]> wimlib.net Git - wimlib/blobdiff - src/lzx-compress.c
lzx-compress.c: Minor cleanups
[wimlib] / src / lzx-compress.c
index a8e0340138e791d15dbf5e22a4e9eaff681d6e81..cdbb63699004edbed7066f9344f6d1c6f30207d2 100644 (file)
@@ -1,13 +1,9 @@
 /*
  * lzx-compress.c
- *
- * LZX compression routines, originally based on code written by Matthew T.
- * Russotto (liblzxcomp), but heavily modified.
  */
 
 /*
- * Copyright (C) 2002 Matthew T. Russotto
- * Copyright (C) 2012, 2013 Eric Biggers
+ * Copyright (C) 2012, 2013, 2014 Eric Biggers
  *
  * This file is part of wimlib, a library for working with WIM files.
  *
 
 
 /*
- * This file provides wimlib_lzx_compress(), a function to compress an in-memory
- * buffer of data using LZX compression, as used in the WIM file format.
- *
- * Please see the comments in lzx-decompress.c for more information about this
- * compression format.
- *
- * One thing to keep in mind is that there is no sliding window, since the
- * window is always the entirety of a WIM chunk, which is at most WIM_CHUNK_SIZE
- * ( = 32768) bytes.
- *
- * The basic compression algorithm used here should be familiar if you are
- * familiar with Huffman trees and with other LZ77 and Huffman-based formats
- * such as DEFLATE.  Otherwise it can be quite tricky to understand.  Basically
- * it is the following:
- *
- * - Preprocess the input data (LZX-specific)
- * - Go through the input data and determine matches.  This part is based on
- *       code from zlib, and a hash table of 3-character strings is used to
- *       accelerate the process of finding matches.
- * - Build the Huffman trees based on the frequencies of symbols determined
- *       while recording matches.
- * - Output the block header, including the Huffman trees; then output the
- *       compressed stream of matches and literal characters.
- *
- * It is possible for a WIM chunk to include multiple LZX blocks, since for some
- * input data this will produce a better compression ratio (especially since
- * each block can include new Huffman codes).  However, producing multiple LZX
- * blocks from one input chunk is not yet implemented.
+ * This file contains a compressor for the LZX ("Lempel-Ziv eXtended"?)
+ * compression format, as used in the WIM (Windows IMaging) file format.  This
+ * code may need some slight modifications to be used outside of the WIM format.
+ * In particular, in other situations the LZX block header might be slightly
+ * different, and a sliding window rather than a fixed-size window might be
+ * required.
+ *
+ * ----------------------------------------------------------------------------
+ *
+ *                              Format Overview
+ *
+ * The primary reference for LZX is the specification released by Microsoft.
+ * However, the comments in lzx-decompress.c provide more information about LZX
+ * and note some errors in the Microsoft specification.
+ *
+ * LZX shares many similarities with DEFLATE, the format used by zlib and gzip.
+ * Both LZX and DEFLATE use LZ77 matching and Huffman coding.  Certain details
+ * are quite similar, such as the method for storing Huffman codes.  However,
+ * the main differences are:
+ *
+ * - LZX preprocesses the data to attempt to make x86 machine code slightly more
+ *   compressible before attempting to compress it further.
+ *
+ * - LZX uses a "main" alphabet which combines literals and matches, with the
+ *   match symbols containing a "length header" (giving all or part of the match
+ *   length) and a "position slot" (giving, roughly speaking, the order of
+ *   magnitude of the match offset).
+ *
+ * - LZX does not have static Huffman blocks (that is, the kind with preset
+ *   Huffman codes); however it does have two types of dynamic Huffman blocks
+ *   ("verbatim" and "aligned").
+ *
+ * - LZX has a minimum match length of 2 rather than 3.
+ *
+ * - In LZX, match offsets 0 through 2 actually represent entries in an LRU
+ *   queue of match offsets.  This is very useful for certain types of files,
+ *   such as binary files that have repeating records.
+ *
+ * ----------------------------------------------------------------------------
+ *
+ *                           Algorithmic Overview
+ *
+ * At a high level, any implementation of LZX compression must operate as
+ * follows:
+ *
+ * 1. Preprocess the input data to translate the targets of 32-bit x86 call
+ *    instructions to absolute offsets.  (Actually, this is required for WIM,
+ *    but might not be in other places LZX is used.)
+ *
+ * 2. Find a sequence of LZ77-style matches and literal bytes that expands to
+ *    the preprocessed data.
+ *
+ * 3. Divide the match/literal sequence into one or more LZX blocks, each of
+ *    which may be "uncompressed", "verbatim", or "aligned".
+ *
+ * 4. Output each LZX block.
+ *
+ * Step (1) is fairly straightforward.  It requires looking for 0xe8 bytes in
+ * the input data and performing a translation on the 4 bytes following each
+ * one.
+ *
+ * Step (4) is complicated, but it is mostly determined by the LZX format.  The
+ * only real choice we have is what algorithm to use to build the length-limited
+ * canonical Huffman codes.  See lzx_write_all_blocks() for details.
+ *
+ * That leaves steps (2) and (3) as where all the hard stuff happens.  Focusing
+ * on step (2), we need to do LZ77-style parsing on the input data, or "window",
+ * to divide it into a sequence of matches and literals.  Each position in the
+ * window might have multiple matches associated with it, and we need to choose
+ * which one, if any, to actually use.  Therefore, the problem can really be
+ * divided into two areas of concern: (a) finding matches at a given position,
+ * which we shall call "match-finding", and (b) choosing whether to use a
+ * match or a literal at a given position, and if using a match, which one (if
+ * there is more than one available).  We shall call this "match-choosing".  We
+ * first consider match-finding, then match-choosing.
+ *
+ * ----------------------------------------------------------------------------
+ *
+ *                              Match-finding
+ *
+ * Given a position in the window, we want to find LZ77-style "matches" with
+ * that position at previous positions in the window.  With LZX, the minimum
+ * match length is 2 and the maximum match length is 257.  The only restriction
+ * on offsets is that LZX does not allow the last 2 bytes of the window to match
+ * the the beginning of the window.
+ *
+ * Depending on how good a compression ratio we want (see the "Match-choosing"
+ * section), we may want to find: (a) all matches, or (b) just the longest
+ * match, or (c) just some "promising" matches that we are able to find quickly,
+ * or (d) just the longest match that we're able to find quickly.  Below we
+ * introduce the match-finding methods that the code currently uses or has
+ * previously used:
+ *
+ * - Hash chains.  Maintain a table that maps hash codes, computed from
+ *   fixed-length byte sequences, to linked lists containing previous window
+ *   positions.  To search for matches, compute the hash for the current
+ *   position in the window and search the appropriate hash chain.  When
+ *   advancing to the next position, prepend the current position to the
+ *   appropriate hash list.  This is a good approach for producing matches with
+ *   stategy (d) and is useful for fast compression.  Therefore, we provide an
+ *   option to use this method for LZX compression.  See lz_hash.c for the
+ *   implementation.
+ *
+ * - Binary trees.  Similar to hash chains, but each hash bucket contains a
+ *   binary tree of previous window positions rather than a linked list.  This
+ *   is a good approach for producing matches with stategy (c) and is useful for
+ *   achieving a good compression ratio.  Therefore, we provide an option to use
+ *   this method; see lz_bt.c for the implementation.
+ *
+ * - Suffix arrays.  This code previously used this method to produce matches
+ *   with stategy (c), but I've dropped it because it was slower than the binary
+ *   trees approach, used more memory, and did not improve the compression ratio
+ *   enough to compensate.  Download wimlib v1.6.2 if you want the code.
+ *   However, the suffix array method was basically as follows.  Build the
+ *   suffix array for the entire window.  The suffix array contains each
+ *   possible window position, sorted by the lexicographic order of the strings
+ *   that begin at those positions.  Find the matches at a given position by
+ *   searching the suffix array outwards, in both directions, from the suffix
+ *   array slot for that position.  This produces the longest matches first, but
+ *   "matches" that actually occur at later positions in the window must be
+ *   skipped.  To do this skipping, use an auxiliary array with dynamically
+ *   constructed linked lists.  Also, use the inverse suffix array to quickly
+ *   find the suffix array slot for a given position without doing a binary
+ *   search.
+ *
+ * ----------------------------------------------------------------------------
+ *
+ *                              Match-choosing
+ *
+ * Usually, choosing the longest match is best because it encodes the most data
+ * in that one item.  However, sometimes the longest match is not optimal
+ * because (a) choosing a long match now might prevent using an even longer
+ * match later, or (b) more generally, what we actually care about is the number
+ * of bits it will ultimately take to output each match or literal, which is
+ * actually dependent on the entropy encoding using by the underlying
+ * compression format.  Consequently, a longer match usually, but not always,
+ * takes fewer bits to encode than multiple shorter matches or literals that
+ * cover the same data.
+ *
+ * This problem of choosing the truly best match/literal sequence is probably
+ * impossible to solve efficiently when combined with entropy encoding.  If we
+ * knew how many bits it takes to output each match/literal, then we could
+ * choose the optimal sequence using shortest-path search a la Dijkstra's
+ * algorithm.  However, with entropy encoding, the chosen match/literal sequence
+ * affects its own encoding.  Therefore, we can't know how many bits it will
+ * take to actually output any one match or literal until we have actually
+ * chosen the full sequence of matches and literals.
+ *
+ * Notwithstanding the entropy encoding problem, we also aren't guaranteed to
+ * choose the optimal match/literal sequence unless the match-finder (see
+ * section "Match-finder") provides the match-chooser with all possible matches
+ * at each position.  However, this is not computationally efficient.  For
+ * example, there might be many matches of the same length, and usually (but not
+ * always) the best choice is the one with the smallest offset.  So in practice,
+ * it's fine to only consider the smallest offset for a given match length at a
+ * given position.  (Actually, for LZX, it's also worth considering repeat
+ * offsets.)
+ *
+ * In addition, as mentioned earlier, in LZX we have the choice of using
+ * multiple blocks, each of which resets the Huffman codes.  This expands the
+ * search space even further.  Therefore, to simplify the problem, we currently
+ * we don't attempt to actually choose the LZX blocks based on the data.
+ * Instead, we just divide the data into fixed-size blocks of LZX_DIV_BLOCK_SIZE
+ * bytes each, and always use verbatim or aligned blocks (never uncompressed).
+ * A previous version of this code recursively split the input data into
+ * equal-sized blocks, up to a maximum depth, and chose the lowest-cost block
+ * divisions.  However, this made compression much slower and did not actually
+ * help very much.  It remains an open question whether a sufficiently fast and
+ * useful block-splitting algorithm is possible for LZX.  Essentially the same
+ * problem also applies to DEFLATE.  The Microsoft LZX compressor seemingly does
+ * do block splitting, although I don't know how fast or useful it is,
+ * specifically.
+ *
+ * Now, back to the entropy encoding problem.  The "solution" is to use an
+ * iterative approach to compute a good, but not necessarily optimal,
+ * match/literal sequence.  Start with a fixed assignment of symbol costs and
+ * choose an "optimal" match/literal sequence based on those costs, using
+ * shortest-path seach a la Dijkstra's algorithm.  Then, for each iteration of
+ * the optimization, update the costs based on the entropy encoding of the
+ * current match/literal sequence, then choose a new match/literal sequence
+ * based on the updated costs.  Usually, the actual cost to output the current
+ * match/literal sequence will decrease in each iteration until it converges on
+ * a fixed point.  This result may not be the truly optimal match/literal
+ * sequence, but it usually is much better than one chosen by doing a "greedy"
+ * parse where we always chooe the longest match.
+ *
+ * An alternative to both greedy parsing and iterative, near-optimal parsing is
+ * "lazy" parsing.  Briefly, "lazy" parsing considers just the longest match at
+ * each position, but it waits to choose that match until it has also examined
+ * the next position.  This is actually a useful approach; it's used by zlib,
+ * for example.  Therefore, for fast compression we combine lazy parsing with
+ * the hash chain max-finder.  For normal/high compression we combine
+ * near-optimal parsing with the binary tree match-finder.
+ *
+ * Anyway, if you've read through this comment, you hopefully should have a
+ * better idea of why things are done in a certain way in this LZX compressor,
+ * as well as in other compressors for LZ77-based formats (including third-party
+ * ones).  In my opinion, the phrase "compression algorithm" is often mis-used
+ * in place of "compression format",  since there can be many different
+ * algorithms that all generate compressed data in the same format.  The
+ * challenge is to design an algorithm that is efficient but still gives a good
+ * compression ratio.
  */
 
 #ifdef HAVE_CONFIG_H
 #endif
 
 #include "wimlib.h"
-#include "wimlib/compress.h"
+#include "wimlib/compressor_ops.h"
+#include "wimlib/compress_common.h"
+#include "wimlib/endianness.h"
 #include "wimlib/error.h"
+#include "wimlib/lz.h"
+#include "wimlib/lz_hash.h"
+#include "wimlib/lz_bt.h"
 #include "wimlib/lzx.h"
 #include "wimlib/util.h"
-
-#include <stdlib.h>
 #include <string.h>
 
+#ifdef ENABLE_LZX_DEBUG
+#  include "wimlib/decompress_common.h"
+#endif
 
-/* Structure to contain the Huffman codes for the main, length, and aligned
- * offset trees. */
-struct lzx_codes {
-       u16 main_codewords[LZX_MAINTREE_NUM_SYMBOLS];
-       u8  main_lens[LZX_MAINTREE_NUM_SYMBOLS];
+#define LZX_OPTIM_ARRAY_SIZE   4096
 
-       u16 len_codewords[LZX_LENTREE_NUM_SYMBOLS];
-       u8  len_lens[LZX_LENTREE_NUM_SYMBOLS];
+#define LZX_DIV_BLOCK_SIZE     32768
 
-       u16 aligned_codewords[LZX_ALIGNEDTREE_NUM_SYMBOLS];
-       u8  aligned_lens[LZX_ALIGNEDTREE_NUM_SYMBOLS];
-};
+#define LZX_CACHE_PER_POS      8
+
+#define LZX_CACHE_LEN (LZX_DIV_BLOCK_SIZE * (LZX_CACHE_PER_POS + 1))
+#define LZX_CACHE_SIZE (LZX_CACHE_LEN * sizeof(struct lz_match))
+#define LZX_MAX_MATCHES_PER_POS (LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1)
 
