]> wimlib.net Git - wimlib/blobdiff - src/lzx-compress.c
Variable LZX window sizes
[wimlib] / src / lzx-compress.c
index 3f0626e49b478e7d12bf4c2f3fcec1ae73d78caf..e34b320456e72325b95dbbc2adef7d6155603242 100644 (file)
  * and certain other details are quite similar, such as the method for storing
  * Huffman codes.  However, some of the main differences are:
  *
- * - LZX preprocesses the data before attempting to compress it.
+ * - LZX preprocesses the data to attempt to make x86 machine code slightly more
+ *   compressible before attempting to compress it further.
  * - LZX uses a "main" alphabet which combines literals and matches, with the
  *   match symbols containing a "length header" (giving all or part of the match
- *   length) and a "position footer" (giving, roughly speaking, the order of
+ *   length) and a "position slot" (giving, roughly speaking, the order of
  *   magnitude of the match offset).
  * - LZX does not have static Huffman blocks; however it does have two types of
  *   dynamic Huffman blocks ("aligned offset" and "verbatim").
  * - LZX has a minimum match length of 2 rather than 3.
- * - In LZX, match offsets 0 through 2 actually represent entries in a LRU queue
- *   of match offsets.
+ * - In LZX, match offsets 0 through 2 actually represent entries in an LRU
+ *   queue of match offsets.  This is very useful for certain types of files,
+ *   such as binary files that have repeating records.
  *
  * Algorithms
  * ==========
  *
  * The "slow" algorithm to generate LZX-compressed data is roughly as follows:
  *
- * 1. Preprocess the input data to translate the targets of x86 call instructions
- *    to absolute offsets.
- *
- * 2. Determine the best known sequence of LZ77 matches ((offset, length) pairs)
- *    and literal bytes to divide the input into.  Raw match-finding is done
- *    using a very clever binary tree search based on the "Bt3" algorithm from
- *    7-Zip.  Parsing, or match-choosing, is solved essentially as a
- *    minimum-cost path problem, but using a heuristic forward search based on
- *    the Deflate encoder from 7-Zip rather than a more intuitive backward
- *    search, the latter of which would naively require that all matches be
- *    found.  This heuristic search, as well as other heuristics such as limits
- *    on the matches considered, considerably speed up this part of the
- *    algorithm, which is the main bottleneck.  Finally, after matches and
- *    literals are chosen, the needed Huffman codes needed to output them are
- *    built.
- *
- * 3. Up to a certain number of iterations, use the resulting Huffman codes to
- *    refine a cost model and go back to Step #2 to determine an improved
+ * 1. Preprocess the input data to translate the targets of x86 call
+ *    instructions to absolute offsets.
+ *
+ * 2. Build the suffix array and inverse suffix array for the input data.  The
+ *    suffix array contains the indices of all suffixes of the input data,
+ *    sorted lexcographically by the corresponding suffixes.  The "position" of
+ *    a suffix is the index of that suffix in the original string, whereas the
+ *    "rank" of a suffix is the index at which that suffix's position is found
+ *    in the suffix array.
+ *
+ * 3. Build the longest common prefix array corresponding to the suffix array.
+ *
+ * 4. For each suffix, find the highest lower ranked suffix that has a lower
+ *    position, the lowest higher ranked suffix that has a lower position, and
+ *    the length of the common prefix shared between each.   This information is
+ *    later used to link suffix ranks into a doubly-linked list for searching
+ *    the suffix array.
+ *
+ * 5. Set a default cost model for matches/literals.
+ *
+ * 6. Determine the lowest cost sequence of LZ77 matches ((offset, length)
+ *    pairs) and literal bytes to divide the input into.  Raw match-finding is
+ *    done by searching the suffix array using a linked list to avoid
+ *    considering any suffixes that start after the current position.  Each run
+ *    of the match-finder returns the approximate lowest-cost longest match as
+ *    well as any shorter matches that have even lower approximate costs.  Each
+ *    such run also adds the suffix rank of the current position into the linked
+ *    list being used to search the suffix array.  Parsing, or match-choosing,
+ *    is solved as a minimum-cost path problem using a forward "optimal parsing"
+ *    algorithm based on the Deflate encoder from 7-Zip.  This algorithm moves
+ *    forward calculating the minimum cost to reach each byte until either a
+ *    very long match is found or until a position is found at which no matches
+ *    start or overlap.
+ *
+ * 7. Build the Huffman codes needed to output the matches/literals.
+ *
+ * 8. Up to a certain number of iterations, use the resulting Huffman codes to
+ *    refine a cost model and go back to Step #6 to determine an improved
  *    sequence of matches and literals.
  *
- * 4. Up to a certain depth, try splitting the current block to see if the
- *    compression ratio can be improved.  This may be the case if parts of the
- *    input differ greatly from each other and could benefit from different
- *    Huffman codes.
+ * 9. Output the resulting block using the match/literal sequences and the
+ *    Huffman codes that were computed for the block.
  *
- * 5. Output the resulting block(s) using the match/literal sequences and the
- *    Huffman codes that were computed for each block.
+ * Note: the algorithm does not yet attempt to split the input into multiple LZX
+ * blocks, instead using a series of blocks of LZX_DIV_BLOCK_SIZE bytes.
  *
  * Fast algorithm
  * --------------
  *
  * The fast algorithm (and the only one available in wimlib v1.5.1 and earlier)
  * spends much less time on the main bottlenecks of the compression process ---
- * that is the match finding, match choosing, and block splitting.  Matches are
- * found and chosen with hash chains using a greedy parse with one position of
- * look-ahead.  No block splitting is done; only compressing the full input into
- * an aligned offset block is considered.
+ * that is, the match finding and match choosing.  Matches are found and chosen
+ * with hash chains using a greedy parse with one position of look-ahead.  No
+ * block splitting is done; only compressing the full input into an aligned
+ * offset block is considered.
  *
  * API
  * ===
  *
- * The old API (retained for backward compatibility) consists of just one function:
+ * The old API (retained for backward compatibility) consists of just one
+ * function:
  *
  *     wimlib_lzx_compress()
  *
  *     wimlib_lzx_alloc_context()
  *     wimlib_lzx_compress2()
  *     wimlib_lzx_free_context()
+ *     wimlib_lzx_set_default_params()
  *
  * Both wimlib_lzx_compress() and wimlib_lzx_compress2() are designed to
- * compress an in-memory buffer of up to 32768 bytes.  There is no sliding
- * window.  This is suitable for the WIM format, which uses fixed-size chunks
- * that are seemingly always 32768 bytes.  If needed, the compressor potentially
- * could be extended to support a larger and/or sliding window.
+ * compress an in-memory buffer of up to the window size, which can be any power
+ * of two between 2^15 and 2^21 inclusively.  However, by default, the WIM
+ * format uses 2^15, and this is seemingly the only value that is compatible
+ * with WIMGAPI.  In any case, the window is not a true "sliding window" since
+ * no data is ever "slid out" of the window.  This is needed for the WIM format,
+ * which is designed such that chunks may be randomly accessed.
  *
  * Both wimlib_lzx_compress() and wimlib_lzx_compress2() return 0 if the data
  * could not be compressed to less than the size of the uncompressed data.
  * Again, this is suitable for the WIM format, which stores such data chunks
  * uncompressed.
  *
- * The functions in this API are exported from the library, although this is
- * only in case other programs happen to have uses for it other than WIM
+ * The functions in this LZX compression API are exported from the library,
+ * although with the possible exception of wimlib_lzx_set_default_params(), this
+ * is only in case other programs happen to have uses for it other than WIM
  * reading/writing as already handled through the rest of the library.
  *
  * Acknowledgments
  * ===============
  *
- * Acknowledgments to several other open-source projects that made it possible
- * to implement this code:
+ * Acknowledgments to several open-source projects and research papers that made
+ * it possible to implement this code:
  *
- * - 7-Zip (author: Igor Pavlov), for the binary tree match-finding
- *   algorithm, the heuristic near-optimal forward match-choosing
- *   algorithm, and the block splitting algorithm.
+ * - divsufsort (author: Yuta Mori), for the suffix array construction code,
+ *   located in a separate directory (divsufsort/).
+ *
+ * - "Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
+ *   Applications" (Kasai et al. 2001), for the LCP array computation.
+ *
+ * - "LPF computation revisited" (Crochemore et al. 2009) for the prev and next
+ *   array computations.
+ *
+ * - 7-Zip (author: Igor Pavlov) for the algorithm for forward optimal parsing
+ *   (match-choosing).
  *
  * - zlib (author: Jean-loup Gailly and Mark Adler), for the hash table
- *   match-finding algorithm.
+ *   match-finding algorithm (used in lz77.c).
  *
  * - lzx-compress (author: Matthew T. Russotto), on which some parts of this
  *   code were originally based.
 #include "wimlib/error.h"
 #include "wimlib/lzx.h"
 #include "wimlib/util.h"
+#include <pthread.h>
+#include <math.h>
+#include <string.h>
 
 #ifdef ENABLE_LZX_DEBUG
-#  include <wimlib/decompress.h>
+#  include "wimlib/decompress.h"
 #endif
 
-#include <string.h>
+#include "divsufsort/divsufsort.h"
 
-/* Experimental parameters not exposed through the API  */
-#define LZX_PARAM_OPTIM_ARRAY_SIZE     1024
-#define LZX_PARAM_ACCOUNT_FOR_LRU      1
-#define LZX_PARAM_DONT_SKIP_MATCHES    0
-#define LZX_PARAM_USE_EMPIRICAL_DEFAULT_COSTS 1
+typedef u32 block_cost_t;
+#define INFINITE_BLOCK_COST    ((block_cost_t)~0U)
 
-/* Currently, this constant can't simply be changed because the code currently
- * uses a static number of position slots (and may make other assumptions as
- * well).  */
-#define LZX_MAX_WINDOW_SIZE    32768
+#define LZX_OPTIM_ARRAY_SIZE   4096
 
-/* This may be WIM-specific  */
-#define LZX_DEFAULT_BLOCK_SIZE  32768
+#define LZX_DIV_BLOCK_SIZE     32768
 
-#define LZX_LZ_HASH_BITS       15
-#define LZX_LZ_HASH_SIZE       (1 << LZX_LZ_HASH_BITS)
-#define LZX_LZ_HASH_MASK       (LZX_LZ_HASH_SIZE - 1)
-#define LZX_LZ_HASH_SHIFT      5
+#define LZX_MAX_CACHE_PER_POS  10
 
 /* Codewords for the LZX main, length, and aligned offset Huffman codes  */
 struct lzx_codewords {
-       u16 main[LZX_MAINTREE_NUM_SYMBOLS];
-       u16 len[LZX_LENTREE_NUM_SYMBOLS];
-       u16 aligned[LZX_ALIGNEDTREE_NUM_SYMBOLS];
+       u16 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u16 len[LZX_LENCODE_NUM_SYMBOLS];
+       u16 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* Lengths for the LZX main, length, and aligned offset Huffman codes  */
+/* Codeword lengths (in bits) for the LZX main, length, and aligned offset
+ * Huffman codes.
+ *
+ * A 0 length means the codeword has zero frequency.
+ */
 struct lzx_lens {
-       u8 main[LZX_MAINTREE_NUM_SYMBOLS];
-       u8 len[LZX_LENTREE_NUM_SYMBOLS];
-       u8 aligned[LZX_ALIGNEDTREE_NUM_SYMBOLS];
+       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u8 len[LZX_LENCODE_NUM_SYMBOLS];
+       u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+};
+
+/* Costs for the LZX main, length, and aligned offset Huffman symbols.
+ *
+ * If a codeword has zero frequency, it must still be assigned some nonzero cost
+ * --- generally a high cost, since even if it gets used in the next iteration,
+ * it probably will not be used very times.  */
+struct lzx_costs {
+       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u8 len[LZX_LENCODE_NUM_SYMBOLS];
+       u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
 /* The LZX main, length, and aligned offset Huffman codes  */
@@ -208,9 +249,9 @@ struct lzx_codes {
 
 /* Tables for tallying symbol frequencies in the three LZX alphabets  */
 struct lzx_freqs {
-       freq_t main[LZX_MAINTREE_NUM_SYMBOLS];
-       freq_t len[LZX_LENTREE_NUM_SYMBOLS];
-       freq_t aligned[LZX_ALIGNEDTREE_NUM_SYMBOLS];
+       freq_t main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       freq_t len[LZX_LENCODE_NUM_SYMBOLS];
+       freq_t aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
 /* LZX intermediate match/literal format  */
@@ -224,51 +265,45 @@ struct lzx_match {
         *
         * 8-24    position footer.  This is the offset of the real formatted
         *         offset from the position base.  This can be at most 17 bits
-        *         (since lzx_extra_bits[LZX_NUM_POSITION_SLOTS - 1] is 17).
+        *         (since lzx_extra_bits[LZX_MAX_POSITION_SLOTS - 1] is 17).
         *
         * 0-7     length of match, minus 2.  This can be at most
-        *         (LZX_MAX_MATCH - 2) == 255, so it will fit in 8 bits.  */
+        *         (LZX_MAX_MATCH_LEN - 2) == 255, so it will fit in 8 bits.  */
        u32 data;
 };
 
 /* Raw LZ match/literal format: just a length and offset.
  *
  * The length is the number of bytes of the match, and the offset is the number
- * of bytes back in the input the match is from the matched text.
+ * of bytes back in the input the match is from the current position.
  *
- * If @len < LZX_MIN_MATCH, then it's really just a literal byte and @offset is
+ * If @len < LZX_MIN_MATCH_LEN, then it's really just a literal byte and @offset is
  * meaningless.  */
 struct raw_match {
        u16 len;
-       u16 offset;
+       input_idx_t offset;
 };
 
-/* Specification for a LZX block  */
+/* Specification for an LZX block.  */
 struct lzx_block_spec {
 
-       /* Set to 1 if this block has been split (in two --- we only considser
-        * binary splits).  In such cases the rest of the fields are
-        * unimportant, since the relevant information is rather in the
-        * structures for the sub-blocks.  */
-       u8 is_split : 1;
-
        /* One of the LZX_BLOCKTYPE_* constants indicating which type of this
         * block.  */
-       u8 block_type : 2;
+       int block_type;
 
        /* 0-based position in the window at which this block starts.  */
-       u16 window_pos;
+       input_idx_t window_pos;
 
        /* The number of bytes of uncompressed data this block represents.  */
-       u16 block_size;
+       input_idx_t block_size;
 
        /* The position in the 'chosen_matches' array in the `struct
         * lzx_compressor' at which the match/literal specifications for
         * this block begin.  */
-       unsigned chosen_matches_start_pos;
+       input_idx_t chosen_matches_start_pos;
 
        /* The number of match/literal specifications for this block.  */
-       u16 num_chosen_matches;
+       input_idx_t num_chosen_matches;
 
        /* Huffman codes for this block.  */
        struct lzx_codes codes;
@@ -283,7 +318,7 @@ struct lzx_block_spec {
 struct lzx_optimal {
        /* The approximate minimum cost, in bits, to reach this position in the
         * window which has been found so far.  */
-       u32 cost;
+       block_cost_t cost;
 
        /* The union here is just for clarity, since the fields are used in two
         * slightly different ways.  Initially, the @prev structure is filled in
@@ -295,30 +330,58 @@ struct lzx_optimal {
                        /* Position of the start of the match or literal that
                         * was taken to get to this position in the approximate
                         * minimum-cost parse.  */
-                       u16 link;
+                       input_idx_t link;
 
-                       /* Offset (as in a LZ (length, offset) pair) of the
+                       /* Offset (as in an LZ (length, offset) pair) of the
                         * match or literal that was taken to get to this
                         * position in the approximate minimum-cost parse.  */
-                       u16 match_offset;
+                       input_idx_t match_offset;
                } prev;
                struct {
                        /* Position at which the match or literal starting at
                         * this position ends in the minimum-cost parse.  */
-                       u16 link;
+                       input_idx_t link;
 
-                       /* Offset (as in a LZ (length, offset) pair) of the
+                       /* Offset (as in an LZ (length, offset) pair) of the
                         * match or literal starting at this position in the
                         * approximate minimum-cost parse.  */
-                       u16 match_offset;
+                       input_idx_t match_offset;
                } next;
        };
-#if LZX_PARAM_ACCOUNT_FOR_LRU
+
+       /* The match offset LRU queue that will exist when the approximate
+        * minimum-cost path to reach this position is taken.  */
        struct lzx_lru_queue queue;
-#endif
 };
 
-/* State of the LZX compressor  */
+/* Suffix array link  */
+struct salink {
+       /* Rank of highest ranked suffix that has rank lower than the suffix
+        * corresponding to this structure and either has a lower position
+        * (initially) or has a position lower than the highest position at
+        * which matches have been searched for so far, or -1 if there is no
+        * such suffix.  */
+       input_idx_t prev;
+
+       /* Rank of lowest ranked suffix that has rank greater than the suffix
+        * corresponding to this structure and either has a lower position
+        * (intially) or has a position lower than the highest position at which
+        * matches have been searched for so far, or -1 if there is no such
+        * suffix.  */
+       input_idx_t next;
+
+       /* Length of longest common prefix between the suffix corresponding to
+        * this structure and the suffix with rank @prev, or 0 if @prev is -1.
+        */
+       input_idx_t lcpprev;
+
+       /* Length of longest common prefix between the suffix corresponding to
+        * this structure and the suffix with rank @next, or 0 if @next is -1.
+        */
+       input_idx_t lcpnext;
+};
+
+/* State of the LZX compressor.  */
 struct lzx_compressor {
 
        /* The parameters that were used to create the compressor.  */
@@ -329,7 +392,7 @@ struct lzx_compressor {
         * 0xe8 byte preprocessing is done directly on the data here before
         * further compression.
         *
-        * Note that this compressor does *not* use a sliding window!!!!
+        * Note that this compressor does *not* use a real sliding window!!!!
         * It's not needed in the WIM format, since every chunk is compressed
         * independently.  This is by design, to allow random access to the
         * chunks.
@@ -337,82 +400,93 @@ struct lzx_compressor {
         * We reserve a few extra bytes to potentially allow reading off the end
         * of the array in the match-finding code for optimization purposes.
         */
-       u8 window[LZX_MAX_WINDOW_SIZE + 12];
+       u8 *window;
 
        /* Number of bytes of data to be compressed, which is the number of
         * bytes of data in @window that are actually valid.  */
-       unsigned window_size;
+       input_idx_t window_size;
+
+       /* Allocated size of the @window.  */
+       input_idx_t max_window_size;
+
+       /* Number of symbols in the main alphabet (depends on the
+        * @max_window_size since it determines the maximum allowed offset).  */
+       unsigned num_main_syms;
 
        /* The current match offset LRU queue.  */
        struct lzx_lru_queue queue;
 
-       /* Space for sequence of matches/literals that were chosen.
-        *
-        * Each LZX_MAX_WINDOW_SIZE-sized portion of this array is used for a
-        * different block splitting level.  */
+       /* Space for the sequences of matches/literals that were chosen for each
+        * block.  */
        struct lzx_match *chosen_matches;
 
-       /* Structures used during block splitting.
-        *
-        * This can be thought of as a binary tree.  block_specs[(1) - 1]
-        * represents to the top-level block (root node), and block_specs[(i*2)
-        * - 1] and block_specs[(i*2+1) - 1] represent the sub-blocks (child
-        * nodes) resulting from a binary split of the block represented by
-        * block_spec[(i) - 1].
-        */
+       /* Information about the LZX blocks the preprocessed input was divided
+        * into.  */
        struct lzx_block_spec *block_specs;
 
