]> wimlib.net Git - wimlib/blobdiff - src/lzx-compress.c
lzx-compress.c: Avoid unnecessary branch in match cost calculation
[wimlib] / src / lzx-compress.c
index ea55fca42f9ab24ae3c87373328ac2b750344af6..bc50a858bc9b62cf26d9d1b03d7b822591a1eb33 100644 (file)
@@ -1,11 +1,11 @@
 /*
  * lzx-compress.c
  *
- * LZX compression routines
+ * A compressor that produces output compatible with the LZX compression format.
  */
 
 /*
- * Copyright (C) 2012, 2013 Eric Biggers
+ * Copyright (C) 2012, 2013, 2014 Eric Biggers
  *
  * This file is part of wimlib, a library for working with WIM files.
  *
 
 
 /*
- * This file contains a compressor for the LZX compression format, as used in
- * the WIM file format.
+ * This file contains a compressor for the LZX ("Lempel-Ziv eXtended"?)
+ * compression format, as used in the WIM (Windows IMaging) file format.  This
+ * code may need some slight modifications to be used outside of the WIM format.
+ * In particular, in other situations the LZX block header might be slightly
+ * different, and a sliding window rather than a fixed-size window might be
+ * required.
  *
- * Format
- * ======
+ * ----------------------------------------------------------------------------
  *
- * First, the primary reference for the LZX compression format is the
- * specification released by Microsoft.
+ *                              Format Overview
  *
- * Second, the comments in lzx-decompress.c provide some more information about
- * the LZX compression format, including errors in the Microsoft specification.
+ * The primary reference for LZX is the specification released by Microsoft.
+ * However, the comments in lzx-decompress.c provide more information about LZX
+ * and note some errors in the Microsoft specification.
  *
- * Do note that LZX shares many similarities with DEFLATE, the algorithm used by
- * zlib and gzip.  Both LZX and DEFLATE use LZ77 matching and Huffman coding,
- * and certain other details are quite similar, such as the method for storing
- * Huffman codes.  However, some of the main differences are:
+ * LZX shares many similarities with DEFLATE, the format used by zlib and gzip.
+ * Both LZX and DEFLATE use LZ77 matching and Huffman coding.  Certain details
+ * are quite similar, such as the method for storing Huffman codes.  However,
+ * the main differences are:
+ *
+ * - LZX preprocesses the data to attempt to make x86 machine code slightly more
+ *   compressible before attempting to compress it further.
  *
- * - LZX preprocesses the data before attempting to compress it.
  * - LZX uses a "main" alphabet which combines literals and matches, with the
  *   match symbols containing a "length header" (giving all or part of the match
- *   length) and a "position footer" (giving, roughly speaking, the order of
+ *   length) and a "position slot" (giving, roughly speaking, the order of
  *   magnitude of the match offset).
- * - LZX does not have static Huffman blocks; however it does have two types of
- *   dynamic Huffman blocks ("aligned offset" and "verbatim").
- * - LZX has a minimum match length of 2 rather than 3.
- * - In LZX, match offsets 0 through 2 actually represent entries in a LRU queue
- *   of match offsets.
- *
- * Algorithms
- * ==========
- *
- * There are actually two distinct overall algorithms implemented here.  We
- * shall refer to them as the "slow" algorithm and the "fast" algorithm.  The
- * "slow" algorithm spends more time compressing to achieve a higher compression
- * ratio compared to the "fast" algorithm.  More details are presented below.
- *
- * Slow algorithm
- * --------------
- *
- * The "slow" algorithm to generate LZX-compressed data is roughly as follows:
- *
- * 1. Preprocess the input data to translate the targets of x86 call instructions
- *    to absolute offsets.
- *
- * 2. Determine the best known sequence of LZ77 matches ((offset, length) pairs)
- *    and literal bytes to divide the input into.  Raw match-finding is done
- *    using a very clever binary tree search based on the "Bt3" algorithm from
- *    7-Zip.  Parsing, or match-choosing, is solved essentially as a
- *    minimum-cost path problem, but using a heuristic forward search based on
- *    the Deflate encoder from 7-Zip rather than a more intuitive backward
- *    search, the latter of which would naively require that all matches be
- *    found.  This heuristic search, as well as other heuristics such as limits
- *    on the matches considered, considerably speed up this part of the
- *    algorithm, which is the main bottleneck.  Finally, after matches and
- *    literals are chosen, the needed Huffman codes needed to output them are
- *    built.
- *
- * 3. Up to a certain number of iterations, use the resulting Huffman codes to
- *    refine a cost model and go back to Step #2 to determine an improved
- *    sequence of matches and literals.
- *
- * 4. Up to a certain depth, try splitting the current block to see if the
- *    compression ratio can be improved.  This may be the case if parts of the
- *    input differ greatly from each other and could benefit from different
- *    Huffman codes.
- *
- * 5. Output the resulting block(s) using the match/literal sequences and the
- *    Huffman codes that were computed for each block.
- *
- * Fast algorithm
- * --------------
- *
- * The fast algorithm (and the only one available in wimlib v1.5.1 and earlier)
- * spends much less time on the main bottlenecks of the compression process ---
- * that is the match finding, match choosing, and block splitting.  Matches are
- * found and chosen with hash chains using a greedy parse with one position of
- * look-ahead.  No block splitting is done; only compressing the full input into
- * an aligned offset block is considered.
- *
- * API
- * ===
- *
- * The old API (retained for backward compatibility) consists of just one function:
- *
- *     wimlib_lzx_compress()
  *
- * The new compressor has more potential parameters and needs more memory, so
- * the new API ties up memory allocations and compression parameters into a
- * context:
+ * - LZX does not have static Huffman blocks (that is, the kind with preset
+ *   Huffman codes); however it does have two types of dynamic Huffman blocks
+ *   ("verbatim" and "aligned").
  *
- *     wimlib_lzx_alloc_context()
- *     wimlib_lzx_compress2()
- *     wimlib_lzx_free_context()
- *
- * Both wimlib_lzx_compress() and wimlib_lzx_compress2() are designed to
- * compress an in-memory buffer of up to 32768 bytes.  There is no sliding
- * window.  This is suitable for the WIM format, which uses fixed-size chunks
- * that are seemingly always 32768 bytes.  If needed, the compressor potentially
- * could be extended to support a larger and/or sliding window.
- *
- * Both wimlib_lzx_compress() and wimlib_lzx_compress2() return 0 if the data
- * could not be compressed to less than the size of the uncompressed data.
- * Again, this is suitable for the WIM format, which stores such data chunks
- * uncompressed.
- *
- * The functions in this API are exported from the library, although this is
- * only in case other programs happen to have uses for it other than WIM
- * reading/writing as already handled through the rest of the library.
- *
- * Acknowledgments
- * ===============
- *
- * Acknowledgments to several other open-source projects that made it possible
- * to implement this code:
- *
- * - 7-Zip (author: Igor Pavlov), for the binary tree match-finding
- *   algorithm, the heuristic near-optimal forward match-choosing
- *   algorithm, and the block splitting algorithm.
- *
- * - zlib (author: Jean-loup Gailly and Mark Adler), for the hash table
- *   match-finding algorithm.
+ * - LZX has a minimum match length of 2 rather than 3.
  *
- * - lzx-compress (author: Matthew T. Russotto), on which some parts of this
- *   code were originally based.
+ * - In LZX, match offsets 0 through 2 actually represent entries in an LRU
+ *   queue of match offsets.  This is very useful for certain types of files,
+ *   such as binary files that have repeating records.
+ *
+ * ----------------------------------------------------------------------------
+ *
+ *                           Algorithmic Overview
+ *
+ * At a high level, any implementation of LZX compression must operate as
+ * follows:
+ *
+ * 1. Preprocess the input data to translate the targets of 32-bit x86 call
+ *    instructions to absolute offsets.  (Actually, this is required for WIM,
+ *    but might not be in other places LZX is used.)
+ *
+ * 2. Find a sequence of LZ77-style matches and literal bytes that expands to
+ *    the preprocessed data.
+ *
+ * 3. Divide the match/literal sequence into one or more LZX blocks, each of
+ *    which may be "uncompressed", "verbatim", or "aligned".
+ *
+ * 4. Output each LZX block.
+ *
+ * Step (1) is fairly straightforward.  It requires looking for 0xe8 bytes in
+ * the input data and performing a translation on the 4 bytes following each
+ * one.
+ *
+ * Step (4) is complicated, but it is mostly determined by the LZX format.  The
+ * only real choice we have is what algorithm to use to build the length-limited
+ * canonical Huffman codes.  See lzx_write_all_blocks() for details.
+ *
+ * That leaves steps (2) and (3) as where all the hard stuff happens.  Focusing
+ * on step (2), we need to do LZ77-style parsing on the input data, or "window",
+ * to divide it into a sequence of matches and literals.  Each position in the
+ * window might have multiple matches associated with it, and we need to choose
+ * which one, if any, to actually use.  Therefore, the problem can really be
+ * divided into two areas of concern: (a) finding matches at a given position,
+ * which we shall call "match-finding", and (b) choosing whether to use a
+ * match or a literal at a given position, and if using a match, which one (if
+ * there is more than one available).  We shall call this "match-choosing".  We
+ * first consider match-finding, then match-choosing.
+ *
+ * ----------------------------------------------------------------------------
+ *
+ *                              Match-finding
+ *
+ * Given a position in the window, we want to find LZ77-style "matches" with
+ * that position at previous positions in the window.  With LZX, the minimum
+ * match length is 2 and the maximum match length is 257.  The only restriction
+ * on offsets is that LZX does not allow the last 2 bytes of the window to match
+ * the beginning of the window.
+ *
+ * There are a number of algorithms that can be used for this, including hash
+ * chains, binary trees, and suffix arrays.  Binary trees generally work well
+ * for LZX compression since it uses medium-size windows (2^15 to 2^21 bytes).
+ * However, when compressing in a fast mode where many positions are skipped
+ * (not searched for matches), hash chains are faster.
+ *
+ * Since the match-finders are not specific to LZX, I will not explain them in
+ * detail here.  Instead, see lz_hash_chains.c and lz_binary_trees.c.
+ *
+ * ----------------------------------------------------------------------------
+ *
+ *                              Match-choosing
+ *
+ * Usually, choosing the longest match is best because it encodes the most data
+ * in that one item.  However, sometimes the longest match is not optimal
+ * because (a) choosing a long match now might prevent using an even longer
+ * match later, or (b) more generally, what we actually care about is the number
+ * of bits it will ultimately take to output each match or literal, which is
+ * actually dependent on the entropy encoding using by the underlying
+ * compression format.  Consequently, a longer match usually, but not always,
+ * takes fewer bits to encode than multiple shorter matches or literals that
+ * cover the same data.
+ *
+ * This problem of choosing the truly best match/literal sequence is probably
+ * impossible to solve efficiently when combined with entropy encoding.  If we
+ * knew how many bits it takes to output each match/literal, then we could
+ * choose the optimal sequence using shortest-path search a la Dijkstra's
+ * algorithm.  However, with entropy encoding, the chosen match/literal sequence
+ * affects its own encoding.  Therefore, we can't know how many bits it will
+ * take to actually output any one match or literal until we have actually
+ * chosen the full sequence of matches and literals.
+ *
+ * Notwithstanding the entropy encoding problem, we also aren't guaranteed to
+ * choose the optimal match/literal sequence unless the match-finder (see
+ * section "Match-finder") provides the match-chooser with all possible matches
+ * at each position.  However, this is not computationally efficient.  For
+ * example, there might be many matches of the same length, and usually (but not
+ * always) the best choice is the one with the smallest offset.  So in practice,
+ * it's fine to only consider the smallest offset for a given match length at a
+ * given position.  (Actually, for LZX, it's also worth considering repeat
+ * offsets.)
+ *
+ * In addition, as mentioned earlier, in LZX we have the choice of using
+ * multiple blocks, each of which resets the Huffman codes.  This expands the
+ * search space even further.  Therefore, to simplify the problem, we currently
+ * we don't attempt to actually choose the LZX blocks based on the data.
+ * Instead, we just divide the data into fixed-size blocks of LZX_DIV_BLOCK_SIZE
+ * bytes each, and always use verbatim or aligned blocks (never uncompressed).
+ * A previous version of this code recursively split the input data into
+ * equal-sized blocks, up to a maximum depth, and chose the lowest-cost block
+ * divisions.  However, this made compression much slower and did not actually
+ * help very much.  It remains an open question whether a sufficiently fast and
+ * useful block-splitting algorithm is possible for LZX.  Essentially the same
+ * problem also applies to DEFLATE.  The Microsoft LZX compressor seemingly does
+ * do block splitting, although I don't know how fast or useful it is,
+ * specifically.
+ *
+ * Now, back to the entropy encoding problem.  The "solution" is to use an
+ * iterative approach to compute a good, but not necessarily optimal,
+ * match/literal sequence.  Start with a fixed assignment of symbol costs and
+ * choose an "optimal" match/literal sequence based on those costs, using
+ * shortest-path seach a la Dijkstra's algorithm.  Then, for each iteration of
+ * the optimization, update the costs based on the entropy encoding of the
+ * current match/literal sequence, then choose a new match/literal sequence
+ * based on the updated costs.  Usually, the actual cost to output the current
+ * match/literal sequence will decrease in each iteration until it converges on
+ * a fixed point.  This result may not be the truly optimal match/literal
+ * sequence, but it usually is much better than one chosen by doing a "greedy"
+ * parse where we always chooe the longest match.
+ *
+ * An alternative to both greedy parsing and iterative, near-optimal parsing is
+ * "lazy" parsing.  Briefly, "lazy" parsing considers just the longest match at
+ * each position, but it waits to choose that match until it has also examined
+ * the next position.  This is actually a useful approach; it's used by zlib,
+ * for example.  Therefore, for fast compression we combine lazy parsing with
+ * the hash chain max-finder.  For normal/high compression we combine
+ * near-optimal parsing with the binary tree match-finder.
  */
 
