]> wimlib.net Git - wimlib/blobdiff - src/lzx-decompress.c
lzx-decompress.c: Add SSE2 version of undo_call_insn_preprocessing()
[wimlib] / src / lzx-decompress.c
index da462186c06870b2038098bc0b3aab97dc6dd229..d3ba46af846de85ec23f9cd35743fddfda05e2a7 100644 (file)
@@ -7,7 +7,7 @@
  */
 
 /*
- * Copyright (C) 2012, 2013 Eric Biggers
+ * Copyright (C) 2012, 2013, 2014 Eric Biggers
  *
  * This file is part of wimlib, a library for working with WIM files.
  *
  */
 
 /*
- * LZX is a LZ77 and Huffman-code based compression format that has many
+ * LZX is an LZ77 and Huffman-code based compression format that has many
  * similarities to the DEFLATE format used in zlib.  The compression ratio is as
- * good or better than DEFLATE.  However, in WIM files only up to 32768 bytes of
- * data can ever compressed be in the same LZX block, so a .tar.gz file could
- * potentially be smaller than a WIM file that uses LZX compression because it
- * can use a larger LZ77 window size.
+ * good or better than DEFLATE.
  *
  * Some notes on the LZX compression format as used in Windows Imaging (WIM)
  * files:
  *
  * A compressed WIM resource consists of a table of chunk offsets followed by
  * the compressed chunks themselves.  All compressed chunks except possibly the
- * last decompress to WIM_CHUNK_SIZE (= 32768) bytes.  This is quite similar to
- * the cabinet (.cab) file format, but they are not the same.  According to the
- * cabinet format documentation, the LZX block size is independent from the
- * CFDATA blocks, and a LZX block may span several CFDATA blocks.  However, in
- * WIMs, LZX blocks do not appear to ever span multiple WIM chunks.  Note that
- * this means any WIM chunk may be decompressed or compressed independently from
- * any other chunk, which is convenient.
- *
- * A LZX compressed WIM chunk contains one or more LZX blocks of the aligned,
+ * last decompress to a fixed number of bytes, by default 32768.  This is quite
+ * similar to the cabinet (.cab) file format, but they are not the same.
+ * According to the cabinet format documentation, the LZX block size is
+ * independent from the CFDATA blocks, and an LZX block may span several CFDATA
+ * blocks.  However, in WIMs, LZX blocks do not appear to ever span multiple WIM
+ * chunks.  Note that this means any WIM chunk may be decompressed or compressed
+ * independently from any other chunk, which allows random access.
+ *
+ * An LZX compressed WIM chunk contains one or more LZX blocks of the aligned,
  * verbatim, or uncompressed block types.  For aligned and verbatim blocks, the
  * size of the block in uncompressed bytes is specified by a bit following the 3
  * bits that specify the block type, possibly followed by an additional 16 bits.
- * '1' means to use the default block size (equal to 32768, the size of a WIM
- * chunk--- and this seems to only be valid for the first LZX block in a WIM
- * chunk), while '0' means that the block size is provided by the next 16 bits.
+ * '1' means to use the default block size (equal to 32768, the default size of
+ * a WIM chunk), while '0' means that the block size is provided by the next 16
+ * bits.
  *
  * The cabinet format, as documented, allows for the possibility that a
  * compressed CFDATA chunk is up to 6144 bytes larger than the data it
  * defined in the specification.
  *
  * The LZX document states that aligned offset blocks have their aligned offset
- * huffman tree AFTER the main and length trees. The implementation suggests
+ * Huffman tree AFTER the main and length trees. The implementation suggests
  * that the aligned offset tree is BEFORE the main and length trees.
  *
  * The LZX document decoding algorithm states that, in an aligned offset block,
  * if an extra_bits value is 1, 2 or 3, then that number of bits should be read
  * and the result added to the match offset. This is correct for 1 and 2, but
- * not 3, where just a huffman symbol (using the aligned tree) should be read.
+ * not 3, where just a Huffman symbol (using the aligned tree) should be read.
  *
  * Regarding the E8 preprocessing, the LZX document states 'No translation may
  * be performed on the last 6 bytes of the input block'. This is correct.
  * would cause the next four bytes to be modified, at least one of which would
  * be in the last 6 bytes, which is not allowed according to the spec.
  *
- * The specification states that the huffman trees must always contain at least
+ * The specification states that the Huffman trees must always contain at least
  * one element. However, many CAB files contain blocks where the length tree is
  * completely empty (because there are no matches), and this is expected to
  * succeed.
  */
 
-#include "util.h"
-#include "lzx.h"
-#include "decompress.h"
+#ifdef HAVE_CONFIG_H
+#  include "config.h"
+#endif
+
+#include "wimlib.h"
+#include "wimlib/decompressor_ops.h"
+#include "wimlib/decompress_common.h"
+#include "wimlib/lzx.h"
+#include "wimlib/util.h"
+
 #include <string.h>
 
+#ifdef __SSE2__
+#  include <emmintrin.h>
+#endif
+
 /* Huffman decoding tables and maps from symbols to code lengths. */
 struct lzx_tables {
 
-       u16 maintree_decode_table[(1 << LZX_MAINTREE_TABLEBITS) +
-                                       (LZX_MAINTREE_NUM_SYMBOLS * 2)];
-       u8 maintree_lens[LZX_MAINTREE_NUM_SYMBOLS];
+       u16 maintree_decode_table[(1 << LZX_MAINCODE_TABLEBITS) +
+                                       (LZX_MAINCODE_MAX_NUM_SYMBOLS * 2)]
+                                       _aligned_attribute(DECODE_TABLE_ALIGNMENT);
+       u8 maintree_lens[LZX_MAINCODE_MAX_NUM_SYMBOLS];
 
