, then we can directly
+        * preprocess the input data.  Otherwise, we need to copy it into an
+        * internal buffer first. */
+       if (!c->destructive) {
+               memcpy(c->in_buffer, in, in_nbytes);
+               in = c->in_buffer;
+       }
 
-       /* Initialize the output bitstream.  */
-       lzx_init_output(&os, compressed_data, compressed_size_avail);
+       /* Preprocess the input data. */
+       lzx_preprocess((void *)in, in_nbytes);
 
-       /* Compress the data block by block.
-        *
-        * TODO: The compression ratio could be slightly improved by performing
-        * data-dependent block splitting instead of using fixed-size blocks.
-        * Doing so well is a computationally hard problem, however.  */
-       block_start_pos = 0;
+       /* Initially, the previous Huffman codeword lengths are all zeroes. */
        c->codes_index = 0;
-       prev_lens = &c->zero_lens;
-       do {
-               /* Compute the block size.  */
-               block_size = min(LZX_DIV_BLOCK_SIZE,
-                                uncompressed_size - block_start_pos);
+       memset(&c->codes[1].lens, 0, sizeof(struct lzx_lens));
 
-               /* Reset symbol frequencies.  */
-               memset(&c->freqs, 0, sizeof(c->freqs));
+       /* Initialize the output bitstream. */
+       lzx_init_output(&os, out, out_nbytes_avail);
 
-               /* Prepare the matches/literals for the block.  */
-               num_chosen_items = lzx_choose_items_for_block(c,
-                                                             block_start_pos,
-                                                             block_size);
+       /* Call the compression level-specific compress() function. */
+       (*c->impl)(c, in, in_nbytes, &os);
 
-               /* Make the Huffman codes from the symbol frequencies.  */
-               lzx_make_huffman_codes(&c->freqs, &c->codes[c->codes_index],
-                                      c->num_main_syms);
+       /* Flush the output bitstream. */
+       result = lzx_flush_output(&os);
 
-               /* Choose the best block type.
-                *
-                * Note: we currently don't consider uncompressed blocks.  */
-               block_type = lzx_choose_verbatim_or_aligned(&c->freqs,
-                                                           &c->codes[c->codes_index]);
-
-               /* Write the compressed block to the output buffer.  */
-               lzx_write_compressed_block(block_type,
-                                          block_size,
-                                          c->window_order,
-                                          c->num_main_syms,
-                                          c->chosen_items,
-                                          num_chosen_items,
-                                          &c->codes[c->codes_index],
-                                          prev_lens,
-                                          &os);
-
-               /* The current codeword lengths become the previous lengths.  */
-               prev_lens = &c->codes[c->codes_index].lens;
-               c->codes_index ^= 1;
-
-               block_start_pos += block_size;
-
-       } while (block_start_pos != uncompressed_size);
-
-       return lzx_flush_output(&os);
+       /* If the data did not compress to less than its original size and we
+        * preprocessed the original buffer, then postprocess it to restore it
+        * to its original state. */
+       if (result == 0 && c->destructive)
+               lzx_postprocess((void *)in, in_nbytes);
+
+       /* Return the number of compressed bytes, or 0 if the input did not
+        * compress to less than its original size. */
+       return result;
 }
 
+/* Free an LZX compressor. */
 static void
 lzx_free_compressor(void *_c)
 {
        struct lzx_compressor *c = _c;
 
-       if (c) {
-               ALIGNED_FREE(c->cur_window);
-               lz_mf_free(c->mf);
-               FREE(c->cached_matches);
-               FREE(c);
-       }
+       if (!c->destructive)
+               FREE(c->in_buffer);
+       FREE(c);
 }
 
 const struct compressor_ops lzx_compressor_ops = {