 #ifdef HAVE_CONFIG_H
 #  include "config.h"
 #endif
 
-#include "wimlib.h"
-#include "wimlib/compress.h"
+#include "wimlib/compressor_ops.h"
+#include "wimlib/compress_common.h"
+#include "wimlib/endianness.h"
 #include "wimlib/error.h"
+#include "wimlib/lz_mf.h"
+#include "wimlib/lz_repsearch.h"
 #include "wimlib/lzx.h"
 #include "wimlib/util.h"
-
-#ifdef ENABLE_LZX_DEBUG
-#  include <wimlib/decompress.h>
-#endif
-
 #include <string.h>
 
-/* Experimental parameters not exposed through the API  */
-#define LZX_PARAM_OPTIM_ARRAY_SIZE     1024
-#define LZX_PARAM_ACCOUNT_FOR_LRU      1
-#define LZX_PARAM_DONT_SKIP_MATCHES    0
-#define LZX_PARAM_USE_EMPIRICAL_DEFAULT_COSTS 1
+#define LZX_OPTIM_ARRAY_LENGTH 4096
+
+#define LZX_DIV_BLOCK_SIZE     32768
 
-/* Currently, this constant can't simply be changed because the code currently
- * uses a static number of position slots (and may make other assumptions as
- * well).  */
-#define LZX_MAX_WINDOW_SIZE    32768
+#define LZX_CACHE_PER_POS      8
 
-/* This may be WIM-specific  */
-#define LZX_DEFAULT_BLOCK_SIZE  32768
+#define LZX_MAX_MATCHES_PER_POS        (LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1)
 
-#define LZX_LZ_HASH_BITS       15
-#define LZX_LZ_HASH_SIZE       (1 << LZX_LZ_HASH_BITS)
-#define LZX_LZ_HASH_MASK       (LZX_LZ_HASH_SIZE - 1)
-#define LZX_LZ_HASH_SHIFT      5
+#define LZX_CACHE_LEN (LZX_DIV_BLOCK_SIZE * (LZX_CACHE_PER_POS + 1))
 
 /* Codewords for the LZX main, length, and aligned offset Huffman codes  */
 struct lzx_codewords {
-       u16 main[LZX_MAINTREE_NUM_SYMBOLS];
-       u16 len[LZX_LENTREE_NUM_SYMBOLS];
-       u16 aligned[LZX_ALIGNEDTREE_NUM_SYMBOLS];
+       u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u32 len[LZX_LENCODE_NUM_SYMBOLS];
+       u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* Lengths for the LZX main, length, and aligned offset Huffman codes  */
+/* Codeword lengths (in bits) for the LZX main, length, and aligned offset
+ * Huffman codes.
+ *
+ * A 0 length means the codeword has zero frequency.
+ */
 struct lzx_lens {
-       u8 main[LZX_MAINTREE_NUM_SYMBOLS];
-       u8 len[LZX_LENTREE_NUM_SYMBOLS];
-       u8 aligned[LZX_ALIGNEDTREE_NUM_SYMBOLS];
+       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u8 len[LZX_LENCODE_NUM_SYMBOLS];
+       u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+};
+
+/* Costs for the LZX main, length, and aligned offset Huffman symbols.
+ *
+ * If a codeword has zero frequency, it must still be assigned some nonzero cost
+ * --- generally a high cost, since even if it gets used in the next iteration,
+ * it probably will not be used very many times.  */
+struct lzx_costs {
+       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u8 len[LZX_LENCODE_NUM_SYMBOLS];
+       u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
 /* The LZX main, length, and aligned offset Huffman codes  */
@@ -208,13 +251,13 @@ struct lzx_codes {
 
 /* Tables for tallying symbol frequencies in the three LZX alphabets  */
 struct lzx_freqs {
-       freq_t main[LZX_MAINTREE_NUM_SYMBOLS];
-       freq_t len[LZX_LENTREE_NUM_SYMBOLS];
-       freq_t aligned[LZX_ALIGNEDTREE_NUM_SYMBOLS];
+       u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u32 len[LZX_LENCODE_NUM_SYMBOLS];
+       u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
 /* LZX intermediate match/literal format  */
-struct lzx_match {
+struct lzx_item {
        /* Bit     Description
         *
         * 31      1 if a match, 0 if a literal.
@@ -224,66 +267,159 @@ struct lzx_match {
         *
         * 8-24    position footer.  This is the offset of the real formatted
         *         offset from the position base.  This can be at most 17 bits
-        *         (since lzx_extra_bits[LZX_NUM_POSITION_SLOTS - 1] is 17).
+        *         (since lzx_extra_bits[LZX_MAX_POSITION_SLOTS - 1] is 17).
         *
         * 0-7     length of match, minus 2.  This can be at most
-        *         (LZX_MAX_MATCH - 2) == 255, so it will fit in 8 bits.  */
+        *         (LZX_MAX_MATCH_LEN - 2) == 255, so it will fit in 8 bits.  */
        u32 data;
 };
 
-/* Raw LZ match/literal format: just a length and offset.
- *
- * The length is the number of bytes of the match, and the offset is the number
- * of bytes back in the input the match is from the matched text.
- *
- * If @len < LZX_MIN_MATCH, then it's really just a literal byte and @offset is
- * meaningless.  */
-struct raw_match {
-       u16 len;
-       u16 offset;
-};
-
-/* Specification for a LZX block  */
+/* Specification for an LZX block.  */
 struct lzx_block_spec {
 
-       /* Set to 1 if this block has been split (in two --- we only considser
-        * binary splits).  In such cases the rest of the fields are
-        * unimportant, since the relevant information is rather in the
-        * structures for the sub-blocks.  */
-       u8 is_split : 1;
-
        /* One of the LZX_BLOCKTYPE_* constants indicating which type of this
         * block.  */
-       u8 block_type : 2;
+       int block_type;
 
        /* 0-based position in the window at which this block starts.  */
-       u16 window_pos;
+       u32 window_pos;
 
        /* The number of bytes of uncompressed data this block represents.  */
-       u16 block_size;
+       u32 block_size;
 
-       /* The position in the 'chosen_matches' array in the `struct
-        * lzx_compressor' at which the match/literal specifications for
-        * this block begin.  */
-       unsigned chosen_matches_start_pos;
+       /* The match/literal sequence for this block.  */
+       struct lzx_item *chosen_items;
 
-       /* The number of match/literal specifications for this block.  */
-       u16 num_chosen_matches;
+       /* The length of the @chosen_items sequence.  */
+       u32 num_chosen_items;
 
        /* Huffman codes for this block.  */
        struct lzx_codes codes;
 };
 
+struct lzx_compressor;
+
+struct lzx_compressor_params {
+       struct lz_match (*choose_item_func)(struct lzx_compressor *);
+       enum lz_mf_algo mf_algo;
+       u32 num_optim_passes;
+       u32 min_match_length;
+       u32 nice_match_length;
+       u32 max_search_depth;
+};
+
+/* State of the LZX compressor.  */
+struct lzx_compressor {
+
+       /* The buffer of data to be compressed.
+        *
+        * 0xe8 byte preprocessing is done directly on the data here before
+        * further compression.
+        *
+        * Note that this compressor does *not* use a real sliding window!!!!
+        * It's not needed in the WIM format, since every chunk is compressed
+        * independently.  This is by design, to allow random access to the
+        * chunks.  */
+       u8 *cur_window;
+
+       /* Number of bytes of data to be compressed, which is the number of
+        * bytes of data in @cur_window that are actually valid.  */
+       u32 cur_window_size;
+
+       /* Allocated size of @cur_window.  */
+       u32 max_window_size;
+
+       /* log2 order of the LZX window size for LZ match offset encoding
+        * purposes.  Will be >= LZX_MIN_WINDOW_ORDER and <=
+        * LZX_MAX_WINDOW_ORDER.
+        *
+        * Note: 1 << @window_order is normally equal to @max_window_size, but
+        * it will be greater than @max_window_size in the event that the
+        * compressor was created with a non-power-of-2 block size.  (See
+        * lzx_get_window_order().)  */
+       unsigned window_order;
+
+       /* Compression parameters.  */
+       struct lzx_compressor_params params;
+
+       unsigned (*get_matches_func)(struct lzx_compressor *, const struct lz_match **);
+       void (*skip_bytes_func)(struct lzx_compressor *, unsigned n);
+
+       /* Number of symbols in the main alphabet (depends on the @window_order
+        * since it determines the maximum allowed offset).  */
+       unsigned num_main_syms;
+
+       /* The current match offset LRU queue.  */
+       struct lzx_lru_queue queue;
+
+       /* Space for the sequences of matches/literals that were chosen for each
+        * block.  */
+       struct lzx_item *chosen_items;
+
+       /* Information about the LZX blocks the preprocessed input was divided
+        * into.  */
+       struct lzx_block_spec *block_specs;
+
+       /* Number of LZX blocks the input was divided into; a.k.a. the number of
+        * elements of @block_specs that are valid.  */
+       unsigned num_blocks;
+
+       /* This is simply filled in with zeroes and used to avoid special-casing
+        * the output of the first compressed Huffman code, which conceptually
+        * has a delta taken from a code with all symbols having zero-length
+        * codewords.  */
+       struct lzx_codes zero_codes;
+
+       /* The current cost model.  */
+       struct lzx_costs costs;
+
+       /* Lempel-Ziv match-finder.  */
+       struct lz_mf *mf;
+
+       /* Position in window of next match to return.  */
+       u32 match_window_pos;
+
+       /* The end-of-block position.  We can't allow any matches to span this
+        * position.  */
+       u32 match_window_end;
+
+       /* When doing more than one match-choosing pass over the data, matches
+        * found by the match-finder are cached in the following array to
+        * achieve a slight speedup when the same matches are needed on
+        * subsequent passes.  This is suboptimal because different matches may
+        * be preferred with different cost models, but seems to be a worthwhile
+        * speedup.  */
+       struct lz_match *cached_matches;
+       struct lz_match *cache_ptr;
+       struct lz_match *cache_limit;
+
+       /* Match-chooser state, used when doing near-optimal parsing.
+        *
+        * When matches have been chosen, optimum_cur_idx is set to the position
+        * in the window of the next match/literal to return and optimum_end_idx
+        * is set to the position in the window at the end of the last
+        * match/literal to return.  */
+       struct lzx_mc_pos_data *optimum;
+       unsigned optimum_cur_idx;
+       unsigned optimum_end_idx;
+
+       /* Previous match, used when doing lazy parsing.  */
+       struct lz_match prev_match;
+};
+
 /*
+ * Match chooser position data:
+ *
  * An array of these structures is used during the match-choosing algorithm.
  * They correspond to consecutive positions in the window and are used to keep
  * track of the cost to reach each position, and the match/literal choices that
  * need to be chosen to reach that position.
  */
-struct lzx_optimal {
+struct lzx_mc_pos_data {
        /* The approximate minimum cost, in bits, to reach this position in the
         * window which has been found so far.  */
        u32 cost;
+#define MC_INFINITE_COST ((u32)~0UL)
 
        /* The union here is just for clarity, since the fields are used in two
         * slightly different ways.  Initially, the @prev structure is filled in
@@ -295,1291 +431,980 @@ struct lzx_optimal {
                        /* Position of the start of the match or literal that
                         * was taken to get to this position in the approximate
                         * minimum-cost parse.  */
-                       u16 link;
+                       u32 link;
 
-                       /* Offset (as in a LZ (length, offset) pair) of the
+                       /* Offset (as in an LZ (length, offset) pair) of the
                         * match or literal that was taken to get to this
                         * position in the approximate minimum-cost parse.  */
-                       u16 match_offset;
+                       u32 match_offset;
                } prev;
                struct {
                        /* Position at which the match or literal starting at
                         * this position ends in the minimum-cost parse.  */
-                       u16 link;
+                       u32 link;
 
-                       /* Offset (as in a LZ (length, offset) pair) of the
+                       /* Offset (as in an LZ (length, offset) pair) of the
                         * match or literal starting at this position in the
                         * approximate minimum-cost parse.  */
-                       u16 match_offset;
+                       u32 match_offset;
                } next;
        };
-#if LZX_PARAM_ACCOUNT_FOR_LRU
+
+       /* Adaptive state that exists after an approximate minimum-cost path to
+        * reach this position is taken.
+        *
+        * Note: we update this whenever we update the pending minimum-cost
+        * path.  This is in contrast to LZMA, which also has an optimal parser
+        * that maintains a repeat offset queue per position, but will only
+        * compute the queue once that position is actually reached in the
+        * parse, meaning that matches are being considered *starting* at that
+        * position.  However, the two methods seem to have approximately the
+        * same performance if appropriate optimizations are used.  Intuitively
+        * the LZMA method seems faster, but it actually suffers from 1-2 extra
+        * hard-to-predict branches at each position.  Probably it works better
+        * for LZMA than LZX because LZMA has a larger adaptive state than LZX,
+        * and the LZMA encoder considers more possibilities.  */
        struct lzx_lru_queue queue;
-#endif
 };
 