 
-       u16 lentree_decode_table[(1 << LZX_LENTREE_TABLEBITS) +
-                                       (LZX_LENTREE_NUM_SYMBOLS * 2)];
-       u8 lentree_lens[LZX_LENTREE_NUM_SYMBOLS];
+       u16 lentree_decode_table[(1 << LZX_LENCODE_TABLEBITS) +
+                                       (LZX_LENCODE_NUM_SYMBOLS * 2)]
+                                       _aligned_attribute(DECODE_TABLE_ALIGNMENT);
+       u8 lentree_lens[LZX_LENCODE_NUM_SYMBOLS];
 
 
-       u16 alignedtree_decode_table[(1 << LZX_ALIGNEDTREE_TABLEBITS) +
-                                       (LZX_ALIGNEDTREE_NUM_SYMBOLS * 2)];
-       u8 alignedtree_lens[LZX_ALIGNEDTREE_NUM_SYMBOLS];
-};
+       u16 alignedtree_decode_table[(1 << LZX_ALIGNEDCODE_TABLEBITS) +
+                                       (LZX_ALIGNEDCODE_NUM_SYMBOLS * 2)]
+                                       _aligned_attribute(DECODE_TABLE_ALIGNMENT);
+       u8 alignedtree_lens[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+} _aligned_attribute(DECODE_TABLE_ALIGNMENT);
 
+struct lzx_decompressor {
+       u32 max_window_size;
+       unsigned num_main_syms;
+       struct lzx_tables tables;
+};
 
 /*
  * Reads a Huffman-encoded symbol using the pre-tree.
@@ -139,19 +155,20 @@ read_huffsym_using_pretree(struct input_bitstream *istream,
                           const u8 pretree_lens[], unsigned *n)
 {
        return read_huffsym(istream, pretree_decode_table, pretree_lens,
-                           LZX_PRETREE_NUM_SYMBOLS, LZX_PRETREE_TABLEBITS, n,
-                           LZX_MAX_CODEWORD_LEN);
+                           LZX_PRECODE_NUM_SYMBOLS, LZX_PRECODE_TABLEBITS, n,
+                           LZX_MAX_PRE_CODEWORD_LEN);
 }
 
 /* Reads a Huffman-encoded symbol using the main tree. */
 static inline int
 read_huffsym_using_maintree(struct input_bitstream *istream,
                            const struct lzx_tables *tables,
-                           unsigned *n)
+                           unsigned *n,
+                           unsigned num_main_syms)
 {
        return read_huffsym(istream, tables->maintree_decode_table,
-                           tables->maintree_lens, LZX_MAINTREE_NUM_SYMBOLS,
-                           LZX_MAINTREE_TABLEBITS, n, LZX_MAX_CODEWORD_LEN);
+                           tables->maintree_lens, num_main_syms,
+                           LZX_MAINCODE_TABLEBITS, n, LZX_MAX_MAIN_CODEWORD_LEN);
 }
 
 /* Reads a Huffman-encoded symbol using the length tree. */
@@ -161,8 +178,8 @@ read_huffsym_using_lentree(struct input_bitstream *istream,
                           unsigned *n)
 {
        return read_huffsym(istream, tables->lentree_decode_table,
-                           tables->lentree_lens, LZX_LENTREE_NUM_SYMBOLS,
-                           LZX_LENTREE_TABLEBITS, n, LZX_MAX_CODEWORD_LEN);
+                           tables->lentree_lens, LZX_LENCODE_NUM_SYMBOLS,
+                           LZX_LENCODE_TABLEBITS, n, LZX_MAX_LEN_CODEWORD_LEN);
 }
 
 /* Reads a Huffman-encoded symbol using the aligned offset tree. */
@@ -173,8 +190,9 @@ read_huffsym_using_alignedtree(struct input_bitstream *istream,
 {
        return read_huffsym(istream, tables->alignedtree_decode_table,
                            tables->alignedtree_lens,
-                           LZX_ALIGNEDTREE_NUM_SYMBOLS,
-                           LZX_ALIGNEDTREE_TABLEBITS, n, 8);
+                           LZX_ALIGNEDCODE_NUM_SYMBOLS,
+                           LZX_ALIGNEDCODE_TABLEBITS, n,
+                           LZX_MAX_ALIGNED_CODEWORD_LEN);
 }
 
 /*
@@ -182,10 +200,10 @@ read_huffsym_using_alignedtree(struct input_bitstream *istream,
  * code length values from the input.
  *
  * @istream:   The bit stream for the input.  It is positioned on the beginning
- *                     of the pretree for the code length values.
+ *                     of the pretree for the code length values.
  * @lens:      An array that contains the length values from the previous time
- *                     the code lengths for this Huffman tree were read, or all
- *                     0's if this is the first time.
+ *                     the code lengths for this Huffman tree were read, or all
+ *                     0's if this is the first time.
  * @num_lens:  Number of length values to decode and return.
  *
  */
@@ -194,30 +212,31 @@ lzx_read_code_lens(struct input_bitstream *istream, u8 lens[],
                   unsigned num_lens)
 {
        /* Declare the decoding table and length table for the pretree. */
-       u16 pretree_decode_table[(1 << LZX_PRETREE_TABLEBITS) +
-                                       (LZX_PRETREE_NUM_SYMBOLS * 2)];
-       u8 pretree_lens[LZX_PRETREE_NUM_SYMBOLS];
+       u16 pretree_decode_table[(1 << LZX_PRECODE_TABLEBITS) +
+                                       (LZX_PRECODE_NUM_SYMBOLS * 2)]
+                                       _aligned_attribute(DECODE_TABLE_ALIGNMENT);
+       u8 pretree_lens[LZX_PRECODE_NUM_SYMBOLS];
        unsigned i;
-       unsigned len;
+       u32 len;
        int ret;
 
        /* Read the code lengths of the pretree codes.  There are 20 lengths of
         * 4 bits each. */
-       for (i = 0; i < LZX_PRETREE_NUM_SYMBOLS; i++) {
-               ret = bitstream_read_bits(istream, LZX_PRETREE_ELEMENT_SIZE,
+       for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++) {
+               ret = bitstream_read_bits(istream, LZX_PRECODE_ELEMENT_SIZE,
                                          &len);
-               if (ret != 0)
+               if (ret)
                        return ret;
                pretree_lens[i] = len;
        }
 