-struct lzx_freq_tables {
-       freq_t main_freq_table[LZX_MAINTREE_NUM_SYMBOLS];
-       freq_t len_freq_table[LZX_LENTREE_NUM_SYMBOLS];
-       freq_t aligned_freq_table[LZX_ALIGNEDTREE_NUM_SYMBOLS];
+/* Codewords for the LZX main, length, and aligned offset Huffman codes  */
+struct lzx_codewords {
+       u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u32 len[LZX_LENCODE_NUM_SYMBOLS];
+       u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* Returns the LZX position slot that corresponds to a given formatted offset.
+/* Codeword lengths (in bits) for the LZX main, length, and aligned offset
+ * Huffman codes.
  *
- * Logically, this returns the smallest i such that
- * formatted_offset >= lzx_position_base[i].
- *
- * The actual implementation below takes advantage of the regularity of the
- * numbers in the lzx_position_base array to calculate the slot directly from
- * the formatted offset without actually looking at the array.
+ * A 0 length means the codeword has zero frequency.
  */
-static inline unsigned
-lzx_get_position_slot(unsigned formatted_offset)
-{
-#if 0
-       /*
-        * Slots 36-49 (formatted_offset >= 262144) can be found by
-        * (formatted_offset/131072) + 34 == (formatted_offset >> 17) + 34;
-        * however, this check for formatted_offset >= 262144 is commented out
-        * because WIM chunks cannot be that large.
-        */
-       if (formatted_offset >= 262144) {
-               return (formatted_offset >> 17) + 34;
-       } else
-#endif
-       {
-               /* Note: this part here only works if:
-                *
-                *    2 <= formatted_offset < 655360
-                *
-                * It is < 655360 because the frequency of the position bases
-                * increases starting at the 655360 entry, and it is >= 2
-                * because the below calculation fails if the most significant
-                * bit is lower than the 2's place. */
-               wimlib_assert(formatted_offset >= 2 && formatted_offset < 655360);
-               unsigned mssb_idx = bsr32(formatted_offset);
-               return (mssb_idx << 1) |
-                       ((formatted_offset >> (mssb_idx - 1)) & 1);
-       }
-}
-
-static u32
-lzx_record_literal(u8 literal, void *_main_freq_tab)
-{
-       freq_t *main_freq_tab = _main_freq_tab;
-       main_freq_tab[literal]++;
-       return literal;
-}
-
-/* Constructs a match from an offset and a length, and updates the LRU queue and
- * the frequency of symbols in the main, length, and aligned offset alphabets.
- * The return value is a 32-bit number that provides the match in an
- * intermediate representation documented below. */
-static u32
-lzx_record_match(unsigned match_offset, unsigned match_len,
-                void *_freq_tabs, void *_queue)
-{
-       struct lzx_freq_tables *freq_tabs = _freq_tabs;
-       struct lru_queue *queue = _queue;
-       unsigned position_slot;
-       unsigned position_footer = 0;
-       u32 match;
-       u32 len_header;
-       u32 len_pos_header;
-       unsigned len_footer;
-       unsigned adjusted_match_len;
-
-       wimlib_assert(match_len >= LZX_MIN_MATCH && match_len <= LZX_MAX_MATCH);
-       wimlib_assert(match_offset != 0);
-
-       /* If possible, encode this offset as a repeated offset. */
-       if (match_offset == queue->R0) {
-               position_slot = 0;
-       } else if (match_offset == queue->R1) {
-               swap(queue->R0, queue->R1);
-               position_slot = 1;
-       } else if (match_offset == queue->R2) {
-               swap(queue->R0, queue->R2);
-               position_slot = 2;
-       } else {
-               /* Not a repeated offset. */
-
-               /* offsets of 0, 1, and 2 are reserved for the repeated offset
-                * codes, so non-repeated offsets must be encoded as 3+.  The
-                * minimum offset is 1, so encode the offsets offset by 2. */
-               unsigned formatted_offset = match_offset + LZX_MIN_MATCH;
-
-               queue->R2 = queue->R1;
-               queue->R1 = queue->R0;
-               queue->R0 = match_offset;
+struct lzx_lens {
+       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u8 len[LZX_LENCODE_NUM_SYMBOLS];
+       u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+};
 
-               /* The (now-formatted) offset will actually be encoded as a
-                * small position slot number that maps to a certain hard-coded
-                * offset (position base), followed by a number of extra bits---
-                * the position footer--- that are added to the position base to
-                * get the original formatted offset. */
+/* Costs for the LZX main, length, and aligned offset Huffman symbols.
+ *
+ * If a codeword has zero frequency, it must still be assigned some nonzero cost
+ * --- generally a high cost, since even if it gets used in the next iteration,
+ * it probably will not be used very many times.  */
+struct lzx_costs {
+       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u8 len[LZX_LENCODE_NUM_SYMBOLS];
+       u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+};
 
-               position_slot = lzx_get_position_slot(formatted_offset);
-               position_footer = formatted_offset &
-                                 ((1 << lzx_get_num_extra_bits(position_slot)) - 1);
-       }
+/* The LZX main, length, and aligned offset Huffman codes  */
+struct lzx_codes {
+       struct lzx_codewords codewords;
+       struct lzx_lens lens;
+};
 
-       adjusted_match_len = match_len - LZX_MIN_MATCH;
+/* Tables for tallying symbol frequencies in the three LZX alphabets  */
+struct lzx_freqs {
+       u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u32 len[LZX_LENCODE_NUM_SYMBOLS];
+       u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+};
 
-       /* Pack the position slot, position footer, and match length into an
-        * intermediate representation.
-        *
-        * bits    description
-        * ----    -----------------------------------------------------------
+/* LZX intermediate match/literal format  */
+struct lzx_item {
+       /* Bit     Description
         *
         * 31      1 if a match, 0 if a literal.
         *
@@ -205,230 +310,347 @@ lzx_record_match(unsigned match_offset, unsigned match_len,
         *
         * 8-24    position footer.  This is the offset of the real formatted
         *         offset from the position base.  This can be at most 17 bits
-        *         (since lzx_extra_bits[LZX_NUM_POSITION_SLOTS - 1] is 17).
+        *         (since lzx_extra_bits[LZX_MAX_POSITION_SLOTS - 1] is 17).
         *
-        * 0-7     length of match, offset by 2.  This can be at most
-        *         (LZX_MAX_MATCH - 2) == 255, so it will fit in 8 bits.  */
-       match = 0x80000000 |
-               (position_slot << 25) |
-               (position_footer << 8) |
-               (adjusted_match_len);
+        * 0-7     length of match, minus 2.  This can be at most
+        *         (LZX_MAX_MATCH_LEN - 2) == 255, so it will fit in 8 bits.  */
+       u32 data;
+};
+
+/* Specification for an LZX block.  */
+struct lzx_block_spec {
+
+       /* One of the LZX_BLOCKTYPE_* constants indicating which type of this
+        * block.  */
+       int block_type;
+
+       /* 0-based position in the window at which this block starts.  */
+       u32 window_pos;
 
-       /* The match length must be at least 2, so let the adjusted match length
-        * be the match length minus 2.
+       /* The number of bytes of uncompressed data this block represents.  */
+       u32 block_size;
+
+       /* The match/literal sequence for this block.  */
+       struct lzx_item *chosen_items;
+
+       /* The length of the @chosen_items sequence.  */
+       u32 num_chosen_items;
+
+       /* Huffman codes for this block.  */
+       struct lzx_codes codes;
+};
+
+/* State of the LZX compressor.  */
+struct lzx_compressor {
+
+       /* The parameters that were used to create the compressor.  */
+       struct wimlib_lzx_compressor_params params;
+
+       /* The buffer of data to be compressed.
         *
-        * If it is less than 7, the adjusted match length is encoded as a 3-bit
-        * number offset by 2.  Otherwise, the 3-bit length header is all 1's
-        * and the actual adjusted length is given as a symbol encoded with the
-        * length tree, offset by 7.
-        */
-       if (adjusted_match_len < LZX_NUM_PRIMARY_LENS) {
-               len_header = adjusted_match_len;
-       } else {
-               len_header = LZX_NUM_PRIMARY_LENS;
-               len_footer = adjusted_match_len - LZX_NUM_PRIMARY_LENS;
-               freq_tabs->len_freq_table[len_footer]++;
+        * 0xe8 byte preprocessing is done directly on the data here before
+        * further compression.
+        *
+        * Note that this compressor does *not* use a real sliding window!!!!
+        * It's not needed in the WIM format, since every chunk is compressed
+        * independently.  This is by design, to allow random access to the
+        * chunks.
+        *
+        * We reserve a few extra bytes to potentially allow reading off the end
+        * of the array in the match-finding code for optimization purposes
+        * (currently only needed for the hash chain match-finder).  */
+       u8 *window;
+
+       /* Number of bytes of data to be compressed, which is the number of
+        * bytes of data in @window that are actually valid.  */
+       u32 window_size;
+
+       /* Allocated size of the @window.  */
+       u32 max_window_size;
+
+       /* Number of symbols in the main alphabet (depends on the
+        * @max_window_size since it determines the maximum allowed offset).  */
+       unsigned num_main_syms;
+
+       /* The current match offset LRU queue.  */
+       struct lzx_lru_queue queue;
+
+       /* Space for the sequences of matches/literals that were chosen for each
+        * block.  */
+       struct lzx_item *chosen_items;
+
+       /* Information about the LZX blocks the preprocessed input was divided
+        * into.  */
+       struct lzx_block_spec *block_specs;
+
+       /* Number of LZX blocks the input was divided into; a.k.a. the number of
+        * elements of @block_specs that are valid.  */
+       unsigned num_blocks;
+
+       /* This is simply filled in with zeroes and used to avoid special-casing
+        * the output of the first compressed Huffman code, which conceptually
+        * has a delta taken from a code with all symbols having zero-length
+        * codewords.  */
+       struct lzx_codes zero_codes;
+
+       /* The current cost model.  */
+       struct lzx_costs costs;
+
+       /* Fast algorithm only:  Array of hash table links.  */
+       u32 *prev_tab;
+
+       /* Slow algorithm only: Binary tree match-finder.  */
+       struct lz_bt mf;
+
+       /* Position in window of next match to return.  */
+       u32 match_window_pos;
+
+       /* The end-of-block position.  We can't allow any matches to span this
+        * position.  */
+       u32 match_window_end;
+
+       /* Matches found by the match-finder are cached in the following array
+        * to achieve a slight speedup when the same matches are needed on
+        * subsequent passes.  This is suboptimal because different matches may
+        * be preferred with different cost models, but seems to be a worthwhile
+        * speedup.  */
+       struct lz_match *cached_matches;
+       struct lz_match *cache_ptr;
+       bool matches_cached;
+       struct lz_match *cache_limit;
+
+       /* Match-chooser state.
+        * When matches have been chosen, optimum_cur_idx is set to the position
+        * in the window of the next match/literal to return and optimum_end_idx
+        * is set to the position in the window at the end of the last
+        * match/literal to return.  */
+       struct lzx_mc_pos_data *optimum;
+       unsigned optimum_cur_idx;
+       unsigned optimum_end_idx;
+};
+
+/*
+ * Match chooser position data:
+ *
+ * An array of these structures is used during the match-choosing algorithm.
+ * They correspond to consecutive positions in the window and are used to keep
+ * track of the cost to reach each position, and the match/literal choices that
+ * need to be chosen to reach that position.
+ */
+struct lzx_mc_pos_data {
+       /* The approximate minimum cost, in bits, to reach this position in the
+        * window which has been found so far.  */
+       u32 cost;
+#define MC_INFINITE_COST ((u32)~0UL)
+
+       /* The union here is just for clarity, since the fields are used in two
+        * slightly different ways.  Initially, the @prev structure is filled in
+        * first, and links go from later in the window to earlier in the
+        * window.  Later, @next structure is filled in and links go from
+        * earlier in the window to later in the window.  */
+       union {
+               struct {
+                       /* Position of the start of the match or literal that
+                        * was taken to get to this position in the approximate
+                        * minimum-cost parse.  */
+                       u32 link;
+
+                       /* Offset (as in an LZ (length, offset) pair) of the
+                        * match or literal that was taken to get to this
+                        * position in the approximate minimum-cost parse.  */
+                       u32 match_offset;
+               } prev;
+               struct {
+                       /* Position at which the match or literal starting at
+                        * this position ends in the minimum-cost parse.  */
+                       u32 link;
+
+                       /* Offset (as in an LZ (length, offset) pair) of the
+                        * match or literal starting at this position in the
+                        * approximate minimum-cost parse.  */
+                       u32 match_offset;
+               } next;
+       };
+
+       /* Adaptive state that exists after an approximate minimum-cost path to
+        * reach this position is taken.  */
+       struct lzx_lru_queue queue;
+};
+
+/* Returns the LZX position slot that corresponds to a given match offset,
+ * taking into account the recent offset queue and updating it if the offset is
+ * found in it.  */
+static unsigned
+lzx_get_position_slot(u32 offset, struct lzx_lru_queue *queue)
+{
+       unsigned position_slot;
+
+       /* See if the offset was recently used.  */
+       for (int i = 0; i < LZX_NUM_RECENT_OFFSETS; i++) {
+               if (offset == queue->R[i]) {
+                       /* Found it.  */
+
+                       /* Bring the repeat offset to the front of the
+                        * queue.  Note: this is, in fact, not a real
+                        * LRU queue because repeat matches are simply
+                        * swapped to the front.  */
+                       swap(queue->R[0], queue->R[i]);
+
+                       /* The resulting position slot is simply the first index
+                        * at which the offset was found in the queue.  */
+                       return i;
+               }
        }
-       len_pos_header = (position_slot << 3) | len_header;
 
-       wimlib_assert(len_pos_header < LZX_MAINTREE_NUM_SYMBOLS - LZX_NUM_CHARS);
+       /* The offset was not recently used; look up its real position slot.  */
+       position_slot = lzx_get_position_slot_raw(offset + LZX_OFFSET_OFFSET);
 
-       freq_tabs->main_freq_table[len_pos_header + LZX_NUM_CHARS]++;
+       /* Bring the new offset to the front of the queue.  */
+       for (int i = LZX_NUM_RECENT_OFFSETS - 1; i > 0; i--)
+               queue->R[i] = queue->R[i - 1];
+       queue->R[0] = offset;
 
-       /* Equivalent to:
-        * if (lzx_extra_bits[position_slot] >= 3) */
-       if (position_slot >= 8)
-               freq_tabs->aligned_freq_table[position_footer & 7]++;
+       return position_slot;
+}
 