-/* State of the LZX compressor  */
-struct lzx_compressor {
-
-       /* The parameters that were used to create the compressor.  */
-       struct wimlib_lzx_params params;
 
-       /* The buffer of data to be compressed.
-        *
-        * 0xe8 byte preprocessing is done directly on the data here before
-        * further compression.
-        *
-        * Note that this compressor does *not* use a sliding window!!!!
-        * It's not needed in the WIM format, since every chunk is compressed
-        * independently.  This is by design, to allow random access to the
-        * chunks.
-        *
-        * We reserve a few extra bytes to potentially allow reading off the end
-        * of the array in the match-finding code for optimization purposes.
-        */
-       u8 window[LZX_MAX_WINDOW_SIZE + 12];
+/*
+ * Structure to keep track of the current state of sending bits to the
+ * compressed output buffer.
+ *
+ * The LZX bitstream is encoded as a sequence of 16-bit coding units.
+ */
+struct lzx_output_bitstream {
 
-       /* Number of bytes of data to be compressed, which is the number of
-        * bytes of data in @window that are actually valid.  */
-       unsigned window_size;
+       /* Bits that haven't yet been written to the output buffer.  */
+       u32 bitbuf;
 
-       /* The current match offset LRU queue.  */
-       struct lzx_lru_queue queue;
+       /* Number of bits currently held in @bitbuf.  */
+       u32 bitcount;
 
-       /* Space for sequence of matches/literals that were chosen.
-        *
-        * Each LZX_MAX_WINDOW_SIZE-sized portion of this array is used for a
-        * different block splitting level.  */
-       struct lzx_match *chosen_matches;
+       /* Pointer to the start of the output buffer.  */
+       le16 *start;
 
-       /* Structures used during block splitting.
-        *
-        * This can be thought of as a binary tree.  block_specs[(1) - 1]
-        * represents to the top-level block (root node), and block_specs[(i*2)
-        * - 1] and block_specs[(i*2+1) - 1] represent the sub-blocks (child
-        * nodes) resulting from a binary split of the block represented by
-        * block_spec[(i) - 1].
-        */
-       struct lzx_block_spec *block_specs;
+       /* Pointer to the position in the output buffer at which the next coding
+        * unit should be written.  */
+       le16 *next;
 
-       /* This is simply filled in with zeroes and used to avoid special-casing
-        * the output of the first compressed Huffman code, which conceptually
-        * has a delta taken from a code with all symbols having zero-length
-        * codewords.  */
-       struct lzx_codes zero_codes;
+       /* Pointer past the end of the output buffer.  */
+       le16 *end;
+};
 
-       /* Slow algorithm only: The current cost model.  */
-       struct lzx_lens costs;
+/*
+ * Initialize the output bitstream.
+ *
+ * @os
+ *     The output bitstream structure to initialize.
+ * @buffer
+ *     The buffer being written to.
+ * @size
+ *     Size of @buffer, in bytes.
+ */
+static void
+lzx_init_output(struct lzx_output_bitstream *os, void *buffer, u32 size)
+{
+       os->bitbuf = 0;
+       os->bitcount = 0;
+       os->start = buffer;
+       os->next = os->start;
+       os->end = os->start + size / sizeof(le16);
+}
 
-       /* Slow algorithm only:  Table that maps the hash codes for 3 character
-        * sequences to the most recent position that sequence (or a sequence
-        * sharing the same hash code) appeared in the window.  */
-       u16 *hash_tab;
+/*
+ * Write some bits to the output bitstream.
+ *
+ * The bits are given by the low-order @num_bits bits of @bits.  Higher-order
+ * bits in @bits cannot be set.  At most 17 bits can be written at once.
+ *
+ * @max_bits is a compile-time constant that specifies the maximum number of
+ * bits that can ever be written at the call site.  Currently, it is used to
+ * optimize away the conditional code for writing a second 16-bit coding unit
+ * when writing fewer than 17 bits.
+ *
+ * If the output buffer space is exhausted, then the bits will be ignored, and
+ * lzx_flush_output() will return 0 when it gets called.
+ */
+static _always_inline_attribute void
+lzx_write_varbits(struct lzx_output_bitstream *os,
+                 const u32 bits, const unsigned int num_bits,
+                 const unsigned int max_num_bits)
+{
+       /* This code is optimized for LZX, which never needs to write more than
+        * 17 bits at once.  */
+       LZX_ASSERT(num_bits <= 17);
+       LZX_ASSERT(num_bits <= max_num_bits);
+       LZX_ASSERT(os->bitcount <= 15);
+
+       /* Add the bits to the bit buffer variable.  @bitcount will be at most
+        * 15, so there will be just enough space for the maximum possible
+        * @num_bits of 17.  */
+       os->bitcount += num_bits;
+       os->bitbuf = (os->bitbuf << num_bits) | bits;
+
+       /* Check whether any coding units need to be written.  */
+       if (os->bitcount >= 16) {
+
+               os->bitcount -= 16;
+
+               /* Write a coding unit, unless it would overflow the buffer.  */
+               if (os->next != os->end)
+                       *os->next++ = cpu_to_le16(os->bitbuf >> os->bitcount);
+
+               /* If writing 17 bits, a second coding unit might need to be
+                * written.  But because 'max_num_bits' is a compile-time
+                * constant, the compiler will optimize away this code at most
+                * call sites.  */
+               if (max_num_bits == 17 && os->bitcount == 16) {
+                       if (os->next != os->end)
+                               *os->next++ = cpu_to_le16(os->bitbuf);
+                       os->bitcount = 0;
+               }
+       }
+}
 
-       /* Slow algorithm only:  Table that maps 2-character sequences to the
-        * most recent position that sequence appeared in the window.  */
-       u16 *digram_tab;
+/* Use when @num_bits is a compile-time constant.  Otherwise use
+ * lzx_write_varbits().  */
+static _always_inline_attribute void
+lzx_write_bits(struct lzx_output_bitstream *os,
+              const u32 bits, const unsigned int num_bits)
+{
+       lzx_write_varbits(os, bits, num_bits, num_bits);
+}
 
-       /* Slow algorithm only: Table that contains the logical child pointers
-        * in the binary trees in the match-finding code.
-        *
-        * child_tab[i*2] and child_tab[i*2+1] are the left and right pointers,
-        * respectively, from the binary tree root corresponding to window
-        * position i.  */
-       u16 *child_tab;
+/*
+ * Flush the last coding unit to the output buffer if needed.  Return the total
+ * number of bytes written to the output buffer, or 0 if an overflow occurred.
+ */
+static u32
+lzx_flush_output(struct lzx_output_bitstream *os)
+{
+       if (os->next == os->end)
+               return 0;
 
-       /* Slow algorithm only: Matches that were already found and are saved in
-        * memory for subsequent queries (e.g. when block splitting).  */
-       struct raw_match *cached_matches;
+       if (os->bitcount != 0)
+               *os->next++ = cpu_to_le16(os->bitbuf << (16 - os->bitcount));
 
-       /* Slow algorithm only: Next position in 'cached_matches' to either
-        * return or fill in.  */
-       unsigned cached_matches_pos;
+       return (const u8 *)os->next - (const u8 *)os->start;
+}
 
-       /* Slow algorithm only: %true if reading from 'cached_matches'; %false
-        * if writing to 'cached_matches'.  */
-       bool matches_already_found;
+/* Returns the LZX position slot that corresponds to a given match offset,
+ * taking into account the recent offset queue and updating it if the offset is
+ * found in it.  */
+static unsigned
+lzx_get_position_slot(u32 offset, struct lzx_lru_queue *queue)
+{
+       unsigned position_slot;
 
-       /* Slow algorithm only: Position in window of next match to return.  */
-       unsigned match_window_pos;
+       /* See if the offset was recently used.  */
+       for (int i = 0; i < LZX_NUM_RECENT_OFFSETS; i++) {
+               if (offset == queue->R[i]) {
+                       /* Found it.  */
 
-       /* Slow algorithm only: No matches returned shall reach past this
-        * position.  */
-       unsigned match_window_end;
+                       /* Bring the repeat offset to the front of the
+                        * queue.  Note: this is, in fact, not a real
+                        * LRU queue because repeat matches are simply
+                        * swapped to the front.  */
+                       swap(queue->R[0], queue->R[i]);
 
-       /* Slow algorithm only: Temporary space used for match-choosing
-        * algorithm.
-        *
-        * The size of this array must be at least LZX_MAX_MATCH but otherwise
-        * is arbitrary.  More space simply allows the match-choosing algorithm
-        * to find better matches (depending on the input, as always).  */
-       struct lzx_optimal *optimum;
+                       /* The resulting position slot is simply the first index
+                        * at which the offset was found in the queue.  */
+                       return i;
+               }
+       }
 
-       /* Slow algorithm only: Variables used by the match-choosing algorithm.
-        *
-        * When matches have been chosen, optimum_cur_idx is set to the position
-        * in the window of the next match/literal to return and optimum_end_idx
-        * is set to the position in the window at the end of the last
-        * match/literal to return.  */
-       u32 optimum_cur_idx;
-       u32 optimum_end_idx;
-};
+       /* The offset was not recently used; look up its real position slot.  */
+       position_slot = lzx_get_position_slot_raw(offset + LZX_OFFSET_OFFSET);
 
-/* Returns the LZX position slot that corresponds to a given formatted offset.
- *
- * Logically, this returns the smallest i such that
- * formatted_offset >= lzx_position_base[i].
- *
- * The actual implementation below takes advantage of the regularity of the
- * numbers in the lzx_position_base array to calculate the slot directly from
- * the formatted offset without actually looking at the array.
- */
-static unsigned
-lzx_get_position_slot(unsigned formatted_offset)
-{
-#if 0
-       /*
-        * Slots 36-49 (formatted_offset >= 262144) can be found by
-        * (formatted_offset/131072) + 34 == (formatted_offset >> 17) + 34;
-        * however, this check for formatted_offset >= 262144 is commented out
-        * because WIM chunks cannot be that large.
-        */
-       if (formatted_offset >= 262144) {
-               return (formatted_offset >> 17) + 34;
-       } else
-#endif
-       {
-               /* Note: this part here only works if:
-                *
-                *    2 <= formatted_offset < 655360
-                *
-                * It is < 655360 because the frequency of the position bases
-                * increases starting at the 655360 entry, and it is >= 2
-                * because the below calculation fails if the most significant
-                * bit is lower than the 2's place. */
-               LZX_ASSERT(2 <= formatted_offset  && formatted_offset < 655360);
-               unsigned mssb_idx = bsr32(formatted_offset);
-               return (mssb_idx << 1) |
-                       ((formatted_offset >> (mssb_idx - 1)) & 1);
-       }
-}
+       /* Bring the new offset to the front of the queue.  */
+       for (int i = LZX_NUM_RECENT_OFFSETS - 1; i > 0; i--)
+               queue->R[i] = queue->R[i - 1];
+       queue->R[0] = offset;
 
-/* Compute the hash code for the next 3-character sequence in the window.  */
-static unsigned
-lzx_lz_compute_hash(const u8 *window)
-{
-       unsigned hash;
-
-       hash = window[0];
-       hash <<= LZX_LZ_HASH_SHIFT;
-       hash ^= window[1];
-       hash <<= LZX_LZ_HASH_SHIFT;
-       hash ^= window[2];
-       return hash & LZX_LZ_HASH_MASK;
+       return position_slot;
 }
 
 /* Build the main, length, and aligned offset Huffman codes used in LZX.
  *
  * This takes as input the frequency tables for each code and produces as output
- * a set of tables that map symbols to codewords and lengths.  */
+ * a set of tables that map symbols to codewords and codeword lengths.  */
 static void
 lzx_make_huffman_codes(const struct lzx_freqs *freqs,
-                      struct lzx_codes *codes)
+                      struct lzx_codes *codes,
+                      unsigned num_main_syms)
 {
-       make_canonical_huffman_code(LZX_MAINTREE_NUM_SYMBOLS,
-                                   LZX_MAX_CODEWORD_LEN,
+       make_canonical_huffman_code(num_main_syms,
+                                   LZX_MAX_MAIN_CODEWORD_LEN,
                                    freqs->main,
                                    codes->lens.main,
                                    codes->codewords.main);
 
-       make_canonical_huffman_code(LZX_LENTREE_NUM_SYMBOLS,
-                                   LZX_MAX_CODEWORD_LEN,
+       make_canonical_huffman_code(LZX_LENCODE_NUM_SYMBOLS,
+                                   LZX_MAX_LEN_CODEWORD_LEN,
                                    freqs->len,
                                    codes->lens.len,
                                    codes->codewords.len);
 