        /* Make the decoding table for the pretree. */
        ret = make_huffman_decode_table(pretree_decode_table,
-                                       LZX_PRETREE_NUM_SYMBOLS,
-                                       LZX_PRETREE_TABLEBITS,
+                                       LZX_PRECODE_NUM_SYMBOLS,
+                                       LZX_PRECODE_TABLEBITS,
                                        pretree_lens,
-                                       LZX_MAX_CODEWORD_LEN);
-       if (ret != 0)
+                                       LZX_MAX_PRE_CODEWORD_LEN);
+       if (ret)
                return ret;
 
        /* Pointer past the last length value that needs to be filled in. */
@@ -232,19 +251,19 @@ lzx_read_code_lens(struct input_bitstream *istream, u8 lens[],
                 * the next lengths are all equal to the next symbol in the
                 * input. */
                unsigned tree_code;
-               unsigned num_zeroes;
+               u32 num_zeroes;
                unsigned code;
-               unsigned num_same;
-               char value;
+               u32 num_same;
+               signed char value;
 
                ret = read_huffsym_using_pretree(istream, pretree_decode_table,
                                                 pretree_lens, &tree_code);
-               if (ret != 0)
+               if (ret)
                        return ret;
                switch (tree_code) {
                case 17: /* Run of 0's */
                        ret = bitstream_read_bits(istream, 4, &num_zeroes);
-                       if (ret != 0)
+                       if (ret)
                                return ret;
                        num_zeroes += 4;
                        while (num_zeroes--) {
@@ -255,7 +274,7 @@ lzx_read_code_lens(struct input_bitstream *istream, u8 lens[],
                        break;
                case 18: /* Longer run of 0's */
                        ret = bitstream_read_bits(istream, 5, &num_zeroes);
-                       if (ret != 0)
+                       if (ret)
                                return ret;
                        num_zeroes += 20;
                        while (num_zeroes--) {
@@ -266,16 +285,16 @@ lzx_read_code_lens(struct input_bitstream *istream, u8 lens[],
                        break;
                case 19: /* Run of identical lengths */
                        ret = bitstream_read_bits(istream, 1, &num_same);
-                       if (ret != 0)
+                       if (ret)
                                return ret;
                        num_same += 4;
                        ret = read_huffsym_using_pretree(istream,
                                                         pretree_decode_table,
                                                         pretree_lens,
                                                         &code);
-                       if (ret != 0)
+                       if (ret)
                                return ret;
-                       value = (char)*lens - (char)code;
+                       value = (signed char)*lens - (signed char)code;
                        if (value < 0)
                                value += 17;
                        while (num_same--) {
@@ -285,7 +304,7 @@ lzx_read_code_lens(struct input_bitstream *istream, u8 lens[],
                        }
                        break;
                default: /* Difference from old length. */
-                       value = (char)*lens - (char)tree_code;
+                       value = (signed char)*lens - (signed char)tree_code;
                        if (value < 0)
                                value += 17;
                        *lens = value;
@@ -301,52 +320,64 @@ lzx_read_code_lens(struct input_bitstream *istream, u8 lens[],
  *
  * @istream:           The input bitstream.
  * @block_size_ret:    A pointer to an int into which the size of the block,
- *                             in bytes, will be returned.
+ *                             in bytes, will be returned.
  * @block_type_ret:    A pointer to an int into which the type of the block
- *                             (LZX_BLOCKTYPE_*) will be returned.
- * @tables:            A pointer to a lzx_tables structure in which the
- *                             main tree, the length tree, and possibly the
- *                             aligned offset tree will be constructed.
+ *                             (LZX_BLOCKTYPE_*) will be returned.
+ * @tables:            A pointer to an lzx_tables structure in which the
+ *                             main tree, the length tree, and possibly the
+ *                             aligned offset tree will be constructed.
  * @queue:     A pointer to the least-recently-used queue into which
- *                     R0, R1, and R2 will be written (only for uncompressed
- *                     blocks, which contain this information in the header)
+ *                     R0, R1, and R2 will be written (only for uncompressed
+ *                     blocks, which contain this information in the header)
  */
 static int
 lzx_read_block_header(struct input_bitstream *istream,
+                     unsigned num_main_syms,
+                     unsigned max_window_size,
                      unsigned *block_size_ret,
                      unsigned *block_type_ret,
                      struct lzx_tables *tables,
-                     struct lru_queue *queue)
+                     struct lzx_lru_queue *queue)
 {
        int ret;
        unsigned block_type;
        unsigned block_size;
-       unsigned s;
-       unsigned i;
-       unsigned len;
 
        ret = bitstream_ensure_bits(istream, 4);
-       if (ret != 0) {
-               ERROR("LZX input stream overrun");
+       if (ret)
                return ret;
-       }
 
        /* The first three bits tell us what kind of block it is, and are one
         * of the LZX_BLOCKTYPE_* values.  */
        block_type = bitstream_read_bits_nocheck(istream, 3);
 