+       /* Number of LZX blocks the input was divided into; a.k.a. the number of
+        * elements of @block_specs that are valid.  */
+       unsigned num_blocks;
+
        /* This is simply filled in with zeroes and used to avoid special-casing
         * the output of the first compressed Huffman code, which conceptually
         * has a delta taken from a code with all symbols having zero-length
         * codewords.  */
        struct lzx_codes zero_codes;
 
-       /* Slow algorithm only: The current cost model.  */
-       struct lzx_lens costs;
+       /* The current cost model.  */
+       struct lzx_costs costs;
 
-       /* Slow algorithm only:  Table that maps the hash codes for 3 character
-        * sequences to the most recent position that sequence (or a sequence
-        * sharing the same hash code) appeared in the window.  */
-       u16 *hash_tab;
+       /* Fast algorithm only:  Array of hash table links.  */
+       input_idx_t *prev_tab;
 
-       /* Slow algorithm only:  Table that maps 2-character sequences to the
-        * most recent position that sequence appeared in the window.  */
-       u16 *digram_tab;
+       /* Suffix array for window.
+        * This is a mapping from suffix rank to suffix position.  */
+       input_idx_t *SA;
 
-       /* Slow algorithm only: Table that contains the logical child pointers
-        * in the binary trees in the match-finding code.
-        *
-        * child_tab[i*2] and child_tab[i*2+1] are the left and right pointers,
-        * respectively, from the binary tree root corresponding to window
-        * position i.  */
-       u16 *child_tab;
+       /* Inverse suffix array for window.
+        * This is a mapping from suffix position to suffix rank.
+        * If 0 <= r < window_size, then ISA[SA[r]] == r.  */
+       input_idx_t *ISA;
 
-       /* Slow algorithm only: Matches that were already found and are saved in
-        * memory for subsequent queries (e.g. when block splitting).  */
-       struct raw_match *cached_matches;
+       /* Longest common prefix array corresponding to the suffix array SA.
+        * LCP[i] is the length of the longest common prefix between the
+        * suffixes with positions SA[i - 1] and  SA[i].  LCP[0] is undefined.
+        */
+       input_idx_t *LCP;
 
-       /* Slow algorithm only: Next position in 'cached_matches' to either
-        * return or fill in.  */
+       /* Suffix array links.
+        *
+        * During a linear scan of the input string to find matches, this array
+        * used to keep track of which rank suffixes in the suffix array appear
+        * before the current position.  Instead of searching in the original
+        * suffix array, scans for matches at a given position traverse a linked
+        * list containing only suffixes that appear before that position.  */
+       struct salink *salink;
+
+       /* Position in window of next match to return.  */
+       input_idx_t match_window_pos;
+
+       /* The match-finder shall ensure the length of matches does not exceed
+        * this position in the input.  */
+       input_idx_t match_window_end;
+
+       /* Matches found by the match-finder are cached in the following array
+        * to achieve a slight speedup when the same matches are needed on
+        * subsequent passes.  This is suboptimal because different matches may
+        * be preferred with different cost models, but seems to be a worthwhile
+        * speedup.  */
+       struct raw_match *cached_matches;
        unsigned cached_matches_pos;
-
-       /* Slow algorithm only: %true if reading from 'cached_matches'; %false
-        * if writing to 'cached_matches'.  */
-       bool matches_already_found;
-
-       /* Slow algorithm only: Position in window of next match to return.  */
-       unsigned match_window_pos;
-
-       /* Slow algorithm only: No matches returned shall reach past this
-        * position.  */
-       unsigned match_window_end;
+       bool matches_cached;
 
        /* Slow algorithm only: Temporary space used for match-choosing
         * algorithm.
         *
-        * The size of this array must be at least LZX_MAX_MATCH but otherwise
-        * is arbitrary.  More space simply allows the match-choosing algorithm
-        * to find better matches (depending on the input, as always).  */
+        * The size of this array must be at least LZX_MAX_MATCH_LEN but
+        * otherwise is arbitrary.  More space simply allows the match-choosing
+        * algorithm to potentially find better matches (depending on the input,
+        * as always).  */
        struct lzx_optimal *optimum;
 
        /* Slow algorithm only: Variables used by the match-choosing algorithm.
@@ -425,87 +499,72 @@ struct lzx_compressor {
        u32 optimum_end_idx;
 };
 
-/* Returns the LZX position slot that corresponds to a given formatted offset.
- *
- * Logically, this returns the smallest i such that
- * formatted_offset >= lzx_position_base[i].
- *
- * The actual implementation below takes advantage of the regularity of the
- * numbers in the lzx_position_base array to calculate the slot directly from
- * the formatted offset without actually looking at the array.
- */
+/* Returns the LZX position slot that corresponds to a given match offset,
+ * taking into account the recent offset queue and updating it if the offset is
+ * found in it.  */
 static unsigned
-lzx_get_position_slot(unsigned formatted_offset)
+lzx_get_position_slot(unsigned offset, struct lzx_lru_queue *queue)
 {
-#if 0
-       /*
-        * Slots 36-49 (formatted_offset >= 262144) can be found by
-        * (formatted_offset/131072) + 34 == (formatted_offset >> 17) + 34;
-        * however, this check for formatted_offset >= 262144 is commented out
-        * because WIM chunks cannot be that large.
-        */
-       if (formatted_offset >= 262144) {
-               return (formatted_offset >> 17) + 34;
-       } else
-#endif
-       {
-               /* Note: this part here only works if:
-                *
-                *    2 <= formatted_offset < 655360
-                *
-                * It is < 655360 because the frequency of the position bases
-                * increases starting at the 655360 entry, and it is >= 2
-                * because the below calculation fails if the most significant
-                * bit is lower than the 2's place. */
-               LZX_ASSERT(2 <= formatted_offset  && formatted_offset < 655360);
-               unsigned mssb_idx = bsr32(formatted_offset);
-               return (mssb_idx << 1) |
-                       ((formatted_offset >> (mssb_idx - 1)) & 1);
+       unsigned position_slot;
+
+       /* See if the offset was recently used.  */
+       for (unsigned i = 0; i < LZX_NUM_RECENT_OFFSETS; i++) {
+               if (offset == queue->R[i]) {
+                       /* Found it.  */
+
+                       /* Bring the repeat offset to the front of the
+                        * queue.  Note: this is, in fact, not a real
+                        * LRU queue because repeat matches are simply
+                        * swapped to the front.  */
+                       swap(queue->R[0], queue->R[i]);
+
+                       /* The resulting position slot is simply the first index
+                        * at which the offset was found in the queue.  */
+                       return i;
+               }
        }
-}
 
-/* Compute the hash code for the next 3-character sequence in the window.  */
-static unsigned
-lzx_lz_compute_hash(const u8 *window)
-{
-       unsigned hash;
-
-       hash = window[0];
-       hash <<= LZX_LZ_HASH_SHIFT;
-       hash ^= window[1];
-       hash <<= LZX_LZ_HASH_SHIFT;
-       hash ^= window[2];
-       return hash & LZX_LZ_HASH_MASK;
+       /* The offset was not recently used; look up its real position slot.  */
+       position_slot = lzx_get_position_slot_raw(offset + LZX_OFFSET_OFFSET);
+
+       /* Bring the new offset to the front of the queue.  */
+       for (unsigned i = LZX_NUM_RECENT_OFFSETS - 1; i > 0; i--)
+               queue->R[i] = queue->R[i - 1];
+       queue->R[0] = offset;
+
+       return position_slot;
 }
 
 /* Build the main, length, and aligned offset Huffman codes used in LZX.
  *
  * This takes as input the frequency tables for each code and produces as output
- * a set of tables that map symbols to codewords and lengths.  */
+ * a set of tables that map symbols to codewords and codeword lengths.  */
 static void
 lzx_make_huffman_codes(const struct lzx_freqs *freqs,
-                      struct lzx_codes *codes)
+                      struct lzx_codes *codes,
+                      unsigned num_main_syms)
 {
-       make_canonical_huffman_code(LZX_MAINTREE_NUM_SYMBOLS,
-                                   LZX_MAX_CODEWORD_LEN,
+       make_canonical_huffman_code(num_main_syms,
+                                   LZX_MAX_MAIN_CODEWORD_LEN,
                                    freqs->main,
                                    codes->lens.main,
                                    codes->codewords.main);
 
-       make_canonical_huffman_code(LZX_LENTREE_NUM_SYMBOLS,
-                                   LZX_MAX_CODEWORD_LEN,
+       make_canonical_huffman_code(LZX_LENCODE_NUM_SYMBOLS,
+                                   LZX_MAX_LEN_CODEWORD_LEN,
                                    freqs->len,
                                    codes->lens.len,
                                    codes->codewords.len);
 
-       make_canonical_huffman_code(LZX_ALIGNEDTREE_NUM_SYMBOLS, 8,
+       make_canonical_huffman_code(LZX_ALIGNEDCODE_NUM_SYMBOLS,
+                                   LZX_MAX_ALIGNED_CODEWORD_LEN,
                                    freqs->aligned,
                                    codes->lens.aligned,
                                    codes->codewords.aligned);
 }
 
 /*
- * Output a LZX match.
+ * Output an LZX match.
  *
  * @out:         The bitstream to write the match to.
  * @block_type:  The type of the LZX block (LZX_BLOCKTYPE_ALIGNED or LZX_BLOCKTYPE_VERBATIM)
@@ -525,21 +584,20 @@ lzx_write_match(struct output_bitstream *out, int block_type,
        unsigned position_slot = (match.data >> 25) & 0x3f;     /* 6 bits */
        unsigned len_header;
        unsigned len_footer;
-       unsigned len_pos_header;
        unsigned main_symbol;
        unsigned num_extra_bits;
        unsigned verbatim_bits;
        unsigned aligned_bits;
 
-       /* If the match length is less than MIN_MATCH (= 2) +
+       /* If the match length is less than MIN_MATCH_LEN (= 2) +
         * NUM_PRIMARY_LENS (= 7), the length header contains
-        * the match length minus MIN_MATCH, and there is no
+        * the match length minus MIN_MATCH_LEN, and there is no
         * length footer.
         *
         * Otherwise, the length header contains
         * NUM_PRIMARY_LENS, and the length footer contains
         * the match length minus NUM_PRIMARY_LENS minus
-        * MIN_MATCH. */
+        * MIN_MATCH_LEN. */
        if (match_len_minus_2 < LZX_NUM_PRIMARY_LENS) {
                len_header = match_len_minus_2;
                /* No length footer-- mark it with a special
@@ -550,15 +608,13 @@ lzx_write_match(struct output_bitstream *out, int block_type,
                len_footer = match_len_minus_2 - LZX_NUM_PRIMARY_LENS;
        }
 
-       /* Combine the position slot with the length header into
-        * a single symbol that will be encoded with the main
-        * tree. */
-       len_pos_header = (position_slot << 3) | len_header;
-
-       /* The actual main symbol is offset by LZX_NUM_CHARS because
-        * values under LZX_NUM_CHARS are used to indicate a literal
-        * byte rather than a match. */
-       main_symbol = len_pos_header + LZX_NUM_CHARS;
+       /* Combine the position slot with the length header into a single symbol
+        * that will be encoded with the main code.
+        *
+        * The actual main symbol is offset by LZX_NUM_CHARS because values
+        * under LZX_NUM_CHARS are used to indicate a literal byte rather than a
+        * match.  */
+       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
 
        /* Output main symbol. */
        bitstream_put_bits(out, codes->codewords.main[main_symbol],
@@ -575,7 +631,7 @@ lzx_write_match(struct output_bitstream *out, int block_type,
 
        /* For aligned offset blocks with at least 3 extra bits, output the
         * verbatim bits literally, then the aligned bits encoded using the
-        * aligned offset tree.  Otherwise, only the verbatim bits need to be
+        * aligned offset code.  Otherwise, only the verbatim bits need to be
         * output. */
        if ((block_type == LZX_BLOCKTYPE_ALIGNED) && (num_extra_bits >= 3)) {
 
@@ -597,23 +653,15 @@ lzx_write_match(struct output_bitstream *out, int block_type,
 static unsigned
 lzx_build_precode(const u8 lens[restrict],
                  const u8 prev_lens[restrict],
-                 unsigned num_syms,
-                 freq_t precode_freqs[restrict LZX_PRETREE_NUM_SYMBOLS],
+                 const unsigned num_syms,
+                 freq_t precode_freqs[restrict LZX_PRECODE_NUM_SYMBOLS],
                  u8 output_syms[restrict num_syms],
-                 u8 precode_lens[restrict LZX_PRETREE_NUM_SYMBOLS],
-                 u16 precode_codewords[restrict LZX_PRETREE_NUM_SYMBOLS],
-                 unsigned * num_additional_bits_ret)
+                 u8 precode_lens[restrict LZX_PRECODE_NUM_SYMBOLS],
+                 u16 precode_codewords[restrict LZX_PRECODE_NUM_SYMBOLS],
+                 unsigned *num_additional_bits_ret)
 {
-       unsigned output_syms_idx;
-       unsigned cur_run_len;
-       unsigned i;
-       unsigned len_in_run;
-       unsigned additional_bits;
-       signed char delta;
-       unsigned num_additional_bits = 0;
-
        memset(precode_freqs, 0,
-              LZX_PRETREE_NUM_SYMBOLS * sizeof(precode_freqs[0]));
+              LZX_PRECODE_NUM_SYMBOLS * sizeof(precode_freqs[0]));
 
        /* Since the code word lengths use a form of RLE encoding, the goal here
         * is to find each run of identical lengths when going through them in
@@ -622,14 +670,14 @@ lzx_build_precode(const u8 lens[restrict],
         * literally.
         *
         * output_syms[] will be filled in with the length symbols that will be
-        * output, including RLE codes, not yet encoded using the pre-tree.
+        * output, including RLE codes, not yet encoded using the precode.
         *
         * cur_run_len keeps track of how many code word lengths are in the
-        * current run of identical lengths.
-        */
-       output_syms_idx = 0;
-       cur_run_len = 1;
-       for (i = 1; i <= num_syms; i++) {
+        * current run of identical lengths.  */
+       unsigned output_syms_idx = 0;
+       unsigned cur_run_len = 1;
+       unsigned num_additional_bits = 0;
+       for (unsigned i = 1; i <= num_syms; i++) {
 
                if (i != num_syms && lens[i] == lens[i - 1]) {
                        /* Still in a run--- keep going. */
@@ -642,7 +690,7 @@ lzx_build_precode(const u8 lens[restrict],
 
                /* The symbol that was repeated in the run--- not to be confused
                 * with the length *of* the run (cur_run_len) */
-               len_in_run = lens[i - 1];
+               unsigned len_in_run = lens[i - 1];
 
                if (len_in_run == 0) {
                        /* A run of 0's.  Encode it in as few length
@@ -652,6 +700,7 @@ lzx_build_precode(const u8 lens[restrict],
                         * where n is an uncompressed literal 5-bit integer that
                         * follows the magic length. */
                        while (cur_run_len >= 20) {
+                               unsigned additional_bits;
 
                                additional_bits = min(cur_run_len - 20, 0x1f);
                                num_additional_bits += 5;
@@ -665,6 +714,8 @@ lzx_build_precode(const u8 lens[restrict],
                         * where n is an uncompressed literal 4-bit integer that
                         * follows the magic length. */
                        while (cur_run_len >= 4) {
+                               unsigned additional_bits;
+
                                additional_bits = min(cur_run_len - 4, 0xf);
                                num_additional_bits += 4;
                                precode_freqs[17]++;
@@ -685,9 +736,12 @@ lzx_build_precode(const u8 lens[restrict],
                         *
                         * The extra length symbol is encoded as a difference
                         * from the length of the codeword for the first symbol
-                        * in the run in the previous tree.
+                        * in the run in the previous code.
                         * */
                        while (cur_run_len >= 4) {
+                               unsigned additional_bits;
+                               signed char delta;
+
                                additional_bits = (cur_run_len > 4);
                                num_additional_bits += 1;
                                delta = (signed char)prev_lens[i - cur_run_len] -
@@ -705,8 +759,10 @@ lzx_build_precode(const u8 lens[restrict],
 
                /* Any remaining lengths in the run are outputted without RLE,
                 * as a difference from the length of that codeword in the
-                * previous tree. */
+                * previous code. */
                while (cur_run_len > 0) {
+                       signed char delta;
+
                        delta = (signed char)prev_lens[i - cur_run_len] -
                                (signed char)len_in_run;
                        if (delta < 0)
@@ -722,13 +778,12 @@ lzx_build_precode(const u8 lens[restrict],
 
        /* Build the precode from the frequencies of the length symbols. */
 
-       make_canonical_huffman_code(LZX_PRETREE_NUM_SYMBOLS,
-                                   LZX_MAX_CODEWORD_LEN,
+       make_canonical_huffman_code(LZX_PRECODE_NUM_SYMBOLS,
+                                   LZX_MAX_PRE_CODEWORD_LEN,
                                    precode_freqs, precode_lens,
                                    precode_codewords);
 
-       if (num_additional_bits_ret)
-               *num_additional_bits_ret = num_additional_bits;
+       *num_additional_bits_ret = num_additional_bits;
 
        return output_syms_idx;
 }
@@ -740,7 +795,7 @@ lzx_build_precode(const u8 lens[restrict],
  * The Huffman code is represented in the output as a series of path lengths
  * from which the canonical Huffman code can be reconstructed.  The path lengths
  * themselves are compressed using a separate Huffman code, the precode, which
- * consists of LZX_PRETREE_NUM_SYMBOLS (= 20) symbols that cover all possible
+ * consists of LZX_PRECODE_NUM_SYMBOLS (= 20) symbols that cover all possible
  * code lengths, plus extra codes for repeated lengths.  The path lengths of the
  * precode precede the path lengths of the larger code and are uncompressed,
  * consisting of 20 entries of 4 bits each.
@@ -758,13 +813,14 @@ lzx_write_compressed_code(struct output_bitstream *out,
                          const u8 prev_lens[restrict],
                          unsigned num_syms)
 {
-       freq_t precode_freqs[LZX_PRETREE_NUM_SYMBOLS];
+       freq_t precode_freqs[LZX_PRECODE_NUM_SYMBOLS];
        u8 output_syms[num_syms];
-       u8 precode_lens[LZX_PRETREE_NUM_SYMBOLS];
-       u16 precode_codewords[LZX_PRETREE_NUM_SYMBOLS];
+       u8 precode_lens[LZX_PRECODE_NUM_SYMBOLS];
+       u16 precode_codewords[LZX_PRECODE_NUM_SYMBOLS];
        unsigned i;
        unsigned num_output_syms;
        u8 precode_sym;
+       unsigned dummy;
 
        num_output_syms = lzx_build_precode(lens,
                                            prev_lens,
@@ -773,12 +829,12 @@ lzx_write_compressed_code(struct output_bitstream *out,
                                            output_syms,
                                            precode_lens,
                                            precode_codewords,
-                                           NULL);
+                                           &dummy);
 
        /* Write the lengths of the precode codes to the output. */
-       for (i = 0; i < LZX_PRETREE_NUM_SYMBOLS; i++)
+       for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
                bitstream_put_bits(out, precode_lens[i],
-                                  LZX_PRETREE_ELEMENT_SIZE);
+                                  LZX_PRECODE_ELEMENT_SIZE);
 
        /* Write the length symbols, encoded with the precode, to the output. */
 
@@ -808,7 +864,7 @@ lzx_write_compressed_code(struct output_bitstream *out,
 }
 
 /*
- * Writes all compressed matches and literal bytes in a LZX block to the the
+ * Writes all compressed matches and literal bytes in an LZX block to the the
  * output bitstream.
  *
  * @ostream
@@ -848,48 +904,49 @@ lzx_write_matches_and_literals(struct output_bitstream *ostream,
        }
 }
 