-       make_canonical_huffman_code(LZX_ALIGNEDTREE_NUM_SYMBOLS, 8,
+       make_canonical_huffman_code(LZX_ALIGNEDCODE_NUM_SYMBOLS,
+                                   LZX_MAX_ALIGNED_CODEWORD_LEN,
                                    freqs->aligned,
                                    codes->lens.aligned,
                                    codes->codewords.aligned);
 }
 
 /*
- * Output a LZX match.
- *
- * @out:         The bitstream to write the match to.
- * @block_type:  The type of the LZX block (LZX_BLOCKTYPE_ALIGNED or LZX_BLOCKTYPE_VERBATIM)
- * @match:      The match.
- * @codes:      Pointer to a structure that contains the codewords for the
- *              main, length, and aligned offset Huffman codes.
+ * Output a precomputed LZX match.
+ *
+ * @os:
+ *     The bitstream to which to write the match.
+ * @ones_if_aligned
+ *     A mask of all ones if the block is of type LZX_BLOCKTYPE_ALIGNED,
+ *     otherwise 0.
+ * @match:
+ *     The match data.
+ * @codes:
+ *     Pointer to a structure that contains the codewords for the main, length,
+ *     and aligned offset Huffman codes for the current LZX compressed block.
  */
 static void
-lzx_write_match(struct output_bitstream *out, int block_type,
-               struct lzx_match match, const struct lzx_codes *codes)
+lzx_write_match(struct lzx_output_bitstream *os, unsigned ones_if_aligned,
+               struct lzx_item match, const struct lzx_codes *codes)
 {
-       /* low 8 bits are the match length minus 2 */
        unsigned match_len_minus_2 = match.data & 0xff;
-       /* Next 17 bits are the position footer */
-       unsigned position_footer = (match.data >> 8) & 0x1ffff; /* 17 bits */
-       /* Next 6 bits are the position slot. */
-       unsigned position_slot = (match.data >> 25) & 0x3f;     /* 6 bits */
+       u32 position_footer = (match.data >> 8) & 0x1ffff;
+       unsigned position_slot = (match.data >> 25) & 0x3f;
        unsigned len_header;
        unsigned len_footer;
-       unsigned len_pos_header;
        unsigned main_symbol;
        unsigned num_extra_bits;
-       unsigned verbatim_bits;
-       unsigned aligned_bits;
 
-       /* If the match length is less than MIN_MATCH (= 2) +
-        * NUM_PRIMARY_LENS (= 7), the length header contains
-        * the match length minus MIN_MATCH, and there is no
-        * length footer.
+       /* If the match length is less than MIN_MATCH_LEN (= 2) +
+        * NUM_PRIMARY_LENS (= 7), the length header contains the match length
+        * minus MIN_MATCH_LEN, and there is no length footer.
         *
-        * Otherwise, the length header contains
-        * NUM_PRIMARY_LENS, and the length footer contains
-        * the match length minus NUM_PRIMARY_LENS minus
-        * MIN_MATCH. */
+        * Otherwise, the length header contains NUM_PRIMARY_LENS, and the
+        * length footer contains the match length minus NUM_PRIMARY_LENS minus
+        * MIN_MATCH_LEN. */
        if (match_len_minus_2 < LZX_NUM_PRIMARY_LENS) {
                len_header = match_len_minus_2;
-               /* No length footer-- mark it with a special
-                * value. */
-               len_footer = (unsigned)(-1);
        } else {
                len_header = LZX_NUM_PRIMARY_LENS;
                len_footer = match_len_minus_2 - LZX_NUM_PRIMARY_LENS;
        }
 
-       /* Combine the position slot with the length header into
-        * a single symbol that will be encoded with the main
-        * tree. */
-       len_pos_header = (position_slot << 3) | len_header;
-
-       /* The actual main symbol is offset by LZX_NUM_CHARS because
-        * values under LZX_NUM_CHARS are used to indicate a literal
-        * byte rather than a match. */
-       main_symbol = len_pos_header + LZX_NUM_CHARS;
+       /* Combine the position slot with the length header into a single symbol
+        * that will be encoded with the main code.
+        *
+        * The actual main symbol is offset by LZX_NUM_CHARS because values
+        * under LZX_NUM_CHARS are used to indicate a literal byte rather than a
+        * match.  */
+       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
 
        /* Output main symbol. */
-       bitstream_put_bits(out, codes->codewords.main[main_symbol],
-                          codes->lens.main[main_symbol]);
+       lzx_write_varbits(os, codes->codewords.main[main_symbol],
+                         codes->lens.main[main_symbol],
+                         LZX_MAX_MAIN_CODEWORD_LEN);
 
        /* If there is a length footer, output it using the
         * length Huffman code. */
-       if (len_footer != (unsigned)(-1)) {
-               bitstream_put_bits(out, codes->codewords.len[len_footer],
-                                  codes->lens.len[len_footer]);
+       if (len_header == LZX_NUM_PRIMARY_LENS) {
+               lzx_write_varbits(os, codes->codewords.len[len_footer],
+                                 codes->lens.len[len_footer],
+                                 LZX_MAX_LEN_CODEWORD_LEN);
        }
 
+       /* Output the position footer.  */
+
        num_extra_bits = lzx_get_num_extra_bits(position_slot);
 
-       /* For aligned offset blocks with at least 3 extra bits, output the
-        * verbatim bits literally, then the aligned bits encoded using the
-        * aligned offset tree.  Otherwise, only the verbatim bits need to be
-        * output. */
-       if ((block_type == LZX_BLOCKTYPE_ALIGNED) && (num_extra_bits >= 3)) {
+       if ((num_extra_bits & ones_if_aligned) >= 3) {
 
-               verbatim_bits = position_footer >> 3;
-               bitstream_put_bits(out, verbatim_bits,
-                                  num_extra_bits - 3);
+               /* Aligned offset blocks: The low 3 bits of the position footer
+                * are Huffman-encoded using the aligned offset code.  The
+                * remaining bits are output literally.  */
 
-               aligned_bits = (position_footer & 7);
-               bitstream_put_bits(out,
-                                  codes->codewords.aligned[aligned_bits],
-                                  codes->lens.aligned[aligned_bits]);
+               lzx_write_varbits(os,
+                                 position_footer >> 3, num_extra_bits - 3, 14);
+
+               lzx_write_varbits(os,
+                                 codes->codewords.aligned[position_footer & 7],
+                                 codes->lens.aligned[position_footer & 7],
+                                 LZX_MAX_ALIGNED_CODEWORD_LEN);
        } else {
-               /* verbatim bits is the same as the position
-                * footer, in this case. */
-               bitstream_put_bits(out, position_footer, num_extra_bits);
+               /* Verbatim blocks, or fewer than 3 extra bits:  All position
+                * footer bits are output literally.  */
+               lzx_write_varbits(os, position_footer, num_extra_bits, 17);
        }
 }
 
+/* Output an LZX literal (encoded with the main Huffman code).  */
+static void
+lzx_write_literal(struct lzx_output_bitstream *os, unsigned literal,
+                 const struct lzx_codes *codes)
+{
+       lzx_write_varbits(os, codes->codewords.main[literal],
+                         codes->lens.main[literal], LZX_MAX_MAIN_CODEWORD_LEN);
+}
+
 static unsigned
-lzx_build_precode(const u8 lens[restrict],
-                 const u8 prev_lens[restrict],
-                 unsigned num_syms,
-                 freq_t precode_freqs[restrict LZX_PRETREE_NUM_SYMBOLS],
-                 u8 output_syms[restrict num_syms],
-                 u8 precode_lens[restrict LZX_PRETREE_NUM_SYMBOLS],
-                 u16 precode_codewords[restrict LZX_PRETREE_NUM_SYMBOLS],
-                 unsigned * num_additional_bits_ret)
+lzx_compute_precode_items(const u8 lens[restrict],
+                         const u8 prev_lens[restrict],
+                         const unsigned num_lens,
+                         u32 precode_freqs[restrict],
+                         unsigned precode_items[restrict])
 {
-       unsigned output_syms_idx;
-       unsigned cur_run_len;
-       unsigned i;
-       unsigned len_in_run;
-       unsigned additional_bits;
-       signed char delta;
-       unsigned num_additional_bits = 0;
-
-       memset(precode_freqs, 0,
-              LZX_PRETREE_NUM_SYMBOLS * sizeof(precode_freqs[0]));
-
-       /* Since the code word lengths use a form of RLE encoding, the goal here
-        * is to find each run of identical lengths when going through them in
-        * symbol order (including runs of length 1).  For each run, as many
-        * lengths are encoded using RLE as possible, and the rest are output
-        * literally.
-        *
-        * output_syms[] will be filled in with the length symbols that will be
-        * output, including RLE codes, not yet encoded using the pre-tree.
-        *
-        * cur_run_len keeps track of how many code word lengths are in the
-        * current run of identical lengths.
-        */
-       output_syms_idx = 0;
-       cur_run_len = 1;
-       for (i = 1; i <= num_syms; i++) {
+       unsigned *itemptr;
+       unsigned run_start;
+       unsigned run_end;
+       unsigned extra_bits;
+       int delta;
+       u8 len;
+
+       itemptr = precode_items;
+       run_start = 0;
+       do {
+               /* Find the next run of codeword lengths.  */
 
-               if (i != num_syms && lens[i] == lens[i - 1]) {
-                       /* Still in a run--- keep going. */
-                       cur_run_len++;
-                       continue;
-               }
+               /* len = the length being repeated  */
+               len = lens[run_start];
 
-               /* Run ended! Check if it is a run of zeroes or a run of
-                * nonzeroes. */
+               run_end = run_start + 1;
 
-               /* The symbol that was repeated in the run--- not to be confused
-                * with the length *of* the run (cur_run_len) */
-               len_in_run = lens[i - 1];
+               /* Fast case for a single length.  */
+               if (likely(run_end == num_lens || len != lens[run_end])) {
+                       delta = prev_lens[run_start] - len;
+                       if (delta < 0)
+                               delta += 17;
+                       precode_freqs[delta]++;
+                       *itemptr++ = delta;
+                       run_start++;
+                       continue;
+               }
 
-               if (len_in_run == 0) {
-                       /* A run of 0's.  Encode it in as few length
-                        * codes as we can. */
+               /* Extend the run.  */
+               do {
+                       run_end++;
+               } while (run_end != num_lens && len == lens[run_end]);
 
-                       /* The magic length 18 indicates a run of 20 + n zeroes,
-                        * where n is an uncompressed literal 5-bit integer that
-                        * follows the magic length. */
-                       while (cur_run_len >= 20) {
+               if (len == 0) {
+                       /* Run of zeroes.  */
 
-                               additional_bits = min(cur_run_len - 20, 0x1f);
-                               num_additional_bits += 5;
+                       /* Symbol 18: RLE 20 to 51 zeroes at a time.  */
+                       while ((run_end - run_start) >= 20) {
+                               extra_bits = min((run_end - run_start) - 20, 0x1f);
                                precode_freqs[18]++;
-                               output_syms[output_syms_idx++] = 18;
-                               output_syms[output_syms_idx++] = additional_bits;
-                               cur_run_len -= 20 + additional_bits;
+                               *itemptr++ = 18 | (extra_bits << 5);
+                               run_start += 20 + extra_bits;
                        }
 
-                       /* The magic length 17 indicates a run of 4 + n zeroes,
-                        * where n is an uncompressed literal 4-bit integer that
-                        * follows the magic length. */
-                       while (cur_run_len >= 4) {
-                               additional_bits = min(cur_run_len - 4, 0xf);
-                               num_additional_bits += 4;
+                       /* Symbol 17: RLE 4 to 19 zeroes at a time.  */
+                       if ((run_end - run_start) >= 4) {
+                               extra_bits = min((run_end - run_start) - 4, 0xf);
                                precode_freqs[17]++;
-                               output_syms[output_syms_idx++] = 17;
-                               output_syms[output_syms_idx++] = additional_bits;
-                               cur_run_len -= 4 + additional_bits;
+                               *itemptr++ = 17 | (extra_bits << 5);
+                               run_start += 4 + extra_bits;
                        }
-
                } else {
 
                        /* A run of nonzero lengths. */
 
-                       /* The magic length 19 indicates a run of 4 + n
-                        * nonzeroes, where n is a literal bit that follows the
-                        * magic length, and where the value of the lengths in
-                        * the run is given by an extra length symbol, encoded
-                        * with the precode, that follows the literal bit.
-                        *
-                        * The extra length symbol is encoded as a difference
-                        * from the length of the codeword for the first symbol
-                        * in the run in the previous tree.
-                        * */
-                       while (cur_run_len >= 4) {
-                               additional_bits = (cur_run_len > 4);
-                               num_additional_bits += 1;
-                               delta = (signed char)prev_lens[i - cur_run_len] -
-                                       (signed char)len_in_run;
+                       /* Symbol 19: RLE 4 to 5 of any length at a time.  */
+                       while ((run_end - run_start) >= 4) {
+                               extra_bits = (run_end - run_start) > 4;
+                               delta = prev_lens[run_start] - len;
                                if (delta < 0)
                                        delta += 17;
                                precode_freqs[19]++;
-                               precode_freqs[(unsigned char)delta]++;
-                               output_syms[output_syms_idx++] = 19;
-                               output_syms[output_syms_idx++] = additional_bits;
-                               output_syms[output_syms_idx++] = delta;
-                               cur_run_len -= 4 + additional_bits;
+                               precode_freqs[delta]++;
+                               *itemptr++ = 19 | (extra_bits << 5) | (delta << 6);
+                               run_start += 4 + extra_bits;
                        }
                }
 