-       /* The next bit indicates whether the block size is the default (32768),
-        * indicated by a 1 bit, or whether the block size is given by the next
-        * 16 bits, indicated by a 0 bit. */
-       s = bitstream_read_bits_nocheck(istream, 1);
-
-       if (s) {
-               block_size = 32768;
+       /* Read the block size.  This mirrors the behavior
+        * lzx_write_compressed_block() in lzx-compress.c; see that for more
+        * details.  */
+       if (bitstream_read_bits_nocheck(istream, 1)) {
+               block_size = LZX_DEFAULT_BLOCK_SIZE;
        } else {
-               ret = bitstream_read_bits(istream, 16, &block_size);
-               if (ret != 0)
+               u32 tmp;
+               block_size = 0;
+
+               ret = bitstream_read_bits(istream, 8, &tmp);
+               if (ret)
                        return ret;
-               block_size = le16_to_cpu(block_size);
+               block_size |= tmp;
+
+               ret = bitstream_read_bits(istream, 8, &tmp);
+               if (ret)
+                       return ret;
+               block_size <<= 8;
+               block_size |= tmp;
+
+               if (max_window_size >= 65536) {
+                       ret = bitstream_read_bits(istream, 8, &tmp);
+                       if (ret)
+                               return ret;
+                       block_size <<= 8;
+                       block_size |= tmp;
+               }
        }
 
        switch (block_type) {
@@ -354,24 +385,26 @@ lzx_read_block_header(struct input_bitstream *istream,
                /* Read the path lengths for the elements of the aligned tree,
                 * then build it. */
 
-               for (i = 0; i < LZX_ALIGNEDTREE_NUM_SYMBOLS; i++) {
+               for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+                       u32 len;
+
                        ret = bitstream_read_bits(istream,
-                                                 LZX_ALIGNEDTREE_ELEMENT_SIZE,
+                                                 LZX_ALIGNEDCODE_ELEMENT_SIZE,
                                                  &len);
-                       if (ret != 0)
+                       if (ret)
                                return ret;
                        tables->alignedtree_lens[i] = len;
                }
 
                LZX_DEBUG("Building the aligned tree.");
                ret = make_huffman_decode_table(tables->alignedtree_decode_table,
-                                               LZX_ALIGNEDTREE_NUM_SYMBOLS,
-                                               LZX_ALIGNEDTREE_TABLEBITS,
+                                               LZX_ALIGNEDCODE_NUM_SYMBOLS,
+                                               LZX_ALIGNEDCODE_TABLEBITS,
                                                tables->alignedtree_lens,
-                                               8);
-               if (ret != 0) {
-                       ERROR("lzx_decompress(): Failed to make the decode "
-                             "table for the aligned offset tree");
+                                               LZX_MAX_ALIGNED_CODEWORD_LEN);
+               if (ret) {
+                       LZX_DEBUG("Failed to make the decode table for the "
+                                 "aligned offset tree");
                        return ret;
                }
 
@@ -387,10 +420,9 @@ lzx_read_block_header(struct input_bitstream *istream,
                 * tree. */
                ret = lzx_read_code_lens(istream, tables->maintree_lens,
                                         LZX_NUM_CHARS);
-               if (ret != 0) {
-                       ERROR("lzx_decompress(): Failed to read the code "
-                             "lengths for the first 256 elements of the "
-                             "main tree");
+               if (ret) {
+                       LZX_DEBUG("Failed to read the code lengths for the "
+                                 "first 256 elements of the main tree");
                        return ret;
                }
 
@@ -398,14 +430,13 @@ lzx_read_block_header(struct input_bitstream *istream,
                 * tree. */
                LZX_DEBUG("Reading path lengths for remaining elements of "
                          "main tree (%d elements).",
-                         LZX_MAINTREE_NUM_SYMBOLS - LZX_NUM_CHARS);
+                         num_main_syms - LZX_NUM_CHARS);
                ret = lzx_read_code_lens(istream,
                                         tables->maintree_lens + LZX_NUM_CHARS,
-                                        LZX_MAINTREE_NUM_SYMBOLS - LZX_NUM_CHARS);
-               if (ret != 0) {
-                       ERROR("lzx_decompress(): Failed to read the path "
-                             "lengths for the remaining elements of the main "
-                             "tree");
+                                        num_main_syms - LZX_NUM_CHARS);
+               if (ret) {
+                       LZX_DEBUG("Failed to read the path lengths for the "
+                                 "remaining elements of the main tree");
                        return ret;
                }
 
@@ -413,34 +444,33 @@ lzx_read_block_header(struct input_bitstream *istream,
                          "table for the main tree.");
 
                ret = make_huffman_decode_table(tables->maintree_decode_table,
-                                               LZX_MAINTREE_NUM_SYMBOLS,
-                                               LZX_MAINTREE_TABLEBITS,
+                                               num_main_syms,
+                                               LZX_MAINCODE_TABLEBITS,
                                                tables->maintree_lens,
-                                               LZX_MAX_CODEWORD_LEN);
-               if (ret != 0) {
-                       ERROR("lzx_decompress(): Failed to make the decode "
-                             "table for the main tree");
+                                               LZX_MAX_MAIN_CODEWORD_LEN);
+               if (ret) {
+                       LZX_DEBUG("Failed to make the decode "
+                                 "table for the main tree");
                        return ret;
                }
 
                LZX_DEBUG("Reading path lengths for the length tree.");
                ret = lzx_read_code_lens(istream, tables->lentree_lens,
-                                        LZX_LENTREE_NUM_SYMBOLS);
-               if (ret != 0) {
-                       ERROR("lzx_decompress(): Failed to read the path "
-                             "lengths for the length tree");
+                                        LZX_LENCODE_NUM_SYMBOLS);
+               if (ret) {
+                       LZX_DEBUG("Failed to read the path "
+                                 "lengths for the length tree");
                        return ret;
                }
 