-
 static void
-lzx_assert_codes_valid(const struct lzx_codes * codes)
+lzx_assert_codes_valid(const struct lzx_codes * codes, unsigned num_main_syms)
 {
 #ifdef ENABLE_LZX_DEBUG
        unsigned i;
 
-       for (i = 0; i < LZX_MAINTREE_NUM_SYMBOLS; i++)
-               LZX_ASSERT(codes->lens.main[i] <= LZX_MAX_CODEWORD_LEN);
+       for (i = 0; i < num_main_syms; i++)
+               LZX_ASSERT(codes->lens.main[i] <= LZX_MAX_MAIN_CODEWORD_LEN);
 
-       for (i = 0; i < LZX_LENTREE_NUM_SYMBOLS; i++)
-               LZX_ASSERT(codes->lens.len[i] <= LZX_MAX_CODEWORD_LEN);
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               LZX_ASSERT(codes->lens.len[i] <= LZX_MAX_LEN_CODEWORD_LEN);
 
-       for (i = 0; i < LZX_ALIGNEDTREE_NUM_SYMBOLS; i++)
-               LZX_ASSERT(codes->lens.aligned[i] <= 8);
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               LZX_ASSERT(codes->lens.aligned[i] <= LZX_MAX_ALIGNED_CODEWORD_LEN);
 
        const unsigned tablebits = 10;
        u16 decode_table[(1 << tablebits) +
-                        (2 * max(LZX_MAINTREE_NUM_SYMBOLS, LZX_LENTREE_NUM_SYMBOLS))]
+                        (2 * max(num_main_syms, LZX_LENCODE_NUM_SYMBOLS))]
                         _aligned_attribute(DECODE_TABLE_ALIGNMENT);
        LZX_ASSERT(0 == make_huffman_decode_table(decode_table,
-                                                 LZX_MAINTREE_NUM_SYMBOLS,
-                                                 tablebits,
+                                                 num_main_syms,
+                                                 min(tablebits, LZX_MAINCODE_TABLEBITS),
                                                  codes->lens.main,
-                                                 LZX_MAX_CODEWORD_LEN));
+                                                 LZX_MAX_MAIN_CODEWORD_LEN));
        LZX_ASSERT(0 == make_huffman_decode_table(decode_table,
-                                                 LZX_LENTREE_NUM_SYMBOLS,
-                                                 tablebits,
+                                                 LZX_LENCODE_NUM_SYMBOLS,
+                                                 min(tablebits, LZX_LENCODE_TABLEBITS),
                                                  codes->lens.len,
-                                                 LZX_MAX_CODEWORD_LEN));
+                                                 LZX_MAX_LEN_CODEWORD_LEN));
        LZX_ASSERT(0 == make_huffman_decode_table(decode_table,
-                                                 LZX_ALIGNEDTREE_NUM_SYMBOLS,
-                                                 min(tablebits, 6),
+                                                 LZX_ALIGNEDCODE_NUM_SYMBOLS,
+                                                 min(tablebits, LZX_ALIGNEDCODE_TABLEBITS),
                                                  codes->lens.aligned,
-                                                 8));
+                                                 LZX_MAX_ALIGNED_CODEWORD_LEN));
 #endif /* ENABLE_LZX_DEBUG */
 }
 
-/* Write a LZX aligned offset or verbatim block to the output.  */
+/* Write an LZX aligned offset or verbatim block to the output.  */
 static void
 lzx_write_compressed_block(int block_type,
                           unsigned block_size,
+                          unsigned max_window_size,
+                          unsigned num_main_syms,
                           struct lzx_match * chosen_matches,
                           unsigned num_chosen_matches,
                           const struct lzx_codes * codes,
@@ -900,56 +957,70 @@ lzx_write_compressed_block(int block_type,
 
        LZX_ASSERT(block_type == LZX_BLOCKTYPE_ALIGNED ||
                   block_type == LZX_BLOCKTYPE_VERBATIM);
-       LZX_ASSERT(block_size <= LZX_MAX_WINDOW_SIZE);
-       LZX_ASSERT(num_chosen_matches <= LZX_MAX_WINDOW_SIZE);
-       lzx_assert_codes_valid(codes);
+       lzx_assert_codes_valid(codes, num_main_syms);
 
        /* The first three bits indicate the type of block and are one of the
         * LZX_BLOCKTYPE_* constants.  */
-       bitstream_put_bits(ostream, block_type, LZX_BLOCKTYPE_NBITS);
+       bitstream_put_bits(ostream, block_type, 3);
 
-       /* The next bit indicates whether the block size is the default (32768),
-        * indicated by a 1 bit, or whether the block size is given by the next
-        * 16 bits, indicated by a 0 bit.  */
+       /* Output the block size.
+        *
+        * The original LZX format seemed to always encode the block size in 3
+        * bytes.  However, the implementation in WIMGAPI, as used in WIM files,
+        * uses the first bit to indicate whether the block is the default size
+        * (32768) or a different size given explicitly by the next 16 bits.
+        *
+        * By default, this compressor uses a window size of 32768 and therefore
+        * follows the WIMGAPI behavior.  However, this compressor also supports
+        * window sizes greater than 32768 bytes, which do not appear to be
+        * supported by WIMGAPI.  In such cases, we retain the default size bit
+        * to mean a size of 32768 bytes but output non-default block size in 24
+        * bits rather than 16.  The compatibility of this behavior is unknown
+        * because WIMs created with chunk size greater than 32768 can seemingly
+        * only be opened by wimlib anyway.  */
        if (block_size == LZX_DEFAULT_BLOCK_SIZE) {
                bitstream_put_bits(ostream, 1, 1);
        } else {
                bitstream_put_bits(ostream, 0, 1);
-               bitstream_put_bits(ostream, block_size, LZX_BLOCKSIZE_NBITS);
+
+               if (max_window_size >= 65536)
+                       bitstream_put_bits(ostream, (block_size >> 16) & 0xff, 8);
+
+               bitstream_put_bits(ostream, block_size & 0xffff, 16);
        }
 
        /* Write out lengths of the main code. Note that the LZX specification
         * incorrectly states that the aligned offset code comes after the
-        * length code, but in fact it is the very first tree to be written
+        * length code, but in fact it is the very first code to be written
         * (before the main code).  */
        if (block_type == LZX_BLOCKTYPE_ALIGNED)
-               for (i = 0; i < LZX_ALIGNEDTREE_NUM_SYMBOLS; i++)
+               for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
                        bitstream_put_bits(ostream, codes->lens.aligned[i],
-                                          LZX_ALIGNEDTREE_ELEMENT_SIZE);
+                                          LZX_ALIGNEDCODE_ELEMENT_SIZE);
 
        LZX_DEBUG("Writing main code...");
 
-       /* Write the pre-tree and lengths for the first LZX_NUM_CHARS symbols in
+       /* Write the precode and lengths for the first LZX_NUM_CHARS symbols in
         * the main code, which are the codewords for literal bytes.  */
        lzx_write_compressed_code(ostream,
                                  codes->lens.main,
                                  prev_codes->lens.main,
                                  LZX_NUM_CHARS);
 
-       /* Write the pre-tree and lengths for the rest of the main code, which
+       /* Write the precode and lengths for the rest of the main code, which
         * are the codewords for match headers.  */
        lzx_write_compressed_code(ostream,
                                  codes->lens.main + LZX_NUM_CHARS,
                                  prev_codes->lens.main + LZX_NUM_CHARS,
-                                 LZX_MAINTREE_NUM_SYMBOLS - LZX_NUM_CHARS);
+                                 num_main_syms - LZX_NUM_CHARS);
 
        LZX_DEBUG("Writing length code...");
 
-       /* Write the pre-tree and lengths for the length code.  */
+       /* Write the precode and lengths for the length code.  */
        lzx_write_compressed_code(ostream,
                                  codes->lens.len,
                                  prev_codes->lens.len,
-                                 LZX_LENTREE_NUM_SYMBOLS);
+                                 LZX_LENCODE_NUM_SYMBOLS);
 
        LZX_DEBUG("Writing matches and literals...");
 
@@ -961,191 +1032,140 @@ lzx_write_compressed_block(int block_type,
        LZX_DEBUG("Done writing block.");
 }
 
-/* Write the LZX block of index @block_number, or write its children recursively
- * if it is a split block.
- *
- * @prev_codes is a pointer to the Huffman codes for the most recent block
- * written, or all zeroes if this is the first block.
- *
- * Return a pointer to the Huffman codes for the last block written.  */
-static struct lzx_codes *
-lzx_write_block_recursive(struct lzx_compressor *ctx,
-                         unsigned block_number,
-                         struct lzx_codes * prev_codes,
-                         struct output_bitstream *ostream)
+/* Write out the LZX blocks that were computed.  */
+static void
+lzx_write_all_blocks(struct lzx_compressor *ctx, struct output_bitstream *ostream)
 {
-       struct lzx_block_spec *spec = &ctx->block_specs[block_number - 1];
 
-       if (spec->is_split) {
-               prev_codes = lzx_write_block_recursive(ctx, block_number * 2 + 0,
-                                                      prev_codes, ostream);
-               prev_codes = lzx_write_block_recursive(ctx, block_number * 2 + 1,
-                                                      prev_codes, ostream);
-       } else {
-               LZX_DEBUG("Writing block #%u (type=%d, size=%u, num_chosen_matches=%u)...",
-                         block_number, spec->block_type, spec->block_size,
+       const struct lzx_codes *prev_codes = &ctx->zero_codes;
+       for (unsigned i = 0; i < ctx->num_blocks; i++) {
+               const struct lzx_block_spec *spec = &ctx->block_specs[i];
+
+               LZX_DEBUG("Writing block %u/%u (type=%d, size=%u, num_chosen_matches=%u)...",
+                         i + 1, ctx->num_blocks,
+                         spec->block_type, spec->block_size,
                          spec->num_chosen_matches);
+
                lzx_write_compressed_block(spec->block_type,
                                           spec->block_size,
+                                          ctx->max_window_size,
+                                          ctx->num_main_syms,
                                           &ctx->chosen_matches[spec->chosen_matches_start_pos],
                                           spec->num_chosen_matches,
                                           &spec->codes,
                                           prev_codes,
                                           ostream);
+
                prev_codes = &spec->codes;
        }
-       return prev_codes;
-}
-
-/* Write out the LZX blocks that were computed.  */
-static void
-lzx_write_all_blocks(struct lzx_compressor *ctx, struct output_bitstream *ostream)
-{
-       lzx_write_block_recursive(ctx, 1, &ctx->zero_codes, ostream);
 }
 
+/* Constructs an LZX match from a literal byte and updates the main code symbol
+ * frequencies.  */
 static u32
-lzx_record_literal(u8 literal, void *_freqs)
+lzx_tally_literal(u8 lit, struct lzx_freqs *freqs)
 {
-       struct lzx_freqs *freqs = _freqs;
-
-       freqs->main[literal]++;
-
-       return (u32)literal;
+       freqs->main[lit]++;
+       return (u32)lit;
 }
 
-/* Constructs a match from an offset and a length, and updates the LRU queue and
- * the frequency of symbols in the main, length, and aligned offset alphabets.
- * The return value is a 32-bit number that provides the match in an
+/* Constructs an LZX match from an offset and a length, and updates the LRU
+ * queue and the frequency of symbols in the main, length, and aligned offset
+ * alphabets.  The return value is a 32-bit number that provides the match in an
  * intermediate representation documented below.  */
 static u32
-lzx_record_match(unsigned match_offset, unsigned match_len,
-                void *_freqs, void *_queue)
+lzx_tally_match(unsigned match_len, unsigned match_offset,
+               struct lzx_freqs *freqs, struct lzx_lru_queue *queue)
 {
-       struct lzx_freqs *freqs = _freqs;
-       struct lzx_lru_queue *queue = _queue;
        unsigned position_slot;
-       unsigned position_footer = 0;
+       unsigned position_footer;
        u32 len_header;
-       u32 len_pos_header;
+       unsigned main_symbol;
        unsigned len_footer;
        unsigned adjusted_match_len;
 
-       LZX_ASSERT(match_len >= LZX_MIN_MATCH && match_len <= LZX_MAX_MATCH);
-
-       /* If possible, encode this offset as a repeated offset. */
-       if (match_offset == queue->R0) {
-               position_slot = 0;
-       } else if (match_offset == queue->R1) {
-               swap(queue->R0, queue->R1);
-               position_slot = 1;
-       } else if (match_offset == queue->R2) {
-               swap(queue->R0, queue->R2);
-               position_slot = 2;
-       } else {
-               /* Not a repeated offset. */
-
-               /* offsets of 0, 1, and 2 are reserved for the repeated offset
-                * codes, so non-repeated offsets must be encoded as 3+.  The
-                * minimum offset is 1, so encode the offsets offset by 2. */
-               unsigned formatted_offset = match_offset + 2;
-
-               queue->R2 = queue->R1;
-               queue->R1 = queue->R0;
-               queue->R0 = match_offset;
-
-               /* The (now-formatted) offset will actually be encoded as a
-                * small position slot number that maps to a certain hard-coded
-                * offset (position base), followed by a number of extra bits---
-                * the position footer--- that are added to the position base to
-                * get the original formatted offset. */
-
-               position_slot = lzx_get_position_slot(formatted_offset);
-               position_footer = formatted_offset &
-                                 ((1 << lzx_get_num_extra_bits(position_slot)) - 1);
-       }
+       LZX_ASSERT(match_len >= LZX_MIN_MATCH_LEN && match_len <= LZX_MAX_MATCH_LEN);
 
-       adjusted_match_len = match_len - LZX_MIN_MATCH;
+       /* The match offset shall be encoded as a position slot (itself encoded
+        * as part of the main symbol) and a position footer.  */
+       position_slot = lzx_get_position_slot(match_offset, queue);
+       position_footer = (match_offset + LZX_OFFSET_OFFSET) &
+                               ((1U << lzx_get_num_extra_bits(position_slot)) - 1);
 
-
-       /* The match length must be at least 2, so let the adjusted match length
-        * be the match length minus 2.
-        *
-        * If it is less than 7, the adjusted match length is encoded as a 3-bit
-        * number offset by 2.  Otherwise, the 3-bit length header is all 1's
-        * and the actual adjusted length is given as a symbol encoded with the
-        * length tree, offset by 7.
-        */
+       /* The match length shall be encoded as a length header (itself encoded
+        * as part of the main symbol) and an optional length footer.  */
+       adjusted_match_len = match_len - LZX_MIN_MATCH_LEN;
        if (adjusted_match_len < LZX_NUM_PRIMARY_LENS) {
+               /* No length footer needed.  */
                len_header = adjusted_match_len;
        } else {
+               /* Length footer needed.  It will be encoded using the length
+                * code.  */
                len_header = LZX_NUM_PRIMARY_LENS;
                len_footer = adjusted_match_len - LZX_NUM_PRIMARY_LENS;
                freqs->len[len_footer]++;
        }
-       len_pos_header = (position_slot << 3) | len_header;
 
-       freqs->main[len_pos_header + LZX_NUM_CHARS]++;
+       /* Account for the main symbol.  */
+       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
+
+       freqs->main[main_symbol]++;
+
+       /* In an aligned offset block, 3 bits of the position footer are output
+        * as an aligned offset symbol.  Account for this, although we may
+        * ultimately decide to output the block as verbatim.  */
 
-       /* Equivalent to:
-        * if (lzx_extra_bits[position_slot] >= 3) */
+       /* The following check is equivalent to:
+        *
+        * if (lzx_extra_bits[position_slot] >= 3)
+        *
+        * Note that this correctly excludes position slots that correspond to
+        * recent offsets.  */
        if (position_slot >= 8)
                freqs->aligned[position_footer & 7]++;
 
        /* Pack the position slot, position footer, and match length into an
-        * intermediate representation.
-        *
-        * bits    description
-        * ----    -----------------------------------------------------------
-        *
-        * 31      1 if a match, 0 if a literal.
-        *
-        * 30-25   position slot.  This can be at most 50, so it will fit in 6
-        *         bits.
-        *
-        * 8-24    position footer.  This is the offset of the real formatted
-        *         offset from the position base.  This can be at most 17 bits
-        *         (since lzx_extra_bits[LZX_NUM_POSITION_SLOTS - 1] is 17).
-        *
-        * 0-7     length of match, offset by 2.  This can be at most
-        *         (LZX_MAX_MATCH - 2) == 255, so it will fit in 8 bits.  */
+        * intermediate representation.  See `struct lzx_match' for details.
+        */
+       LZX_ASSERT(LZX_MAX_POSITION_SLOTS <= 64);
+       LZX_ASSERT(lzx_get_num_extra_bits(LZX_MAX_POSITION_SLOTS - 1) <= 17);
+       LZX_ASSERT(LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1 <= 256);
+
+       LZX_ASSERT(position_slot      <= (1U << (31 - 25)) - 1);
+       LZX_ASSERT(position_footer    <= (1U << (25 -  8)) - 1);
+       LZX_ASSERT(adjusted_match_len <= (1U << (8  -  0)) - 1);
        return 0x80000000 |
                (position_slot << 25) |
                (position_footer << 8) |
                (adjusted_match_len);
 }
 
-/* Set the cost model @ctx->costs from the Huffman codeword lengths specified in
- * @lens.
- *
- * These are basically the same thing, except that the Huffman codewords with
- * length 0 correspond to symbols with zero frequency that still need to be
- * assigned actual costs.  The specific values assigned are arbitrary, but they
- * should be fairly high (near the maximum codeword length) to take into account
- * the fact that uses of these symbols are expected to be rare.
- */
+struct lzx_record_ctx {
+       struct lzx_freqs freqs;
+       struct lzx_lru_queue queue;
+       struct lzx_match *matches;
+};
+
 static void
-lzx_set_costs(struct lzx_compressor * ctx, const struct lzx_lens * lens)
+lzx_record_match(unsigned len, unsigned offset, void *_ctx)
 {
-       unsigned i;
+       struct lzx_record_ctx *ctx = _ctx;
 
-       memcpy(&ctx->costs, lens, sizeof(struct lzx_lens));
-
-       for (i = 0; i < LZX_MAINTREE_NUM_SYMBOLS; i++)
-               if (ctx->costs.main[i] == 0)
-                       ctx->costs.main[i] = ctx->params.slow.main_nostat_cost;
+       (ctx->matches++)->data = lzx_tally_match(len, offset, &ctx->freqs, &ctx->queue);
+}
 
-       for (i = 0; i < LZX_LENTREE_NUM_SYMBOLS; i++)
-               if (ctx->costs.len[i] == 0)
-                       ctx->costs.len[i] = ctx->params.slow.len_nostat_cost;
+static void
+lzx_record_literal(u8 lit, void *_ctx)
+{
+       struct lzx_record_ctx *ctx = _ctx;
 
-       for (i = 0; i < LZX_ALIGNEDTREE_NUM_SYMBOLS; i++)
-               if (ctx->costs.aligned[i] == 0)
-                       ctx->costs.aligned[i] = ctx->params.slow.aligned_nostat_cost;
+       (ctx->matches++)->data = lzx_tally_literal(lit, &ctx->freqs);
 }
 