-               /* Any remaining lengths in the run are outputted without RLE,
-                * as a difference from the length of that codeword in the
-                * previous tree. */
-               while (cur_run_len > 0) {
-                       delta = (signed char)prev_lens[i - cur_run_len] -
-                               (signed char)len_in_run;
+               /* Output any remaining lengths without RLE.  */
+               while (run_start != run_end) {
+                       delta = prev_lens[run_start] - len;
                        if (delta < 0)
                                delta += 17;
-
-                       precode_freqs[(unsigned char)delta]++;
-                       output_syms[output_syms_idx++] = delta;
-                       cur_run_len--;
+                       precode_freqs[delta]++;
+                       *itemptr++ = delta;
+                       run_start++;
                }
+       } while (run_start != num_lens);
 
-               cur_run_len = 1;
-       }
-
-       /* Build the precode from the frequencies of the length symbols. */
-
-       make_canonical_huffman_code(LZX_PRETREE_NUM_SYMBOLS,
-                                   LZX_MAX_CODEWORD_LEN,
-                                   precode_freqs, precode_lens,
-                                   precode_codewords);
-
-       if (num_additional_bits_ret)
-               *num_additional_bits_ret = num_additional_bits;
-
-       return output_syms_idx;
+       return itemptr - precode_items;
 }
 
 /*
- * Writes a compressed Huffman code to the output, preceded by the precode for
- * it.
- *
- * The Huffman code is represented in the output as a series of path lengths
- * from which the canonical Huffman code can be reconstructed.  The path lengths
- * themselves are compressed using a separate Huffman code, the precode, which
- * consists of LZX_PRETREE_NUM_SYMBOLS (= 20) symbols that cover all possible
- * code lengths, plus extra codes for repeated lengths.  The path lengths of the
- * precode precede the path lengths of the larger code and are uncompressed,
- * consisting of 20 entries of 4 bits each.
- *
- * @out:               Bitstream to write the code to.
- * @lens:              The code lengths for the Huffman code, indexed by symbol.
- * @prev_lens:         Code lengths for this Huffman code, indexed by symbol,
- *                     in the *previous block*, or all zeroes if this is the
- *                     first block.
- * @num_syms:          The number of symbols in the code.
+ * Output a Huffman code in the compressed form used in LZX.
+ *
+ * The Huffman code is represented in the output as a logical series of codeword
+ * lengths from which the Huffman code, which must be in canonical form, can be
+ * reconstructed.
+ *
+ * The codeword lengths are themselves compressed using a separate Huffman code,
+ * the "precode", which contains a symbol for each possible codeword length in
+ * the larger code as well as several special symbols to represent repeated
+ * codeword lengths (a form of run-length encoding).  The precode is itself
+ * constructed in canonical form, and its codeword lengths are represented
+ * literally in 20 4-bit fields that immediately precede the compressed codeword
+ * lengths of the larger code.
+ *
+ * Furthermore, the codeword lengths of the larger code are actually represented
+ * as deltas from the codeword lengths of the corresponding code in the previous
+ * block.
+ *
+ * @os:
+ *     Bitstream to which to write the compressed Huffman code.
+ * @lens:
+ *     The codeword lengths, indexed by symbol, in the Huffman code.
+ * @prev_lens:
+ *     The codeword lengths, indexed by symbol, in the corresponding Huffman
+ *     code in the previous block, or all zeroes if this is the first block.
+ * @num_lens:
+ *     The number of symbols in the Huffman code.
  */
 static void
-lzx_write_compressed_code(struct output_bitstream *out,
+lzx_write_compressed_code(struct lzx_output_bitstream *os,
                          const u8 lens[restrict],
                          const u8 prev_lens[restrict],
-                         unsigned num_syms)
+                         unsigned num_lens)
 {
-       freq_t precode_freqs[LZX_PRETREE_NUM_SYMBOLS];
-       u8 output_syms[num_syms];
-       u8 precode_lens[LZX_PRETREE_NUM_SYMBOLS];
-       u16 precode_codewords[LZX_PRETREE_NUM_SYMBOLS];
+       u32 precode_freqs[LZX_PRECODE_NUM_SYMBOLS];
+       u8 precode_lens[LZX_PRECODE_NUM_SYMBOLS];
+       u32 precode_codewords[LZX_PRECODE_NUM_SYMBOLS];
+       unsigned precode_items[num_lens];
+       unsigned num_precode_items;
+       unsigned precode_item;
+       unsigned precode_sym;
        unsigned i;
-       unsigned num_output_syms;
-       u8 precode_sym;
-
-       num_output_syms = lzx_build_precode(lens,
-                                           prev_lens,
-                                           num_syms,
-                                           precode_freqs,
-                                           output_syms,
-                                           precode_lens,
-                                           precode_codewords,
-                                           NULL);
-
-       /* Write the lengths of the precode codes to the output. */
-       for (i = 0; i < LZX_PRETREE_NUM_SYMBOLS; i++)
-               bitstream_put_bits(out, precode_lens[i],
-                                  LZX_PRETREE_ELEMENT_SIZE);
-
-       /* Write the length symbols, encoded with the precode, to the output. */
-
-       for (i = 0; i < num_output_syms; ) {
-               precode_sym = output_syms[i++];
-
-               bitstream_put_bits(out, precode_codewords[precode_sym],
-                                  precode_lens[precode_sym]);
-               switch (precode_sym) {
-               case 17:
-                       bitstream_put_bits(out, output_syms[i++], 4);
-                       break;
-               case 18:
-                       bitstream_put_bits(out, output_syms[i++], 5);
-                       break;
-               case 19:
-                       bitstream_put_bits(out, output_syms[i++], 1);
-                       bitstream_put_bits(out,
-                                          precode_codewords[output_syms[i]],
-                                          precode_lens[output_syms[i]]);
-                       i++;
-                       break;
-               default:
-                       break;
+
+       for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
+               precode_freqs[i] = 0;
+
+       /* Compute the "items" (RLE / literal tokens and extra bits) with which
+        * the codeword lengths in the larger code will be output.  */
+       num_precode_items = lzx_compute_precode_items(lens,
+                                                     prev_lens,
+                                                     num_lens,
+                                                     precode_freqs,
+                                                     precode_items);
+
+       /* Build the precode.  */
+       make_canonical_huffman_code(LZX_PRECODE_NUM_SYMBOLS,
+                                   LZX_MAX_PRE_CODEWORD_LEN,
+                                   precode_freqs, precode_lens,
+                                   precode_codewords);
+
+       /* Output the lengths of the codewords in the precode.  */
+       for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
+               lzx_write_bits(os, precode_lens[i], LZX_PRECODE_ELEMENT_SIZE);
+
+       /* Output the encoded lengths of the codewords in the larger code.  */
+       for (i = 0; i < num_precode_items; i++) {
+               precode_item = precode_items[i];
+               precode_sym = precode_item & 0x1F;
+               lzx_write_varbits(os, precode_codewords[precode_sym],
+                                 precode_lens[precode_sym],
+                                 LZX_MAX_PRE_CODEWORD_LEN);
+               if (precode_sym >= 17) {
+                       if (precode_sym == 17) {
+                               lzx_write_bits(os, precode_item >> 5, 4);
+                       } else if (precode_sym == 18) {
+                               lzx_write_bits(os, precode_item >> 5, 5);
+                       } else {
+                               lzx_write_bits(os, (precode_item >> 5) & 1, 1);
+                               precode_sym = precode_item >> 6;
+                               lzx_write_varbits(os, precode_codewords[precode_sym],
+                                                 precode_lens[precode_sym],
+                                                 LZX_MAX_PRE_CODEWORD_LEN);
+                       }
                }
        }
 }
 
 /*
- * Writes all compressed matches and literal bytes in a LZX block to the the
- * output bitstream.
+ * Write all matches and literal bytes (which were precomputed) in an LZX
+ * compressed block to the output bitstream in the final compressed
+ * representation.
  *
- * @ostream
+ * @os
  *     The output bitstream.
  * @block_type
- *     The type of the block (LZX_BLOCKTYPE_ALIGNED or LZX_BLOCKTYPE_VERBATIM).
- * @match_tab
- *     The array of matches/literals that will be output (length @match_count).
- * @match_count
- *     Number of matches/literals to be output.
+ *     The chosen type of the LZX compressed block (LZX_BLOCKTYPE_ALIGNED or
+ *     LZX_BLOCKTYPE_VERBATIM).
+ * @items
+ *     The array of matches/literals to output.
+ * @num_items
+ *     Number of matches/literals to output (length of @items).
  * @codes
- *     Pointer to a structure that contains the codewords for the main, length,
- *     and aligned offset Huffman codes.
+ *     The main, length, and aligned offset Huffman codes for the current
+ *     LZX compressed block.
  */
 static void
-lzx_write_matches_and_literals(struct output_bitstream *ostream,
-                              int block_type,
-                              const struct lzx_match match_tab[],
-                              unsigned match_count,
-                              const struct lzx_codes *codes)
+lzx_write_items(struct lzx_output_bitstream *os, int block_type,
+               const struct lzx_item items[], u32 num_items,
+               const struct lzx_codes *codes)
 {
-       for (unsigned i = 0; i < match_count; i++) {
-               struct lzx_match match = match_tab[i];
-
-               /* High bit of the match indicates whether the match is an
-                * actual match (1) or a literal uncompressed byte (0)  */
-               if (match.data & 0x80000000) {
-                       /* match */
-                       lzx_write_match(ostream, block_type,
-                                       match, codes);
-               } else {
-                       /* literal byte */
-                       bitstream_put_bits(ostream,
-                                          codes->codewords.main[match.data],
-                                          codes->lens.main[match.data]);
-               }
+       unsigned ones_if_aligned = 0U - (block_type == LZX_BLOCKTYPE_ALIGNED);
+
+       for (u32 i = 0; i < num_items; i++) {
+               /* The high bit of the 32-bit intermediate representation
+                * indicates whether the item is an actual LZ-style match (1) or
+                * a literal byte (0).  */
+               if (items[i].data & 0x80000000)
+                       lzx_write_match(os, ones_if_aligned, items[i], codes);
+               else
+                       lzx_write_literal(os, items[i].data, codes);
        }
 }
 
-
-static void
-lzx_assert_codes_valid(const struct lzx_codes * codes)
-{
-#ifdef ENABLE_LZX_DEBUG
-       unsigned i;
-
-       for (i = 0; i < LZX_MAINTREE_NUM_SYMBOLS; i++)
-               LZX_ASSERT(codes->lens.main[i] <= LZX_MAX_CODEWORD_LEN);
-
-       for (i = 0; i < LZX_LENTREE_NUM_SYMBOLS; i++)
-               LZX_ASSERT(codes->lens.len[i] <= LZX_MAX_CODEWORD_LEN);
-
-       for (i = 0; i < LZX_ALIGNEDTREE_NUM_SYMBOLS; i++)
-               LZX_ASSERT(codes->lens.aligned[i] <= 8);
-
-       const unsigned tablebits = 10;
-       u16 decode_table[(1 << tablebits) +
-                        (2 * max(LZX_MAINTREE_NUM_SYMBOLS, LZX_LENTREE_NUM_SYMBOLS))]
-                        _aligned_attribute(DECODE_TABLE_ALIGNMENT);
-       LZX_ASSERT(0 == make_huffman_decode_table(decode_table,
-                                                 LZX_MAINTREE_NUM_SYMBOLS,
-                                                 tablebits,
-                                                 codes->lens.main,
-                                                 LZX_MAX_CODEWORD_LEN));
-       LZX_ASSERT(0 == make_huffman_decode_table(decode_table,
-                                                 LZX_LENTREE_NUM_SYMBOLS,
-                                                 tablebits,
-                                                 codes->lens.len,
-                                                 LZX_MAX_CODEWORD_LEN));
-       LZX_ASSERT(0 == make_huffman_decode_table(decode_table,
-                                                 LZX_ALIGNEDTREE_NUM_SYMBOLS,
-                                                 min(tablebits, 6),
-                                                 codes->lens.aligned,
-                                                 8));
-#endif /* ENABLE_LZX_DEBUG */
-}
-
-/* Write a LZX aligned offset or verbatim block to the output.  */
+/* Write an LZX aligned offset or verbatim block to the output.  */
 static void
 lzx_write_compressed_block(int block_type,
-                          unsigned block_size,
-                          struct lzx_match * chosen_matches,
-                          unsigned num_chosen_matches,
+                          u32 block_size,
+                          unsigned window_order,
+                          unsigned num_main_syms,
+                          struct lzx_item * chosen_items,
+                          u32 num_chosen_items,
                           const struct lzx_codes * codes,
                           const struct lzx_codes * prev_codes,
-                          struct output_bitstream * ostream)
+                          struct lzx_output_bitstream * os)
 {
-       unsigned i;
-
        LZX_ASSERT(block_type == LZX_BLOCKTYPE_ALIGNED ||
                   block_type == LZX_BLOCKTYPE_VERBATIM);
-       LZX_ASSERT(block_size <= LZX_MAX_WINDOW_SIZE);
-       LZX_ASSERT(num_chosen_matches <= LZX_MAX_WINDOW_SIZE);
-       lzx_assert_codes_valid(codes);
 