                LZX_DEBUG("Building the length tree.");
                ret = make_huffman_decode_table(tables->lentree_decode_table,
-                                               LZX_LENTREE_NUM_SYMBOLS,
-                                               LZX_LENTREE_TABLEBITS,
+                                               LZX_LENCODE_NUM_SYMBOLS,
+                                               LZX_LENCODE_TABLEBITS,
                                                tables->lentree_lens,
-                                               LZX_MAX_CODEWORD_LEN);
-               if (ret != 0) {
-                       ERROR("lzx_decompress(): Failed to build the length "
-                             "Huffman tree");
+                                               LZX_MAX_LEN_CODEWORD_LEN);
+               if (ret) {
+                       LZX_DEBUG("Failed to build the length Huffman tree");
                        return ret;
                }
                /* The bitstream of compressed literals and matches for this
@@ -455,26 +485,32 @@ lzx_read_block_header(struct input_bitstream *istream,
                 * *already* aligned, the correct thing to do is to throw away
                 * the next 16 bits. */
                if (istream->bitsleft == 0) {
-                       if (istream->data_bytes_left < 14)
+                       if (istream->data_bytes_left < 14) {
+                               LZX_DEBUG("Insufficient length in "
+                                         "uncompressed block");
                                return -1;
+                       }
                        istream->data += 2;
                        istream->data_bytes_left -= 2;
                } else {
-                       if (istream->data_bytes_left < 12)
+                       if (istream->data_bytes_left < 12) {
+                               LZX_DEBUG("Insufficient length in "
+                                         "uncompressed block");
                                return -1;
+                       }
                        istream->bitsleft = 0;
                        istream->bitbuf = 0;
                }
-               queue->R0 = le32_to_cpu(*(u32*)(istream->data + 0));
-               queue->R1 = le32_to_cpu(*(u32*)(istream->data + 4));
-               queue->R2 = le32_to_cpu(*(u32*)(istream->data + 8));
+               queue->R[0] = le32_to_cpu(*(le32*)(istream->data + 0));
+               queue->R[1] = le32_to_cpu(*(le32*)(istream->data + 4));
+               queue->R[2] = le32_to_cpu(*(le32*)(istream->data + 8));
                istream->data += 12;
                istream->data_bytes_left -= 12;
                /* The uncompressed data of this block directly follows and will
                 * be read in lzx_decompress(). */
                break;
        default:
-               ERROR("lzx_decompress(): Found invalid block");
+               LZX_DEBUG("Found invalid block");
                return -1;
        }
        *block_type_ret = block_type;
@@ -492,14 +528,14 @@ lzx_read_block_header(struct input_bitstream *istream,
  *                     tree.
  *
  * @block_type:                The type of the block (LZX_BLOCKTYPE_ALIGNED or
- *                     LZX_BLOCKTYPE_VERBATIM)
+ *                     LZX_BLOCKTYPE_VERBATIM)
  *
  * @bytes_remaining:   The amount of uncompressed data remaining to be
- *                     uncompressed in this block.  It is an error if the match
- *                     is longer than this number.
+ *                     uncompressed in this block.  It is an error if the match
+ *                     is longer than this number.
  *
  * @window:            A pointer to the window into which the uncompressed
- *                     data is being written.
+ *                     data is being written.
  *
  * @window_pos:                The current byte offset in the window.
  *
@@ -513,16 +549,16 @@ lzx_read_block_header(struct input_bitstream *istream,
  *
  * Returns the length of the match, or a negative number on error.  The possible
  * error cases are:
- *     - Match would exceed the amount of data remaining to be uncompressed.
- *     - Match refers to data before the window.
- *     - The input bitstream ended unexpectedly.
+ *     - Match would exceed the amount of data remaining to be uncompressed.
+ *     - Match refers to data before the window.
+ *     - The input bitstream ended unexpectedly.
  */
 static int
 lzx_decode_match(unsigned main_element, int block_type,
                 unsigned bytes_remaining, u8 *window,
                 unsigned window_pos,
                 const struct lzx_tables *tables,
-                struct lru_queue *queue,
+                struct lzx_lru_queue *queue,
                 struct input_bitstream *istream)
 {
        unsigned length_header;
@@ -531,8 +567,8 @@ lzx_decode_match(unsigned main_element, int block_type,
        unsigned match_offset;
        unsigned additional_len;
        unsigned num_extra_bits;
-       unsigned verbatim_bits;
-       unsigned aligned_bits;
+       u32 verbatim_bits;
+       u32 aligned_bits;
        unsigned i;
        int ret;
        u8 *match_dest;
@@ -548,14 +584,15 @@ lzx_decode_match(unsigned main_element, int block_type,
        position_slot = main_element >> 3;
 
        /* If the length_header is less than LZX_NUM_PRIMARY_LENS (= 7), it
-        * gives the match length as the offset from LZX_MIN_MATCH.  Otherwise,
-        * the length is given by an additional symbol encoded using the length
-        * tree, offset by 9 (LZX_MIN_MATCH + LZX_NUM_PRIMARY_LENS) */
-       match_len = LZX_MIN_MATCH + length_header;
+        * gives the match length as the offset from LZX_MIN_MATCH_LEN.
+        * Otherwise, the length is given by an additional symbol encoded using
+        * the length tree, offset by 9 (LZX_MIN_MATCH_LEN +
+        * LZX_NUM_PRIMARY_LENS) */
+       match_len = LZX_MIN_MATCH_LEN + length_header;
        if (length_header == LZX_NUM_PRIMARY_LENS) {
                ret = read_huffsym_using_lentree(istream, tables,
                                                 &additional_len);
-               if (ret != 0)
+               if (ret)
                        return ret;
                match_len += additional_len;
        }
@@ -566,18 +603,18 @@ lzx_decode_match(unsigned main_element, int block_type,
         * queue. */
        switch (position_slot) {
        case 0:
-               match_offset = queue->R0;
+               match_offset = queue->R[0];
                break;
        case 1:
-               match_offset = queue->R1;
-               swap(queue->R0, queue->R1);
+               match_offset = queue->R[1];
+               swap(queue->R[0], queue->R[1]);
                break;
        case 2:
                /* The queue doesn't work quite the same as a real LRU queue,
                 * since using the R2 offset doesn't bump the R1 offset down to
                 * R2. */
-               match_offset = queue->R2;
-               swap(queue->R0, queue->R2);
+               match_offset = queue->R[2];
+               swap(queue->R[0], queue->R[2]);
                break;
        default:
                /* Otherwise, the offset was not encoded as one the offsets in
@@ -604,14 +641,14 @@ lzx_decode_match(unsigned main_element, int block_type,
                         * will just set it to 0. ) */
                        ret = bitstream_read_bits(istream, num_extra_bits - 3,
                                                  &verbatim_bits);
-                       if (ret != 0)
+                       if (ret)
                                return ret;
 