-       return match;
+/* Build the main, length, and aligned offset Huffman codes used in LZX.
+ *
+ * This takes as input the frequency tables for each code and produces as output
+ * a set of tables that map symbols to codewords and codeword lengths.  */
+static void
+lzx_make_huffman_codes(const struct lzx_freqs *freqs,
+                      struct lzx_codes *codes,
+                      unsigned num_main_syms)
+{
+       make_canonical_huffman_code(num_main_syms,
+                                   LZX_MAX_MAIN_CODEWORD_LEN,
+                                   freqs->main,
+                                   codes->lens.main,
+                                   codes->codewords.main);
+
+       make_canonical_huffman_code(LZX_LENCODE_NUM_SYMBOLS,
+                                   LZX_MAX_LEN_CODEWORD_LEN,
+                                   freqs->len,
+                                   codes->lens.len,
+                                   codes->codewords.len);
+
+       make_canonical_huffman_code(LZX_ALIGNEDCODE_NUM_SYMBOLS,
+                                   LZX_MAX_ALIGNED_CODEWORD_LEN,
+                                   freqs->aligned,
+                                   codes->lens.aligned,
+                                   codes->codewords.aligned);
 }
 
 /*
- * Writes a compressed literal match to the output.
+ * Output a precomputed LZX match.
  *
- * @out:         The output bitstream.
- * @block_type:  The type of the block (LZX_BLOCKTYPE_ALIGNED or LZX_BLOCKTYPE_VERBATIM)
- * @match:      The match, encoded as a 32-bit number.
- * @codes:     Pointer to a structure that contains the codewords for the
- *                     main, length, and aligned offset Huffman codes.
+ * @out:
+ *     The bitstream to which to write the match.
+ * @block_type:
+ *     The type of the LZX block (LZX_BLOCKTYPE_ALIGNED or
+ *     LZX_BLOCKTYPE_VERBATIM)
+ * @match:
+ *     The match, as a (length, offset) pair.
+ * @codes:
+ *     Pointer to a structure that contains the codewords for the main, length,
+ *     and aligned offset Huffman codes for the current LZX compressed block.
  */
-static int
+static void
 lzx_write_match(struct output_bitstream *out, int block_type,
-               u32 match, const struct lzx_codes *codes)
+               struct lzx_item match, const struct lzx_codes *codes)
 {
        /* low 8 bits are the match length minus 2 */
-       unsigned match_len_minus_2 = match & 0xff;
+       unsigned match_len_minus_2 = match.data & 0xff;
        /* Next 17 bits are the position footer */
-       unsigned position_footer = (match >> 8) & 0x1ffff;      /* 17 bits */
+       unsigned position_footer = (match.data >> 8) & 0x1ffff; /* 17 bits */
        /* Next 6 bits are the position slot. */
-       unsigned position_slot = (match >> 25) & 0x3f;  /* 6 bits */
+       unsigned position_slot = (match.data >> 25) & 0x3f;     /* 6 bits */
        unsigned len_header;
        unsigned len_footer;
-       unsigned len_pos_header;
        unsigned main_symbol;
        unsigned num_extra_bits;
        unsigned verbatim_bits;
        unsigned aligned_bits;
-       int ret;
 
-       /* If the match length is less than MIN_MATCH (= 2) +
+       /* If the match length is less than MIN_MATCH_LEN (= 2) +
         * NUM_PRIMARY_LENS (= 7), the length header contains
-        * the match length minus MIN_MATCH, and there is no
+        * the match length minus MIN_MATCH_LEN, and there is no
         * length footer.
         *
         * Otherwise, the length header contains
         * NUM_PRIMARY_LENS, and the length footer contains
         * the match length minus NUM_PRIMARY_LENS minus
-        * MIN_MATCH. */
+        * MIN_MATCH_LEN. */
        if (match_len_minus_2 < LZX_NUM_PRIMARY_LENS) {
                len_header = match_len_minus_2;
-               /* No length footer-- mark it with a special
-                * value. */
-               len_footer = (unsigned)(-1);
        } else {
                len_header = LZX_NUM_PRIMARY_LENS;
                len_footer = match_len_minus_2 - LZX_NUM_PRIMARY_LENS;
        }
 
-       /* Combine the position slot with the length header into
-        * a single symbol that will be encoded with the main
-        * tree. */
-       len_pos_header = (position_slot << 3) | len_header;
-
-       /* The actual main symbol is offset by LZX_NUM_CHARS because
-        * values under LZX_NUM_CHARS are used to indicate a literal
-        * byte rather than a match. */
-       main_symbol = len_pos_header + LZX_NUM_CHARS;
+       /* Combine the position slot with the length header into a single symbol
+        * that will be encoded with the main code.
+        *
+        * The actual main symbol is offset by LZX_NUM_CHARS because values
+        * under LZX_NUM_CHARS are used to indicate a literal byte rather than a
+        * match.  */
+       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
 
        /* Output main symbol. */
-       ret = bitstream_put_bits(out, codes->main_codewords[main_symbol],
-                                codes->main_lens[main_symbol]);
-       if (ret != 0)
-               return ret;
+       bitstream_put_bits(out, codes->codewords.main[main_symbol],
+                          codes->lens.main[main_symbol]);
 
        /* If there is a length footer, output it using the
         * length Huffman code. */
-       if (len_footer != (unsigned)(-1)) {
-               ret = bitstream_put_bits(out, codes->len_codewords[len_footer],
-                                        codes->len_lens[len_footer]);
-               if (ret != 0)
-                       return ret;
-       }
-
-       wimlib_assert(position_slot < LZX_NUM_POSITION_SLOTS);
+       if (len_header == LZX_NUM_PRIMARY_LENS)
+               bitstream_put_bits(out, codes->codewords.len[len_footer],
+                                  codes->lens.len[len_footer]);
 
        num_extra_bits = lzx_get_num_extra_bits(position_slot);
 
        /* For aligned offset blocks with at least 3 extra bits, output the
         * verbatim bits literally, then the aligned bits encoded using the
-        * aligned offset tree.  Otherwise, only the verbatim bits need to be
+        * aligned offset code.  Otherwise, only the verbatim bits need to be
         * output. */
        if ((block_type == LZX_BLOCKTYPE_ALIGNED) && (num_extra_bits >= 3)) {
 
                verbatim_bits = position_footer >> 3;
-               ret = bitstream_put_bits(out, verbatim_bits,
-                                        num_extra_bits - 3);
-               if (ret != 0)
-                       return ret;
+               bitstream_put_bits(out, verbatim_bits,
+                                  num_extra_bits - 3);
 
                aligned_bits = (position_footer & 7);
-               ret = bitstream_put_bits(out,
-                                        codes->aligned_codewords[aligned_bits],
-                                        codes->aligned_lens[aligned_bits]);
-               if (ret != 0)
-                       return ret;
+               bitstream_put_bits(out,
+                                  codes->codewords.aligned[aligned_bits],
+                                  codes->lens.aligned[aligned_bits]);
        } else {
                /* verbatim bits is the same as the position
                 * footer, in this case. */
-               ret = bitstream_put_bits(out, position_footer, num_extra_bits);
-               if (ret != 0)
-                       return ret;
+               bitstream_put_bits(out, position_footer, num_extra_bits);
        }
-       return 0;
 }
 
-/*
- * Writes all compressed literals in a block, both matches and literal bytes, to
- * the output bitstream.
- *
- * @out:         The output bitstream.
- * @block_type:  The type of the block (LZX_BLOCKTYPE_ALIGNED or LZX_BLOCKTYPE_VERBATIM)
- * @match_tab[]:   The array of matches that will be output.  It has length
- *                     of @num_compressed_literals.
- * @num_compressed_literals:  Number of compressed literals to be output.
- * @codes:     Pointer to a structure that contains the codewords for the
- *                     main, length, and aligned offset Huffman codes.
- */
-static int
-lzx_write_compressed_literals(struct output_bitstream *ostream,
-                             int block_type,
-                             const u32 match_tab[],
-                             unsigned  num_compressed_literals,
-                             const struct lzx_codes *codes)
+/* Output an LZX literal (encoded with the main Huffman code).  */
+static void
+lzx_write_literal(struct output_bitstream *out, u8 literal,
+                 const struct lzx_codes *codes)
 {
-       unsigned i;
-       u32 match;
-       int ret;
-
-       for (i = 0; i < num_compressed_literals; i++) {
-               match = match_tab[i];
-
-               /* High bit of the match indicates whether the match is an
-                * actual match (1) or a literal uncompressed byte (0) */
-               if (match & 0x80000000) {
-                       /* match */
-                       ret = lzx_write_match(ostream, block_type, match,
-                                             codes);
-                       if (ret != 0)
-                               return ret;
-               } else {
-                       /* literal byte */
-                       wimlib_assert(match < LZX_NUM_CHARS);
-                       ret = bitstream_put_bits(ostream,
-                                                codes->main_codewords[match],
-                                                codes->main_lens[match]);
-                       if (ret != 0)
-                               return ret;
-               }
-       }
-       return 0;
+       bitstream_put_bits(out,
+                          codes->codewords.main[literal],
+                          codes->lens.main[literal]);
 }
 
-/*
- * Writes a compressed Huffman tree to the output, preceded by the pretree for
- * it.
- *
- * The Huffman tree is represented in the output as a series of path lengths
- * from which the canonical Huffman code can be reconstructed.  The path lengths
- * themselves are compressed using a separate Huffman code, the pretree, which
- * consists of LZX_PRETREE_NUM_SYMBOLS (= 20) symbols that cover all possible code
- * lengths, plus extra codes for repeated lengths.  The path lengths of the
- * pretree precede the path lengths of the larger code and are uncompressed,
- * consisting of 20 entries of 4 bits each.
- *
- * @out:       The bitstream for the compressed output.
- * @lens:      The code lengths for the Huffman tree, indexed by symbol.
- * @num_symbols:       The number of symbols in the code.
- */
-static int
-lzx_write_compressed_tree(struct output_bitstream *out,
-                         const u8 lens[], unsigned num_symbols)
-{
-       /* Frequencies of the length symbols, including the RLE symbols (NOT the
-        * actual lengths themselves). */
-       freq_t pretree_freqs[LZX_PRETREE_NUM_SYMBOLS];
-       u8 pretree_lens[LZX_PRETREE_NUM_SYMBOLS];
-       u16 pretree_codewords[LZX_PRETREE_NUM_SYMBOLS];
-       u8 output_syms[num_symbols * 2];
-       unsigned output_syms_idx;
-       unsigned cur_run_len;
-       unsigned i;
-       unsigned len_in_run;
-       unsigned additional_bits;
-       char delta;
-       u8 pretree_sym;
-
-       ZERO_ARRAY(pretree_freqs);
+static unsigned
+lzx_build_precode(const u8 lens[restrict],
+                 const u8 prev_lens[restrict],
+                 const unsigned num_syms,
+                 u32 precode_freqs[restrict LZX_PRECODE_NUM_SYMBOLS],
+                 u8 output_syms[restrict num_syms],
+                 u8 precode_lens[restrict LZX_PRECODE_NUM_SYMBOLS],
+                 u32 precode_codewords[restrict LZX_PRECODE_NUM_SYMBOLS],
+                 unsigned *num_additional_bits_ret)
+{
+       memset(precode_freqs, 0,
+              LZX_PRECODE_NUM_SYMBOLS * sizeof(precode_freqs[0]));
 
        /* Since the code word lengths use a form of RLE encoding, the goal here
         * is to find each run of identical lengths when going through them in
@@ -437,16 +659,16 @@ lzx_write_compressed_tree(struct output_bitstream *out,
         * literally.
         *
         * output_syms[] will be filled in with the length symbols that will be
-        * output, including RLE codes, not yet encoded using the pre-tree.
+        * output, including RLE codes, not yet encoded using the precode.
         *
         * cur_run_len keeps track of how many code word lengths are in the
-        * current run of identical lengths.
-        */
-       output_syms_idx = 0;
-       cur_run_len = 1;
-       for (i = 1; i <= num_symbols; i++) {
+        * current run of identical lengths.  */
+       unsigned output_syms_idx = 0;
+       unsigned cur_run_len = 1;
+       unsigned num_additional_bits = 0;
+       for (unsigned i = 1; i <= num_syms; i++) {
 
-               if (i != num_symbols && lens[i] == lens[i - 1]) {
+               if (i != num_syms && lens[i] == lens[i - 1]) {
                        /* Still in a run--- keep going. */
                        cur_run_len++;
                        continue;
@@ -457,7 +679,7 @@ lzx_write_compressed_tree(struct output_bitstream *out,
 
                /* The symbol that was repeated in the run--- not to be confused
                 * with the length *of* the run (cur_run_len) */
-               len_in_run = lens[i - 1];
+               unsigned len_in_run = lens[i - 1];
 
                if (len_in_run == 0) {
                        /* A run of 0's.  Encode it in as few length
@@ -467,9 +689,11 @@ lzx_write_compressed_tree(struct output_bitstream *out,
                         * where n is an uncompressed literal 5-bit integer that
                         * follows the magic length. */
                        while (cur_run_len >= 20) {
+                               unsigned additional_bits;
 
                                additional_bits = min(cur_run_len - 20, 0x1f);
-                               pretree_freqs[18]++;
+                               num_additional_bits += 5;
+                               precode_freqs[18]++;
                                output_syms[output_syms_idx++] = 18;
                                output_syms[output_syms_idx++] = additional_bits;
                                cur_run_len -= 20 + additional_bits;
@@ -479,8 +703,11 @@ lzx_write_compressed_tree(struct output_bitstream *out,
                         * where n is an uncompressed literal 4-bit integer that
                         * follows the magic length. */
                        while (cur_run_len >= 4) {
+                               unsigned additional_bits;
+
                                additional_bits = min(cur_run_len - 4, 0xf);
-                               pretree_freqs[17]++;
+                               num_additional_bits += 4;
+                               precode_freqs[17]++;
                                output_syms[output_syms_idx++] = 17;
                                output_syms[output_syms_idx++] = additional_bits;
                                cur_run_len -= 4 + additional_bits;
@@ -494,19 +721,24 @@ lzx_write_compressed_tree(struct output_bitstream *out,
                         * nonzeroes, where n is a literal bit that follows the
                         * magic length, and where the value of the lengths in
                         * the run is given by an extra length symbol, encoded
-                        * with the pretree, that follows the literal bit.
+                        * with the precode, that follows the literal bit.
                         *
                         * The extra length symbol is encoded as a difference
                         * from the length of the codeword for the first symbol
-                        * in the run in the previous tree.
+                        * in the run in the previous code.
                         * */
                        while (cur_run_len >= 4) {
+                               unsigned additional_bits;
+                               signed char delta;
+
                                additional_bits = (cur_run_len > 4);
-                               delta = -(char)len_in_run;
+                               num_additional_bits += 1;
+                               delta = (signed char)prev_lens[i - cur_run_len] -
+                                       (signed char)len_in_run;
                                if (delta < 0)
                                        delta += 17;
-                               pretree_freqs[19]++;
-                               pretree_freqs[(unsigned char)delta]++;
+                               precode_freqs[19]++;
+                               precode_freqs[(unsigned char)delta]++;
                                output_syms[output_syms_idx++] = 19;
                                output_syms[output_syms_idx++] = additional_bits;
                                output_syms[output_syms_idx++] = delta;
@@ -516,42 +748,101 @@ lzx_write_compressed_tree(struct output_bitstream *out,
 