        /* The first three bits indicate the type of block and are one of the
         * LZX_BLOCKTYPE_* constants.  */
-       bitstream_put_bits(ostream, block_type, LZX_BLOCKTYPE_NBITS);
+       lzx_write_bits(os, block_type, 3);
 
-       /* The next bit indicates whether the block size is the default (32768),
-        * indicated by a 1 bit, or whether the block size is given by the next
-        * 16 bits, indicated by a 0 bit.  */
+       /* Output the block size.
+        *
+        * The original LZX format seemed to always encode the block size in 3
+        * bytes.  However, the implementation in WIMGAPI, as used in WIM files,
+        * uses the first bit to indicate whether the block is the default size
+        * (32768) or a different size given explicitly by the next 16 bits.
+        *
+        * By default, this compressor uses a window size of 32768 and therefore
+        * follows the WIMGAPI behavior.  However, this compressor also supports
+        * window sizes greater than 32768 bytes, which do not appear to be
+        * supported by WIMGAPI.  In such cases, we retain the default size bit
+        * to mean a size of 32768 bytes but output non-default block size in 24
+        * bits rather than 16.  The compatibility of this behavior is unknown
+        * because WIMs created with chunk size greater than 32768 can seemingly
+        * only be opened by wimlib anyway.  */
        if (block_size == LZX_DEFAULT_BLOCK_SIZE) {
-               bitstream_put_bits(ostream, 1, 1);
+               lzx_write_bits(os, 1, 1);
        } else {
-               bitstream_put_bits(ostream, 0, 1);
-               bitstream_put_bits(ostream, block_size, LZX_BLOCKSIZE_NBITS);
+               lzx_write_bits(os, 0, 1);
+
+               if (window_order >= 16)
+                       lzx_write_bits(os, block_size >> 16, 8);
+
+               lzx_write_bits(os, block_size & 0xFFFF, 16);
+       }
+
+       /* Output the aligned offset code.  */
+       if (block_type == LZX_BLOCKTYPE_ALIGNED) {
+               for (int i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+                       lzx_write_bits(os, codes->lens.aligned[i],
+                                      LZX_ALIGNEDCODE_ELEMENT_SIZE);
+               }
        }
 
-       /* Write out lengths of the main code. Note that the LZX specification
-        * incorrectly states that the aligned offset code comes after the
-        * length code, but in fact it is the very first tree to be written
-        * (before the main code).  */
-       if (block_type == LZX_BLOCKTYPE_ALIGNED)
-               for (i = 0; i < LZX_ALIGNEDTREE_NUM_SYMBOLS; i++)
-                       bitstream_put_bits(ostream, codes->lens.aligned[i],
-                                          LZX_ALIGNEDTREE_ELEMENT_SIZE);
-
-       LZX_DEBUG("Writing main code...");
-
-       /* Write the pre-tree and lengths for the first LZX_NUM_CHARS symbols in
-        * the main code, which are the codewords for literal bytes.  */
-       lzx_write_compressed_code(ostream,
-                                 codes->lens.main,
+       /* Output the main code (two parts).  */
+       lzx_write_compressed_code(os, codes->lens.main,
                                  prev_codes->lens.main,
                                  LZX_NUM_CHARS);
-
-       /* Write the pre-tree and lengths for the rest of the main code, which
-        * are the codewords for match headers.  */
-       lzx_write_compressed_code(ostream,
-                                 codes->lens.main + LZX_NUM_CHARS,
+       lzx_write_compressed_code(os, codes->lens.main + LZX_NUM_CHARS,
                                  prev_codes->lens.main + LZX_NUM_CHARS,
-                                 LZX_MAINTREE_NUM_SYMBOLS - LZX_NUM_CHARS);
-
-       LZX_DEBUG("Writing length code...");
+                                 num_main_syms - LZX_NUM_CHARS);
 
-       /* Write the pre-tree and lengths for the length code.  */
-       lzx_write_compressed_code(ostream,
-                                 codes->lens.len,
+       /* Output the length code.  */
+       lzx_write_compressed_code(os, codes->lens.len,
                                  prev_codes->lens.len,
-                                 LZX_LENTREE_NUM_SYMBOLS);
+                                 LZX_LENCODE_NUM_SYMBOLS);
 
-       LZX_DEBUG("Writing matches and literals...");
-
-       /* Write the actual matches and literals.  */
-       lzx_write_matches_and_literals(ostream, block_type,
-                                      chosen_matches, num_chosen_matches,
-                                      codes);
-
-       LZX_DEBUG("Done writing block.");
+       /* Output the compressed matches and literals.  */
+       lzx_write_items(os, block_type, chosen_items, num_chosen_items, codes);
 }
 
-/* Write the LZX block of index @block_number, or write its children recursively
- * if it is a split block.
- *
- * @prev_codes is a pointer to the Huffman codes for the most recent block
- * written, or all zeroes if this is the first block.
- *
- * Return a pointer to the Huffman codes for the last block written.  */
-static struct lzx_codes *
-lzx_write_block_recursive(struct lzx_compressor *ctx,
-                         unsigned block_number,
-                         struct lzx_codes * prev_codes,
-                         struct output_bitstream *ostream)
+/* Write out the LZX blocks that were computed.  */
+static void
+lzx_write_all_blocks(struct lzx_compressor *c, struct lzx_output_bitstream *os)
 {
-       struct lzx_block_spec *spec = &ctx->block_specs[block_number - 1];
 
-       if (spec->is_split) {
-               prev_codes = lzx_write_block_recursive(ctx, block_number * 2 + 0,
-                                                      prev_codes, ostream);
-               prev_codes = lzx_write_block_recursive(ctx, block_number * 2 + 1,
-                                                      prev_codes, ostream);
-       } else {
-               LZX_DEBUG("Writing block #%u (type=%d, size=%u, num_chosen_matches=%u)...",
-                         block_number, spec->block_type, spec->block_size,
-                         spec->num_chosen_matches);
+       const struct lzx_codes *prev_codes = &c->zero_codes;
+       for (unsigned i = 0; i < c->num_blocks; i++) {
+               const struct lzx_block_spec *spec = &c->block_specs[i];
+
                lzx_write_compressed_block(spec->block_type,
                                           spec->block_size,
-                                          &ctx->chosen_matches[spec->chosen_matches_start_pos],
-                                          spec->num_chosen_matches,
+                                          c->window_order,
+                                          c->num_main_syms,
+                                          spec->chosen_items,
+                                          spec->num_chosen_items,
                                           &spec->codes,
                                           prev_codes,
-                                          ostream);
+                                          os);
+
                prev_codes = &spec->codes;
        }
-       return prev_codes;
-}
-
-/* Write out the LZX blocks that were computed.  */
-static void
-lzx_write_all_blocks(struct lzx_compressor *ctx, struct output_bitstream *ostream)
-{
-       lzx_write_block_recursive(ctx, 1, &ctx->zero_codes, ostream);
 }
 
-static u32
-lzx_record_literal(u8 literal, void *_freqs)
+/* Constructs an LZX match from a literal byte and updates the main code symbol
+ * frequencies.  */
+static inline u32
+lzx_tally_literal(u8 lit, struct lzx_freqs *freqs)
 {
-       struct lzx_freqs *freqs = _freqs;
-
-       freqs->main[literal]++;
-
-       return (u32)literal;
+       freqs->main[lit]++;
+       return (u32)lit;
 }
 
-/* Constructs a match from an offset and a length, and updates the LRU queue and
- * the frequency of symbols in the main, length, and aligned offset alphabets.
- * The return value is a 32-bit number that provides the match in an
+/* Constructs an LZX match from an offset and a length, and updates the LRU
+ * queue and the frequency of symbols in the main, length, and aligned offset
+ * alphabets.  The return value is a 32-bit number that provides the match in an
  * intermediate representation documented below.  */
-static u32
-lzx_record_match(unsigned match_offset, unsigned match_len,
-                void *_freqs, void *_queue)
+static inline u32
+lzx_tally_match(unsigned match_len, u32 match_offset,
+               struct lzx_freqs *freqs, struct lzx_lru_queue *queue)
 {
-       struct lzx_freqs *freqs = _freqs;
-       struct lzx_lru_queue *queue = _queue;
        unsigned position_slot;
-       unsigned position_footer = 0;
+       u32 position_footer;
        u32 len_header;
-       u32 len_pos_header;
+       unsigned main_symbol;
        unsigned len_footer;
        unsigned adjusted_match_len;
 
-       LZX_ASSERT(match_len >= LZX_MIN_MATCH && match_len <= LZX_MAX_MATCH);
-
-       /* If possible, encode this offset as a repeated offset. */
-       if (match_offset == queue->R0) {
-               position_slot = 0;
-       } else if (match_offset == queue->R1) {
-               swap(queue->R0, queue->R1);
-               position_slot = 1;
-       } else if (match_offset == queue->R2) {
-               swap(queue->R0, queue->R2);
-               position_slot = 2;
-       } else {
-               /* Not a repeated offset. */
-
-               /* offsets of 0, 1, and 2 are reserved for the repeated offset
-                * codes, so non-repeated offsets must be encoded as 3+.  The
-                * minimum offset is 1, so encode the offsets offset by 2. */
-               unsigned formatted_offset = match_offset + 2;
-
-               queue->R2 = queue->R1;
-               queue->R1 = queue->R0;
-               queue->R0 = match_offset;
-
-               /* The (now-formatted) offset will actually be encoded as a
-                * small position slot number that maps to a certain hard-coded
-                * offset (position base), followed by a number of extra bits---
-                * the position footer--- that are added to the position base to
-                * get the original formatted offset. */
-
-               position_slot = lzx_get_position_slot(formatted_offset);
-               position_footer = formatted_offset &
-                                 ((1 << lzx_get_num_extra_bits(position_slot)) - 1);
-       }
-
-       adjusted_match_len = match_len - LZX_MIN_MATCH;
+       LZX_ASSERT(match_len >= LZX_MIN_MATCH_LEN && match_len <= LZX_MAX_MATCH_LEN);
 
+       /* The match offset shall be encoded as a position slot (itself encoded
+        * as part of the main symbol) and a position footer.  */
+       position_slot = lzx_get_position_slot(match_offset, queue);
+       position_footer = (match_offset + LZX_OFFSET_OFFSET) &
+                               (((u32)1 << lzx_get_num_extra_bits(position_slot)) - 1);
 
-       /* The match length must be at least 2, so let the adjusted match length
-        * be the match length minus 2.
-        *
-        * If it is less than 7, the adjusted match length is encoded as a 3-bit
-        * number offset by 2.  Otherwise, the 3-bit length header is all 1's
-        * and the actual adjusted length is given as a symbol encoded with the
-        * length tree, offset by 7.
-        */
+       /* The match length shall be encoded as a length header (itself encoded
+        * as part of the main symbol) and an optional length footer.  */
+       adjusted_match_len = match_len - LZX_MIN_MATCH_LEN;
        if (adjusted_match_len < LZX_NUM_PRIMARY_LENS) {
+               /* No length footer needed.  */
                len_header = adjusted_match_len;
        } else {
+               /* Length footer needed.  It will be encoded using the length
+                * code.  */
                len_header = LZX_NUM_PRIMARY_LENS;
                len_footer = adjusted_match_len - LZX_NUM_PRIMARY_LENS;
                freqs->len[len_footer]++;
        }
-       len_pos_header = (position_slot << 3) | len_header;
 
-       freqs->main[len_pos_header + LZX_NUM_CHARS]++;
+       /* Account for the main symbol.  */
+       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
 
-       /* Equivalent to:
-        * if (lzx_extra_bits[position_slot] >= 3) */
-       if (position_slot >= 8)
-               freqs->aligned[position_footer & 7]++;
+       freqs->main[main_symbol]++;
 
-       /* Pack the position slot, position footer, and match length into an
-        * intermediate representation.
-        *
-        * bits    description
-        * ----    -----------------------------------------------------------
-        *
-        * 31      1 if a match, 0 if a literal.
-        *
-        * 30-25   position slot.  This can be at most 50, so it will fit in 6
-        *         bits.
+       /* In an aligned offset block, 3 bits of the position footer are output
+        * as an aligned offset symbol.  Account for this, although we may
+        * ultimately decide to output the block as verbatim.  */
+
+       /* The following check is equivalent to:
         *
-        * 8-24    position footer.  This is the offset of the real formatted
-        *         offset from the position base.  This can be at most 17 bits
-        *         (since lzx_extra_bits[LZX_NUM_POSITION_SLOTS - 1] is 17).
+        * if (lzx_extra_bits[position_slot] >= 3)
         *
-        * 0-7     length of match, offset by 2.  This can be at most
-        *         (LZX_MAX_MATCH - 2) == 255, so it will fit in 8 bits.  */
+        * Note that this correctly excludes position slots that correspond to
+        * recent offsets.  */
+       if (position_slot >= 8)
+               freqs->aligned[position_footer & 7]++;
+
+       /* Pack the position slot, position footer, and match length into an
+        * intermediate representation.  See `struct lzx_item' for details.
+        */
+       LZX_ASSERT(LZX_MAX_POSITION_SLOTS <= 64);
+       LZX_ASSERT(lzx_get_num_extra_bits(LZX_MAX_POSITION_SLOTS - 1) <= 17);
+       LZX_ASSERT(LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1 <= 256);
+
+       LZX_ASSERT(position_slot      <= (1U << (31 - 25)) - 1);
+       LZX_ASSERT(position_footer    <= (1U << (25 -  8)) - 1);
+       LZX_ASSERT(adjusted_match_len <= (1U << (8  -  0)) - 1);
        return 0x80000000 |
                (position_slot << 25) |
                (position_footer << 8) |
                (adjusted_match_len);
 }
 