                        verbatim_bits <<= 3;
 
                        ret = read_huffsym_using_alignedtree(istream, tables,
                                                             &aligned_bits);
-                       if (ret != 0)
+                       if (ret)
                                return ret;
                } else {
                        /* For non-aligned blocks, or for aligned blocks with
@@ -620,7 +657,7 @@ lzx_decode_match(unsigned main_element, int block_type,
                         * the alignment is taken to be 0. */
                        ret = bitstream_read_bits(istream, num_extra_bits,
                                                  &verbatim_bits);
-                       if (ret != 0)
+                       if (ret)
                                return ret;
 
                        aligned_bits = 0;
@@ -628,34 +665,36 @@ lzx_decode_match(unsigned main_element, int block_type,
 
                /* Calculate the match offset. */
                match_offset = lzx_position_base[position_slot] +
-                              verbatim_bits + aligned_bits - 2;
+                              verbatim_bits + aligned_bits - LZX_OFFSET_OFFSET;
 
                /* Update the LRU queue. */
-               queue->R2 = queue->R1;
-               queue->R1 = queue->R0;
-               queue->R0 = match_offset;
+               queue->R[2] = queue->R[1];
+               queue->R[1] = queue->R[0];
+               queue->R[0] = match_offset;
                break;
        }
 
        /* Verify that the match is in the bounds of the part of the window
         * currently in use, then copy the source of the match to the current
         * position. */
-       match_dest = window + window_pos;
-       match_src = match_dest - match_offset;
 
        if (match_len > bytes_remaining) {
-               ERROR("lzx_decode_match(): Match of length %u bytes overflows "
-                     "uncompressed block size", match_len);
+               LZX_DEBUG("Match of length %u bytes overflows "
+                         "uncompressed block size", match_len);
                return -1;
        }
 
-       if (match_src < window) {
-               ERROR("lzx_decode_match(): Match of length %u bytes references "
-                     "data before window (match_offset = %u, window_pos = %u)",
-                     match_len, match_offset, window_pos);
+       if (match_offset > window_pos) {
+               LZX_DEBUG("Match of length %u bytes references "
+                         "data before window (match_offset = %u, "
+                         "window_pos = %u)",
+                         match_len, match_offset, window_pos);
                return -1;
        }
 
+       match_dest = window + window_pos;
+       match_src = match_dest - match_offset;
+
 #if 0
        printf("Match: src %u, dst %u, len %u\n", match_src - window,
                                                match_dest - window,
@@ -676,20 +715,19 @@ lzx_decode_match(unsigned main_element, int block_type,
 }
 
 static void
-undo_call_insn_translation(u32 *call_insn_target, int input_pos,
-                          int32_t file_size)
+undo_call_insn_translation(u32 *call_insn_target, s32 input_pos)
 {
-       int32_t abs_offset;
-       int32_t rel_offset;
+       s32 abs_offset;
+       s32 rel_offset;
 
        abs_offset = le32_to_cpu(*call_insn_target);
-       if (abs_offset >= -input_pos && abs_offset < file_size) {
+       if (abs_offset >= -input_pos && abs_offset < LZX_WIM_MAGIC_FILESIZE) {
                if (abs_offset >= 0) {
                        /* "good translation" */
                        rel_offset = abs_offset - input_pos;
                } else {
                        /* "compensating translation" */
-                       rel_offset = abs_offset + file_size;
+                       rel_offset = abs_offset + LZX_WIM_MAGIC_FILESIZE;
                }
                *call_insn_target = cpu_to_le32(rel_offset);
        }
@@ -718,39 +756,125 @@ undo_call_insn_translation(u32 *call_insn_target, int input_pos,
  * as it is used in calculating the translated jump targets.  But in WIM files,
  * this file size is always the same (LZX_WIM_MAGIC_FILESIZE == 12000000).*/
 static void
-undo_call_insn_preprocessing(u8 uncompressed_data[], int uncompressed_data_len)
+undo_call_insn_preprocessing(u8 *uncompressed_data, size_t uncompressed_size)
 {
-       for (int i = 0; i < uncompressed_data_len - 10; i++) {
-               if (uncompressed_data[i] == 0xe8) {
-                       undo_call_insn_translation((u32*)&uncompressed_data[i + 1],
-                                                  i,
-                                                  LZX_WIM_MAGIC_FILESIZE);
-                       i += 4;
-               }
+#ifdef __SSE2__
+
+       /* SSE2 vectorized implementation for x86_64.  This speeds up LZX
+        * decompression by about 5-8% overall.  (Usually --- the performance
+        * actually regresses slightly in the degenerate case that the data
+        * consists entirely of 0xe8 bytes.)  */
+       __m128i *p128 = (__m128i *)uncompressed_data;
+       u32 valid_mask = 0xFFFFFFFF;
+
+       if (uncompressed_size >= 32 &&
+           ((uintptr_t)uncompressed_data % 16 == 0))
+       {
+               __m128i * const end128 = p128 + uncompressed_size / 16 - 1;
+
+               /* Create a vector of all 0xe8 bytes  */
+               const __m128i e8_bytes = _mm_set1_epi8(0xe8);
+
+               /* Iterate through the 16-byte vectors in the input.  */
+               do {
+                       /* Compare the current 16-byte vector with the vector of
+                        * all 0xe8 bytes.  This produces 0xff where the byte is
+                        * 0xe8 and 0x00 where it is not.  */
+                       __m128i cmpresult = _mm_cmpeq_epi8(*p128, e8_bytes);
+
+                       /* Map the comparison results into a single 16-bit
+                        * number.  It will contain a 1 bit when the
+                        * corresponding byte in the current 16-byte vector is
+                        * an e8 byte.  Note: the low-order bit corresponds to
+                        * the first (lowest address) byte.  */
+                       u32 e8_mask = _mm_movemask_epi8(cmpresult);
+
+                       if (!e8_mask) {
+                               /* If e8_mask is 0, then none of these 16 bytes
+                                * have value 0xe8.  No e8 translation is
+                                * needed, and there is no restriction that
+                                * carries over to the next 16 bytes.  */
+                               valid_mask = 0xFFFFFFFF;
+                       } else {
+                               /* At least one byte has value 0xe8.
+                                *
+                                * The AND with valid_mask accounts for the fact
+                                * that we can't start an e8 translation that
+                                * overlaps the previous one.  */
+                               while ((e8_mask &= valid_mask)) {
+
+                                       /* Count the number of trailing zeroes
+                                        * in e8_mask.  This will produce the
+                                        * index of the byte, within the 16, at
+                                        * which the next e8 translation should
+                                        * be done.  */
+                                       u32 bit = __builtin_ctz(e8_mask);
+
+                                       /* Do the e8 translation.  */
+                                       u8 *p8 = (u8 *)p128 + bit;
+                                       undo_call_insn_translation((s32 *)(p8 + 1),
+                                                                  p8 - uncompressed_data);
+
+                                       /* Don't start an e8 translation in the
+                                        * next 4 bytes.  */
+                                       valid_mask &= ~((u32)0x1F << bit);
+                               }
+                               /* Moving on to the next vector.  Shift and set
+                                * valid_mask accordingly.  */
+                               valid_mask >>= 16;
+                               valid_mask |= 0xFFFF0000;
+                       }
+               } while (++p128 < end128);
+       }
+
+       u8 *p8 = (u8 *)p128;
+       while (!(valid_mask & 1)) {
+               p8++;
+               valid_mask >>= 1;
+       }
+#else /* __SSE2__  */
+       u8 *p8 = uncompressed_data;
+#endif /* !__SSE2__  */
+
+       if (uncompressed_size > 10) {
+               /* Finish any bytes that weren't processed by the vectorized
+                * implementation.  */
+               u8 *p8_end = uncompressed_data + uncompressed_size - 10;
+               do {
+                       if (*p8 == 0xe8) {
+                               undo_call_insn_translation((s32 *)(p8 + 1),
+                                                          p8 - uncompressed_data);
+                               p8 += 5;
+                       } else {
+                               p8++;
+                       }
+               } while (p8 < p8_end);
        }
 }
 