                /* Any remaining lengths in the run are outputted without RLE,
                 * as a difference from the length of that codeword in the
-                * previous tree. */
-               while (cur_run_len--) {
-                       delta = -(char)len_in_run;
+                * previous code. */
+               while (cur_run_len > 0) {
+                       signed char delta;
+
+                       delta = (signed char)prev_lens[i - cur_run_len] -
+                               (signed char)len_in_run;
                        if (delta < 0)
                                delta += 17;
 
-                       pretree_freqs[(unsigned char)delta]++;
+                       precode_freqs[(unsigned char)delta]++;
                        output_syms[output_syms_idx++] = delta;
+                       cur_run_len--;
                }
 
                cur_run_len = 1;
        }
 
-       wimlib_assert(output_syms_idx < ARRAY_LEN(output_syms));
-
-       /* Build the pretree from the frequencies of the length symbols. */
-
-       make_canonical_huffman_code(LZX_PRETREE_NUM_SYMBOLS,
-                                   LZX_MAX_CODEWORD_LEN,
-                                   pretree_freqs, pretree_lens,
-                                   pretree_codewords);
+       /* Build the precode from the frequencies of the length symbols. */
 
-       /* Write the lengths of the pretree codes to the output. */
-       for (i = 0; i < LZX_PRETREE_NUM_SYMBOLS; i++)
-               bitstream_put_bits(out, pretree_lens[i],
-                                  LZX_PRETREE_ELEMENT_SIZE);
+       make_canonical_huffman_code(LZX_PRECODE_NUM_SYMBOLS,
+                                   LZX_MAX_PRE_CODEWORD_LEN,
+                                   precode_freqs, precode_lens,
+                                   precode_codewords);
 
-       /* Write the length symbols, encoded with the pretree, to the output. */
+       *num_additional_bits_ret = num_additional_bits;
 
-       i = 0;
-       while (i < output_syms_idx) {
-               pretree_sym = output_syms[i++];
+       return output_syms_idx;
+}
 
-               bitstream_put_bits(out, pretree_codewords[pretree_sym],
-                                  pretree_lens[pretree_sym]);
-               switch (pretree_sym) {
+/*
+ * Output a Huffman code in the compressed form used in LZX.
+ *
+ * The Huffman code is represented in the output as a logical series of codeword
+ * lengths from which the Huffman code, which must be in canonical form, can be
+ * reconstructed.
+ *
+ * The codeword lengths are themselves compressed using a separate Huffman code,
+ * the "precode", which contains a symbol for each possible codeword length in
+ * the larger code as well as several special symbols to represent repeated
+ * codeword lengths (a form of run-length encoding).  The precode is itself
+ * constructed in canonical form, and its codeword lengths are represented
+ * literally in 20 4-bit fields that immediately precede the compressed codeword
+ * lengths of the larger code.
+ *
+ * Furthermore, the codeword lengths of the larger code are actually represented
+ * as deltas from the codeword lengths of the corresponding code in the previous
+ * block.
+ *
+ * @out:
+ *     Bitstream to which to write the compressed Huffman code.
+ * @lens:
+ *     The codeword lengths, indexed by symbol, in the Huffman code.
+ * @prev_lens:
+ *     The codeword lengths, indexed by symbol, in the corresponding Huffman
+ *     code in the previous block, or all zeroes if this is the first block.
+ * @num_syms:
+ *     The number of symbols in the Huffman code.
+ */
+static void
+lzx_write_compressed_code(struct output_bitstream *out,
+                         const u8 lens[restrict],
+                         const u8 prev_lens[restrict],
+                         unsigned num_syms)
+{
+       u32 precode_freqs[LZX_PRECODE_NUM_SYMBOLS];
+       u8 output_syms[num_syms];
+       u8 precode_lens[LZX_PRECODE_NUM_SYMBOLS];
+       u32 precode_codewords[LZX_PRECODE_NUM_SYMBOLS];
+       unsigned i;
+       unsigned num_output_syms;
+       u8 precode_sym;
+       unsigned dummy;
+
+       num_output_syms = lzx_build_precode(lens,
+                                           prev_lens,
+                                           num_syms,
+                                           precode_freqs,
+                                           output_syms,
+                                           precode_lens,
+                                           precode_codewords,
+                                           &dummy);
+
+       /* Write the lengths of the precode codes to the output. */
+       for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
+               bitstream_put_bits(out, precode_lens[i],
+                                  LZX_PRECODE_ELEMENT_SIZE);
+
+       /* Write the length symbols, encoded with the precode, to the output. */
+
+       for (i = 0; i < num_output_syms; ) {
+               precode_sym = output_syms[i++];
+
+               bitstream_put_bits(out, precode_codewords[precode_sym],
+                                  precode_lens[precode_sym]);
+               switch (precode_sym) {
                case 17:
                        bitstream_put_bits(out, output_syms[i++], 4);
                        break;
@@ -561,217 +852,1527 @@ lzx_write_compressed_tree(struct output_bitstream *out,
                case 19:
                        bitstream_put_bits(out, output_syms[i++], 1);
                        bitstream_put_bits(out,
-                                          pretree_codewords[output_syms[i]],
-                                          pretree_lens[output_syms[i]]);
+                                          precode_codewords[output_syms[i]],
+                                          precode_lens[output_syms[i]]);
                        i++;
                        break;
                default:
                        break;
                }
        }
-       return 0;
 }
 
-/* Builds the canonical Huffman code for the main tree, the length tree, and the
- * aligned offset tree. */
+/*
+ * Write all matches and literal bytes (which were precomputed) in an LZX
+ * compressed block to the output bitstream in the final compressed
+ * representation.
+ *
+ * @ostream
+ *     The output bitstream.
+ * @block_type
+ *     The chosen type of the LZX compressed block (LZX_BLOCKTYPE_ALIGNED or
+ *     LZX_BLOCKTYPE_VERBATIM).
+ * @match_tab
+ *     The array of matches/literals to output.
+ * @match_count
+ *     Number of matches/literals to output (length of @match_tab).
+ * @codes
+ *     The main, length, and aligned offset Huffman codes for the current
+ *     LZX compressed block.
+ */
 static void
-lzx_make_huffman_codes(const struct lzx_freq_tables *freq_tabs,
-                      struct lzx_codes *codes)
+lzx_write_matches_and_literals(struct output_bitstream *ostream,
+                              int block_type,
+                              const struct lzx_item match_tab[],
+                              unsigned match_count,
+                              const struct lzx_codes *codes)
 {
-       make_canonical_huffman_code(LZX_MAINTREE_NUM_SYMBOLS,
-                                       LZX_MAX_CODEWORD_LEN,
-                                       freq_tabs->main_freq_table,
-                                       codes->main_lens,
-                                       codes->main_codewords);
+       for (unsigned i = 0; i < match_count; i++) {
+               struct lzx_item match = match_tab[i];
+
+               /* The high bit of the 32-bit intermediate representation
+                * indicates whether the item is an actual LZ-style match (1) or
+                * a literal byte (0).  */
+               if (match.data & 0x80000000)
+                       lzx_write_match(ostream, block_type, match, codes);
+               else
+                       lzx_write_literal(ostream, match.data, codes);
+       }
+}
 
-       make_canonical_huffman_code(LZX_LENTREE_NUM_SYMBOLS,
-                                       LZX_MAX_CODEWORD_LEN,
-                                       freq_tabs->len_freq_table,
-                                       codes->len_lens,
-                                       codes->len_codewords);
+static void
+lzx_assert_codes_valid(const struct lzx_codes * codes, unsigned num_main_syms)
+{
+#ifdef ENABLE_LZX_DEBUG
+       unsigned i;
 
-       make_canonical_huffman_code(LZX_ALIGNEDTREE_NUM_SYMBOLS, 8,
-                                       freq_tabs->aligned_freq_table,
-                                       codes->aligned_lens,
-                                       codes->aligned_codewords);
+       for (i = 0; i < num_main_syms; i++)
+               LZX_ASSERT(codes->lens.main[i] <= LZX_MAX_MAIN_CODEWORD_LEN);
+
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               LZX_ASSERT(codes->lens.len[i] <= LZX_MAX_LEN_CODEWORD_LEN);
+
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               LZX_ASSERT(codes->lens.aligned[i] <= LZX_MAX_ALIGNED_CODEWORD_LEN);
+
+       const unsigned tablebits = 10;
+       u16 decode_table[(1 << tablebits) +
+                        (2 * max(num_main_syms, LZX_LENCODE_NUM_SYMBOLS))]
+                        _aligned_attribute(DECODE_TABLE_ALIGNMENT);
+       LZX_ASSERT(0 == make_huffman_decode_table(decode_table,
+                                                 num_main_syms,
+                                                 min(tablebits, LZX_MAINCODE_TABLEBITS),
+                                                 codes->lens.main,
+                                                 LZX_MAX_MAIN_CODEWORD_LEN));
+       LZX_ASSERT(0 == make_huffman_decode_table(decode_table,
+                                                 LZX_LENCODE_NUM_SYMBOLS,
+                                                 min(tablebits, LZX_LENCODE_TABLEBITS),
+                                                 codes->lens.len,
+                                                 LZX_MAX_LEN_CODEWORD_LEN));
+       LZX_ASSERT(0 == make_huffman_decode_table(decode_table,
+                                                 LZX_ALIGNEDCODE_NUM_SYMBOLS,
+                                                 min(tablebits, LZX_ALIGNEDCODE_TABLEBITS),
+                                                 codes->lens.aligned,
+                                                 LZX_MAX_ALIGNED_CODEWORD_LEN));
+#endif /* ENABLE_LZX_DEBUG */
 }
 