-static u32
-lzx_literal_cost(u8 c, const struct lzx_lens * costs)
+/* Returns the cost, in bits, to output a literal byte using the specified cost
+ * model.  */
+static unsigned
+lzx_literal_cost(u8 c, const struct lzx_costs * costs)
 {
        return costs->main[c];
 }
@@ -1153,35 +1173,19 @@ lzx_literal_cost(u8 c, const struct lzx_lens * costs)
 /* Given a (length, offset) pair that could be turned into a valid LZX match as
  * well as costs for the codewords in the main, length, and aligned Huffman
  * codes, return the approximate number of bits it will take to represent this
- * match in the compressed output.  */
+ * match in the compressed output.  Take into account the match offset LRU
+ * queue and optionally update it.  */
 static unsigned
-lzx_match_cost(unsigned length, unsigned offset, const struct lzx_lens *costs
-
-#if LZX_PARAM_ACCOUNT_FOR_LRU
-              , struct lzx_lru_queue *queue
-#endif
-       )
+lzx_match_cost(unsigned length, unsigned offset, const struct lzx_costs *costs,
+              struct lzx_lru_queue *queue)
 {
-       unsigned position_slot, len_header, main_symbol;
+       unsigned position_slot;
+       unsigned len_header, main_symbol;
        unsigned cost = 0;
 
-       /* Calculate position slot and length header, then combine them into the
-        * main symbol.  */
-
-#if LZX_PARAM_ACCOUNT_FOR_LRU
-       if (offset == queue->R0) {
-               position_slot = 0;
-       } else if (offset == queue->R1) {
-               swap(queue->R0, queue->R1);
-               position_slot = 1;
-       } else if (offset == queue->R2) {
-               swap(queue->R0, queue->R2);
-               position_slot = 2;
-       } else
-#endif
-               position_slot = lzx_get_position_slot(offset + 2);
+       position_slot = lzx_get_position_slot(offset, queue);
 
-       len_header = min(length - LZX_MIN_MATCH, LZX_NUM_PRIMARY_LENS);
+       len_header = min(length - LZX_MIN_MATCH_LEN, LZX_NUM_PRIMARY_LENS);
        main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
 
        /* Account for main symbol.  */
@@ -1191,392 +1195,375 @@ lzx_match_cost(unsigned length, unsigned offset, const struct lzx_lens *costs
        unsigned num_extra_bits = lzx_get_num_extra_bits(position_slot);
        if (num_extra_bits >= 3) {
                cost += num_extra_bits - 3;
-               cost += costs->aligned[(offset + LZX_MIN_MATCH) & 7];
+               cost += costs->aligned[(offset + LZX_OFFSET_OFFSET) & 7];
        } else {
                cost += num_extra_bits;
        }
 
        /* Account for extra length information.  */
-       if (length - LZX_MIN_MATCH >= LZX_NUM_PRIMARY_LENS)
-               cost += costs->len[length - LZX_MIN_MATCH - LZX_NUM_PRIMARY_LENS];
+       if (len_header == LZX_NUM_PRIMARY_LENS)
+               cost += costs->len[length - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
 
        return cost;
+
 }
 
-/* This procedure effectively creates a new binary tree corresponding to the
- * current string at the same time that it searches the existing tree nodes for
- * matches.  This is the same algorithm as that used in GetMatchesSpec1() in
- * 7-Zip, but it is hopefully explained a little more clearly below.  */
-static unsigned
-lzx_lz_get_matches(const u8 window[restrict],
-                  const unsigned bytes_remaining,
-                  const unsigned strstart,
-                  const unsigned max_length,
-                  u16 child_tab[restrict],
-                  unsigned cur_match,
-                  const unsigned prev_len,
-                  struct raw_match * const matches)
+/* Fast heuristic cost evaluation to use in the inner loop of the match-finder.
+ * Unlike lzx_match_cost() which does a true cost evaluation, this simply
+ * prioritize matches based on their offset.  */
+static block_cost_t
+lzx_match_cost_fast(unsigned offset, const struct lzx_lru_queue *queue)
 {
-       u16 *new_tree_lt_ptr = &child_tab[strstart * 2];
-       u16 *new_tree_gt_ptr = &child_tab[strstart * 2 + 1];
+       /* It seems well worth it to take the time to give priority to recently
+        * used offsets.  */
+       for (unsigned i = 0; i < LZX_NUM_RECENT_OFFSETS; i++)
+               if (offset == queue->R[i])
+                       return i;
+
+       BUILD_BUG_ON(LZX_MAX_WINDOW_SIZE >= (block_cost_t)~0U);
+       return offset;
+}
 
-       u16 longest_lt_match_len = 0;
-       u16 longest_gt_match_len = 0;
+/* Set the cost model @ctx->costs from the Huffman codeword lengths specified in
+ * @lens.
+ *
+ * The cost model and codeword lengths are almost the same thing, but the
+ * Huffman codewords with length 0 correspond to symbols with zero frequency
+ * that still need to be assigned actual costs.  The specific values assigned
+ * are arbitrary, but they should be fairly high (near the maximum codeword
+ * length) to take into account the fact that uses of these symbols are expected
+ * to be rare.  */
+static void
+lzx_set_costs(struct lzx_compressor * ctx, const struct lzx_lens * lens)
+{
+       unsigned i;
+       unsigned num_main_syms = ctx->num_main_syms;
 
-       /* Maximum number of nodes to walk down before stopping  */
-       unsigned depth = max_length;
+       /* Main code  */
+       for (i = 0; i < num_main_syms; i++) {
+               ctx->costs.main[i] = lens->main[i];
+               if (ctx->costs.main[i] == 0)
+                       ctx->costs.main[i] = ctx->params.alg_params.slow.main_nostat_cost;
+       }
 
-       /* Length of longest match found so far  */
-       unsigned longest_match_len = prev_len;
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++) {
+               ctx->costs.len[i] = lens->len[i];
+               if (ctx->costs.len[i] == 0)
+                       ctx->costs.len[i] = ctx->params.alg_params.slow.len_nostat_cost;
+       }
 
-       /* Maximum length of match to return  */
-       unsigned len_limit = min(bytes_remaining, max_length);
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+               ctx->costs.aligned[i] = lens->aligned[i];
+               if (ctx->costs.aligned[i] == 0)
+                       ctx->costs.aligned[i] = ctx->params.alg_params.slow.aligned_nostat_cost;
+       }
+}
 
-       /* Number of matches found so far  */
-       unsigned num_matches = 0;
+/* Advance the suffix array match-finder to the next position.  */
+static void
+lzx_lz_update_salink(input_idx_t i,
+                    const input_idx_t SA[restrict],
+                    const input_idx_t ISA[restrict],
+                    struct salink link[restrict])
+{
+       /* r = Rank of the suffix at the current position.  */
+       const input_idx_t r = ISA[i];
 
-       for (;;) {
+       /* next = rank of LOWEST ranked suffix that is ranked HIGHER than the
+        * current suffix AND has a LOWER position, or -1 if none exists.  */
+       const input_idx_t next = link[r].next;
 
-               /* Stop if too many nodes were traversed or if there is no next
-                * node  */
-               if (depth-- == 0 || cur_match == 0) {
-                       *new_tree_gt_ptr = 0;
-                       *new_tree_lt_ptr = 0;
-                       return num_matches;
-               }
+       /* prev = rank of HIGHEST ranked suffix that is ranked LOWER than the
+        * current suffix AND has a LOWER position, or -1 if none exists.  */
+       const input_idx_t prev = link[r].prev;
 
-               /* Load the pointers to the children of the binary tree node
-                * corresponding to the current match  */
-               u16 * const cur_match_ptrs = &child_tab[cur_match * 2];
-
-               /* Set up pointers to the current match and to the current
-                * string  */
-               const u8 * const matchptr = &window[cur_match];
-               const u8 * const strptr = &window[strstart];
-
-               /* Determine position at which to start comparing  */
-               u16 len = min(longest_lt_match_len,
-                             longest_gt_match_len);
-
-               if (matchptr[len] == strptr[len]) {
-
-                       /* Extend the match as far as possible.  */
-                       while (++len != len_limit)
-                               if (matchptr[len] != strptr[len])
-                                       break;
-
-                       /* Record this match if it is the longest found so far.
-                        */
-                       if (len > longest_match_len) {
-                               longest_match_len = len;
-                               matches[num_matches].len = len;
-                               matches[num_matches].offset = strstart - cur_match;
-                               num_matches++;
-
-                               if (len == len_limit) {
-                                       /* Length limit was reached.  Link left pointer
-                                        * in the new tree with left subtree of current
-                                        * match tree, and link the right pointer in the
-                                        * new tree with the right subtree of the
-                                        * current match tree.  This in effect deletes
-                                        * the node for the currrent match, which is
-                                        * desirable because the current match is the
-                                        * same as the current string up until the
-                                        * length limit, so in subsequent queries it
-                                        * will never be preferable to the current
-                                        * position.  */
-                                       *new_tree_lt_ptr = cur_match_ptrs[0];
-                                       *new_tree_gt_ptr = cur_match_ptrs[1];
-                                       return num_matches;
-                               }
-                       }
-               }
+       /* Link the suffix at the current position into the linked list that
+        * contains all suffixes in the suffix array that are appear at or
+        * before the current position, sorted by rank.
+        *
+        * Save the values of all fields we overwrite so that rollback is
+        * possible.  */
+       if (next != (input_idx_t)~0U) {
 
-               if (matchptr[len] < strptr[len]) {
-                       /* Case 1:  The current match is lexicographically less
-                        * than the current string.
-                        *
-                        * Since we are searching the binary tree structures, we
-                        * need to walk down to the *right* subtree of the
-                        * current match's node to get to a match that is
-                        * lexicographically *greater* than the current match
-                        * but still lexicographically *lesser* than the current
-                        * string.
-                        *
-                        * At the same time, we link the entire binary tree
-                        * corresponding to the current match into the
-                        * appropriate place in the new binary tree being built
-                        * for the current string.  */
-                       *new_tree_lt_ptr = cur_match;
-                       new_tree_lt_ptr = &cur_match_ptrs[1];
-                       cur_match = *new_tree_lt_ptr;
-                       longest_lt_match_len = len;
-               } else {
-                       /* Case 2:  The current match is lexicographically
-                        * greater than the current string.
-                        *
-                        * This is analogous to Case 1 above, but everything
-                        * happens in the other direction.
-                        */
-                       *new_tree_gt_ptr = cur_match;
-                       new_tree_gt_ptr = &cur_match_ptrs[0];
-                       cur_match = *new_tree_gt_ptr;
-                       longest_gt_match_len = len;
-               }
+               link[next].prev = r;
+               link[next].lcpprev = link[r].lcpnext;
+       }
+
+       if (prev != (input_idx_t)~0U) {
+
+               link[prev].next = r;
+               link[prev].lcpnext = link[r].lcpprev;
        }
 }
 
-/* Equivalent to lzx_lz_get_matches(), but only updates the tree and doesn't
- * return matches.  See that function for details (including comments).  */
-static void
-lzx_lz_skip_matches(const u8 window[restrict],
-                   const unsigned bytes_remaining,
-                   const unsigned strstart,
-                   const unsigned max_length,
-                   u16 child_tab[restrict],
-                   unsigned cur_match,
-                   const unsigned prev_len)
+/*
+ * Use the suffix array match-finder to retrieve a list of LZ matches at the
+ * current position.
+ *
+ * [in]    @i          Current position in the window.
+ * [in]    @SA         Suffix array for the window.
+ * [in]    @ISA                Inverse suffix array for the window.
+ * [inout] @link       Suffix array links used internally by the match-finder.
+ * [out]   @matches    The (length, offset) pairs of the resulting matches will
+ *                             be written here, sorted in decreasing order by
+ *                             length.  All returned lengths will be unique.
+ * [in]    @queue      Recently used match offsets, used when evaluating the
+ *                             cost of matches.
+ * [in]           @min_match_len       Minimum match length to return.
+ * [in]           @max_matches_to_consider     Maximum number of matches to consider at
+ *                                     the position.
+ * [in]           @max_matches_to_return       Maximum number of matches to return.
+ *
+ * The return value is the number of matches found and written to @matches.
+ */
+static unsigned
+lzx_lz_get_matches(const input_idx_t i,
+                  const input_idx_t SA[const restrict],
+                  const input_idx_t ISA[const restrict],
+                  struct salink link[const restrict],
+                  struct raw_match matches[const restrict],
+                  const struct lzx_lru_queue * const restrict queue,
+                  const unsigned min_match_len,
+                  const u32 max_matches_to_consider,
+                  const u32 max_matches_to_return)
 {
-       u16 *new_tree_lt_ptr = &child_tab[strstart * 2];
-       u16 *new_tree_gt_ptr = &child_tab[strstart * 2 + 1];
+       /* r = Rank of the suffix at the current position.  */
+       const input_idx_t r = ISA[i];
+
+       /* Prepare for searching the current position.  */
+       lzx_lz_update_salink(i, SA, ISA, link);
 
-       u16 longest_lt_match_len = 0;
-       u16 longest_gt_match_len = 0;
+       /* L = rank of next suffix to the left;
+        * R = rank of next suffix to the right;
+        * lenL = length of match between current position and the suffix with rank L;
+        * lenR = length of match between current position and the suffix with rank R.
+        *
+        * This is left and right relative to the rank of the current suffix.
+        * Since the suffixes in the suffix array are sorted, the longest
+        * matches are immediately to the left and right (using the linked list
+        * to ignore all suffixes that occur later in the window).  The match
+        * length decreases the farther left and right we go.  We shall keep the
+        * length on both sides in sync in order to choose the lowest-cost match
+        * of each length.
+        */
+       input_idx_t L = link[r].prev;
+       input_idx_t R = link[r].next;
+       input_idx_t lenL = link[r].lcpprev;
+       input_idx_t lenR = link[r].lcpnext;
 
-       unsigned depth = max_length;
+       /* nmatches = number of matches found so far.  */
+       unsigned nmatches = 0;
 
-       unsigned longest_match_len = prev_len;
+       /* best_cost = cost of lowest-cost match found so far.
+        *
+        * We keep track of this so that we can ignore shorter matches that do
+        * not have lower costs than a longer matches already found.
+        */
+       block_cost_t best_cost = INFINITE_BLOCK_COST;
 
-       unsigned len_limit = min(bytes_remaining, max_length);
+       /* count_remaining = maximum number of possible matches remaining to be
+        * considered.  */
+       u32 count_remaining = max_matches_to_consider;
 
-       for (;;) {
-               if (depth-- == 0 || cur_match == 0) {
-                       *new_tree_gt_ptr = 0;
-                       *new_tree_lt_ptr = 0;
-                       return;
-               }
+       /* pending = match currently being considered for a specific length.  */
+       struct raw_match pending;
+       block_cost_t pending_cost;
 
-               u16 * const cur_match_ptrs = &child_tab[cur_match * 2];
+       while (lenL >= min_match_len || lenR >= min_match_len)
+       {
+               pending.len = lenL;
+               pending_cost = INFINITE_BLOCK_COST;
+               block_cost_t cost;
 
-               const u8 * const matchptr = &window[cur_match];
-               const u8 * const strptr = &window[strstart];
+               /* Extend left.  */
+               if (lenL >= min_match_len && lenL >= lenR) {
+                       for (;;) {
 
-               u16 len = min(longest_lt_match_len,
-                             longest_gt_match_len);
+                               if (--count_remaining == 0)
+                                       goto out_save_pending;
 
-               if (matchptr[len] == strptr[len]) {
-                       while (++len != len_limit)
-                               if (matchptr[len] != strptr[len])
-                                       break;
+                               input_idx_t offset = i - SA[L];
 
-                       if (len > longest_match_len) {
-                               longest_match_len = len;
+                               /* Save match if it has smaller cost.  */
+                               cost = lzx_match_cost_fast(offset, queue);
+                               if (cost < pending_cost) {
+                                       pending.offset = offset;
+                                       pending_cost = cost;
+                               }
 
-                               if (len == len_limit) {
-                                       *new_tree_lt_ptr = cur_match_ptrs[0];
-                                       *new_tree_gt_ptr = cur_match_ptrs[1];
-                                       return;
+                               if (link[L].lcpprev < lenL) {
+                                       /* Match length decreased.  */
+
+                                       lenL = link[L].lcpprev;
+
+                                       /* Save the pending match unless the
+                                        * right side still may have matches of
+                                        * this length to be scanned, or if a
+                                        * previous (longer) match had lower
+                                        * cost.  */
+                                       if (pending.len > lenR) {
+                                               if (pending_cost < best_cost) {
+                                                       best_cost = pending_cost;
+                                                       matches[nmatches++] = pending;
+                                                       if (nmatches == max_matches_to_return)
+                                                               return nmatches;
+                                               }
+                                               pending.len = lenL;
+                                               pending_cost = INFINITE_BLOCK_COST;
+                                       }
+                                       if (lenL < min_match_len || lenL < lenR)
+                                               break;
                                }
+                               L = link[L].prev;
                        }
                }
 
-               if (matchptr[len] < strptr[len]) {
-                       *new_tree_lt_ptr = cur_match;
-                       new_tree_lt_ptr = &cur_match_ptrs[1];
-                       cur_match = *new_tree_lt_ptr;
-                       longest_lt_match_len = len;
-               } else {
-                       *new_tree_gt_ptr = cur_match;
-                       new_tree_gt_ptr = &cur_match_ptrs[0];
-                       cur_match = *new_tree_gt_ptr;
-                       longest_gt_match_len = len;
+               pending.len = lenR;
+
+               /* Extend right.  */
+               if (lenR >= min_match_len && lenR > lenL) {
+                       for (;;) {
+
+                               if (--count_remaining == 0)
+                                       goto out_save_pending;
+
+                               input_idx_t offset = i - SA[R];
+
+                               /* Save match if it has smaller cost.  */
+                               cost = lzx_match_cost_fast(offset, queue);
+                               if (cost < pending_cost) {
+                                       pending.offset = offset;
+                                       pending_cost = cost;
+                               }
+
+                               if (link[R].lcpnext < lenR) {
+                                       /* Match length decreased.  */
+
+                                       lenR = link[R].lcpnext;
+
+                                       /* Save the pending match unless a
+                                        * previous (longer) match had lower
+                                        * cost.  */
+                                       if (pending_cost < best_cost) {
+                                               matches[nmatches++] = pending;
+                                               best_cost = pending_cost;
+                                               if (nmatches == max_matches_to_return)
+                                                       return nmatches;
+                                       }
+
+                                       if (lenR < min_match_len || lenR <= lenL)
+                                               break;
+
+                                       pending.len = lenR;
+                                       pending_cost = INFINITE_BLOCK_COST;
+                               }
+                               R = link[R].next;
+                       }
                }
        }
+       goto out;
+
+out_save_pending:
+       if (pending_cost != INFINITE_BLOCK_COST)
+               matches[nmatches++] = pending;
+
+out:
+       return nmatches;
 }
 
-static unsigned
-lzx_lz_get_matches_caching(struct lzx_compressor *ctx,
-                          struct raw_match **matches_ret);
 