-/* Set the cost model @ctx->costs from the Huffman codeword lengths specified in
- * @lens.
- *
- * These are basically the same thing, except that the Huffman codewords with
- * length 0 correspond to symbols with zero frequency that still need to be
- * assigned actual costs.  The specific values assigned are arbitrary, but they
- * should be fairly high (near the maximum codeword length) to take into account
- * the fact that uses of these symbols are expected to be rare.
- */
-static void
-lzx_set_costs(struct lzx_compressor * ctx, const struct lzx_lens * lens)
-{
-       unsigned i;
-
-       memcpy(&ctx->costs, lens, sizeof(struct lzx_lens));
-
-       for (i = 0; i < LZX_MAINTREE_NUM_SYMBOLS; i++)
-               if (ctx->costs.main[i] == 0)
-                       ctx->costs.main[i] = ctx->params.alg_params.slow.main_nostat_cost;
-
-       for (i = 0; i < LZX_LENTREE_NUM_SYMBOLS; i++)
-               if (ctx->costs.len[i] == 0)
-                       ctx->costs.len[i] = ctx->params.alg_params.slow.len_nostat_cost;
-
-       for (i = 0; i < LZX_ALIGNEDTREE_NUM_SYMBOLS; i++)
-               if (ctx->costs.aligned[i] == 0)
-                       ctx->costs.aligned[i] = ctx->params.alg_params.slow.aligned_nostat_cost;
-}
-
+/* Returns the cost, in bits, to output a literal byte using the specified cost
+ * model.  */
 static u32
-lzx_literal_cost(u8 c, const struct lzx_lens * costs)
+lzx_literal_cost(u8 c, const struct lzx_costs * costs)
 {
        return costs->main[c];
 }
 
-/* Given a (length, offset) pair that could be turned into a valid LZX match as
- * well as costs for the codewords in the main, length, and aligned Huffman
- * codes, return the approximate number of bits it will take to represent this
- * match in the compressed output.  */
-static unsigned
-lzx_match_cost(unsigned length, unsigned offset, const struct lzx_lens *costs
-
-#if LZX_PARAM_ACCOUNT_FOR_LRU
-              , struct lzx_lru_queue *queue
-#endif
-       )
+/* Returns the cost, in bits, to output a repeat offset match of the specified
+ * length and position slot (repeat index) using the specified cost model.  */
+static u32
+lzx_repmatch_cost(u32 len, unsigned position_slot, const struct lzx_costs *costs)
 {
-       unsigned position_slot, len_header, main_symbol;
-       unsigned cost = 0;
-
-       /* Calculate position slot and length header, then combine them into the
-        * main symbol.  */
-
-#if LZX_PARAM_ACCOUNT_FOR_LRU
-       if (offset == queue->R0) {
-               position_slot = 0;
-       } else if (offset == queue->R1) {
-               swap(queue->R0, queue->R1);
-               position_slot = 1;
-       } else if (offset == queue->R2) {
-               swap(queue->R0, queue->R2);
-               position_slot = 2;
-       } else
-#endif
-               position_slot = lzx_get_position_slot(offset + 2);
+       unsigned len_header, main_symbol;
+       u32 cost = 0;
 
-       len_header = min(length - LZX_MIN_MATCH, LZX_NUM_PRIMARY_LENS);
+       len_header = min(len - LZX_MIN_MATCH_LEN, LZX_NUM_PRIMARY_LENS);
        main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
 
        /* Account for main symbol.  */
        cost += costs->main[main_symbol];
 
-       /* Account for extra position information.  */
-       unsigned num_extra_bits = lzx_get_num_extra_bits(position_slot);
-       if (num_extra_bits >= 3) {
-               cost += num_extra_bits - 3;
-               cost += costs->aligned[(offset + LZX_MIN_MATCH) & 7];
-       } else {
-               cost += num_extra_bits;
-       }
-
        /* Account for extra length information.  */
-       if (length - LZX_MIN_MATCH >= LZX_NUM_PRIMARY_LENS)
-               cost += costs->len[length - LZX_MIN_MATCH - LZX_NUM_PRIMARY_LENS];
+       if (len_header == LZX_NUM_PRIMARY_LENS)
+               cost += costs->len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
 
        return cost;
 }
 
-/* This procedure effectively creates a new binary tree corresponding to the
- * current string at the same time that it searches the existing tree nodes for
- * matches.  This is the same algorithm as that used in GetMatchesSpec1() in
- * 7-Zip, but it is hopefully explained a little more clearly below.  */
-static unsigned
-lzx_lz_get_matches(const u8 window[restrict],
-                  const unsigned bytes_remaining,
-                  const unsigned strstart,
-                  const unsigned max_length,
-                  u16 child_tab[restrict],
-                  unsigned cur_match,
-                  const unsigned prev_len,
-                  struct raw_match * const matches)
+/* Set the cost model @c->costs from the Huffman codeword lengths specified in
+ * @lens.
+ *
+ * The cost model and codeword lengths are almost the same thing, but the
+ * Huffman codewords with length 0 correspond to symbols with zero frequency
+ * that still need to be assigned actual costs.  The specific values assigned
+ * are arbitrary, but they should be fairly high (near the maximum codeword
+ * length) to take into account the fact that uses of these symbols are expected
+ * to be rare.  */
+static void
+lzx_set_costs(struct lzx_compressor *c, const struct lzx_lens * lens,
+             unsigned nostat)
 {
-       u16 *new_tree_lt_ptr = &child_tab[strstart * 2];
-       u16 *new_tree_gt_ptr = &child_tab[strstart * 2 + 1];
-
-       u16 longest_lt_match_len = 0;
-       u16 longest_gt_match_len = 0;
+       unsigned i;
 
-       /* Maximum number of nodes to walk down before stopping  */
-       unsigned depth = max_length;
+       /* Main code  */
+       for (i = 0; i < c->num_main_syms; i++)
+               c->costs.main[i] = lens->main[i] ? lens->main[i] : nostat;
 
-       /* Length of longest match found so far  */
-       unsigned longest_match_len = prev_len;
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               c->costs.len[i] = lens->len[i] ? lens->len[i] : nostat;
 
-       /* Maximum length of match to return  */
-       unsigned len_limit = min(bytes_remaining, max_length);
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               c->costs.aligned[i] = lens->aligned[i] ? lens->aligned[i] : nostat / 2;
+}
 
-       /* Number of matches found so far  */
-       unsigned num_matches = 0;
+/* Don't allow matches to span the end of an LZX block.  */
+static inline u32
+maybe_truncate_matches(struct lz_match matches[], u32 num_matches,
+                      struct lzx_compressor *c)
+{
+       if (c->match_window_end < c->cur_window_size && num_matches != 0) {
+               u32 limit = c->match_window_end - c->match_window_pos;
 
-       for (;;) {
+               if (limit >= LZX_MIN_MATCH_LEN) {
 
-               /* Stop if too many nodes were traversed or if there is no next
-                * node  */
-               if (depth-- == 0 || cur_match == 0) {
-                       *new_tree_gt_ptr = 0;
-                       *new_tree_lt_ptr = 0;
-                       return num_matches;
-               }
+                       u32 i = num_matches - 1;
+                       do {
+                               if (matches[i].len >= limit) {
+                                       matches[i].len = limit;
 
-               /* Load the pointers to the children of the binary tree node
-                * corresponding to the current match  */
-               u16 * const cur_match_ptrs = &child_tab[cur_match * 2];
-
-               /* Set up pointers to the current match and to the current
-                * string  */
-               const u8 * const matchptr = &window[cur_match];
-               const u8 * const strptr = &window[strstart];
-
-               /* Determine position at which to start comparing  */
-               u16 len = min(longest_lt_match_len,
-                             longest_gt_match_len);
-
-               if (matchptr[len] == strptr[len]) {
-
-                       /* Extend the match as far as possible.  */
-                       while (++len != len_limit)
-                               if (matchptr[len] != strptr[len])
-                                       break;
-
-                       /* Record this match if it is the longest found so far.
-                        */
-                       if (len > longest_match_len) {
-                               longest_match_len = len;
-                               matches[num_matches].len = len;
-                               matches[num_matches].offset = strstart - cur_match;
-                               num_matches++;
-
-                               if (len == len_limit) {
-                                       /* Length limit was reached.  Link left pointer
-                                        * in the new tree with left subtree of current
-                                        * match tree, and link the right pointer in the
-                                        * new tree with the right subtree of the
-                                        * current match tree.  This in effect deletes
-                                        * the node for the currrent match, which is
-                                        * desirable because the current match is the
-                                        * same as the current string up until the
-                                        * length limit, so in subsequent queries it
-                                        * will never be preferable to the current
-                                        * position.  */
-                                       *new_tree_lt_ptr = cur_match_ptrs[0];
-                                       *new_tree_gt_ptr = cur_match_ptrs[1];
-                                       return num_matches;
+                                       /* Truncation might produce multiple
+                                        * matches with length 'limit'.  Keep at
+                                        * most 1.  */
+                                       num_matches = i + 1;
                                }
-                       }
-               }
-
-               if (matchptr[len] < strptr[len]) {
-                       /* Case 1:  The current match is lexicographically less
-                        * than the current string.
-                        *
-                        * Since we are searching the binary tree structures, we
-                        * need to walk down to the *right* subtree of the
-                        * current match's node to get to a match that is
-                        * lexicographically *greater* than the current match
-                        * but still lexicographically *lesser* than the current
-                        * string.
-                        *
-                        * At the same time, we link the entire binary tree
-                        * corresponding to the current match into the
-                        * appropriate place in the new binary tree being built
-                        * for the current string.  */
-                       *new_tree_lt_ptr = cur_match;
-                       new_tree_lt_ptr = &cur_match_ptrs[1];
-                       cur_match = *new_tree_lt_ptr;
-                       longest_lt_match_len = len;
+                       } while (i--);
                } else {
-                       /* Case 2:  The current match is lexicographically
-                        * greater than the current string.
-                        *
-                        * This is analogous to Case 1 above, but everything
-                        * happens in the other direction.
-                        */
-                       *new_tree_gt_ptr = cur_match;
-                       new_tree_gt_ptr = &cur_match_ptrs[0];
-                       cur_match = *new_tree_gt_ptr;
-                       longest_gt_match_len = len;
+                       num_matches = 0;
                }
        }
+       return num_matches;
 }
 
-/* Equivalent to lzx_lz_get_matches(), but only updates the tree and doesn't
- * return matches.  See that function for details (including comments).  */
-static void
-lzx_lz_skip_matches(const u8 window[restrict],
-                   const unsigned bytes_remaining,
-                   const unsigned strstart,
-                   const unsigned max_length,
-                   u16 child_tab[restrict],
-                   unsigned cur_match,
-                   const unsigned prev_len)
+static unsigned
+lzx_get_matches_fillcache_singleblock(struct lzx_compressor *c,
+                                     const struct lz_match **matches_ret)
 {
-       u16 *new_tree_lt_ptr = &child_tab[strstart * 2];
-       u16 *new_tree_gt_ptr = &child_tab[strstart * 2 + 1];
-
-       u16 longest_lt_match_len = 0;
-       u16 longest_gt_match_len = 0;
-
-       unsigned depth = max_length;
-
-       unsigned longest_match_len = prev_len;
-
-       unsigned len_limit = min(bytes_remaining, max_length);
-
-       for (;;) {
-               if (depth-- == 0 || cur_match == 0) {
-                       *new_tree_gt_ptr = 0;
-                       *new_tree_lt_ptr = 0;
-                       return;
-               }
-
-               u16 * const cur_match_ptrs = &child_tab[cur_match * 2];
-
-               const u8 * const matchptr = &window[cur_match];
-               const u8 * const strptr = &window[strstart];
-
-               u16 len = min(longest_lt_match_len,
-                             longest_gt_match_len);
-
-               if (matchptr[len] == strptr[len]) {
-                       while (++len != len_limit)
-                               if (matchptr[len] != strptr[len])
-                                       break;
-
-                       if (len > longest_match_len) {
-                               longest_match_len = len;
-
-                               if (len == len_limit) {
-                                       *new_tree_lt_ptr = cur_match_ptrs[0];
-                                       *new_tree_gt_ptr = cur_match_ptrs[1];
-                                       return;
-                               }
-                       }
-               }
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
 