+/* Write an LZX aligned offset or verbatim block to the output.  */
 static void
-do_call_insn_translation(u32 *call_insn_target, int input_pos,
-                        s32 file_size)
+lzx_write_compressed_block(int block_type,
+                          unsigned block_size,
+                          unsigned max_window_size,
+                          unsigned num_main_syms,
+                          struct lzx_item * chosen_items,
+                          unsigned num_chosen_items,
+                          const struct lzx_codes * codes,
+                          const struct lzx_codes * prev_codes,
+                          struct output_bitstream * ostream)
 {
-       s32 abs_offset;
-       s32 rel_offset;
+       unsigned i;
+
+       LZX_ASSERT(block_type == LZX_BLOCKTYPE_ALIGNED ||
+                  block_type == LZX_BLOCKTYPE_VERBATIM);
+       lzx_assert_codes_valid(codes, num_main_syms);
+
+       /* The first three bits indicate the type of block and are one of the
+        * LZX_BLOCKTYPE_* constants.  */
+       bitstream_put_bits(ostream, block_type, 3);
+
+       /* Output the block size.
+        *
+        * The original LZX format seemed to always encode the block size in 3
+        * bytes.  However, the implementation in WIMGAPI, as used in WIM files,
+        * uses the first bit to indicate whether the block is the default size
+        * (32768) or a different size given explicitly by the next 16 bits.
+        *
+        * By default, this compressor uses a window size of 32768 and therefore
+        * follows the WIMGAPI behavior.  However, this compressor also supports
+        * window sizes greater than 32768 bytes, which do not appear to be
+        * supported by WIMGAPI.  In such cases, we retain the default size bit
+        * to mean a size of 32768 bytes but output non-default block size in 24
+        * bits rather than 16.  The compatibility of this behavior is unknown
+        * because WIMs created with chunk size greater than 32768 can seemingly
+        * only be opened by wimlib anyway.  */
+       if (block_size == LZX_DEFAULT_BLOCK_SIZE) {
+               bitstream_put_bits(ostream, 1, 1);
+       } else {
+               bitstream_put_bits(ostream, 0, 1);
+
+               if (max_window_size >= 65536)
+                       bitstream_put_bits(ostream, block_size >> 16, 8);
+
+               bitstream_put_bits(ostream, block_size, 16);
+       }
+
+       /* Write out lengths of the main code. Note that the LZX specification
+        * incorrectly states that the aligned offset code comes after the
+        * length code, but in fact it is the very first code to be written
+        * (before the main code).  */
+       if (block_type == LZX_BLOCKTYPE_ALIGNED)
+               for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+                       bitstream_put_bits(ostream, codes->lens.aligned[i],
+                                          LZX_ALIGNEDCODE_ELEMENT_SIZE);
+
+       LZX_DEBUG("Writing main code...");
+
+       /* Write the precode and lengths for the first LZX_NUM_CHARS symbols in
+        * the main code, which are the codewords for literal bytes.  */
+       lzx_write_compressed_code(ostream,
+                                 codes->lens.main,
+                                 prev_codes->lens.main,
+                                 LZX_NUM_CHARS);
+
+       /* Write the precode and lengths for the rest of the main code, which
+        * are the codewords for match headers.  */
+       lzx_write_compressed_code(ostream,
+                                 codes->lens.main + LZX_NUM_CHARS,
+                                 prev_codes->lens.main + LZX_NUM_CHARS,
+                                 num_main_syms - LZX_NUM_CHARS);
+
+       LZX_DEBUG("Writing length code...");
+
+       /* Write the precode and lengths for the length code.  */
+       lzx_write_compressed_code(ostream,
+                                 codes->lens.len,
+                                 prev_codes->lens.len,
+                                 LZX_LENCODE_NUM_SYMBOLS);
+
+       LZX_DEBUG("Writing matches and literals...");
+
+       /* Write the actual matches and literals.  */
+       lzx_write_matches_and_literals(ostream, block_type,
+                                      chosen_items, num_chosen_items,
+                                      codes);
+
+       LZX_DEBUG("Done writing block.");
+}
+
+/* Write out the LZX blocks that were computed.  */
+static void
+lzx_write_all_blocks(struct lzx_compressor *ctx, struct output_bitstream *ostream)
+{
+
+       const struct lzx_codes *prev_codes = &ctx->zero_codes;
+       for (unsigned i = 0; i < ctx->num_blocks; i++) {
+               const struct lzx_block_spec *spec = &ctx->block_specs[i];
+
+               LZX_DEBUG("Writing block %u/%u (type=%d, size=%u, num_chosen_items=%u)...",
+                         i + 1, ctx->num_blocks,
+                         spec->block_type, spec->block_size,
+                         spec->num_chosen_items);
+
+               lzx_write_compressed_block(spec->block_type,
+                                          spec->block_size,
+                                          ctx->max_window_size,
+                                          ctx->num_main_syms,
+                                          spec->chosen_items,
+                                          spec->num_chosen_items,
+                                          &spec->codes,
+                                          prev_codes,
+                                          ostream);
+
+               prev_codes = &spec->codes;
+       }
+}
+
+/* Constructs an LZX match from a literal byte and updates the main code symbol
+ * frequencies.  */
+static inline u32
+lzx_tally_literal(u8 lit, struct lzx_freqs *freqs)
+{
+       freqs->main[lit]++;
+       return (u32)lit;
+}
+
+/* Constructs an LZX match from an offset and a length, and updates the LRU
+ * queue and the frequency of symbols in the main, length, and aligned offset
+ * alphabets.  The return value is a 32-bit number that provides the match in an
+ * intermediate representation documented below.  */
+static inline u32
+lzx_tally_match(unsigned match_len, u32 match_offset,
+               struct lzx_freqs *freqs, struct lzx_lru_queue *queue)
+{
+       unsigned position_slot;
+       unsigned position_footer;
+       u32 len_header;
+       unsigned main_symbol;
+       unsigned len_footer;
+       unsigned adjusted_match_len;
+
+       LZX_ASSERT(match_len >= LZX_MIN_MATCH_LEN && match_len <= LZX_MAX_MATCH_LEN);
+
+       /* The match offset shall be encoded as a position slot (itself encoded
+        * as part of the main symbol) and a position footer.  */
+       position_slot = lzx_get_position_slot(match_offset, queue);
+       position_footer = (match_offset + LZX_OFFSET_OFFSET) &
+                               ((1U << lzx_get_num_extra_bits(position_slot)) - 1);
+
+       /* The match length shall be encoded as a length header (itself encoded
+        * as part of the main symbol) and an optional length footer.  */
+       adjusted_match_len = match_len - LZX_MIN_MATCH_LEN;
+       if (adjusted_match_len < LZX_NUM_PRIMARY_LENS) {
+               /* No length footer needed.  */
+               len_header = adjusted_match_len;
+       } else {
+               /* Length footer needed.  It will be encoded using the length
+                * code.  */
+               len_header = LZX_NUM_PRIMARY_LENS;
+               len_footer = adjusted_match_len - LZX_NUM_PRIMARY_LENS;
+               freqs->len[len_footer]++;
+       }
+
+       /* Account for the main symbol.  */
+       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
+
+       freqs->main[main_symbol]++;
+
+       /* In an aligned offset block, 3 bits of the position footer are output
+        * as an aligned offset symbol.  Account for this, although we may
+        * ultimately decide to output the block as verbatim.  */
+
+       /* The following check is equivalent to:
+        *
+        * if (lzx_extra_bits[position_slot] >= 3)
+        *
+        * Note that this correctly excludes position slots that correspond to
+        * recent offsets.  */
+       if (position_slot >= 8)
+               freqs->aligned[position_footer & 7]++;
+
+       /* Pack the position slot, position footer, and match length into an
+        * intermediate representation.  See `struct lzx_item' for details.
+        */
+       LZX_ASSERT(LZX_MAX_POSITION_SLOTS <= 64);
+       LZX_ASSERT(lzx_get_num_extra_bits(LZX_MAX_POSITION_SLOTS - 1) <= 17);
+       LZX_ASSERT(LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1 <= 256);
+
+       LZX_ASSERT(position_slot      <= (1U << (31 - 25)) - 1);
+       LZX_ASSERT(position_footer    <= (1U << (25 -  8)) - 1);
+       LZX_ASSERT(adjusted_match_len <= (1U << (8  -  0)) - 1);
+       return 0x80000000 |
+               (position_slot << 25) |
+               (position_footer << 8) |
+               (adjusted_match_len);
+}
+
+struct lzx_record_ctx {
+       struct lzx_freqs freqs;
+       struct lzx_lru_queue queue;
+       struct lzx_item *matches;
+};
+
+static void
+lzx_record_match(unsigned len, unsigned offset, void *_ctx)
+{
+       struct lzx_record_ctx *ctx = _ctx;
+
+       (ctx->matches++)->data = lzx_tally_match(len, offset, &ctx->freqs, &ctx->queue);
+}
+
+static void
+lzx_record_literal(u8 lit, void *_ctx)
+{
+       struct lzx_record_ctx *ctx = _ctx;
+
+       (ctx->matches++)->data = lzx_tally_literal(lit, &ctx->freqs);
+}
+
+/* Returns the cost, in bits, to output a literal byte using the specified cost
+ * model.  */
+static u32
+lzx_literal_cost(u8 c, const struct lzx_costs * costs)
+{
+       return costs->main[c];
+}
+
+/* Given a (length, offset) pair that could be turned into a valid LZX match as
+ * well as costs for the codewords in the main, length, and aligned Huffman
+ * codes, return the approximate number of bits it will take to represent this
+ * match in the compressed output.  Take into account the match offset LRU
+ * queue and also updates it.  */
+static u32
+lzx_match_cost(unsigned length, u32 offset, const struct lzx_costs *costs,
+              struct lzx_lru_queue *queue)
+{
+       unsigned position_slot;
+       unsigned len_header, main_symbol;
+       unsigned num_extra_bits;
+       u32 cost = 0;
+
+       position_slot = lzx_get_position_slot(offset, queue);
+
+       len_header = min(length - LZX_MIN_MATCH_LEN, LZX_NUM_PRIMARY_LENS);
+       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
+
+       /* Account for main symbol.  */
+       cost += costs->main[main_symbol];
+
+       /* Account for extra position information.  */
+       num_extra_bits = lzx_get_num_extra_bits(position_slot);
+       if (num_extra_bits >= 3) {
+               cost += num_extra_bits - 3;
+               cost += costs->aligned[(offset + LZX_OFFSET_OFFSET) & 7];
+       } else {
+               cost += num_extra_bits;
+       }
+
+       /* Account for extra length information.  */
+       if (len_header == LZX_NUM_PRIMARY_LENS)
+               cost += costs->len[length - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
+
+       return cost;
+
+}
 
-       rel_offset = le32_to_cpu(*call_insn_target);
-       if (rel_offset >= -input_pos && rel_offset < file_size) {
-               if (rel_offset < file_size - input_pos) {
-                       /* "good translation" */
-                       abs_offset = rel_offset + input_pos;
+/* Set the cost model @ctx->costs from the Huffman codeword lengths specified in
+ * @lens.
+ *
+ * The cost model and codeword lengths are almost the same thing, but the
+ * Huffman codewords with length 0 correspond to symbols with zero frequency
+ * that still need to be assigned actual costs.  The specific values assigned
+ * are arbitrary, but they should be fairly high (near the maximum codeword
+ * length) to take into account the fact that uses of these symbols are expected
+ * to be rare.  */
+static void
+lzx_set_costs(struct lzx_compressor * ctx, const struct lzx_lens * lens)
+{
+       unsigned i;
+       unsigned num_main_syms = ctx->num_main_syms;
+
+       /* Main code  */
+       for (i = 0; i < num_main_syms; i++) {
+               ctx->costs.main[i] = lens->main[i];
+               if (ctx->costs.main[i] == 0)
+                       ctx->costs.main[i] = ctx->params.alg_params.slow.main_nostat_cost;
+       }
+
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++) {
+               ctx->costs.len[i] = lens->len[i];
+               if (ctx->costs.len[i] == 0)
+                       ctx->costs.len[i] = ctx->params.alg_params.slow.len_nostat_cost;
+       }
+
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+               ctx->costs.aligned[i] = lens->aligned[i];
+               if (ctx->costs.aligned[i] == 0)
+                       ctx->costs.aligned[i] = ctx->params.alg_params.slow.aligned_nostat_cost;
+       }
+}
+
+/* Retrieve a list of matches available at the next position in the input.
+ *
+ * A pointer to the matches array is written into @matches_ret, and the return
+ * value is the number of matches found.  */
+static unsigned
+lzx_get_matches(struct lzx_compressor *ctx,
+               const struct lz_match **matches_ret)
+{
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
+
+       LZX_ASSERT(ctx->match_window_pos < ctx->match_window_end);
+
+       cache_ptr = ctx->cache_ptr;
+       matches = cache_ptr + 1;
+       if (likely(cache_ptr <= ctx->cache_limit)) {
+               if (ctx->matches_cached) {
+                       num_matches = cache_ptr->len;
                } else {
-                       /* "compensating translation" */
-                       abs_offset = rel_offset - file_size;
+                       num_matches = lz_bt_get_matches(&ctx->mf, matches);
+                       cache_ptr->len = num_matches;
+               }
+       } else {
+               num_matches = 0;
+       }
+
+       /* Don't allow matches to span the end of an LZX block.  */
+       if (ctx->match_window_end < ctx->window_size && num_matches != 0) {
+               unsigned limit = ctx->match_window_end - ctx->match_window_pos;
+
+               if (limit >= LZX_MIN_MATCH_LEN) {
+
+                       unsigned i = num_matches - 1;
+                       do {
+                               if (matches[i].len >= limit) {
+                                       matches[i].len = limit;
+
+                                       /* Truncation might produce multiple
+                                        * matches with length 'limit'.  Keep at
+                                        * most 1.  */
+                                       num_matches = i + 1;
+                               }
+                       } while (i--);
+               } else {
+                       num_matches = 0;
+               }
+               cache_ptr->len = num_matches;
+       }
+
+#if 0
+       fprintf(stderr, "Pos %u/%u: %u matches\n",
+               ctx->match_window_pos, ctx->window_size, num_matches);
+       for (unsigned i = 0; i < num_matches; i++)
+               fprintf(stderr, "\tLen %u Offset %u\n", matches[i].len, matches[i].offset);
+#endif
+
+#ifdef ENABLE_LZX_DEBUG
+       for (unsigned i = 0; i < num_matches; i++) {
+               LZX_ASSERT(matches[i].len >= LZX_MIN_MATCH_LEN);
+               LZX_ASSERT(matches[i].len <= LZX_MAX_MATCH_LEN);
+               LZX_ASSERT(matches[i].len <= ctx->match_window_end - ctx->match_window_pos);
+               LZX_ASSERT(matches[i].offset > 0);
+               LZX_ASSERT(matches[i].offset <= ctx->match_window_pos);
+               LZX_ASSERT(!memcmp(&ctx->window[ctx->match_window_pos],
+                                  &ctx->window[ctx->match_window_pos - matches[i].offset],
+                                  matches[i].len));
+               if (i) {
+                       LZX_ASSERT(matches[i].len > matches[i - 1].len);
+                       LZX_ASSERT(matches[i].offset > matches[i - 1].offset);
                }
-               *call_insn_target = cpu_to_le32(abs_offset);
        }
+#endif
+       ctx->match_window_pos++;
+       ctx->cache_ptr = matches + num_matches;
+       *matches_ret = matches;
+       return num_matches;
 }
 
-/* This is the reverse of undo_call_insn_preprocessing() in lzx-decompress.c.
- * See the comment above that function for more information. */
 static void
-do_call_insn_preprocessing(u8 uncompressed_data[], int uncompressed_data_len)
-{
-       for (int i = 0; i < uncompressed_data_len - 10; i++) {
-               if (uncompressed_data[i] == 0xe8) {
-                       do_call_insn_translation((u32*)&uncompressed_data[i + 1],
-                                                i,
-                                                LZX_WIM_MAGIC_FILESIZE);
-                       i += 4;
+lzx_skip_bytes(struct lzx_compressor *ctx, unsigned n)
+{
+       struct lz_match *cache_ptr;
+
+       LZX_ASSERT(n <= ctx->match_window_end - ctx->match_window_pos);
+
+       cache_ptr = ctx->cache_ptr;
+       ctx->match_window_pos += n;
+       if (ctx->matches_cached) {
+               while (n-- && cache_ptr <= ctx->cache_limit)
+                       cache_ptr += 1 + cache_ptr->len;
+       } else {
+               lz_bt_skip_positions(&ctx->mf, n);
+               while (n-- && cache_ptr <= ctx->cache_limit) {
+                       cache_ptr->len = 0;
+                       cache_ptr += 1;
                }
        }
+       ctx->cache_ptr = cache_ptr;
 }
 
+/*
+ * Reverse the linked list of near-optimal matches so that they can be returned
+ * in forwards order.
+ *
+ * Returns the first match in the list.
+ */
+static struct lz_match
+lzx_match_chooser_reverse_list(struct lzx_compressor *ctx, unsigned cur_pos)
+{
+       unsigned prev_link, saved_prev_link;
+       unsigned prev_match_offset, saved_prev_match_offset;
+
+       ctx->optimum_end_idx = cur_pos;
 
-static const struct lz_params lzx_lz_params = {
+       saved_prev_link = ctx->optimum[cur_pos].prev.link;
+       saved_prev_match_offset = ctx->optimum[cur_pos].prev.match_offset;
 
-        /* LZX_MIN_MATCH == 2, but 2-character matches are rarely useful; the
-         * minimum match for compression is set to 3 instead. */
-       .min_match      = 3,
+       do {
+               prev_link = saved_prev_link;
+               prev_match_offset = saved_prev_match_offset;
 
-       .max_match      = LZX_MAX_MATCH,
-       .good_match     = LZX_MAX_MATCH,
-       .nice_match     = LZX_MAX_MATCH,
-       .max_chain_len  = LZX_MAX_MATCH,
-       .max_lazy_match = LZX_MAX_MATCH,
-       .too_far        = 4096,
-};
+               saved_prev_link = ctx->optimum[prev_link].prev.link;
+               saved_prev_match_offset = ctx->optimum[prev_link].prev.match_offset;
+
+               ctx->optimum[prev_link].next.link = cur_pos;
+               ctx->optimum[prev_link].next.match_offset = prev_match_offset;
+
+               cur_pos = prev_link;
+       } while (cur_pos != 0);
+
+       ctx->optimum_cur_idx = ctx->optimum[0].next.link;
+
+       return (struct lz_match)
+               { .len = ctx->optimum_cur_idx,
+                 .offset = ctx->optimum[0].next.match_offset,
+               };
+}
 