 /* Tell the match-finder to skip the specified number of bytes (@n) in the
  * input.  */
 static void
 lzx_lz_skip_bytes(struct lzx_compressor *ctx, unsigned n)
 {
-
-#if LZX_PARAM_DONT_SKIP_MATCHES
-       /* Option 1: Still cache the matches from the positions skipped.  They
-        * will then be available in later passes.  */
-       struct raw_match *matches;
-       while (n--)
-               lzx_lz_get_matches_caching(ctx, &matches);
-#else
-       /* Option 2: Mark the positions skipped as having no matches available,
-        * but we still need to update the binary tree in case subsequent
-        * positions have matches at the current position.  */
        LZX_ASSERT(n <= ctx->match_window_end - ctx->match_window_pos);
-       if (ctx->matches_already_found) {
+       if (ctx->matches_cached) {
+               ctx->match_window_pos += n;
                while (n--) {
-                       LZX_ASSERT(ctx->cached_matches[ctx->cached_matches_pos].offset ==
-                                  ctx->match_window_pos);
-                       ctx->cached_matches_pos += ctx->cached_matches[ctx->cached_matches_pos].len + 1;
-                       ctx->match_window_pos++;
+                       ctx->cached_matches_pos +=
+                               ctx->cached_matches[ctx->cached_matches_pos].len + 1;
                }
        } else {
                while (n--) {
-                       if (ctx->params.slow.use_len2_matches &&
-                           ctx->match_window_end - ctx->match_window_pos >= 2) {
-                               unsigned c1 = ctx->window[ctx->match_window_pos];
-                               unsigned c2 = ctx->window[ctx->match_window_pos + 1];
-                               unsigned digram = c1 | (c2 << 8);
-                               ctx->digram_tab[digram] = ctx->match_window_pos;
-                       }
-                       if (ctx->match_window_end - ctx->match_window_pos >= 3) {
-                               unsigned hash;
-                               unsigned cur_match;
-
-                               hash = lzx_lz_compute_hash(&ctx->window[ctx->match_window_pos]);
-
-                               cur_match = ctx->hash_tab[hash];
-                               ctx->hash_tab[hash] = ctx->match_window_pos;
-
-                               lzx_lz_skip_matches(ctx->window,
-                                                   ctx->match_window_end - ctx->match_window_pos,
-                                                   ctx->match_window_pos,
-                                                   ctx->params.slow.num_fast_bytes,
-                                                   ctx->child_tab,
-                                                   cur_match, 1);
-                       }
-                       ctx->cached_matches[ctx->cached_matches_pos].len = 0;
-                       ctx->cached_matches[ctx->cached_matches_pos].offset = ctx->match_window_pos;
-                       ctx->cached_matches_pos++;
-                       ctx->match_window_pos++;
+                       ctx->cached_matches[ctx->cached_matches_pos++].len = 0;
+                       lzx_lz_update_salink(ctx->match_window_pos++, ctx->SA,
+                                            ctx->ISA, ctx->salink);
                }
        }
-#endif /* !LZX_PARAM_DONT_SKIP_MATCHES */
 }
 
 /* Retrieve a list of matches available at the next position in the input.
  *
- * The return value is the number of matches found, and a pointer to them is
- * written to @matches_ret.  The matches will be sorted in order by length.
- *
- * This is essentially a wrapper around lzx_lz_get_matches() that caches its
- * output the first time and also performs the needed hashing.
- */
+ * The matches are written to ctx->matches in decreasing order of length, and
+ * the return value is the number of matches found.  */
 static unsigned
 lzx_lz_get_matches_caching(struct lzx_compressor *ctx,
+                          const struct lzx_lru_queue *queue,
                           struct raw_match **matches_ret)
 {
        unsigned num_matches;
        struct raw_match *matches;
 
-       LZX_ASSERT(ctx->match_window_end >= ctx->match_window_pos);
+       LZX_ASSERT(ctx->match_window_pos <= ctx->match_window_end);
 
        matches = &ctx->cached_matches[ctx->cached_matches_pos + 1];
 
-       if (ctx->matches_already_found) {
-               num_matches = ctx->cached_matches[ctx->cached_matches_pos].len;
-               LZX_ASSERT(ctx->cached_matches[ctx->cached_matches_pos].offset == ctx->match_window_pos);
-
-               for (int i = (int)num_matches - 1; i >= 0; i--) {
-                       if (ctx->match_window_pos + matches[i].len > ctx->match_window_end)
-                               matches[i].len = ctx->match_window_end - ctx->match_window_pos;
-                       else
-                               break;
-               }
+       if (ctx->matches_cached) {
+               num_matches = matches[-1].len;
        } else {
-               unsigned prev_len = 1;
-               struct raw_match * matches_ret = &ctx->cached_matches[ctx->cached_matches_pos + 1];
-               num_matches = 0;
-
-               if (ctx->params.slow.use_len2_matches &&
-                   ctx->match_window_end - ctx->match_window_pos >= 3) {
-                       unsigned c1 = ctx->window[ctx->match_window_pos];
-                       unsigned c2 = ctx->window[ctx->match_window_pos + 1];
-                       unsigned digram = c1 | (c2 << 8);
-                       unsigned cur_match;
-
-                       cur_match = ctx->digram_tab[digram];
-                       ctx->digram_tab[digram] = ctx->match_window_pos;
-                       if (cur_match != 0 &&
-                           ctx->window[cur_match + 2] != ctx->window[ctx->match_window_pos + 2])
-                       {
-                               matches_ret->len = 2;
-                               matches_ret->offset = ctx->match_window_pos - cur_match;
-                               matches_ret++;
-                               num_matches++;
-                               prev_len = 2;
-                       }
-               }
-               if (ctx->match_window_end - ctx->match_window_pos >= 3) {
-                       unsigned hash;
-                       unsigned cur_match;
-
-                       hash = lzx_lz_compute_hash(&ctx->window[ctx->match_window_pos]);
-
-                       cur_match = ctx->hash_tab[hash];
-                       ctx->hash_tab[hash] = ctx->match_window_pos;
-                       num_matches += lzx_lz_get_matches(ctx->window,
-                                                         ctx->match_window_end - ctx->match_window_pos,
-                                                         ctx->match_window_pos,
-                                                         ctx->params.slow.num_fast_bytes,
-                                                         ctx->child_tab,
-                                                         cur_match,
-                                                         prev_len,
-                                                         matches_ret);
-               }
-
-               ctx->cached_matches[ctx->cached_matches_pos].len = num_matches;
-               ctx->cached_matches[ctx->cached_matches_pos].offset = ctx->match_window_pos;
-
-               if (num_matches) {
-                       struct raw_match *longest_match_ptr =
-                               &ctx->cached_matches[ctx->cached_matches_pos + 1 +
-                                                    num_matches - 1];
-                       u16 len = longest_match_ptr->len;
-
-                       /* If the longest match returned by the match-finder
-                        * reached the number of fast bytes, extend it as much
-                        * as possible.  */
-                       if (len == ctx->params.slow.num_fast_bytes) {
-                               const unsigned maxlen =
-                                       min(ctx->match_window_end - ctx->match_window_pos,
-                                           LZX_MAX_MATCH);
-
-                               const u8 * const matchptr =
-                                       &ctx->window[ctx->match_window_pos - longest_match_ptr->offset];
-
-                               const u8 * const strptr =
-                                       &ctx->window[ctx->match_window_pos];
-
-                               while (len < maxlen && matchptr[len] == strptr[len])
-                                       len++;
-                       }
-                       longest_match_ptr->len = len;
-               }
+               unsigned min_match_len = LZX_MIN_MATCH_LEN;
+               if (!ctx->params.alg_params.slow.use_len2_matches)
+                       min_match_len = max(min_match_len, 3);
+               const u32 max_search_depth = ctx->params.alg_params.slow.max_search_depth;
+               const u32 max_matches_per_pos = ctx->params.alg_params.slow.max_matches_per_pos;
+
+               if (unlikely(max_search_depth == 0 || max_matches_per_pos == 0))
+                       num_matches = 0;
+               else
+                       num_matches = lzx_lz_get_matches(ctx->match_window_pos,
+                                                        ctx->SA,
+                                                        ctx->ISA,
+                                                        ctx->salink,
+                                                        matches,
+                                                        queue,
+                                                        min_match_len,
+                                                        max_search_depth,
+                                                        max_matches_per_pos);
+               matches[-1].len = num_matches;
        }
        ctx->cached_matches_pos += num_matches + 1;
        *matches_ret = matches;
 
+       /* Cap the length of returned matches to the number of bytes remaining,
+        * if it is not the whole window.  */
+       if (ctx->match_window_end < ctx->window_size) {
+               unsigned maxlen = ctx->match_window_end - ctx->match_window_pos;
+               for (unsigned i = 0; i < num_matches; i++)
+                       if (matches[i].len > maxlen)
+                               matches[i].len = maxlen;
+       }
 #if 0
-       printf("\n");
+       fprintf(stderr, "Pos %u/%u: %u matches\n",
+               ctx->match_window_pos, ctx->match_window_end, num_matches);
        for (unsigned i = 0; i < num_matches; i++)
-       {
-               printf("Len %u Offset %u\n", matches[i].len, matches[i].offset);
-       }
+               fprintf(stderr, "\tLen %u Offset %u\n", matches[i].len, matches[i].offset);
 #endif
 
+#ifdef ENABLE_LZX_DEBUG
        for (unsigned i = 0; i < num_matches; i++) {
-               LZX_ASSERT(matches[i].len <= LZX_MAX_MATCH);
-               if (matches[i].len >= LZX_MIN_MATCH) {
-                       LZX_ASSERT(matches[i].offset <= ctx->match_window_pos);
-                       LZX_ASSERT(matches[i].len <= ctx->match_window_end - ctx->match_window_pos);
-                       LZX_ASSERT(!memcmp(&ctx->window[ctx->match_window_pos],
-                                          &ctx->window[ctx->match_window_pos - matches[i].offset],
-                                          matches[i].len));
-               }
+               LZX_ASSERT(matches[i].len >= LZX_MIN_MATCH_LEN);
+               LZX_ASSERT(matches[i].len <= LZX_MAX_MATCH_LEN);
+               LZX_ASSERT(matches[i].len <= ctx->match_window_end - ctx->match_window_pos);
+               LZX_ASSERT(matches[i].offset > 0);
+               LZX_ASSERT(matches[i].offset <= ctx->match_window_pos);
+               LZX_ASSERT(!memcmp(&ctx->window[ctx->match_window_pos],
+                                  &ctx->window[ctx->match_window_pos - matches[i].offset],
+                                  matches[i].len));
        }
+#endif
 
        ctx->match_window_pos++;
        return num_matches;
@@ -1624,19 +1611,20 @@ lzx_lz_reverse_near_optimal_match_list(struct lzx_compressor *ctx,
 /*
  * lzx_lz_get_near_optimal_match() -
  *
- * Choose the "best" match or literal to use at the next position in the input.
+ * Choose the optimal match or literal to use at the next position in the input.
  *
- * Unlike a "greedy" parser that always takes the longest match, or even a
+ * Unlike a greedy parser that always takes the longest match, or even a
  * parser with one match/literal look-ahead like zlib, the algorithm used here
- * may look ahead many matches/literals to determine the best match/literal to
+ * may look ahead many matches/literals to determine the optimal match/literal to
  * output next.  The motivation is that the compression ratio is improved if the
  * compressor can do things like use a shorter-than-possible match in order to
  * allow a longer match later, and also take into account the Huffman code cost
- * model rather than simply assuming that longer is better.  It is not a true
- * "optimal" parser, however, since some shortcuts can be taken; for example, if
- * a match is very long, the parser just chooses it immediately before too much
- * time is wasting considering many different alternatives that are unlikely to
- * be better.
+ * model rather than simply assuming that longer is better.
+ *
+ * Still, this is not truly an optimal parser because very long matches are
+ * taken immediately, and the raw match-finder takes some shortcuts.  This is
+ * done to avoid considering many different alternatives that are unlikely to
+ * be significantly better.
  *
  * This algorithm is based on that used in 7-Zip's DEFLATE encoder.
  *
@@ -1658,45 +1646,20 @@ lzx_lz_reverse_near_optimal_match_list(struct lzx_compressor *ctx,
  *     ctx->optimum         (internal state; leave uninitialized)
  *     ctx->optimum_cur_idx (must set to 0 before first call)
  *     ctx->optimum_end_idx (must set to 0 before first call)
- *     ctx->hash_tab        (must set to 0 before first call)
- *     ctx->cached_matches  (internal state; leave uninitialized)
- *     ctx->cached_matches_pos (initialize to 0 before first call; save and
- *                              restore value if restarting parse from a
- *                              certain position)
- *     ctx->match_window_pos (must initialize to position of next match to
- *                            return; subsequent calls return subsequent
- *                            matches)
- *     ctx->match_window_end (must initialize to limit of match-finding region;
- *                            subsequent calls use the same limit)
+ *
+ *     Plus any state used by the raw match-finder.
  *
  * The return value is a (length, offset) pair specifying the match or literal
- * chosen.  For literals, length is either 0 or 1 and offset is meaningless.
+ * chosen.  For literals, the length is less than LZX_MIN_MATCH_LEN and the
+ * offset is meaningless.
  */
 static struct raw_match
 lzx_lz_get_near_optimal_match(struct lzx_compressor * ctx)
 {
-#if 0
-       /* Testing: literals only  */
-       ctx->match_window_pos++;
-       return (struct raw_match) { .len = 0 };
-#elif 0
-       /* Testing: greedy parsing  */
-       struct raw_match *matches;
-       unsigned num_matches;
-       struct raw_match match = {.len = 0};
-
-       num_matches = lzx_lz_get_matches_caching(ctx, &matches);
-       if (num_matches) {
-               match = matches[num_matches - 1];
-               lzx_lz_skip_bytes(ctx, match.len - 1);
-       }
-       return match;
-#else
        unsigned num_possible_matches;
        struct raw_match *possible_matches;
        struct raw_match match;
        unsigned longest_match_len;
-       unsigned len, match_idx;
 
        if (ctx->optimum_cur_idx != ctx->optimum_end_idx) {
                /* Case 2: Return the next match/literal already found.  */
@@ -1714,30 +1677,28 @@ lzx_lz_get_near_optimal_match(struct lzx_compressor * ctx)
        ctx->optimum_end_idx = 0;
 
        /* Get matches at this position.  */
-       num_possible_matches = lzx_lz_get_matches_caching(ctx, &possible_matches);
+       num_possible_matches = lzx_lz_get_matches_caching(ctx, &ctx->queue, &possible_matches);
 
        /* If no matches found, return literal.  */
        if (num_possible_matches == 0)
                return (struct raw_match){ .len = 0 };
 
-       /* The matches that were found are sorted by length.  Get the length of
-        * the longest one.  */
-       longest_match_len = possible_matches[num_possible_matches - 1].len;
+       /* The matches that were found are sorted in decreasing order by length.
+        * Get the length of the longest one.  */
+       longest_match_len = possible_matches[0].len;
 
        /* Greedy heuristic:  if the longest match that was found is greater
         * than the number of fast bytes, return it immediately; don't both
         * doing more work.  */
-       if (longest_match_len > ctx->params.slow.num_fast_bytes) {
+       if (longest_match_len > ctx->params.alg_params.slow.num_fast_bytes) {
                lzx_lz_skip_bytes(ctx, longest_match_len - 1);
-               return possible_matches[num_possible_matches - 1];
+               return possible_matches[0];
        }
 
        /* Calculate the cost to reach the next position by outputting a
         * literal.  */
-#if LZX_PARAM_ACCOUNT_FOR_LRU
        ctx->optimum[0].queue = ctx->queue;
        ctx->optimum[1].queue = ctx->optimum[0].queue;
-#endif
        ctx->optimum[1].cost = lzx_literal_cost(ctx->window[ctx->match_window_pos],
                                                &ctx->costs);
        ctx->optimum[1].prev.link = 0;
@@ -1745,26 +1706,21 @@ lzx_lz_get_near_optimal_match(struct lzx_compressor * ctx)
        /* Calculate the cost to reach any position up to and including that
         * reached by the longest match, using the shortest (i.e. closest) match
         * that reaches each position.  */
-       match_idx = 0;
-       BUILD_BUG_ON(LZX_MIN_MATCH != 2);
-       for (len = LZX_MIN_MATCH; len <= longest_match_len; len++) {
+       BUILD_BUG_ON(LZX_MIN_MATCH_LEN != 2);
+       for (unsigned len = LZX_MIN_MATCH_LEN, match_idx = num_possible_matches - 1;
+            len <= longest_match_len; len++) {
 
                LZX_ASSERT(match_idx < num_possible_matches);
 
-       #if LZX_PARAM_ACCOUNT_FOR_LRU
                ctx->optimum[len].queue = ctx->optimum[0].queue;
-       #endif
                ctx->optimum[len].prev.link = 0;
                ctx->optimum[len].prev.match_offset = possible_matches[match_idx].offset;
                ctx->optimum[len].cost = lzx_match_cost(len,
                                                        possible_matches[match_idx].offset,
-                                                       &ctx->costs
-                                               #if LZX_PARAM_ACCOUNT_FOR_LRU
-                                                       , &ctx->optimum[len].queue
-                                               #endif
-                                                       );
+                                                       &ctx->costs,
+                                                       &ctx->optimum[len].queue);
                if (len == possible_matches[match_idx].len)
-                       match_idx++;
+                       match_idx--;
        }
 
        unsigned cur_pos = 0;
@@ -1773,26 +1729,25 @@ lzx_lz_get_near_optimal_match(struct lzx_compressor * ctx)
         * so far  */
        unsigned len_end = longest_match_len;
 
-
        for (;;) {
                /* Advance to next position.  */
                cur_pos++;
 
-               if (cur_pos == len_end || cur_pos == LZX_PARAM_OPTIM_ARRAY_SIZE)
+               if (cur_pos == len_end || cur_pos == LZX_OPTIM_ARRAY_SIZE)
                        return lzx_lz_reverse_near_optimal_match_list(ctx, cur_pos);
 
                /* retrieve the number of matches available at this position  */
-               num_possible_matches = lzx_lz_get_matches_caching(ctx,
+               num_possible_matches = lzx_lz_get_matches_caching(ctx, &ctx->optimum[cur_pos].queue,
                                                                  &possible_matches);
 
                unsigned new_len = 0;
 
                if (num_possible_matches != 0) {
-                       new_len = possible_matches[num_possible_matches - 1].len;
+                       new_len = possible_matches[0].len;
 
                        /* Greedy heuristic:  if we found a match greater than
                         * the number of fast bytes, stop immediately.  */
-                       if (new_len > ctx->params.slow.num_fast_bytes) {
+                       if (new_len > ctx->params.alg_params.slow.num_fast_bytes) {
 
                                /* Build the list of matches to return and get
                                 * the first one.  */
@@ -1800,7 +1755,7 @@ lzx_lz_get_near_optimal_match(struct lzx_compressor * ctx)
 
                                /* Append the long match to the end of the list.  */
                                ctx->optimum[cur_pos].next.match_offset =
-                                       possible_matches[num_possible_matches - 1].offset;
+                                       possible_matches[0].offset;
                                ctx->optimum[cur_pos].next.link = cur_pos + new_len;
                                ctx->optimum_end_idx = cur_pos + new_len;
 
@@ -1813,16 +1768,14 @@ lzx_lz_get_near_optimal_match(struct lzx_compressor * ctx)
                }
 
                /* Consider proceeding with a literal byte.  */
-               u32 cur_cost = ctx->optimum[cur_pos].cost;
-               u32 cur_plus_literal_cost = cur_cost +
+               block_cost_t cur_cost = ctx->optimum[cur_pos].cost;
+               block_cost_t cur_plus_literal_cost = cur_cost +
                        lzx_literal_cost(ctx->window[ctx->match_window_pos - 1],
                                         &ctx->costs);
                if (cur_plus_literal_cost < ctx->optimum[cur_pos + 1].cost) {
                        ctx->optimum[cur_pos + 1].cost = cur_plus_literal_cost;
                        ctx->optimum[cur_pos + 1].prev.link = cur_pos;
-               #if LZX_PARAM_ACCOUNT_FOR_LRU
                        ctx->optimum[cur_pos + 1].queue = ctx->optimum[cur_pos].queue;
-               #endif
                }
 
                if (num_possible_matches == 0)
@@ -1831,575 +1784,332 @@ lzx_lz_get_near_optimal_match(struct lzx_compressor * ctx)
                /* Consider proceeding with a match.  */
 
                while (len_end < cur_pos + new_len)
-                       ctx->optimum[++len_end].cost = ~(u32)0;
+                       ctx->optimum[++len_end].cost = INFINITE_BLOCK_COST;
 