 /*
- * Decompresses a LZX-compressed block of data from which the header has already
+ * Decompresses an LZX-compressed block of data from which the header has already
  * been read.
  *
  * @block_type:        The type of the block (LZX_BLOCKTYPE_VERBATIM or
- *             LZX_BLOCKTYPE_ALIGNED)
+ *             LZX_BLOCKTYPE_ALIGNED)
  * @block_size:        The size of the block, in bytes.
+ * @num_main_syms:     Number of symbols in the main alphabet.
  * @window:    Pointer to the decompression window.
  * @window_pos:        The current position in the window.  Will be 0 for the first
- *                     block.
+ *                     block.
  * @tables:    The Huffman decoding tables for the block (main, length, and
- *                     aligned offset, the latter only for LZX_BLOCKTYPE_ALIGNED)
+ *                     aligned offset, the latter only for LZX_BLOCKTYPE_ALIGNED)
  * @queue:     The least-recently-used queue for match offsets.
  * @istream:   The input bitstream for the compressed literals.
  */
 static int
 lzx_decompress_block(int block_type, unsigned block_size,
+                    unsigned num_main_syms,
                     u8 *window,
                     unsigned window_pos,
                     const struct lzx_tables *tables,
-                    struct lru_queue *queue,
+                    struct lzx_lru_queue *queue,
                     struct input_bitstream *istream)
 {
        unsigned main_element;
@@ -761,15 +885,16 @@ lzx_decompress_block(int block_type, unsigned block_size,
        end = window_pos + block_size;
        while (window_pos < end) {
                ret = read_huffsym_using_maintree(istream, tables,
-                                                 &main_element);
-               if (ret != 0)
+                                                 &main_element,
+                                                 num_main_syms);
+               if (ret)
                        return ret;
 
                if (main_element < LZX_NUM_CHARS) {
                        /* literal: 0 to LZX_NUM_CHARS - 1 */
                        window[window_pos++] = main_element;
                } else {
-                       /* match: LZX_NUM_CHARS to LZX_MAINTREE_NUM_SYMBOLS - 1 */
+                       /* match: LZX_NUM_CHARS to num_main_syms - 1 */
                        match_len = lzx_decode_match(main_element,
                                                     block_type,
                                                     end - window_pos,
@@ -786,50 +911,38 @@ lzx_decompress_block(int block_type, unsigned block_size,
        return 0;
 }
 
-/*
- * Decompresses a block of LZX-compressed data as used in the WIM file format.
- *
- * Note that this will NOT work unmodified for LZX as used in the cabinet
- * format, which is not the same as in the WIM format!
- *
- * @compressed_data:   A pointer to the compressed data.
- *
- * @compressed_len:    The length of the compressed data, in bytes.
- *
- * @uncompressed_data: A pointer to the buffer into which to write the
- *                     uncompressed data.
- *
- * @uncompressed_len:  The length of the uncompressed data.  It must be
- *                     32768 bytes or less.
- *
- * Return 0 on success; non-zero on failure.
- */
-int
-lzx_decompress(const void *compressed_data, unsigned compressed_len,
-              void *uncompressed_data, unsigned uncompressed_len)
+static int
+lzx_decompress(const void *compressed_data, size_t compressed_size,
+              void *uncompressed_data, size_t uncompressed_size,
+              void *_ctx)
 {
-       struct lzx_tables tables;
+       struct lzx_decompressor *ctx = _ctx;
        struct input_bitstream istream;
-       struct lru_queue queue;
+       struct lzx_lru_queue queue;
        unsigned window_pos;
        unsigned block_size;
        unsigned block_type;
        int ret;
        bool e8_preprocessing_done;
 