-/* Documented in wimlib.h */
-WIMLIBAPI unsigned
-wimlib_lzx_compress(const void *_uncompressed_data, unsigned uncompressed_len,
-                   void *compressed_data)
+/*
+ * lzx_get_near_optimal_match() -
+ *
+ * Choose an approximately optimal match or literal to use at the next position
+ * in the string, or "window", being LZ-encoded.
+ *
+ * This is based on algorithms used in 7-Zip, including the DEFLATE encoder
+ * and the LZMA encoder, written by Igor Pavlov.
+ *
+ * Unlike a greedy parser that always takes the longest match, or even a "lazy"
+ * parser with one match/literal look-ahead like zlib, the algorithm used here
+ * may look ahead many matches/literals to determine the approximately optimal
+ * match/literal to code next.  The motivation is that the compression ratio is
+ * improved if the compressor can do things like use a shorter-than-possible
+ * match in order to allow a longer match later, and also take into account the
+ * estimated real cost of coding each match/literal based on the underlying
+ * entropy encoding.
+ *
+ * Still, this is not a true optimal parser for several reasons:
+ *
+ * - Real compression formats use entropy encoding of the literal/match
+ *   sequence, so the real cost of coding each match or literal is unknown until
+ *   the parse is fully determined.  It can be approximated based on iterative
+ *   parses, but the end result is not guaranteed to be globally optimal.
+ *
+ * - Very long matches are chosen immediately.  This is because locations with
+ *   long matches are likely to have many possible alternatives that would cause
+ *   slow optimal parsing, but also such locations are already highly
+ *   compressible so it is not too harmful to just grab the longest match.
+ *
+ * - Not all possible matches at each location are considered because the
+ *   underlying match-finder limits the number and type of matches produced at
+ *   each position.  For example, for a given match length it's usually not
+ *   worth it to only consider matches other than the lowest-offset match,
+ *   except in the case of a repeat offset.
+ *
+ * - Although we take into account the adaptive state (in LZX, the recent offset
+ *   queue), coding decisions made with respect to the adaptive state will be
+ *   locally optimal but will not necessarily be globally optimal.  This is
+ *   because the algorithm only keeps the least-costly path to get to a given
+ *   location and does not take into account that a slightly more costly path
+ *   could result in a different adaptive state that ultimately results in a
+ *   lower global cost.
+ *
+ * - The array space used by this function is bounded, so in degenerate cases it
+ *   is forced to start returning matches/literals before the algorithm has
+ *   really finished.
+ *
+ * Each call to this function does one of two things:
+ *
+ * 1. Build a sequence of near-optimal matches/literals, up to some point, that
+ *    will be returned by subsequent calls to this function, then return the
+ *    first one.
+ *
+ * OR
+ *
+ * 2. Return the next match/literal previously computed by a call to this
+ *    function.
+ *
+ * The return value is a (length, offset) pair specifying the match or literal
+ * chosen.  For literals, the length is 0 or 1 and the offset is meaningless.
+ */
+static struct lz_match
+lzx_get_near_optimal_match(struct lzx_compressor *ctx)
 {
-       struct output_bitstream ostream;
-       u8 uncompressed_data[uncompressed_len + 8];
-       struct lzx_freq_tables freq_tabs;
-       struct lzx_codes codes;
-       u32 match_tab[uncompressed_len];
-       struct lru_queue queue;
        unsigned num_matches;
-       unsigned compressed_len;
+       const struct lz_match *matches;
+       struct lz_match match;
+       unsigned longest_len;
+       unsigned longest_rep_len;
+       u32 longest_rep_offset;
+       unsigned cur_pos;
+       unsigned end_pos;
+
+       if (ctx->optimum_cur_idx != ctx->optimum_end_idx) {
+               /* Case 2: Return the next match/literal already found.  */
+               match.len = ctx->optimum[ctx->optimum_cur_idx].next.link -
+                                   ctx->optimum_cur_idx;
+               match.offset = ctx->optimum[ctx->optimum_cur_idx].next.match_offset;
+
+               ctx->optimum_cur_idx = ctx->optimum[ctx->optimum_cur_idx].next.link;
+               return match;
+       }
+
+       /* Case 1:  Compute a new list of matches/literals to return.  */
+
+       ctx->optimum_cur_idx = 0;
+       ctx->optimum_end_idx = 0;
+
+       /* Search for matches at recent offsets.  Only keep the one with the
+        * longest match length.  */
+       longest_rep_len = LZX_MIN_MATCH_LEN - 1;
+       if (ctx->match_window_pos >= 1) {
+               unsigned limit = min(LZX_MAX_MATCH_LEN,
+                                    ctx->match_window_end - ctx->match_window_pos);
+               for (int i = 0; i < LZX_NUM_RECENT_OFFSETS; i++) {
+                       u32 offset = ctx->queue.R[i];
+                       const u8 *strptr = &ctx->window[ctx->match_window_pos];
+                       const u8 *matchptr = strptr - offset;
+                       unsigned len = 0;
+                       while (len < limit && strptr[len] == matchptr[len])
+                               len++;
+                       if (len > longest_rep_len) {
+                               longest_rep_len = len;
+                               longest_rep_offset = offset;
+                       }
+               }
+       }
+
+       /* If there's a long match with a recent offset, take it.  */
+       if (longest_rep_len >= ctx->params.alg_params.slow.nice_match_length) {
+               lzx_skip_bytes(ctx, longest_rep_len);
+               return (struct lz_match) {
+                       .len = longest_rep_len,
+                       .offset = longest_rep_offset,
+               };
+       }
+
+       /* Search other matches.  */
+       num_matches = lzx_get_matches(ctx, &matches);
+
+       /* If there's a long match, take it.  */
+       if (num_matches) {
+               longest_len = matches[num_matches - 1].len;
+               if (longest_len >= ctx->params.alg_params.slow.nice_match_length) {
+                       lzx_skip_bytes(ctx, longest_len - 1);
+                       return matches[num_matches - 1];
+               }
+       } else {
+               longest_len = 1;
+       }
+
+       /* Calculate the cost to reach the next position by coding a literal.
+        */
+       ctx->optimum[1].queue = ctx->queue;
+       ctx->optimum[1].cost = lzx_literal_cost(ctx->window[ctx->match_window_pos - 1],
+                                               &ctx->costs);
+       ctx->optimum[1].prev.link = 0;
+
+       /* Calculate the cost to reach any position up to and including that
+        * reached by the longest match.
+        *
+        * Note: We consider only the lowest-offset match that reaches each
+        * position.
+        *
+        * Note: Some of the cost calculation stays the same for each offset,
+        * regardless of how many lengths it gets used for.  Therefore, to
+        * improve performance, we hand-code the cost calculation instead of
+        * calling lzx_match_cost() to do a from-scratch cost evaluation at each
+        * length.  */
+       for (unsigned i = 0, len = 2; i < num_matches; i++) {
+               u32 offset;
+               struct lzx_lru_queue queue;
+               u32 position_cost;
+               unsigned position_slot;
+               unsigned num_extra_bits;
+
+               offset = matches[i].offset;
+               queue = ctx->queue;
+               position_cost = 0;
+
+               position_slot = lzx_get_position_slot(offset, &queue);
+               num_extra_bits = lzx_get_num_extra_bits(position_slot);
+               if (num_extra_bits >= 3) {
+                       position_cost += num_extra_bits - 3;
+                       position_cost += ctx->costs.aligned[(offset + LZX_OFFSET_OFFSET) & 7];
+               } else {
+                       position_cost += num_extra_bits;
+               }
+
+               do {
+                       unsigned len_header;
+                       unsigned main_symbol;
+                       u32 cost;
+
+                       cost = position_cost;
+
+                       len_header = min(len - LZX_MIN_MATCH_LEN, LZX_NUM_PRIMARY_LENS);
+                       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
+                       cost += ctx->costs.main[main_symbol];
+                       if (len_header == LZX_NUM_PRIMARY_LENS)
+                               cost += ctx->costs.len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
+
+                       ctx->optimum[len].queue = queue;
+                       ctx->optimum[len].prev.link = 0;
+                       ctx->optimum[len].prev.match_offset = offset;
+                       ctx->optimum[len].cost = cost;
+               } while (++len <= matches[i].len);
+       }
+       end_pos = longest_len;
+
+       if (longest_rep_len >= LZX_MIN_MATCH_LEN) {
+               struct lzx_lru_queue queue;
+               u32 cost;
+
+               while (end_pos < longest_rep_len)
+                       ctx->optimum[++end_pos].cost = MC_INFINITE_COST;
+
+               queue = ctx->queue;
+               cost = lzx_match_cost(longest_rep_len, longest_rep_offset,
+                                     &ctx->costs, &queue);
+               if (cost <= ctx->optimum[longest_rep_len].cost) {
+                       ctx->optimum[longest_rep_len].queue = queue;
+                       ctx->optimum[longest_rep_len].prev.link = 0;
+                       ctx->optimum[longest_rep_len].prev.match_offset = longest_rep_offset;
+                       ctx->optimum[longest_rep_len].cost = cost;
+               }
+       }
+
+       /* Step forward, calculating the estimated minimum cost to reach each
+        * position.  The algorithm may find multiple paths to reach each
+        * position; only the lowest-cost path is saved.
+        *
+        * The progress of the parse is tracked in the @ctx->optimum array, which
+        * for each position contains the minimum cost to reach that position,
+        * the index of the start of the match/literal taken to reach that
+        * position through the minimum-cost path, the offset of the match taken
+        * (not relevant for literals), and the adaptive state that will exist
+        * at that position after the minimum-cost path is taken.  The @cur_pos
+        * variable stores the position at which the algorithm is currently
+        * considering coding choices, and the @end_pos variable stores the
+        * greatest position at which the costs of coding choices have been
+        * saved.  (Actually, the algorithm guarantees that all positions up to
+        * and including @end_pos are reachable by at least one path.)
+        *
+        * The loop terminates when any one of the following conditions occurs:
+        *
+        * 1. A match with length greater than or equal to @nice_match_length is
+        *    found.  When this occurs, the algorithm chooses this match
+        *    unconditionally, and consequently the near-optimal match/literal
+        *    sequence up to and including that match is fully determined and it
+        *    can begin returning the match/literal list.
+        *
+        * 2. @cur_pos reaches a position not overlapped by a preceding match.
+        *    In such cases, the near-optimal match/literal sequence up to
+        *    @cur_pos is fully determined and it can begin returning the
+        *    match/literal list.
+        *
+        * 3. Failing either of the above in a degenerate case, the loop
+        *    terminates when space in the @ctx->optimum array is exhausted.
+        *    This terminates the algorithm and forces it to start returning
+        *    matches/literals even though they may not be globally optimal.
+        *
+        * Upon loop termination, a nonempty list of matches/literals will have
+        * been produced and stored in the @optimum array.  These
+        * matches/literals are linked in reverse order, so the last thing this
+        * function does is reverse this list and return the first
+        * match/literal, leaving the rest to be returned immediately by
+        * subsequent calls to this function.
+        */
+       cur_pos = 0;
+       for (;;) {
+               u32 cost;
+
+               /* Advance to next position.  */
+               cur_pos++;
+
+               /* Check termination conditions (2) and (3) noted above.  */
+               if (cur_pos == end_pos || cur_pos == LZX_OPTIM_ARRAY_SIZE)
+                       return lzx_match_chooser_reverse_list(ctx, cur_pos);
+
+               /* Search for matches at recent offsets.  */
+               longest_rep_len = LZX_MIN_MATCH_LEN - 1;
+               unsigned limit = min(LZX_MAX_MATCH_LEN,
+                                    ctx->match_window_end - ctx->match_window_pos);
+               for (int i = 0; i < LZX_NUM_RECENT_OFFSETS; i++) {
+                       u32 offset = ctx->optimum[cur_pos].queue.R[i];
+                       const u8 *strptr = &ctx->window[ctx->match_window_pos];
+                       const u8 *matchptr = strptr - offset;
+                       unsigned len = 0;
+                       while (len < limit && strptr[len] == matchptr[len])
+                               len++;
+                       if (len > longest_rep_len) {
+                               longest_rep_len = len;
+                               longest_rep_offset = offset;
+                       }
+               }
+
+               /* If we found a long match at a recent offset, choose it
+                * immediately.  */
+               if (longest_rep_len >= ctx->params.alg_params.slow.nice_match_length) {
+                       /* Build the list of matches to return and get
+                        * the first one.  */
+                       match = lzx_match_chooser_reverse_list(ctx, cur_pos);
+
+                       /* Append the long match to the end of the list.  */
+                       ctx->optimum[cur_pos].next.match_offset = longest_rep_offset;
+                       ctx->optimum[cur_pos].next.link = cur_pos + longest_rep_len;
+                       ctx->optimum_end_idx = cur_pos + longest_rep_len;
+
+                       /* Skip over the remaining bytes of the long match.  */
+                       lzx_skip_bytes(ctx, longest_rep_len);
+
+                       /* Return first match in the list.  */
+                       return match;
+               }
+
+               /* Search other matches.  */
+               num_matches = lzx_get_matches(ctx, &matches);
+
+               /* If there's a long match, take it.  */
+               if (num_matches) {
+                       longest_len = matches[num_matches - 1].len;
+                       if (longest_len >= ctx->params.alg_params.slow.nice_match_length) {
+                               /* Build the list of matches to return and get
+                                * the first one.  */
+                               match = lzx_match_chooser_reverse_list(ctx, cur_pos);
+
+                               /* Append the long match to the end of the list.  */
+                               ctx->optimum[cur_pos].next.match_offset =
+                                       matches[num_matches - 1].offset;
+                               ctx->optimum[cur_pos].next.link = cur_pos + longest_len;
+                               ctx->optimum_end_idx = cur_pos + longest_len;
+
+                               /* Skip over the remaining bytes of the long match.  */
+                               lzx_skip_bytes(ctx, longest_len - 1);
+
+                               /* Return first match in the list.  */
+                               return match;
+                       }
+               } else {
+                       longest_len = 1;
+               }
+
+               while (end_pos < cur_pos + longest_len)
+                       ctx->optimum[++end_pos].cost = MC_INFINITE_COST;
+
+               /* Consider coding a literal.  */
+               cost = ctx->optimum[cur_pos].cost +
+                       lzx_literal_cost(ctx->window[ctx->match_window_pos - 1],
+                                        &ctx->costs);
+               if (cost < ctx->optimum[cur_pos + 1].cost) {
+                       ctx->optimum[cur_pos + 1].queue = ctx->optimum[cur_pos].queue;
+                       ctx->optimum[cur_pos + 1].cost = cost;
+                       ctx->optimum[cur_pos + 1].prev.link = cur_pos;
+               }
+
+               /* Consider coding a match.
+                *
+                * The hard-coded cost calculation is done for the same reason
+                * stated in the comment for the similar loop earlier.
+                * Actually, it is *this* one that has the biggest effect on
+                * performance; overall LZX compression is > 10% faster with
+                * this code compared to calling lzx_match_cost() with each
+                * length.  */
+               for (unsigned i = 0, len = 2; i < num_matches; i++) {
+                       u32 offset;
+                       struct lzx_lru_queue queue;
+                       u32 position_cost;
+                       unsigned position_slot;
+                       unsigned num_extra_bits;
+
+                       offset = matches[i].offset;
+                       queue = ctx->optimum[cur_pos].queue;
+                       position_cost = ctx->optimum[cur_pos].cost;
+
+                       position_slot = lzx_get_position_slot(offset, &queue);
+                       num_extra_bits = lzx_get_num_extra_bits(position_slot);
+                       if (num_extra_bits >= 3) {
+                               position_cost += num_extra_bits - 3;
+                               position_cost += ctx->costs.aligned[
+                                               (offset + LZX_OFFSET_OFFSET) & 7];
+                       } else {
+                               position_cost += num_extra_bits;
+                       }
+
+                       do {
+                               unsigned len_header;
+                               unsigned main_symbol;
+                               u32 cost;
+
+                               cost = position_cost;
+
+                               len_header = min(len - LZX_MIN_MATCH_LEN,
+                                                LZX_NUM_PRIMARY_LENS);
+                               main_symbol = ((position_slot << 3) | len_header) +
+                                               LZX_NUM_CHARS;
+                               cost += ctx->costs.main[main_symbol];
+                               if (len_header == LZX_NUM_PRIMARY_LENS) {
+                                       cost += ctx->costs.len[len -
+                                                       LZX_MIN_MATCH_LEN -
+                                                       LZX_NUM_PRIMARY_LENS];
+                               }
+                               if (cost < ctx->optimum[cur_pos + len].cost) {
+                                       ctx->optimum[cur_pos + len].queue = queue;
+                                       ctx->optimum[cur_pos + len].prev.link = cur_pos;
+                                       ctx->optimum[cur_pos + len].prev.match_offset = offset;
+                                       ctx->optimum[cur_pos + len].cost = cost;
+                               }
+                       } while (++len <= matches[i].len);
+               }
+
+               if (longest_rep_len >= LZX_MIN_MATCH_LEN) {
+                       struct lzx_lru_queue queue;
+
+                       while (end_pos < cur_pos + longest_rep_len)
+                               ctx->optimum[++end_pos].cost = MC_INFINITE_COST;
+
+                       queue = ctx->optimum[cur_pos].queue;
+
+                       cost = ctx->optimum[cur_pos].cost +
+                               lzx_match_cost(longest_rep_len, longest_rep_offset,
+                                              &ctx->costs, &queue);
+                       if (cost <= ctx->optimum[cur_pos + longest_rep_len].cost) {
+                               ctx->optimum[cur_pos + longest_rep_len].queue =
+                                       queue;
+                               ctx->optimum[cur_pos + longest_rep_len].prev.link =
+                                       cur_pos;
+                               ctx->optimum[cur_pos + longest_rep_len].prev.match_offset =
+                                       longest_rep_offset;
+                               ctx->optimum[cur_pos + longest_rep_len].cost =
+                                       cost;
+                       }
+               }
+       }
+}
+
+/* Set default symbol costs for the LZX Huffman codes.  */
+static void
+lzx_set_default_costs(struct lzx_costs * costs, unsigned num_main_syms)
+{
        unsigned i;
-       int ret;
-       int block_type = LZX_BLOCKTYPE_ALIGNED;
 