-               match_idx = 0;
-               for (len = LZX_MIN_MATCH; len <= new_len; len++) {
+               for (unsigned len = LZX_MIN_MATCH_LEN, match_idx = num_possible_matches - 1;
+                    len <= new_len; len++) {
                        LZX_ASSERT(match_idx < num_possible_matches);
-               #if LZX_PARAM_ACCOUNT_FOR_LRU
                        struct lzx_lru_queue q = ctx->optimum[cur_pos].queue;
-               #endif
-                       u32 cost = cur_cost + lzx_match_cost(len,
-                                                            possible_matches[match_idx].offset,
-                                                            &ctx->costs
-                                                       #if LZX_PARAM_ACCOUNT_FOR_LRU
-                                                            , &q
-                                                       #endif
-                                                            );
+                       block_cost_t cost = cur_cost + lzx_match_cost(len,
+                                                                     possible_matches[match_idx].offset,
+                                                                     &ctx->costs,
+                                                                     &q);
 
                        if (cost < ctx->optimum[cur_pos + len].cost) {
                                ctx->optimum[cur_pos + len].cost = cost;
                                ctx->optimum[cur_pos + len].prev.link = cur_pos;
                                ctx->optimum[cur_pos + len].prev.match_offset =
                                                possible_matches[match_idx].offset;
-                       #if LZX_PARAM_ACCOUNT_FOR_LRU
                                ctx->optimum[cur_pos + len].queue = q;
-                       #endif
                        }
 
                        if (len == possible_matches[match_idx].len)
-                               match_idx++;
+                               match_idx--;
                }
        }
-#endif
 }
 
-static unsigned
-lzx_huffman_code_output_cost(const u8 lens[restrict],
-                            const freq_t freqs[restrict],
-                            unsigned num_syms)
-{
-       unsigned cost = 0;
-
-       for (unsigned i = 0; i < num_syms; i++)
-               cost += (unsigned)lens[i] * (unsigned)freqs[i];
-
-       return cost;
-}
-
-/* Return the number of bits required to output the lengths for the specified
- * Huffman code in compressed format (encoded with a precode).  */
-static unsigned
-lzx_code_cost(const u8 lens[], const u8 prev_lens[], unsigned num_syms)
-{
-       u8 output_syms[num_syms];
-       freq_t precode_freqs[LZX_PRETREE_NUM_SYMBOLS];
-       u8 precode_lens[LZX_PRETREE_NUM_SYMBOLS];
-       u16 precode_codewords[LZX_PRETREE_NUM_SYMBOLS];
-       unsigned cost = 0;
-       unsigned num_additional_bits;
-
-       /* Acount for the lengths of the precode itself.  */
-       cost += LZX_PRETREE_NUM_SYMBOLS * LZX_PRETREE_ELEMENT_SIZE;
-
-       lzx_build_precode(lens, prev_lens, num_syms,
-                         precode_freqs, output_syms,
-                         precode_lens, precode_codewords,
-                         &num_additional_bits);
-
-       /* Account for all precode symbols output.  */
-       cost += lzx_huffman_code_output_cost(precode_lens, precode_freqs,
-                                            LZX_PRETREE_NUM_SYMBOLS);
-
-       /* Account for additional bits.  */
-       cost += num_additional_bits;
-
-       return cost;
-}
-
-/* Account for extra bits in the main symbols.  */
+/*
+ * Set default symbol costs.
+ */
 static void
-lzx_update_mainsym_match_costs(int block_type,
-                              u8 main_lens[LZX_MAINTREE_NUM_SYMBOLS])
+lzx_set_default_costs(struct lzx_costs * costs, unsigned num_main_syms)
 {
        unsigned i;
 
-       LZX_ASSERT(block_type == LZX_BLOCKTYPE_ALIGNED ||
-                  block_type == LZX_BLOCKTYPE_VERBATIM);
+       /* Literal symbols  */
+       for (i = 0; i < LZX_NUM_CHARS; i++)
+               costs->main[i] = 8;
 
-       for (i = LZX_NUM_CHARS; i < LZX_MAINTREE_NUM_SYMBOLS; i++) {
-               unsigned position_slot = (i >> 3) & 0x1f;
+       /* Match header symbols  */
+       for (; i < num_main_syms; i++)
+               costs->main[i] = 10;
 
-               /* If it's a verbatim block, add the number of extra bits
-                * corresponding to the position slot.
-                *
-                * If it's an aligned block and there would normally be at least
-                * 3 extra bits, count 3 less because they will be output as an
-                * aligned offset symbol instead.  */
-               unsigned num_extra_bits = lzx_get_num_extra_bits(position_slot);
+       /* Length symbols  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               costs->len[i] = 8;
 
-               if (block_type == LZX_BLOCKTYPE_ALIGNED && num_extra_bits >= 3)
-                       num_extra_bits -= 3;
-               main_lens[i] += num_extra_bits;
-       }
+       /* Aligned offset symbols  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               costs->aligned[i] = 3;
 }
 
-/*
- * Compute the costs, in bits, to output a compressed block as aligned offset
- * and verbatim.
- *
- * @block_size
- *     Number of bytes of uncompressed data the block represents.
- * @codes
- *     Huffman codes that will be used when outputting the block.
- * @prev_codes
- *     Huffman codes for the previous block, or all zeroes if this is the first
- *     block.
- * @freqs
- *     Frequencies of Huffman symbols that will be output in the block.
- * @aligned_cost_ret
- *     Cost of aligned block will be returned here.
- * @verbatim_cost_ret
- *     Cost of verbatim block will be returned here.
- */
-static void
-lzx_compute_compressed_block_costs(unsigned block_size,
-                                  const struct lzx_codes *codes,
-                                  const struct lzx_codes *prev_codes,
-                                  const struct lzx_freqs *freqs,
-                                  unsigned * aligned_cost_ret,
-                                  unsigned * verbatim_cost_ret)
+/* Given the frequencies of symbols in a compressed block and the corresponding
+ * Huffman codes, return LZX_BLOCKTYPE_ALIGNED or LZX_BLOCKTYPE_VERBATIM if an
+ * aligned offset or verbatim block, respectively, will take fewer bits to
+ * output.  */
+static int
+lzx_choose_verbatim_or_aligned(const struct lzx_freqs * freqs,
+                              const struct lzx_codes * codes)
 {
-       unsigned common_cost = 0;
        unsigned aligned_cost = 0;
        unsigned verbatim_cost = 0;
 
-       u8 updated_main_lens[LZX_MAINTREE_NUM_SYMBOLS];
-
-       /* Account for cost of block header.  */
-       common_cost += LZX_BLOCKTYPE_NBITS;
-       if (block_size == LZX_DEFAULT_BLOCK_SIZE)
-               common_cost += 1;
+       /* Verbatim blocks have a constant 3 bits per position footer.  Aligned
+        * offset blocks have an aligned offset symbol per position footer, plus
+        * an extra 24 bits to output the lengths necessary to reconstruct the
+        * aligned offset code itself.  */
+       for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+               verbatim_cost += 3 * freqs->aligned[i];
+               aligned_cost += codes->lens.aligned[i] * freqs->aligned[i];
+       }
+       aligned_cost += LZX_ALIGNEDCODE_ELEMENT_SIZE * LZX_ALIGNEDCODE_NUM_SYMBOLS;
+       if (aligned_cost < verbatim_cost)
+               return LZX_BLOCKTYPE_ALIGNED;
        else
-               common_cost += LZX_BLOCKSIZE_NBITS;
-
-       /* Account for cost of outputting aligned offset code.  */
-       aligned_cost += LZX_ALIGNEDTREE_NUM_SYMBOLS * LZX_ALIGNEDTREE_ELEMENT_SIZE;
-
-       /* Account for cost of outputting main and length codes.  */
-       common_cost += lzx_code_cost(codes->lens.main,
-                                    prev_codes->lens.main,
-                                    LZX_NUM_CHARS);
-       common_cost += lzx_code_cost(codes->lens.main + LZX_NUM_CHARS,
-                                    prev_codes->lens.main + LZX_NUM_CHARS,
-                                    LZX_MAINTREE_NUM_SYMBOLS - LZX_NUM_CHARS);
-       common_cost += lzx_code_cost(codes->lens.len,
-                                    prev_codes->lens.len,
-                                    LZX_LENTREE_NUM_SYMBOLS);
-
-       /* Account for cost to output main, length, and aligned symbols, taking
-        * into account extra position bits.  */
-
-       memcpy(updated_main_lens, codes->lens.main, LZX_MAINTREE_NUM_SYMBOLS);
-       lzx_update_mainsym_match_costs(LZX_BLOCKTYPE_VERBATIM, updated_main_lens);
-       verbatim_cost += lzx_huffman_code_output_cost(updated_main_lens,
-                                                     freqs->main,
-                                                     LZX_MAINTREE_NUM_SYMBOLS);
-       memcpy(updated_main_lens, codes->lens.main, LZX_MAINTREE_NUM_SYMBOLS);
-       lzx_update_mainsym_match_costs(LZX_BLOCKTYPE_ALIGNED, updated_main_lens);
-       aligned_cost += lzx_huffman_code_output_cost(updated_main_lens,
-                                                    freqs->main,
-                                                    LZX_MAINTREE_NUM_SYMBOLS);
-
-       common_cost += lzx_huffman_code_output_cost(codes->lens.len,
-                                                   freqs->len,
-                                                   LZX_LENTREE_NUM_SYMBOLS);
-
-       aligned_cost += lzx_huffman_code_output_cost(codes->lens.aligned,
-                                                    freqs->aligned,
-                                                    LZX_ALIGNEDTREE_NUM_SYMBOLS);
-
-       *aligned_cost_ret = aligned_cost + common_cost;
-       *verbatim_cost_ret = verbatim_cost + common_cost;
+               return LZX_BLOCKTYPE_VERBATIM;
 }
 
-/* Prepare a (nonsplit) compressed block.  */
-static unsigned
-lzx_prepare_compressed_block(struct lzx_compressor *ctx, unsigned block_number,
-                            struct lzx_codes *prev_codes)
+/* Find a near-optimal sequence of matches/literals with which to output the
+ * specified LZX block, then set its type to that which has the minimum cost to
+ * output.  */
+static void
+lzx_optimize_block(struct lzx_compressor *ctx, struct lzx_block_spec *spec,
+                  unsigned num_passes)
 {
-       struct lzx_block_spec *spec = &ctx->block_specs[block_number - 1];
-       unsigned orig_cached_matches_pos = ctx->cached_matches_pos;
-       struct lzx_lru_queue orig_queue = ctx->queue;
+       const struct lzx_lru_queue orig_queue = ctx->queue;
        struct lzx_freqs freqs;
-       unsigned cost;
-
-       /* Here's where the real work happens.  The following loop runs one or
-        * more times, each time using a cost model based on the Huffman codes
-        * computed from the previous iteration (the first iteration uses a
-        * default model).  Each iteration of the loop uses a heuristic
-        * algorithm to divide the block into near-optimal matches/literals from
-        * beginning to end.  */
-       LZX_ASSERT(ctx->params.slow.num_optim_passes >= 1);
-       spec->num_chosen_matches = 0;
-       for (unsigned pass = 0; pass < ctx->params.slow.num_optim_passes; pass++)
-       {
-               LZX_DEBUG("Block %u: Match-choosing pass %u of %u",
-                         block_number, pass + 1,
-                         ctx->params.slow.num_optim_passes);
-
-               /* Reset frequency tables.  */
-               memset(&freqs, 0, sizeof(freqs));
-
-               /* Reset match offset LRU queue.  */
-               ctx->queue = orig_queue;
 
-               /* Reset match-finding position.  */
-               ctx->cached_matches_pos = orig_cached_matches_pos;
-               ctx->match_window_pos = spec->window_pos;
-               ctx->match_window_end = spec->window_pos + spec->block_size;
+       unsigned orig_window_pos = spec->window_pos;
+       unsigned orig_cached_pos = ctx->cached_matches_pos;
 
-               /* Set cost model.  */
-               lzx_set_costs(ctx, &spec->codes.lens);
+       LZX_ASSERT(ctx->match_window_pos == spec->window_pos);
 
-               unsigned window_pos = spec->window_pos;
-               unsigned end = window_pos + spec->block_size;
+       ctx->match_window_end = spec->window_pos + spec->block_size;
+       spec->chosen_matches_start_pos = spec->window_pos;
 
-               while (window_pos < end) {
-                       struct raw_match match;
-                       struct lzx_match lzx_match;
-
-                       match = lzx_lz_get_near_optimal_match(ctx);
+       LZX_ASSERT(num_passes >= 1);
 
-                       if (match.len >= LZX_MIN_MATCH) {
+       /* The first optimal parsing pass is done using the cost model already
+        * set in ctx->costs.  Each later pass is done using a cost model
+        * computed from the previous pass.  */
+       for (unsigned pass = 0; pass < num_passes; pass++) {
 
-                               /* Best to output a match here.  */
-
-                               LZX_ASSERT(match.len <= LZX_MAX_MATCH);
-                               LZX_ASSERT(!memcmp(&ctx->window[window_pos],
-                                                  &ctx->window[window_pos - match.offset],
-                                                  match.len));
+               ctx->match_window_pos = orig_window_pos;
+               ctx->cached_matches_pos = orig_cached_pos;
+               ctx->queue = orig_queue;
+               spec->num_chosen_matches = 0;
+               memset(&freqs, 0, sizeof(freqs));
 
-                               /* Tally symbol frequencies.  */
-                               lzx_match.data = lzx_record_match(match.offset,
-                                                                 match.len,
-                                                                 &freqs,
-                                                                 &ctx->queue);
+               for (unsigned i = spec->window_pos; i < spec->window_pos + spec->block_size; ) {
+                       struct raw_match raw_match;
+                       struct lzx_match lzx_match;
 
-                               window_pos += match.len;
+                       raw_match = lzx_lz_get_near_optimal_match(ctx);
+                       if (raw_match.len >= LZX_MIN_MATCH_LEN) {
+                               lzx_match.data = lzx_tally_match(raw_match.len, raw_match.offset,
+                                                                &freqs, &ctx->queue);
+                               i += raw_match.len;
                        } else {
-                               /* Best to output a literal here.  */
-
-                               /* Tally symbol frequencies.  */
-                               lzx_match.data = lzx_record_literal(ctx->window[window_pos],
-                                                                   &freqs);
-
-                               window_pos += 1;
-                       }
-
-                       /* If it's the last pass, save the match/literal in
-                        * intermediate form.  */
-                       if (pass == ctx->params.slow.num_optim_passes - 1) {
-                               ctx->chosen_matches[spec->chosen_matches_start_pos +
-                                                   spec->num_chosen_matches] = lzx_match;
-
-                               spec->num_chosen_matches++;
+                               lzx_match.data = lzx_tally_literal(ctx->window[i], &freqs);
+                               i += 1;
                        }
+                       ctx->chosen_matches[spec->chosen_matches_start_pos +
+                                           spec->num_chosen_matches++] = lzx_match;
                }
-               LZX_ASSERT(window_pos == end);
-
-               /* Build Huffman codes using the new frequencies.  */
-               lzx_make_huffman_codes(&freqs, &spec->codes);
 
-               /* The first time we get here is when the full input has been
-                * processed, so the match-finding is done.  */
-               ctx->matches_already_found = true;
+               lzx_make_huffman_codes(&freqs, &spec->codes,
+                                      ctx->num_main_syms);
+               if (pass < num_passes - 1)
+                       lzx_set_costs(ctx, &spec->codes.lens);
+               ctx->matches_cached = true;
        }
+       spec->block_type = lzx_choose_verbatim_or_aligned(&freqs, &spec->codes);
+       ctx->matches_cached = false;
+}
 
-       LZX_DEBUG("Block %u: saved %u matches/literals @ %u",
-                 block_number, spec->num_chosen_matches,
-                 spec->chosen_matches_start_pos);
-
-       unsigned aligned_cost;
-       unsigned verbatim_cost;
-
-       lzx_compute_compressed_block_costs(spec->block_size,
-                                          &spec->codes,
-                                          prev_codes,
-                                          &freqs,
-                                          &aligned_cost,
-                                          &verbatim_cost);
-
-       /* Choose whether to make the block aligned offset or verbatim.  */
-       if (aligned_cost < verbatim_cost) {
-               spec->block_type = LZX_BLOCKTYPE_ALIGNED;
-               cost = aligned_cost;
-               LZX_DEBUG("Using aligned block (cost %u vs %u for verbatim)",
-                         aligned_cost, verbatim_cost);
-       } else {
-               spec->block_type = LZX_BLOCKTYPE_VERBATIM;
-               cost = verbatim_cost;
-               LZX_DEBUG("Using verbatim block (cost %u vs %u for aligned)",
-                         verbatim_cost, aligned_cost);
-       }
+static void
+lzx_optimize_blocks(struct lzx_compressor *ctx)
+{
+       lzx_lru_queue_init(&ctx->queue);
+       ctx->optimum_cur_idx = 0;
+       ctx->optimum_end_idx = 0;
 
-       LZX_DEBUG("Block %u is %u => %u bytes unsplit.",
-                 block_number, spec->block_size, cost / 8);
+       const unsigned num_passes = ctx->params.alg_params.slow.num_optim_passes;
 
-       return cost;
+       for (unsigned i = 0; i < ctx->num_blocks; i++)
+               lzx_optimize_block(ctx, &ctx->block_specs[i], num_passes);
 }
 
-/*
- * lzx_prepare_block_recursive() -
- *
- * Given a (possibly nonproper) sub-sequence of the preprocessed input, compute
- * the LZX block(s) that it should be output as.
- *
- * This function initially considers the case where the given sub-sequence of
- * the preprocessed input be output as a single block.  This block is calculated
- * and its cost (number of bits required to output it) is computed.
- *
- * Then, if @max_split_level is greater than zero, a split into two evenly sized
- * subblocks is considered.  The block is recursively split in this way,
- * potentially up to the depth specified by @max_split_level.  The cost of the
- * split block is compared to the cost of the single block, and the lower cost
- * solution is used.
- *
- * For each compressed output block computed, the sequence of matches/literals
- * and the corresponding Huffman codes for the block are produced and saved.
- *
- * The return value is the approximate number of bits the block (or all
- * subblocks, in the case that the split block had lower cost), will take up
- * when written to the compressed output.
- */
-static unsigned
-lzx_prepare_block_recursive(struct lzx_compressor * ctx,
-                           unsigned block_number,
-                           unsigned max_split_level,
-                           struct lzx_codes **prev_codes_p)
+/* Initialize the suffix array match-finder for the specified input.  */
+static void
+lzx_lz_init_matchfinder(const u8 T[const restrict],
+                       const input_idx_t n,
+                       input_idx_t SA[const restrict],
+                       input_idx_t ISA[const restrict],
+                       input_idx_t LCP[const restrict],
+                       struct salink link[const restrict],
+                       const unsigned max_match_len)
 {
-       struct lzx_block_spec *spec = &ctx->block_specs[block_number - 1];
-       unsigned cost;
-       unsigned orig_cached_matches_pos;
-       struct lzx_lru_queue orig_queue, nonsplit_queue;
-       struct lzx_codes *prev_codes = *prev_codes_p;
+       /* Compute SA (Suffix Array).  */
 