-       LZX_DEBUG("lzx_decompress (compressed_data = %p, compressed_len = %d, "
-                 "uncompressed_data = %p, uncompressed_len = %d).",
-                 compressed_data, compressed_len,
-                 uncompressed_data, uncompressed_len);
-
-       wimlib_assert(uncompressed_len <= 32768);
+       LZX_DEBUG("compressed_data = %p, compressed_size = %zu, "
+                 "uncompressed_data = %p, uncompressed_size = %zu, "
+                 "max_window_size=%u).",
+                 compressed_data, compressed_size,
+                 uncompressed_data, uncompressed_size,
+                 ctx->max_window_size);
+
+       if (uncompressed_size > ctx->max_window_size) {
+               LZX_DEBUG("Uncompressed size of %zu exceeds "
+                         "window size of %u!",
+                         uncompressed_size, ctx->max_window_size);
+               return -1;
+       }
 
-       memset(tables.maintree_lens, 0, sizeof(tables.maintree_lens));
-       memset(tables.lentree_lens, 0, sizeof(tables.lentree_lens));
-       queue.R0 = 1;
-       queue.R1 = 1;
-       queue.R2 = 1;
-       init_input_bitstream(&istream, compressed_data, compressed_len);
+       memset(ctx->tables.maintree_lens, 0, sizeof(ctx->tables.maintree_lens));
+       memset(ctx->tables.lentree_lens, 0, sizeof(ctx->tables.lentree_lens));
+       lzx_lru_queue_init(&queue);
+       init_input_bitstream(&istream, compressed_data, compressed_size);
 
        e8_preprocessing_done = false; /* Set to true if there may be 0xe8 bytes
                                          in the uncompressed data. */
@@ -840,22 +953,23 @@ lzx_decompress(const void *compressed_data, unsigned compressed_len,
         * blocks.  */
 
        for (window_pos = 0;
-            window_pos < uncompressed_len;
+            window_pos < uncompressed_size;
             window_pos += block_size)
        {
                LZX_DEBUG("Reading block header.");
-               ret = lzx_read_block_header(&istream, &block_size,
-                                           &block_type, &tables, &queue);
-               if (ret != 0)
+               ret = lzx_read_block_header(&istream, ctx->num_main_syms,
+                                           ctx->max_window_size, &block_size,
+                                           &block_type, &ctx->tables, &queue);
+               if (ret)
                        return ret;
 
                LZX_DEBUG("block_size = %u, window_pos = %u",
                          block_size, window_pos);
 
-               if (block_size > uncompressed_len - window_pos) {
-                       ERROR("lzx_decompress(): Expected a block size of at "
-                             "most %u bytes (found %u bytes)",
-                             uncompressed_len - window_pos, block_size);
+               if (block_size > uncompressed_size - window_pos) {
+                       LZX_DEBUG("Expected a block size of at "
+                                 "most %zu bytes (found %u bytes)",
+                                 uncompressed_size - window_pos, block_size);
                        return -1;
                }
 
@@ -868,23 +982,25 @@ lzx_decompress(const void *compressed_data, unsigned compressed_len,
                                LZX_DEBUG("LZX_BLOCKTYPE_ALIGNED");
                        ret = lzx_decompress_block(block_type,
                                                   block_size,
+                                                  ctx->num_main_syms,
                                                   uncompressed_data,
                                                   window_pos,
-                                                  &tables,
+                                                  &ctx->tables,
                                                   &queue,
                                                   &istream);
-                       if (ret != 0)
+                       if (ret)
                                return ret;
-                       if (tables.maintree_lens[0xe8] != 0)
+
+                       if (ctx->tables.maintree_lens[0xe8] != 0)
                                e8_preprocessing_done = true;
                        break;
                case LZX_BLOCKTYPE_UNCOMPRESSED:
                        LZX_DEBUG("LZX_BLOCKTYPE_UNCOMPRESSED");
                        if (istream.data_bytes_left < block_size) {
-                               ERROR("Unexpected end of input when "
-                                     "reading %u bytes from LZX bitstream "
-                                     "(only have %u bytes left)",
-                                     block_size, istream.data_bytes_left);
+                               LZX_DEBUG("Unexpected end of input when "
+                                         "reading %u bytes from LZX bitstream "
+                                         "(only have %u bytes left)",
+                                         block_size, istream.data_bytes_left);
                                return -1;
                        }
                        memcpy(&((u8*)uncompressed_data)[window_pos], istream.data,
@@ -902,6 +1018,41 @@ lzx_decompress(const void *compressed_data, unsigned compressed_len,
                }
        }
        if (e8_preprocessing_done)
-               undo_call_insn_preprocessing(uncompressed_data, uncompressed_len);
+               undo_call_insn_preprocessing(uncompressed_data, uncompressed_size);
        return 0;
 }
+
+static void
+lzx_free_decompressor(void *_ctx)
+{
+       struct lzx_decompressor *ctx = _ctx;
+
+       FREE(ctx);
+}
+
+static int
+lzx_create_decompressor(size_t max_window_size,
+                       const struct wimlib_decompressor_params_header *params,
+                       void **ctx_ret)
+{
+       struct lzx_decompressor *ctx;
+
+       if (!lzx_window_size_valid(max_window_size))
+               return WIMLIB_ERR_INVALID_PARAM;
+
+       ctx = MALLOC(sizeof(struct lzx_decompressor));
+       if (ctx == NULL)
+               return WIMLIB_ERR_NOMEM;
+
+       ctx->max_window_size = max_window_size;
+       ctx->num_main_syms = lzx_get_num_main_syms(max_window_size);
+
+       *ctx_ret = ctx;
+       return 0;
+}
+
+const struct decompressor_ops lzx_decompressor_ops = {
+       .create_decompressor = lzx_create_decompressor,
+       .decompress          = lzx_decompress,
+       .free_decompressor   = lzx_free_decompressor,
+};