-       wimlib_assert(uncompressed_len <= 32768);
+       /* Main code (part 1): Literal symbols  */
+       for (i = 0; i < LZX_NUM_CHARS; i++)
+               costs->main[i] = 8;
+
+       /* Main code (part 2): Match header symbols  */
+       for (; i < num_main_syms; i++)
+               costs->main[i] = 10;
+
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               costs->len[i] = 8;
+
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               costs->aligned[i] = 3;
+}
+
+/* Given the frequencies of symbols in an LZX-compressed block and the
+ * corresponding Huffman codes, return LZX_BLOCKTYPE_ALIGNED or
+ * LZX_BLOCKTYPE_VERBATIM if an aligned offset or verbatim block, respectively,
+ * will take fewer bits to output.  */
+static int
+lzx_choose_verbatim_or_aligned(const struct lzx_freqs * freqs,
+                              const struct lzx_codes * codes)
+{
+       unsigned aligned_cost = 0;
+       unsigned verbatim_cost = 0;
+
+       /* Verbatim blocks have a constant 3 bits per position footer.  Aligned
+        * offset blocks have an aligned offset symbol per position footer, plus
+        * an extra 24 bits per block to output the lengths necessary to
+        * reconstruct the aligned offset code itself.  */
+       for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+               verbatim_cost += 3 * freqs->aligned[i];
+               aligned_cost += codes->lens.aligned[i] * freqs->aligned[i];
+       }
+       aligned_cost += LZX_ALIGNEDCODE_ELEMENT_SIZE * LZX_ALIGNEDCODE_NUM_SYMBOLS;
+       if (aligned_cost < verbatim_cost)
+               return LZX_BLOCKTYPE_ALIGNED;
+       else
+               return LZX_BLOCKTYPE_VERBATIM;
+}
+
+/* Find a near-optimal sequence of matches/literals with which to output the
+ * specified LZX block, then set the block's type to that which has the minimum
+ * cost to output (either verbatim or aligned).  */
+static void
+lzx_optimize_block(struct lzx_compressor *ctx, struct lzx_block_spec *spec,
+                  unsigned num_passes)
+{
+       const struct lzx_lru_queue orig_queue = ctx->queue;
+       unsigned num_passes_remaining = num_passes;
+       struct lzx_freqs freqs;
+       const u8 *window_ptr;
+       const u8 *window_end;
+       struct lzx_item *next_chosen_match;
+       struct lz_match lz_match;
+       struct lzx_item lzx_item;
+
+       LZX_ASSERT(num_passes >= 1);
+       LZX_ASSERT(lz_bt_get_position(&ctx->mf) == spec->window_pos);
+
+       ctx->match_window_end = spec->window_pos + spec->block_size;
+       ctx->matches_cached = false;
+
+       /* The first optimal parsing pass is done using the cost model already
+        * set in ctx->costs.  Each later pass is done using a cost model
+        * computed from the previous pass.
+        *
+        * To improve performance we only generate the array containing the
+        * matches and literals in intermediate form on the final pass.  */
+
+       while (--num_passes_remaining) {
+               ctx->match_window_pos = spec->window_pos;
+               ctx->cache_ptr = ctx->cached_matches;
+               memset(&freqs, 0, sizeof(freqs));
+               window_ptr = &ctx->window[spec->window_pos];
+               window_end = window_ptr + spec->block_size;
+
+               while (window_ptr != window_end) {
+
+                       lz_match = lzx_get_near_optimal_match(ctx);
+
+                       LZX_ASSERT(!(lz_match.len == LZX_MIN_MATCH_LEN &&
+                                    lz_match.offset == ctx->max_window_size -
+                                                        LZX_MIN_MATCH_LEN));
+                       if (lz_match.len >= LZX_MIN_MATCH_LEN) {
+                               lzx_tally_match(lz_match.len, lz_match.offset,
+                                               &freqs, &ctx->queue);
+                               window_ptr += lz_match.len;
+                       } else {
+                               lzx_tally_literal(*window_ptr, &freqs);
+                               window_ptr += 1;
+                       }
+               }
+               lzx_make_huffman_codes(&freqs, &spec->codes, ctx->num_main_syms);
+               lzx_set_costs(ctx, &spec->codes.lens);
+               ctx->queue = orig_queue;
+               ctx->matches_cached = true;
+       }
+
+       ctx->match_window_pos = spec->window_pos;
+       ctx->cache_ptr = ctx->cached_matches;
+       memset(&freqs, 0, sizeof(freqs));
+       window_ptr = &ctx->window[spec->window_pos];
+       window_end = window_ptr + spec->block_size;
+
+       spec->chosen_items = &ctx->chosen_items[spec->window_pos];
+       next_chosen_match = spec->chosen_items;
+
+       while (window_ptr != window_end) {
+               lz_match = lzx_get_near_optimal_match(ctx);
+
+               LZX_ASSERT(!(lz_match.len == LZX_MIN_MATCH_LEN &&
+                            lz_match.offset == ctx->max_window_size -
+                                                LZX_MIN_MATCH_LEN));
+               if (lz_match.len >= LZX_MIN_MATCH_LEN) {
+                       lzx_item.data = lzx_tally_match(lz_match.len,
+                                                        lz_match.offset,
+                                                        &freqs, &ctx->queue);
+                       window_ptr += lz_match.len;
+               } else {
+                       lzx_item.data = lzx_tally_literal(*window_ptr, &freqs);
+                       window_ptr += 1;
+               }
+               *next_chosen_match++ = lzx_item;
+       }
+       spec->num_chosen_items = next_chosen_match - spec->chosen_items;
+       lzx_make_huffman_codes(&freqs, &spec->codes, ctx->num_main_syms);
+       spec->block_type = lzx_choose_verbatim_or_aligned(&freqs, &spec->codes);
+}
+
+/* Prepare the input window into one or more LZX blocks ready to be output.  */
+static void
+lzx_prepare_blocks(struct lzx_compressor * ctx)
+{
+       /* Set up a default cost model.  */
+       lzx_set_default_costs(&ctx->costs, ctx->num_main_syms);
+
+       /* Set up the block specifications.
+        * TODO: The compression ratio could be slightly improved by performing
+        * data-dependent block splitting instead of using fixed-size blocks.
+        * Doing so well is a computationally hard problem, however.  */
+       ctx->num_blocks = DIV_ROUND_UP(ctx->window_size, LZX_DIV_BLOCK_SIZE);
+       for (unsigned i = 0; i < ctx->num_blocks; i++) {
+               unsigned pos = LZX_DIV_BLOCK_SIZE * i;
+               ctx->block_specs[i].window_pos = pos;
+               ctx->block_specs[i].block_size = min(ctx->window_size - pos,
+                                                    LZX_DIV_BLOCK_SIZE);
+       }
+
+       /* Load the window into the match-finder.  */
+       lz_bt_load_window(&ctx->mf, ctx->window, ctx->window_size);
+
+       /* Determine sequence of matches/literals to output for each block.  */
+       lzx_lru_queue_init(&ctx->queue);
+       ctx->optimum_cur_idx = 0;
+       ctx->optimum_end_idx = 0;
+       for (unsigned i = 0; i < ctx->num_blocks; i++) {
+               lzx_optimize_block(ctx, &ctx->block_specs[i],
+                                  ctx->params.alg_params.slow.num_optim_passes);
+       }
+}
+
+/*
+ * This is the fast version of lzx_prepare_blocks().  This version "quickly"
+ * prepares a single compressed block containing the entire input.  See the
+ * description of the "Fast algorithm" at the beginning of this file for more
+ * information.
+ *
+ * Input ---  the preprocessed data:
+ *
+ *     ctx->window[]
+ *     ctx->window_size
+ *
+ * Output --- the block specification and the corresponding match/literal data:
+ *
+ *     ctx->block_specs[]
+ *     ctx->num_blocks
+ *     ctx->chosen_items[]
+ */
+static void
+lzx_prepare_block_fast(struct lzx_compressor * ctx)
+{
+       struct lzx_record_ctx record_ctx;
+       struct lzx_block_spec *spec;
+
+       /* Parameters to hash chain LZ match finder
+        * (lazy with 1 match lookahead)  */
+       static const struct lz_params lzx_lz_params = {
+               /* Although LZX_MIN_MATCH_LEN == 2, length 2 matches typically
+                * aren't worth choosing when using greedy or lazy parsing.  */
+               .min_match      = 3,
+               .max_match      = LZX_MAX_MATCH_LEN,
+               .max_offset     = LZX_MAX_WINDOW_SIZE,
+               .good_match     = LZX_MAX_MATCH_LEN,
+               .nice_match     = LZX_MAX_MATCH_LEN,
+               .max_chain_len  = LZX_MAX_MATCH_LEN,
+               .max_lazy_match = LZX_MAX_MATCH_LEN,
+               .too_far        = 4096,
+       };
+
+       /* Initialize symbol frequencies and match offset LRU queue.  */
+       memset(&record_ctx.freqs, 0, sizeof(struct lzx_freqs));
+       lzx_lru_queue_init(&record_ctx.queue);
+       record_ctx.matches = ctx->chosen_items;
+
+       /* Determine series of matches/literals to output.  */
+       lz_analyze_block(ctx->window,
+                        ctx->window_size,
+                        lzx_record_match,
+                        lzx_record_literal,
+                        &record_ctx,
+                        &lzx_lz_params,
+                        ctx->prev_tab);
+
+       /* Set up block specification.  */
+       spec = &ctx->block_specs[0];
+       spec->block_type = LZX_BLOCKTYPE_ALIGNED;
+       spec->window_pos = 0;
+       spec->block_size = ctx->window_size;
+       spec->num_chosen_items = (record_ctx.matches - ctx->chosen_items);
+       spec->chosen_items = ctx->chosen_items;
+       lzx_make_huffman_codes(&record_ctx.freqs, &spec->codes,
+                              ctx->num_main_syms);
+       ctx->num_blocks = 1;
+}
 
-       if (uncompressed_len < 100)
+static size_t
+lzx_compress(const void *uncompressed_data, size_t uncompressed_size,
+            void *compressed_data, size_t compressed_size_avail, void *_ctx)
+{
+       struct lzx_compressor *ctx = _ctx;
+       struct output_bitstream ostream;
+       size_t compressed_size;
+
+       if (uncompressed_size < 100) {
+               LZX_DEBUG("Too small to bother compressing.");
+               return 0;
+       }
+
+       if (uncompressed_size > ctx->max_window_size) {
+               LZX_DEBUG("Can't compress %zu bytes using window of %u bytes!",
+                         uncompressed_size, ctx->max_window_size);
                return 0;
+       }
+
+       LZX_DEBUG("Attempting to compress %zu bytes...",
+                 uncompressed_size);
 
-       memset(&freq_tabs, 0, sizeof(freq_tabs));
-       queue.R0 = 1;
-       queue.R1 = 1;
-       queue.R2 = 1;
+       /* The input data must be preprocessed.  To avoid changing the original
+        * input, copy it to a temporary buffer.  */
+       memcpy(ctx->window, uncompressed_data, uncompressed_size);
+       ctx->window_size = uncompressed_size;
 
-       /* The input data must be preprocessed. To avoid changing the original
-        * input, copy it to a temporary buffer. */
-       memcpy(uncompressed_data, _uncompressed_data, uncompressed_len);
-       memset(uncompressed_data + uncompressed_len, 0, 8);
+       /* This line is unnecessary; it just avoids inconsequential accesses of
+        * uninitialized memory that would show up in memory-checking tools such
+        * as valgrind.  */
+       memset(&ctx->window[ctx->window_size], 0, 12);
+
+       LZX_DEBUG("Preprocessing data...");
 
        /* Before doing any actual compression, do the call instruction (0xe8
-        * byte) translation on the uncompressed data. */
-       do_call_insn_preprocessing(uncompressed_data, uncompressed_len);
+        * byte) translation on the uncompressed data.  */
+       lzx_do_e8_preprocessing(ctx->window, ctx->window_size);
 