-       LZX_DEBUG("Preparing block %u...", block_number);
+       {
+               /* ISA and link are used as temporary space.  */
+               BUILD_BUG_ON(LZX_MIN_WINDOW_SIZE * sizeof(ISA[0]) < 256 * sizeof(saidx_t));
+               BUILD_BUG_ON(LZX_MIN_WINDOW_SIZE * 2 * sizeof(link[0]) < 256 * 256 * sizeof(saidx_t));
 
-       /* Save positions of chosen and cached matches, and the match offset LRU
-        * queue, so that they can be restored if splitting is attempted.  */
-       orig_cached_matches_pos = ctx->cached_matches_pos;
-       orig_queue = ctx->queue;
+               if (sizeof(input_idx_t) == sizeof(saidx_t)) {
+                       divsufsort(T, SA, n, (saidx_t*)ISA, (saidx_t*)link);
+               } else {
+                       saidx_t sa[n];
+                       divsufsort(T, sa, n, (saidx_t*)ISA, (saidx_t*)link);
+                       for (input_idx_t i = 0; i < n; i++)
+                               SA[i] = sa[i];
+               }
+       }
 
-       /* Consider outputting the input subsequence as a single block.  */
-       spec->is_split = 0;
-       cost = lzx_prepare_compressed_block(ctx, block_number, prev_codes);
-       nonsplit_queue = ctx->queue;
+#ifdef ENABLE_LZX_DEBUG
 
-       *prev_codes_p = &spec->codes;
+       LZX_ASSERT(n > 0);
 
-       /* If the maximum split level is at least one, consider splitting the
-        * block in two.  */
-       if (max_split_level--) {
+       /* Verify suffix array.  */
+       {
+               bool found[n];
+               ZERO_ARRAY(found);
+               for (input_idx_t r = 0; r < n; r++) {
+                       input_idx_t i = SA[r];
+                       LZX_ASSERT(i < n);
+                       LZX_ASSERT(!found[i]);
+                       found[i] = true;
+               }
+       }
 
-               LZX_DEBUG("Calculating split of block %u...", block_number);
+       for (input_idx_t r = 0; r < n - 1; r++) {
 
-               struct lzx_block_spec *spec1, *spec2;
-               unsigned split_cost;
+               input_idx_t i1 = SA[r];
+               input_idx_t i2 = SA[r + 1];
 
-               ctx->cached_matches_pos = orig_cached_matches_pos;
-               ctx->queue = orig_queue;
+               input_idx_t n1 = n - i1;
+               input_idx_t n2 = n - i2;
 
-               /* Prepare and get the cost of the first sub-block.  */
-               spec1 = &ctx->block_specs[block_number * 2 - 1];
-               spec1->codes.lens = spec->codes.lens;
-               spec1->window_pos = spec->window_pos;
-               spec1->block_size = spec->block_size / 2;
-               spec1->chosen_matches_start_pos = spec->chosen_matches_start_pos +
-                                                 LZX_MAX_WINDOW_SIZE;
-               split_cost = lzx_prepare_block_recursive(ctx,
-                                                        block_number * 2,
-                                                        max_split_level,
-                                                        &prev_codes);
-
-               /* Prepare and get the cost of the second sub-block.  */
-               spec2 = spec1 + 1;
-               spec2->codes.lens = spec->codes.lens;
-               spec2->window_pos = spec->window_pos + spec1->block_size;
-               spec2->block_size = spec->block_size - spec1->block_size;
-               spec2->chosen_matches_start_pos = spec1->chosen_matches_start_pos +
-                                                 spec1->block_size;
-               split_cost += lzx_prepare_block_recursive(ctx,
-                                                         block_number * 2 + 1,
-                                                         max_split_level,
-                                                         &prev_codes);
-
-               /* Compare the cost of the whole block with that of the split
-                * block.  Choose the lower cost solution.  */
-               if (split_cost < cost) {
-                       LZX_DEBUG("Splitting block %u is worth it "
-                                 "(%u => %u bytes).",
-                                 block_number, cost / 8, split_cost / 8);
-                       spec->is_split = 1;
-                       cost = split_cost;
-                       *prev_codes_p = prev_codes;
-               } else {
-                       LZX_DEBUG("Splitting block %u is NOT worth it "
-                                 "(%u => %u bytes).",
-                                 block_number, cost / 8, split_cost / 8);
-                       ctx->queue = nonsplit_queue;
-               }
+               LZX_ASSERT(memcmp(&T[i1], &T[i2], min(n1, n2)) <= 0);
        }
+       LZX_DEBUG("Verified SA (len %u)", n);
+#endif /* ENABLE_LZX_DEBUG */
 
-       return cost;
-}
+       /* Compute ISA (Inverse Suffix Array)  */
+       for (input_idx_t r = 0; r < n; r++)
+               ISA[SA[r]] = r;
 
-/* Empirical averages  */
-static const u8 lzx_default_mainsym_costs[LZX_MAINTREE_NUM_SYMBOLS] = {
-       7, 9, 9, 10, 9, 10, 10, 10, 9, 10, 9, 10, 10, 9, 10, 10, 9, 10, 10, 11,
-       10, 10, 10, 11, 10, 11, 11, 11, 10, 11, 11, 11, 8, 11, 9, 10, 9, 10, 11,
-       11, 9, 9, 11, 10, 10, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 8, 8, 9, 9, 9, 9,
-       10, 10, 10, 8, 9, 8, 8, 8, 8, 9, 9, 9, 10, 10, 8, 8, 9, 9, 8, 10, 9, 8,
-       8, 9, 8, 9, 9, 10, 10, 10, 9, 10, 11, 9, 10, 8, 9, 8, 8, 8, 8, 9, 8, 8,
-       9, 9, 8, 8, 8, 8, 8, 10, 8, 8, 7, 8, 9, 9, 9, 9, 10, 11, 10, 10, 11, 11,
-       10, 11, 11, 10, 10, 11, 11, 11, 10, 10, 11, 10, 11, 10, 11, 11, 10, 11,
-       11, 12, 11, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 12, 10, 11, 11, 11,
-       11, 11, 11, 12, 11, 11, 11, 11, 11, 12, 11, 11, 10, 11, 11, 11, 11, 11,
-       11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11,
-       10, 11, 11, 11, 11, 11, 11, 11, 10, 11, 11, 11, 11, 12, 11, 11, 10, 11,
-       11, 11, 11, 12, 11, 11, 10, 11, 11, 11, 10, 12, 11, 11, 10, 10, 11, 10,
-       10, 11, 11, 11, 10, 11, 11, 11, 10, 11, 11, 11, 10, 11, 11, 11, 10, 11,
-       10, 9, 8, 7, 10, 10, 11, 10, 11, 7, 9, 9, 11, 11, 11, 12, 11, 9, 10, 10,
-       12, 12, 13, 13, 12, 11, 10, 12, 12, 14, 14, 14, 13, 12, 9, 12, 13, 14,
-       14, 14, 14, 14, 9, 10, 13, 14, 14, 14, 14, 14, 9, 9, 11, 11, 13, 13, 13,
-       14, 9, 9, 11, 12, 12, 13, 13, 13, 8, 8, 11, 11, 12, 12, 12, 11, 9, 9,
-       10, 11, 12, 12, 12, 11, 8, 9, 10, 10, 11, 12, 11, 10, 9, 9, 10, 11, 11,
-       12, 11, 10, 8, 9, 10, 10, 11, 11, 11, 9, 9, 9, 10, 11, 11, 11, 11, 9, 8,
-       8, 10, 10, 11, 11, 11, 9, 9, 9, 10, 10, 11, 11, 11, 9, 9, 8, 9, 10, 11,
-       11, 11, 9, 10, 9, 10, 11, 11, 11, 11, 9, 14, 9, 9, 10, 10, 11, 10, 9,
-       14, 9, 10, 11, 11, 11, 11, 9, 14, 9, 10, 10, 11, 11, 11, 9, 14, 10, 10,
-       11, 11, 12, 11, 10, 14, 10, 10, 10, 11, 11, 11, 10, 14, 11, 11, 11, 11,
-       12, 12, 10, 14, 10, 11, 11, 11, 12, 11, 10, 14, 11, 11, 11, 12, 12, 12,
-       11, 15, 11, 11, 11, 12, 12, 12, 11, 14, 12, 12, 12, 12, 13, 12, 11, 15,
-       12, 12, 12, 13, 13, 13, 12, 15, 14, 13, 14, 14, 14, 14, 13,
-};
+       /* Compute LCP (longest common prefix) array.
+        *
+        * Algorithm adapted from Kasai et al. 2001: "Linear-Time
+        * Longest-Common-Prefix Computation in Suffix Arrays and Its
+        * Applications".  */
+       {
+               input_idx_t h = 0;
+               for (input_idx_t i = 0; i < n; i++) {
+                       input_idx_t r = ISA[i];
+                       if (r > 0) {
+                               input_idx_t j = SA[r - 1];
+
+                               input_idx_t lim = min(n - i, n - j);
+
+                               while (h < lim && T[i + h] == T[j + h])
+                                       h++;
+                               LCP[r] = h;
+                               if (h > 0)
+                                       h--;
+                       }
+               }
+       }
 
-/* Empirical averages  */
-static const u8 lzx_default_lensym_costs[LZX_LENTREE_NUM_SYMBOLS] = {
-       5, 5, 5, 5, 5, 6, 5, 5, 6, 7, 7, 7, 8, 8, 7, 8, 9, 9, 9, 9, 10, 9, 9,
-       10, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 11, 12, 12,
-       12, 12, 12, 12, 13, 12, 12, 12, 13, 12, 13, 13, 12, 12, 13, 12, 13, 13,
-       13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 13, 14, 13, 14, 13,
-       14, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 10,
-};
+#ifdef ENABLE_LZX_DEBUG
+       /* Verify LCP array.  */
+       for (input_idx_t r = 0; r < n - 1; r++) {
+               LZX_ASSERT(ISA[SA[r]] == r);
+               LZX_ASSERT(ISA[SA[r + 1]] == r + 1);
 
-/*
- * Set default symbol costs.
- */
-static void
-lzx_set_default_costs(struct lzx_lens * lens)
-{
-       unsigned i;
+               input_idx_t i1 = SA[r];
+               input_idx_t i2 = SA[r + 1];
+               input_idx_t lcp = LCP[r + 1];
 
-#if LZX_PARAM_USE_EMPIRICAL_DEFAULT_COSTS
-       memcpy(&lens->main, lzx_default_mainsym_costs, LZX_MAINTREE_NUM_SYMBOLS);
-       memcpy(&lens->len, lzx_default_lensym_costs, LZX_LENTREE_NUM_SYMBOLS);
+               input_idx_t n1 = n - i1;
+               input_idx_t n2 = n - i2;
 
-#else
-       /* Literal symbols  */
-       for (i = 0; i < LZX_NUM_CHARS; i++)
-               lens->main[i] = 8;
+               LZX_ASSERT(lcp <= min(n1, n2));
 
-       /* Match header symbols  */
-       for (; i < LZX_MAINTREE_NUM_SYMBOLS; i++)
-               lens->main[i] = 10;
+               LZX_ASSERT(memcmp(&T[i1], &T[i2], lcp) == 0);
+               if (lcp < min(n1, n2))
+                       LZX_ASSERT(T[i1 + lcp] != T[i2 + lcp]);
+       }
+#endif /* ENABLE_LZX_DEBUG */
 
-       /* Length symbols  */
-       for (i = 0; i < LZX_LENTREE_NUM_SYMBOLS; i++)
-               lens->len[i] = 8;
-#endif
+       /* Compute salink.next and salink.lcpnext.
+        *
+        * Algorithm adapted from Crochemore et al. 2009:
+        * "LPF computation revisited".
+        *
+        * Note: we cap lcpnext to the maximum match length so that the
+        * match-finder need not worry about it later.  */
+       link[n - 1].next = (input_idx_t)~0U;
+       link[n - 1].prev = (input_idx_t)~0U;
+       link[n - 1].lcpnext = 0;
+       link[n - 1].lcpprev = 0;
+       for (input_idx_t r = n - 2; r != (input_idx_t)~0U; r--) {
+               input_idx_t t = r + 1;
+               input_idx_t l = LCP[t];
+               while (t != (input_idx_t)~0 && SA[t] > SA[r]) {
+                       l = min(l, link[t].lcpnext);
+                       t = link[t].next;
+               }
+               link[r].next = t;
+               link[r].lcpnext = min(l, max_match_len);
+               LZX_ASSERT(t == (input_idx_t)~0U || l <= n - SA[t]);
+               LZX_ASSERT(l <= n - SA[r]);
+               LZX_ASSERT(memcmp(&T[SA[r]], &T[SA[t]], l) == 0);
+       }
 
-       /* Aligned offset symbols  */
-       for (i = 0; i < LZX_ALIGNEDTREE_NUM_SYMBOLS; i++)
-               lens->aligned[i] = 3;
+       /* Compute salink.prev and salink.lcpprev.
+        *
+        * Algorithm adapted from Crochemore et al. 2009:
+        * "LPF computation revisited".
+        *
+        * Note: we cap lcpprev to the maximum match length so that the
+        * match-finder need not worry about it later.  */
+       link[0].prev = (input_idx_t)~0;
+       link[0].next = (input_idx_t)~0;
+       link[0].lcpprev = 0;
+       link[0].lcpnext = 0;
+       for (input_idx_t r = 1; r < n; r++) {
+               input_idx_t t = r - 1;
+               input_idx_t l = LCP[r];
+               while (t != (input_idx_t)~0 && SA[t] > SA[r]) {
+                       l = min(l, link[t].lcpprev);
+                       t = link[t].prev;
+               }
+               link[r].prev = t;
+               link[r].lcpprev = min(l, max_match_len);
+               LZX_ASSERT(t == (input_idx_t)~0 || l <= n - SA[t]);
+               LZX_ASSERT(l <= n - SA[r]);
+               LZX_ASSERT(memcmp(&T[SA[r]], &T[SA[t]], l) == 0);
+       }
 }
 
-/*
- * lzx_prepare_blocks() -
- *
- * Calculate the blocks to split the preprocessed data into.
- *
- * Input ---  the preprocessed data:
- *
- *     ctx->window[]
- *     ctx->window_size
- *
- * Working space:
- *     Match finding:
- *             ctx->hash_tab
- *             ctx->child_tab
- *             ctx->cached_matches
- *             ctx->cached_matches_pos
- *             ctx->matches_already_found
- *
- *     Block cost modeling:
- *             ctx->costs
- *             ctx->block_specs (also an output)
- *
- *     Match choosing:
- *             ctx->optimum
- *             ctx->optimum_cur_idx
- *             ctx->optimum_end_idx
- *             ctx->chosen_matches (also an output)
- *
- * Output --- the block specifications and the corresponding match/literal data:
- *
- *     ctx->block_specs[]
- *     ctx->chosen_matches[]
- *
- * The return value is the approximate number of bits the compressed data will
- * take up.
- */
-static unsigned
+/* Prepare the input window into one or more LZX blocks ready to be output.  */
+static void
 lzx_prepare_blocks(struct lzx_compressor * ctx)
 {
-       /* This function merely does some initializations, then passes control
-        * to lzx_prepare_block_recursive().  */
-
-       /* 1. Initialize match-finding variables.  */
-
-       /* Zero all entries in the hash table, indicating that no length-3
-        * character sequences have been discovered in the input yet.  */
-       memset(ctx->hash_tab, 0, LZX_LZ_HASH_SIZE * 2 * sizeof(ctx->hash_tab[0]));
-       if (ctx->params.slow.use_len2_matches)
-               memset(ctx->digram_tab, 0, 256 * 256 * sizeof(ctx->digram_tab[0]));
-       /* Note: ctx->child_tab need not be initialized.  */
-
-       /* No matches have been found and cached yet.  */
+       /* Initialize the match-finder.  */
+       lzx_lz_init_matchfinder(ctx->window, ctx->window_size,
+                               ctx->SA, ctx->ISA, ctx->LCP, ctx->salink,
+                               LZX_MAX_MATCH_LEN);
        ctx->cached_matches_pos = 0;
-       ctx->matches_already_found = false;
+       ctx->matches_cached = false;
+       ctx->match_window_pos = 0;
 
-       /* 2. Initialize match-choosing variables.  */
-       ctx->optimum_cur_idx = 0;
-       ctx->optimum_end_idx = 0;
-       /* Note: ctx->optimum need not be initialized.  */
-       ctx->block_specs[0].chosen_matches_start_pos = 0;
+       /* Set up a default cost model.  */
+       lzx_set_default_costs(&ctx->costs, ctx->num_main_syms);
 
-       /* 3. Set block 1 (index 0) to represent the entire input data.  */
-       ctx->block_specs[0].block_size = ctx->window_size;
-       ctx->block_specs[0].window_pos = 0;
-
-       /* 4. Set up a default Huffman symbol cost model for block 1 (index 0).
-        * The model will be refined later.  */
-       lzx_set_default_costs(&ctx->block_specs[0].codes.lens);
-
-       /* 5. Initialize the match offset LRU queue.  */
-       ctx->queue = (struct lzx_lru_queue){1, 1, 1};
+       ctx->num_blocks = DIV_ROUND_UP(ctx->window_size, LZX_DIV_BLOCK_SIZE);
+       for (unsigned i = 0; i < ctx->num_blocks; i++) {
+               unsigned pos = LZX_DIV_BLOCK_SIZE * i;
+               ctx->block_specs[i].window_pos = pos;
+               ctx->block_specs[i].block_size = min(ctx->window_size - pos, LZX_DIV_BLOCK_SIZE);
+       }
 
-       /* 6. Pass control to recursive procedure.  */
-       struct lzx_codes * prev_codes = &ctx->zero_codes;
-       return lzx_prepare_block_recursive(ctx, 1,
-                                          ctx->params.slow.num_split_passes,
-                                          &prev_codes);
+       /* Determine sequence of matches/literals to output for each block.  */
+       lzx_optimize_blocks(ctx);
 }
 
 /*
@@ -2413,60 +2123,57 @@ lzx_prepare_blocks(struct lzx_compressor * ctx)
  *     ctx->window[]
  *     ctx->window_size
  *
- * Working space:
- *     ctx->queue
- *
- * Output --- the block specifications and the corresponding match/literal data:
+ * Output --- the block specification and the corresponding match/literal data:
  *
  *     ctx->block_specs[]
+ *     ctx->num_blocks
  *     ctx->chosen_matches[]
  */
 static void
 lzx_prepare_block_fast(struct lzx_compressor * ctx)
 {
-       unsigned num_matches;
-       struct lzx_freqs freqs;
+       struct lzx_record_ctx record_ctx;
        struct lzx_block_spec *spec;
 
-       /* Parameters to hash chain LZ match finder  */
+       /* Parameters to hash chain LZ match finder
+        * (lazy with 1 match lookahead)  */
        static const struct lz_params lzx_lz_params = {
-               /* LZX_MIN_MATCH == 2, but 2-character matches are rarely
-                * useful; the minimum match for compression is set to 3
-                * instead. */
+               /* Although LZX_MIN_MATCH_LEN == 2, length 2 matches typically
+                * aren't worth choosing when using greedy or lazy parsing.  */
                .min_match      = 3,
-               .max_match      = LZX_MAX_MATCH,
-               .good_match     = LZX_MAX_MATCH,
-               .nice_match     = LZX_MAX_MATCH,
-               .max_chain_len  = LZX_MAX_MATCH,
-               .max_lazy_match = LZX_MAX_MATCH,
+               .max_match      = LZX_MAX_MATCH_LEN,
+               .max_offset     = 32768,
+               .good_match     = LZX_MAX_MATCH_LEN,
+               .nice_match     = LZX_MAX_MATCH_LEN,
+               .max_chain_len  = LZX_MAX_MATCH_LEN,
+               .max_lazy_match = LZX_MAX_MATCH_LEN,
                .too_far        = 4096,
        };
 