-       /* Determine the sequence of matches and literals that will be output,
-        * and in the process, keep counts of the number of times each symbol
-        * will be output, so that the Huffman trees can be made. */
+       LZX_DEBUG("Preparing blocks...");
 
-       num_matches = lz_analyze_block(uncompressed_data, uncompressed_len,
-                                      match_tab, lzx_record_match,
-                                      lzx_record_literal, &freq_tabs,
-                                      &queue, freq_tabs.main_freq_table,
-                                      &lzx_lz_params);
+       /* Prepare the compressed data.  */
+       if (ctx->params.algorithm == WIMLIB_LZX_ALGORITHM_FAST)
+               lzx_prepare_block_fast(ctx);
+       else
+               lzx_prepare_blocks(ctx);
 
-       lzx_make_huffman_codes(&freq_tabs, &codes);
+       LZX_DEBUG("Writing compressed blocks...");
 
-       /* Initialize the output bitstream. */
-       init_output_bitstream(&ostream, compressed_data, uncompressed_len - 1);
+       /* Generate the compressed data.  */
+       init_output_bitstream(&ostream, compressed_data, compressed_size_avail);
+       lzx_write_all_blocks(ctx, &ostream);
 
-       /* The first three bits tell us what kind of block it is, and are one
-        * of the LZX_BLOCKTYPE_* values.  */
-       bitstream_put_bits(&ostream, block_type, 3);
+       LZX_DEBUG("Flushing bitstream...");
+       compressed_size = flush_output_bitstream(&ostream);
+       if (compressed_size == (u32)~0UL) {
+               LZX_DEBUG("Data did not compress to %zu bytes or less!",
+                         compressed_size_avail);
+               return 0;
+       }
 
-       /* The next bit indicates whether the block size is the default (32768),
-        * indicated by a 1 bit, or whether the block size is given by the next
-        * 16 bits, indicated by a 0 bit. */
-       if (uncompressed_len == 32768) {
-               bitstream_put_bits(&ostream, 1, 1);
+       LZX_DEBUG("Done: compressed %zu => %zu bytes.",
+                 uncompressed_size, compressed_size);
+
+       /* Verify that we really get the same thing back when decompressing.
+        * Although this could be disabled by default in all cases, it only
+        * takes around 2-3% of the running time of the slow algorithm to do the
+        * verification.  */
+       if (ctx->params.algorithm == WIMLIB_LZX_ALGORITHM_SLOW
+       #if defined(ENABLE_LZX_DEBUG) || defined(ENABLE_VERIFY_COMPRESSION)
+           || 1
+       #endif
+           )
+       {
+               struct wimlib_decompressor *decompressor;
+
+               if (0 == wimlib_create_decompressor(WIMLIB_COMPRESSION_TYPE_LZX,
+                                                   ctx->max_window_size,
+                                                   NULL,
+                                                   &decompressor))
+               {
+                       int ret;
+                       ret = wimlib_decompress(compressed_data,
+                                               compressed_size,
+                                               ctx->window,
+                                               uncompressed_size,
+                                               decompressor);
+                       wimlib_free_decompressor(decompressor);
+
+                       if (ret) {
+                               ERROR("Failed to decompress data we "
+                                     "compressed using LZX algorithm");
+                               wimlib_assert(0);
+                               return 0;
+                       }
+                       if (memcmp(uncompressed_data, ctx->window, uncompressed_size)) {
+                               ERROR("Data we compressed using LZX algorithm "
+                                     "didn't decompress to original");
+                               wimlib_assert(0);
+                               return 0;
+                       }
+               } else {
+                       WARNING("Failed to create decompressor for "
+                               "data verification!");
+               }
+       }
+       return compressed_size;
+}
+
+static void
+lzx_free_compressor(void *_ctx)
+{
+       struct lzx_compressor *ctx = _ctx;
+
+       if (ctx) {
+               FREE(ctx->chosen_items);
+               FREE(ctx->cached_matches);
+               FREE(ctx->optimum);
+               lz_bt_destroy(&ctx->mf);
+               FREE(ctx->block_specs);
+               FREE(ctx->prev_tab);
+               FREE(ctx->window);
+               FREE(ctx);
+       }
+}
+
+static const struct wimlib_lzx_compressor_params lzx_fast_default = {
+       .hdr = {
+               .size = sizeof(struct wimlib_lzx_compressor_params),
+       },
+       .algorithm = WIMLIB_LZX_ALGORITHM_FAST,
+       .use_defaults = 0,
+       .alg_params = {
+               .fast = {
+               },
+       },
+};
+static const struct wimlib_lzx_compressor_params lzx_slow_default = {
+       .hdr = {
+               .size = sizeof(struct wimlib_lzx_compressor_params),
+       },
+       .algorithm = WIMLIB_LZX_ALGORITHM_SLOW,
+       .use_defaults = 0,
+       .alg_params = {
+               .slow = {
+                       .use_len2_matches = 1,
+                       .nice_match_length = 32,
+                       .num_optim_passes = 2,
+                       .max_search_depth = 50,
+                       .main_nostat_cost = 15,
+                       .len_nostat_cost = 15,
+                       .aligned_nostat_cost = 7,
+               },
+       },
+};
+
+static const struct wimlib_lzx_compressor_params *
+lzx_get_params(const struct wimlib_compressor_params_header *_params)
+{
+       const struct wimlib_lzx_compressor_params *params =
+               (const struct wimlib_lzx_compressor_params*)_params;
+
+       if (params == NULL) {
+               LZX_DEBUG("Using default algorithm and parameters.");
+               params = &lzx_slow_default;
        } else {
-               bitstream_put_bits(&ostream, 0, 1);
-               bitstream_put_bits(&ostream, uncompressed_len, 16);
+               if (params->use_defaults) {
+                       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW)
+                               params = &lzx_slow_default;
+                       else
+                               params = &lzx_fast_default;
+               }
        }
+       return params;
+}
 
-       /* Write out the aligned offset tree. Note that M$ lies and says that
-        * the aligned offset tree comes after the length tree, but that is
-        * wrong; it actually is before the main tree.  */
-       if (block_type == LZX_BLOCKTYPE_ALIGNED)
-               for (i = 0; i < LZX_ALIGNEDTREE_NUM_SYMBOLS; i++)
-                       bitstream_put_bits(&ostream, codes.aligned_lens[i],
-                                          LZX_ALIGNEDTREE_ELEMENT_SIZE);
-
-       /* Write the pre-tree and lengths for the first LZX_NUM_CHARS symbols in the
-        * main tree. */
-       ret = lzx_write_compressed_tree(&ostream, codes.main_lens,
-                                       LZX_NUM_CHARS);
-       if (ret)
-               return 0;
+static int
+lzx_create_compressor(size_t window_size,
+                     const struct wimlib_compressor_params_header *_params,
+                     void **ctx_ret)
+{
+       const struct wimlib_lzx_compressor_params *params = lzx_get_params(_params);
+       struct lzx_compressor *ctx;
 
-       /* Write the pre-tree and symbols for the rest of the main tree. */
-       ret = lzx_write_compressed_tree(&ostream, codes.main_lens +
-                                       LZX_NUM_CHARS,
-                                       LZX_MAINTREE_NUM_SYMBOLS -
-                                               LZX_NUM_CHARS);
-       if (ret)
-               return 0;
+       LZX_DEBUG("Allocating LZX context...");
 
-       /* Write the pre-tree and symbols for the length tree. */
-       ret = lzx_write_compressed_tree(&ostream, codes.len_lens,
-                                       LZX_LENTREE_NUM_SYMBOLS);
-       if (ret)
-               return 0;
+       if (!lzx_window_size_valid(window_size))
+               return WIMLIB_ERR_INVALID_PARAM;
 
-       /* Write the compressed literals. */
-       ret = lzx_write_compressed_literals(&ostream, block_type,
-                                           match_tab, num_matches, &codes);
-       if (ret)
-               return 0;
+       ctx = CALLOC(1, sizeof(struct lzx_compressor));
+       if (ctx == NULL)
+               goto oom;
 
-       ret = flush_output_bitstream(&ostream);
-       if (ret)
-               return 0;
+       ctx->num_main_syms = lzx_get_num_main_syms(window_size);
+       ctx->max_window_size = window_size;
+       ctx->window = MALLOC(window_size + 12);
+       if (ctx->window == NULL)
+               goto oom;
+
+       if (params->algorithm == WIMLIB_LZX_ALGORITHM_FAST) {
+               ctx->prev_tab = MALLOC(window_size * sizeof(ctx->prev_tab[0]));
+               if (ctx->prev_tab == NULL)
+                       goto oom;
+       }
+
+       size_t block_specs_length = DIV_ROUND_UP(window_size, LZX_DIV_BLOCK_SIZE);
+       ctx->block_specs = MALLOC(block_specs_length * sizeof(ctx->block_specs[0]));
+       if (ctx->block_specs == NULL)
+               goto oom;
+
+       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
+               unsigned min_match_len = LZX_MIN_MATCH_LEN;
+               if (!params->alg_params.slow.use_len2_matches)
+                       min_match_len = max(min_match_len, 3);
+
+               if (!lz_bt_init(&ctx->mf,
+                               window_size,
+                               min_match_len,
+                               LZX_MAX_MATCH_LEN,
+                               params->alg_params.slow.nice_match_length,
+                               params->alg_params.slow.max_search_depth))
+                       goto oom;
+       }
+
+       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
+               ctx->optimum = MALLOC((LZX_OPTIM_ARRAY_SIZE +
+                                      min(params->alg_params.slow.nice_match_length,
+                                          LZX_MAX_MATCH_LEN)) *
+                                               sizeof(ctx->optimum[0]));
+               if (ctx->optimum == NULL)
+                       goto oom;
+       }
+
+       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
+               ctx->cached_matches = MALLOC(LZX_CACHE_SIZE);
+               if (ctx->cached_matches == NULL)
+                       goto oom;
+               ctx->cache_limit = ctx->cached_matches +
+                                  LZX_CACHE_LEN - (LZX_MAX_MATCHES_PER_POS + 1);
+       }
+
+       ctx->chosen_items = MALLOC(window_size * sizeof(ctx->chosen_items[0]));
+       if (ctx->chosen_items == NULL)
+               goto oom;
 
-       compressed_len = ostream.bit_output - (u8*)compressed_data;
+       memcpy(&ctx->params, params, sizeof(struct wimlib_lzx_compressor_params));
+       memset(&ctx->zero_codes, 0, sizeof(ctx->zero_codes));
 
-#ifdef ENABLE_VERIFY_COMPRESSION
-       /* Verify that we really get the same thing back when decompressing. */
+       LZX_DEBUG("Successfully allocated new LZX context.");
+
+       *ctx_ret = ctx;
+       return 0;
+
+oom:
+       lzx_free_compressor(ctx);
+       return WIMLIB_ERR_NOMEM;
+}
+
+static u64
+lzx_get_needed_memory(size_t max_block_size,
+                     const struct wimlib_compressor_params_header *_params)
+{
+       const struct wimlib_lzx_compressor_params *params = lzx_get_params(_params);
+
+       u64 size = 0;
+
+       size += sizeof(struct lzx_compressor);
+
+       size += max_block_size + 12;
+
+       size += DIV_ROUND_UP(max_block_size, LZX_DIV_BLOCK_SIZE) *
+               sizeof(((struct lzx_compressor*)0)->block_specs[0]);
+
+       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
+               size += max_block_size * sizeof(((struct lzx_compressor*)0)->chosen_items[0]);
+               size += lz_bt_get_needed_memory(max_block_size);
+               size += (LZX_OPTIM_ARRAY_SIZE +
+                        min(params->alg_params.slow.nice_match_length,
+                            LZX_MAX_MATCH_LEN)) *
+                               sizeof(((struct lzx_compressor *)0)->optimum[0]);
+               size += LZX_CACHE_SIZE;
+       } else {
+               size += max_block_size * sizeof(((struct lzx_compressor*)0)->prev_tab[0]);
+       }
+       return size;
+}
+
+static bool
+lzx_params_valid(const struct wimlib_compressor_params_header *_params)
+{
+       const struct wimlib_lzx_compressor_params *params =
+               (const struct wimlib_lzx_compressor_params*)_params;
+
+       if (params->hdr.size != sizeof(struct wimlib_lzx_compressor_params)) {
+               LZX_DEBUG("Invalid parameter structure size!");
+               return false;
+       }
+
+       if (params->algorithm != WIMLIB_LZX_ALGORITHM_SLOW &&
+           params->algorithm != WIMLIB_LZX_ALGORITHM_FAST)
        {
-               u8 buf[uncompressed_len];
-               ret = wimlib_lzx_decompress(compressed_data, compressed_len,
-                                           buf, uncompressed_len);
-               if (ret != 0) {
-                       ERROR("lzx_compress(): Failed to decompress data we compressed");
-                       abort();
+               LZX_DEBUG("Invalid algorithm.");
+               return false;
+       }
+
+       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW &&
+           !params->use_defaults)
+       {
+               if (params->alg_params.slow.num_optim_passes < 1)
+               {
+                       LZX_DEBUG("Invalid number of optimization passes!");
+                       return false;
                }
 
-               for (i = 0; i < uncompressed_len; i++) {
-                       if (buf[i] != *((u8*)_uncompressed_data + i)) {
-                               ERROR("lzx_compress(): Data we compressed didn't "
-                                     "decompress to the original data (difference at "
-                                     "byte %u of %u)", i + 1, uncompressed_len);
-                               abort();
-                       }
+               if (params->alg_params.slow.main_nostat_cost < 1 ||
+                   params->alg_params.slow.main_nostat_cost > 16)
+               {
+                       LZX_DEBUG("Invalid main_nostat_cost!");
+                       return false;
+               }
+
+               if (params->alg_params.slow.len_nostat_cost < 1 ||
+                   params->alg_params.slow.len_nostat_cost > 16)
+               {
+                       LZX_DEBUG("Invalid len_nostat_cost!");
+                       return false;
+               }
+
+               if (params->alg_params.slow.aligned_nostat_cost < 1 ||
+                   params->alg_params.slow.aligned_nostat_cost > 8)
+               {
+                       LZX_DEBUG("Invalid aligned_nostat_cost!");
+                       return false;
                }
        }
-#endif
-       return compressed_len;
+       return true;
 }
+
+const struct compressor_ops lzx_compressor_ops = {
+       .params_valid       = lzx_params_valid,
+       .get_needed_memory  = lzx_get_needed_memory,
+       .create_compressor  = lzx_create_compressor,
+       .compress           = lzx_compress,
+       .free_compressor    = lzx_free_compressor,
+};