        /* Initialize symbol frequencies and match offset LRU queue.  */
-       memset(&freqs, 0, sizeof(struct lzx_freqs));
-       ctx->queue = (struct lzx_lru_queue){ 1, 1, 1 };
+       memset(&record_ctx.freqs, 0, sizeof(struct lzx_freqs));
+       lzx_lru_queue_init(&record_ctx.queue);
+       record_ctx.matches = ctx->chosen_matches;
 
        /* Determine series of matches/literals to output.  */
-       num_matches = lz_analyze_block(ctx->window,
-                                      ctx->window_size,
-                                      (u32*)ctx->chosen_matches,
-                                      lzx_record_match,
-                                      lzx_record_literal,
-                                      &freqs,
-                                      &ctx->queue,
-                                      &freqs,
-                                      &lzx_lz_params);
-
+       lz_analyze_block(ctx->window,
+                        ctx->window_size,
+                        lzx_record_match,
+                        lzx_record_literal,
+                        &record_ctx,
+                        &lzx_lz_params,
+                        ctx->prev_tab);
 
        /* Set up block specification.  */
        spec = &ctx->block_specs[0];
-       spec->is_split = 0;
        spec->block_type = LZX_BLOCKTYPE_ALIGNED;
        spec->window_pos = 0;
        spec->block_size = ctx->window_size;
-       spec->num_chosen_matches = num_matches;
+       spec->num_chosen_matches = (record_ctx.matches - ctx->chosen_matches);
        spec->chosen_matches_start_pos = 0;
-       lzx_make_huffman_codes(&freqs, &spec->codes);
+       lzx_make_huffman_codes(&record_ctx.freqs, &spec->codes,
+                              ctx->num_main_syms);
+       ctx->num_blocks = 1;
 }
 
 static void
@@ -2512,20 +2219,19 @@ wimlib_lzx_compress2(const void                 * const restrict uncompressed_data,
 {
        struct lzx_compressor *ctx = (struct lzx_compressor*)lzx_ctx;
        struct output_bitstream ostream;
-       unsigned compressed_len;
+       input_idx_t compressed_len;
 
        if (uncompressed_len < 100) {
                LZX_DEBUG("Too small to bother compressing.");
                return 0;
        }
 
-       if (uncompressed_len > 32768) {
-               LZX_DEBUG("Only up to 32768 bytes of uncompressed data are supported.");
+       if (uncompressed_len > ctx->max_window_size) {
+               LZX_DEBUG("Can't compress %u bytes using window of %u bytes!",
+                         uncompressed_len, ctx->max_window_size);
                return 0;
        }
 
-       wimlib_assert(lzx_ctx != NULL);
-
        LZX_DEBUG("Attempting to compress %u bytes...", uncompressed_len);
 
        /* The input data must be preprocessed.  To avoid changing the original
@@ -2559,52 +2265,45 @@ wimlib_lzx_compress2(const void                 * const restrict uncompressed_data,
        lzx_write_all_blocks(ctx, &ostream);
 
        LZX_DEBUG("Flushing bitstream...");
-       if (flush_output_bitstream(&ostream)) {
-               /* If the bitstream cannot be flushed, then the output space was
-                * exhausted.  */
+       compressed_len = flush_output_bitstream(&ostream);
+       if (compressed_len == ~(input_idx_t)0) {
                LZX_DEBUG("Data did not compress to less than original length!");
                return 0;
        }
 
-       /* Compute the length of the compressed data.  */
-       compressed_len = ostream.bit_output - (u8*)compressed_data;
-
        LZX_DEBUG("Done: compressed %u => %u bytes.",
                  uncompressed_len, compressed_len);
 
-#if defined(ENABLE_LZX_DEBUG) || defined(ENABLE_VERIFY_COMPRESSION)
-       /* Verify that we really get the same thing back when decompressing.  */
+       /* Verify that we really get the same thing back when decompressing.
+        * Although this could be disabled by default in all cases, it only
+        * takes around 2-3% of the running time of the slow algorithm to do the
+        * verification.  */
+       if (ctx->params.algorithm == WIMLIB_LZX_ALGORITHM_SLOW
+       #if defined(ENABLE_LZX_DEBUG) || defined(ENABLE_VERIFY_COMPRESSION)
+           || 1
+       #endif
+           )
        {
-               u8 buf[uncompressed_len];
-               int ret;
-               unsigned i;
+               /* The decompression buffer can be any temporary space that's no
+                * longer needed.  */
+               u8 *buf = (u8*)(ctx->SA ? ctx->SA : ctx->prev_tab);
 
-               ret = wimlib_lzx_decompress(compressed_data, compressed_len,
-                                           buf, uncompressed_len);
-               if (ret) {
+               if (wimlib_lzx_decompress2(compressed_data, compressed_len,
+                                          buf, uncompressed_len, ctx->max_window_size))
+               {
                        ERROR("Failed to decompress data we "
                              "compressed using LZX algorithm");
                        wimlib_assert(0);
                        return 0;
                }
 
-               bool bad = false;
-               const u8 * udata = uncompressed_data;
-               for (i = 0; i < uncompressed_len; i++) {
-                       if (buf[i] != udata[i]) {
-                               bad = true;
-                               ERROR("Data we compressed using LZX algorithm "
-                                     "didn't decompress to original "
-                                     "(difference at idx %u: c %#02x, u %#02x)",
-                                     i, buf[i], udata[i]);
-                       }
-               }
-               if (bad) {
+               if (memcmp(uncompressed_data, buf, uncompressed_len)) {
+                       ERROR("Data we compressed using LZX algorithm "
+                             "didn't decompress to original");
                        wimlib_assert(0);
                        return 0;
                }
        }
-#endif
        return compressed_len;
 }
 
@@ -2615,48 +2314,121 @@ lzx_params_compatible(const struct wimlib_lzx_params *oldparams,
        return 0 == memcmp(oldparams, newparams, sizeof(struct wimlib_lzx_params));
 }
 
+static struct wimlib_lzx_params lzx_user_default_params;
+static struct wimlib_lzx_params *lzx_user_default_params_ptr;
+
+static bool
+lzx_params_valid(const struct wimlib_lzx_params *params)
+{
+       /* Validate parameters.  */
+       if (params->size_of_this != sizeof(struct wimlib_lzx_params)) {
+               LZX_DEBUG("Invalid parameter structure size!");
+               return false;
+       }
+
+       if (params->algorithm != WIMLIB_LZX_ALGORITHM_SLOW &&
+           params->algorithm != WIMLIB_LZX_ALGORITHM_FAST)
+       {
+               LZX_DEBUG("Invalid algorithm.");
+               return false;
+       }
+
+       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
+               if (params->alg_params.slow.num_optim_passes < 1)
+               {
+                       LZX_DEBUG("Invalid number of optimization passes!");
+                       return false;
+               }
+
+               if (params->alg_params.slow.main_nostat_cost < 1 ||
+                   params->alg_params.slow.main_nostat_cost > 16)
+               {
+                       LZX_DEBUG("Invalid main_nostat_cost!");
+                       return false;
+               }
+
+               if (params->alg_params.slow.len_nostat_cost < 1 ||
+                   params->alg_params.slow.len_nostat_cost > 16)
+               {
+                       LZX_DEBUG("Invalid len_nostat_cost!");
+                       return false;
+               }
+
+               if (params->alg_params.slow.aligned_nostat_cost < 1 ||
+                   params->alg_params.slow.aligned_nostat_cost > 8)
+               {
+                       LZX_DEBUG("Invalid aligned_nostat_cost!");
+                       return false;
+               }
+       }
+       return true;
+}
+
 /* API function documented in wimlib.h  */
 WIMLIBAPI int
-wimlib_lzx_alloc_context(const struct wimlib_lzx_params *params,
+wimlib_lzx_set_default_params(const struct wimlib_lzx_params * params)
+{
+       if (params) {
+               if (!lzx_params_valid(params))
+                       return WIMLIB_ERR_INVALID_PARAM;
+               lzx_user_default_params = *params;
+               lzx_user_default_params_ptr = &lzx_user_default_params;
+       } else {
+               lzx_user_default_params_ptr = NULL;
+       }
+       return 0;
+}
+
+/* API function documented in wimlib.h  */
+WIMLIBAPI int
+wimlib_lzx_alloc_context(u32 window_size,
+                        const struct wimlib_lzx_params *params,
                         struct wimlib_lzx_context **ctx_pp)
 {
 
        LZX_DEBUG("Allocating LZX context...");
 
+       if (!lzx_window_size_valid(window_size))
+               return WIMLIB_ERR_INVALID_PARAM;
+
        struct lzx_compressor *ctx;
 
        static const struct wimlib_lzx_params fast_default = {
                .size_of_this = sizeof(struct wimlib_lzx_params),
                .algorithm = WIMLIB_LZX_ALGORITHM_FAST,
                .use_defaults = 0,
-               .fast = {
+               .alg_params = {
+                       .fast = {
+                       },
                },
        };
        static const struct wimlib_lzx_params slow_default = {
                .size_of_this = sizeof(struct wimlib_lzx_params),
                .algorithm = WIMLIB_LZX_ALGORITHM_SLOW,
                .use_defaults = 0,
-               .slow = {
-                       .use_len2_matches = 1,
-                       .num_fast_bytes = 32,
-                       .num_optim_passes = 3,
-                       .num_split_passes = 3,
-                       .main_nostat_cost = 15,
-                       .len_nostat_cost = 15,
-                       .aligned_nostat_cost = 7,
+               .alg_params = {
+                       .slow = {
+                               .use_len2_matches = 1,
+                               .num_fast_bytes = 32,
+                               .num_optim_passes = 2,
+                               .max_search_depth = 50,
+                               .max_matches_per_pos = 3,
+                               .main_nostat_cost = 15,
+                               .len_nostat_cost = 15,
+                               .aligned_nostat_cost = 7,
+                       },
                },
        };
 
-       if (params == NULL) {
+       if (params) {
+               if (!lzx_params_valid(params))
+                       return WIMLIB_ERR_INVALID_PARAM;
+       } else {
                LZX_DEBUG("Using default algorithm and parameters.");
-               params = &slow_default;
-       }
-
-       if (params->algorithm != WIMLIB_LZX_ALGORITHM_SLOW &&
-           params->algorithm != WIMLIB_LZX_ALGORITHM_FAST)
-       {
-               LZX_DEBUG("Invalid algorithm.");
-               return WIMLIB_ERR_INVALID_PARAM;
+               if (lzx_user_default_params_ptr)
+                       params = lzx_user_default_params_ptr;
+               else
+                       params = &slow_default;
        }
 
        if (params->use_defaults) {
@@ -2666,123 +2438,76 @@ wimlib_lzx_alloc_context(const struct wimlib_lzx_params *params,
                        params = &fast_default;
        }
 
-       if (params->size_of_this != sizeof(struct wimlib_lzx_params)) {
-               LZX_DEBUG("Invalid parameter structure size!");
-               return WIMLIB_ERR_INVALID_PARAM;
-       }
-
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
-               if (params->slow.num_fast_bytes < 3 ||
-                   params->slow.num_fast_bytes > 257)
-               {
-                       LZX_DEBUG("Invalid number of fast bytes!");
-                       return WIMLIB_ERR_INVALID_PARAM;
-               }
-
-               if (params->slow.num_optim_passes < 1)
-               {
-                       LZX_DEBUG("Invalid number of optimization passes!");
-                       return WIMLIB_ERR_INVALID_PARAM;
-               }
-
-               if (params->slow.main_nostat_cost < 1 ||
-                   params->slow.main_nostat_cost > 16)
-               {
-                       LZX_DEBUG("Invalid main_nostat_cost!");
-                       return WIMLIB_ERR_INVALID_PARAM;
-               }
-
-               if (params->slow.len_nostat_cost < 1 ||
-                   params->slow.len_nostat_cost > 16)
-               {
-                       LZX_DEBUG("Invalid len_nostat_cost!");
-                       return WIMLIB_ERR_INVALID_PARAM;
-               }
+       if (ctx_pp) {
+               ctx = *(struct lzx_compressor**)ctx_pp;
 
-               if (params->slow.aligned_nostat_cost < 1 ||
-                   params->slow.aligned_nostat_cost > 8)
-               {
-                       LZX_DEBUG("Invalid aligned_nostat_cost!");
-                       return WIMLIB_ERR_INVALID_PARAM;
-               }
-       }
-
-       if (ctx_pp == NULL) {
+               if (ctx &&
+                   lzx_params_compatible(&ctx->params, params) &&
+                   ctx->max_window_size == window_size)
+                       return 0;
+       } else {
                LZX_DEBUG("Check parameters only.");
                return 0;
        }
 
-       ctx = *(struct lzx_compressor**)ctx_pp;
-
-       if (ctx && lzx_params_compatible(&ctx->params, params))
-               return 0;
-
        LZX_DEBUG("Allocating memory.");
 
-       ctx = MALLOC(sizeof(struct lzx_compressor));
+       ctx = CALLOC(1, sizeof(struct lzx_compressor));
        if (ctx == NULL)
                goto err;
 
-       size_t block_specs_length;
+       ctx->num_main_syms = lzx_get_num_main_syms(window_size);
+       ctx->max_window_size = window_size;
+       ctx->window = MALLOC(window_size + 12);
+       if (ctx->window == NULL)
+               goto err;
 
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW)
-               block_specs_length = ((1 << (params->slow.num_split_passes + 1)) - 1);
-       else
-               block_specs_length = 1;
+       if (params->algorithm == WIMLIB_LZX_ALGORITHM_FAST) {
+               ctx->prev_tab = MALLOC(window_size * sizeof(ctx->prev_tab[0]));
+               if (ctx->prev_tab == NULL)
+                       goto err;
+       }
+
+       size_t block_specs_length = DIV_ROUND_UP(window_size, LZX_DIV_BLOCK_SIZE);
        ctx->block_specs = MALLOC(block_specs_length * sizeof(ctx->block_specs[0]));
        if (ctx->block_specs == NULL)
-               goto err_free_ctx;
+               goto err;
 
        if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
-               ctx->hash_tab = MALLOC((LZX_LZ_HASH_SIZE + 2 * LZX_MAX_WINDOW_SIZE) *
-                                       sizeof(ctx->hash_tab[0]));
-               if (ctx->hash_tab == NULL)
-                       goto err_free_block_specs;
-               ctx->child_tab = ctx->hash_tab + LZX_LZ_HASH_SIZE;
-       } else {
-               ctx->hash_tab = NULL;
-               ctx->child_tab = NULL;
+               ctx->SA = MALLOC(3U * window_size * sizeof(ctx->SA[0]));
+               if (ctx->SA == NULL)
+                       goto err;
+               ctx->ISA = ctx->SA + window_size;
+               ctx->LCP = ctx->ISA + window_size;
+
+               ctx->salink = MALLOC(window_size * sizeof(ctx->salink[0]));
+               if (ctx->salink == NULL)
+                       goto err;
        }
 
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW &&
-           params->slow.use_len2_matches)
-       {
-               ctx->digram_tab = MALLOC(256 * 256 * sizeof(ctx->digram_tab[0]));
-               if (ctx->digram_tab == NULL)
-                       goto err_free_hash_tab;
-       } else {
-               ctx->digram_tab = NULL;
+       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
+               ctx->optimum = MALLOC((LZX_OPTIM_ARRAY_SIZE + LZX_MAX_MATCH_LEN) *
+                                      sizeof(ctx->optimum[0]));
+               if (ctx->optimum == NULL)
+                       goto err;
        }
 
        if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
-               ctx->cached_matches = MALLOC(10 * LZX_MAX_WINDOW_SIZE *
+               u32 cache_per_pos;
+
+               cache_per_pos = params->alg_params.slow.max_matches_per_pos;
+               if (cache_per_pos > LZX_MAX_CACHE_PER_POS)
+                       cache_per_pos = LZX_MAX_CACHE_PER_POS;
+
+               ctx->cached_matches = MALLOC(window_size * (cache_per_pos + 1) *
                                             sizeof(ctx->cached_matches[0]));
                if (ctx->cached_matches == NULL)
-                       goto err_free_digram_tab;
-       } else {
-               ctx->cached_matches = NULL;
+                       goto err;
        }
 
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
-               ctx->optimum = MALLOC((LZX_PARAM_OPTIM_ARRAY_SIZE + LZX_MAX_MATCH) *
-                                      sizeof(ctx->optimum[0]));
-               if (ctx->optimum == NULL)
-                       goto err_free_cached_matches;
-       } else {
-               ctx->optimum = NULL;
-       }
-
-       size_t chosen_matches_length;
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW)
-               chosen_matches_length = LZX_MAX_WINDOW_SIZE *
-                                       (params->slow.num_split_passes + 1);
-       else
-               chosen_matches_length = LZX_MAX_WINDOW_SIZE;
-
-       ctx->chosen_matches = MALLOC(chosen_matches_length *
-                                    sizeof(ctx->chosen_matches[0]));
+       ctx->chosen_matches = MALLOC(window_size * sizeof(ctx->chosen_matches[0]));
        if (ctx->chosen_matches == NULL)
-               goto err_free_optimum;
+               goto err;
 
        memcpy(&ctx->params, params, sizeof(struct wimlib_lzx_params));
        memset(&ctx->zero_codes, 0, sizeof(ctx->zero_codes));
@@ -2793,19 +2518,8 @@ wimlib_lzx_alloc_context(const struct wimlib_lzx_params *params,
        *ctx_pp = (struct wimlib_lzx_context*)ctx;
        return 0;
 
-err_free_optimum:
-       FREE(ctx->optimum);
-err_free_cached_matches:
-       FREE(ctx->cached_matches);
-err_free_digram_tab:
-       FREE(ctx->digram_tab);
-err_free_hash_tab:
-       FREE(ctx->hash_tab);
-err_free_block_specs:
-       FREE(ctx->block_specs);
-err_free_ctx:
-       FREE(ctx);
 err:
+       wimlib_lzx_free_context((struct wimlib_lzx_context*)ctx);
        LZX_DEBUG("Ran out of memory.");
        return WIMLIB_ERR_NOMEM;
 }
@@ -2818,11 +2532,13 @@ wimlib_lzx_free_context(struct wimlib_lzx_context *_ctx)
 
        if (ctx) {
                FREE(ctx->chosen_matches);
-               FREE(ctx->optimum);
                FREE(ctx->cached_matches);
-               FREE(ctx->digram_tab);
-               FREE(ctx->hash_tab);
+               FREE(ctx->optimum);
+               FREE(ctx->salink);
+               FREE(ctx->SA);
                FREE(ctx->block_specs);
+               FREE(ctx->prev_tab);
+               FREE(ctx->window);
                FREE(ctx);
        }
 }
@@ -2834,10 +2550,10 @@ wimlib_lzx_compress(const void * const restrict uncompressed_data,
                    void       * const restrict compressed_data)
 {
        int ret;
-       struct wimlib_lzx_context *ctx;
+       struct wimlib_lzx_context *ctx = NULL;
        unsigned compressed_len;
 
-       ret = wimlib_lzx_alloc_context(NULL, &ctx);
+       ret = wimlib_lzx_alloc_context(32768, NULL, &ctx);
        if (ret) {
                wimlib_assert(ret != WIMLIB_ERR_INVALID_PARAM);
                WARNING("Couldn't allocate LZX compression context: %"TS"",