-               if (matchptr[len] < strptr[len]) {
-                       *new_tree_lt_ptr = cur_match;
-                       new_tree_lt_ptr = &cur_match_ptrs[1];
-                       cur_match = *new_tree_lt_ptr;
-                       longest_lt_match_len = len;
-               } else {
-                       *new_tree_gt_ptr = cur_match;
-                       new_tree_gt_ptr = &cur_match_ptrs[0];
-                       cur_match = *new_tree_gt_ptr;
-                       longest_gt_match_len = len;
-               }
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       if (likely(cache_ptr <= c->cache_limit)) {
+               num_matches = lz_mf_get_matches(c->mf, matches);
+               cache_ptr->len = num_matches;
+               c->cache_ptr = matches + num_matches;
+       } else {
+               num_matches = 0;
        }
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
 }
 
 static unsigned
-lzx_lz_get_matches_caching(struct lzx_compressor *ctx,
-                          struct raw_match **matches_ret);
-
-/* Tell the match-finder to skip the specified number of bytes (@n) in the
- * input.  */
-static void
-lzx_lz_skip_bytes(struct lzx_compressor *ctx, unsigned n)
+lzx_get_matches_fillcache_multiblock(struct lzx_compressor *c,
+                                    const struct lz_match **matches_ret)
 {
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
 
-#if LZX_PARAM_DONT_SKIP_MATCHES
-       /* Option 1: Still cache the matches from the positions skipped.  They
-        * will then be available in later passes.  */
-       struct raw_match *matches;
-       while (n--)
-               lzx_lz_get_matches_caching(ctx, &matches);
-#else
-       /* Option 2: Mark the positions skipped as having no matches available,
-        * but we still need to update the binary tree in case subsequent
-        * positions have matches at the current position.  */
-       LZX_ASSERT(n <= ctx->match_window_end - ctx->match_window_pos);
-       if (ctx->matches_already_found) {
-               while (n--) {
-                       LZX_ASSERT(ctx->cached_matches[ctx->cached_matches_pos].offset ==
-                                  ctx->match_window_pos);
-                       ctx->cached_matches_pos += ctx->cached_matches[ctx->cached_matches_pos].len + 1;
-                       ctx->match_window_pos++;
-               }
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       if (likely(cache_ptr <= c->cache_limit)) {
+               num_matches = lz_mf_get_matches(c->mf, matches);
+               num_matches = maybe_truncate_matches(matches, num_matches, c);
+               cache_ptr->len = num_matches;
+               c->cache_ptr = matches + num_matches;
        } else {
-               while (n--) {
-                       if (ctx->params.alg_params.slow.use_len2_matches &&
-                           ctx->match_window_end - ctx->match_window_pos >= 2) {
-                               unsigned c1 = ctx->window[ctx->match_window_pos];
-                               unsigned c2 = ctx->window[ctx->match_window_pos + 1];
-                               unsigned digram = c1 | (c2 << 8);
-                               ctx->digram_tab[digram] = ctx->match_window_pos;
-                       }
-                       if (ctx->match_window_end - ctx->match_window_pos >= 3) {
-                               unsigned hash;
-                               unsigned cur_match;
-
-                               hash = lzx_lz_compute_hash(&ctx->window[ctx->match_window_pos]);
+               num_matches = 0;
+       }
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
+}
 
-                               cur_match = ctx->hash_tab[hash];
-                               ctx->hash_tab[hash] = ctx->match_window_pos;
+static unsigned
+lzx_get_matches_usecache(struct lzx_compressor *c,
+                        const struct lz_match **matches_ret)
+{
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
 
-                               lzx_lz_skip_matches(ctx->window,
-                                                   ctx->match_window_end - ctx->match_window_pos,
-                                                   ctx->match_window_pos,
-                                                   ctx->params.alg_params.slow.num_fast_bytes,
-                                                   ctx->child_tab,
-                                                   cur_match, 1);
-                       }
-                       ctx->cached_matches[ctx->cached_matches_pos].len = 0;
-                       ctx->cached_matches[ctx->cached_matches_pos].offset = ctx->match_window_pos;
-                       ctx->cached_matches_pos++;
-                       ctx->match_window_pos++;
-               }
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       if (cache_ptr <= c->cache_limit) {
+               num_matches = cache_ptr->len;
+               c->cache_ptr = matches + num_matches;
+       } else {
+               num_matches = 0;
        }
-#endif /* !LZX_PARAM_DONT_SKIP_MATCHES */
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
 }
 
-/* Retrieve a list of matches available at the next position in the input.
- *
- * The return value is the number of matches found, and a pointer to them is
- * written to @matches_ret.  The matches will be sorted in order by length.
- *
- * This is essentially a wrapper around lzx_lz_get_matches() that caches its
- * output the first time and also performs the needed hashing.
- */
 static unsigned
-lzx_lz_get_matches_caching(struct lzx_compressor *ctx,
-                          struct raw_match **matches_ret)
+lzx_get_matches_usecache_nocheck(struct lzx_compressor *c,
+                                const struct lz_match **matches_ret)
 {
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
        unsigned num_matches;
-       struct raw_match *matches;
 
-       LZX_ASSERT(ctx->match_window_end >= ctx->match_window_pos);
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       num_matches = cache_ptr->len;
+       c->cache_ptr = matches + num_matches;
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
+}
 
-       matches = &ctx->cached_matches[ctx->cached_matches_pos + 1];
+static unsigned
+lzx_get_matches_nocache_singleblock(struct lzx_compressor *c,
+                                   const struct lz_match **matches_ret)
+{
+       struct lz_match *matches;
+       unsigned num_matches;
 
-       if (ctx->matches_already_found) {
-               num_matches = ctx->cached_matches[ctx->cached_matches_pos].len;
-               LZX_ASSERT(ctx->cached_matches[ctx->cached_matches_pos].offset == ctx->match_window_pos);
+       matches = c->cache_ptr;
+       num_matches = lz_mf_get_matches(c->mf, matches);
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
+}
 
-               for (int i = (int)num_matches - 1; i >= 0; i--) {
-                       if (ctx->match_window_pos + matches[i].len > ctx->match_window_end)
-                               matches[i].len = ctx->match_window_end - ctx->match_window_pos;
-                       else
-                               break;
-               }
-       } else {
-               unsigned prev_len = 1;
-               struct raw_match * matches_ret = &ctx->cached_matches[ctx->cached_matches_pos + 1];
-               num_matches = 0;
+static unsigned
+lzx_get_matches_nocache_multiblock(struct lzx_compressor *c,
+                                  const struct lz_match **matches_ret)
+{
+       struct lz_match *matches;
+       unsigned num_matches;
 
-               if (ctx->params.alg_params.slow.use_len2_matches &&
-                   ctx->match_window_end - ctx->match_window_pos >= 3) {
-                       unsigned c1 = ctx->window[ctx->match_window_pos];
-                       unsigned c2 = ctx->window[ctx->match_window_pos + 1];
-                       unsigned digram = c1 | (c2 << 8);
-                       unsigned cur_match;
-
-                       cur_match = ctx->digram_tab[digram];
-                       ctx->digram_tab[digram] = ctx->match_window_pos;
-                       if (cur_match != 0 &&
-                           ctx->window[cur_match + 2] != ctx->window[ctx->match_window_pos + 2])
-                       {
-                               matches_ret->len = 2;
-                               matches_ret->offset = ctx->match_window_pos - cur_match;
-                               matches_ret++;
-                               num_matches++;
-                               prev_len = 2;
-                       }
-               }
-               if (ctx->match_window_end - ctx->match_window_pos >= 3) {
-                       unsigned hash;
-                       unsigned cur_match;
-
-                       hash = lzx_lz_compute_hash(&ctx->window[ctx->match_window_pos]);
-
-                       cur_match = ctx->hash_tab[hash];
-                       ctx->hash_tab[hash] = ctx->match_window_pos;
-                       num_matches += lzx_lz_get_matches(ctx->window,
-                                                         ctx->match_window_end - ctx->match_window_pos,
-                                                         ctx->match_window_pos,
-                                                         ctx->params.alg_params.slow.num_fast_bytes,
-                                                         ctx->child_tab,
-                                                         cur_match,
-                                                         prev_len,
-                                                         matches_ret);
-               }
+       matches = c->cache_ptr;
+       num_matches = lz_mf_get_matches(c->mf, matches);
+       num_matches = maybe_truncate_matches(matches, num_matches, c);
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
+}
 
-               ctx->cached_matches[ctx->cached_matches_pos].len = num_matches;
-               ctx->cached_matches[ctx->cached_matches_pos].offset = ctx->match_window_pos;
+/*
+ * Find matches at the next position in the window.
+ *
+ * Returns the number of matches found and sets *matches_ret to point to the
+ * matches array.  The matches will be sorted by strictly increasing length and
+ * offset.
+ */
+static inline unsigned
+lzx_get_matches(struct lzx_compressor *c,
+               const struct lz_match **matches_ret)
+{
+       return (*c->get_matches_func)(c, matches_ret);
+}
 
-               if (num_matches) {
-                       struct raw_match *longest_match_ptr =
-                               &ctx->cached_matches[ctx->cached_matches_pos + 1 +
-                                                    num_matches - 1];
-                       u16 len = longest_match_ptr->len;
-
-                       /* If the longest match returned by the match-finder
-                        * reached the number of fast bytes, extend it as much
-                        * as possible.  */
-                       if (len == ctx->params.alg_params.slow.num_fast_bytes) {
-                               const unsigned maxlen =
-                                       min(ctx->match_window_end - ctx->match_window_pos,
-                                           LZX_MAX_MATCH);
-
-                               const u8 * const matchptr =
-                                       &ctx->window[ctx->match_window_pos - longest_match_ptr->offset];
-
-                               const u8 * const strptr =
-                                       &ctx->window[ctx->match_window_pos];
-
-                               while (len < maxlen && matchptr[len] == strptr[len])
-                                       len++;
-                       }
-                       longest_match_ptr->len = len;
-               }
+static void
+lzx_skip_bytes_fillcache(struct lzx_compressor *c, unsigned n)
+{
+       struct lz_match *cache_ptr;
+
+       cache_ptr = c->cache_ptr;
+       c->match_window_pos += n;
+       lz_mf_skip_positions(c->mf, n);
+       if (cache_ptr <= c->cache_limit) {
+               do {
+                       cache_ptr->len = 0;
+                       cache_ptr += 1;
+               } while (--n && cache_ptr <= c->cache_limit);
        }
-       ctx->cached_matches_pos += num_matches + 1;
-       *matches_ret = matches;
+       c->cache_ptr = cache_ptr;
+}
 
-#if 0
-       printf("\n");
-       for (unsigned i = 0; i < num_matches; i++)
-       {
-               printf("Len %u Offset %u\n", matches[i].len, matches[i].offset);
+static void
+lzx_skip_bytes_usecache(struct lzx_compressor *c, unsigned n)
+{
+       struct lz_match *cache_ptr;
+
+       cache_ptr = c->cache_ptr;
+       c->match_window_pos += n;
+       if (cache_ptr <= c->cache_limit) {
+               do {
+                       cache_ptr += 1 + cache_ptr->len;
+               } while (--n && cache_ptr <= c->cache_limit);
        }
-#endif
+       c->cache_ptr = cache_ptr;
+}
 
-       for (unsigned i = 0; i < num_matches; i++) {
-               LZX_ASSERT(matches[i].len <= LZX_MAX_MATCH);
-               if (matches[i].len >= LZX_MIN_MATCH) {
-                       LZX_ASSERT(matches[i].offset <= ctx->match_window_pos);
-                       LZX_ASSERT(matches[i].len <= ctx->match_window_end - ctx->match_window_pos);
-                       LZX_ASSERT(!memcmp(&ctx->window[ctx->match_window_pos],
-                                          &ctx->window[ctx->match_window_pos - matches[i].offset],
-                                          matches[i].len));
-               }
-       }
+static void
+lzx_skip_bytes_usecache_nocheck(struct lzx_compressor *c, unsigned n)
+{
+       struct lz_match *cache_ptr;
 
-       ctx->match_window_pos++;
-       return num_matches;
+       cache_ptr = c->cache_ptr;
+       c->match_window_pos += n;
+       do {
+               cache_ptr += 1 + cache_ptr->len;
+       } while (--n);
+       c->cache_ptr = cache_ptr;
+}
+
+static void
+lzx_skip_bytes_nocache(struct lzx_compressor *c, unsigned n)
+{
+       c->match_window_pos += n;
+       lz_mf_skip_positions(c->mf, n);
+}
+
+/*
+ * Skip the specified number of positions in the window (don't search for
+ * matches at them).
+ */
+static inline void
+lzx_skip_bytes(struct lzx_compressor *c, unsigned n)
+{
+       return (*c->skip_bytes_func)(c, n);
 }
 
 /*
@@ -1588,1273 +1413,983 @@ lzx_lz_get_matches_caching(struct lzx_compressor *ctx,
  *
  * Returns the first match in the list.
  */
-static struct raw_match
-lzx_lz_reverse_near_optimal_match_list(struct lzx_compressor *ctx,
-                                      unsigned cur_pos)
+static struct lz_match
+lzx_match_chooser_reverse_list(struct lzx_compressor *c, unsigned cur_pos)
 {
        unsigned prev_link, saved_prev_link;
        unsigned prev_match_offset, saved_prev_match_offset;
 
-       ctx->optimum_end_idx = cur_pos;
+       c->optimum_end_idx = cur_pos;
 
-       saved_prev_link = ctx->optimum[cur_pos].prev.link;
-       saved_prev_match_offset = ctx->optimum[cur_pos].prev.match_offset;
+       saved_prev_link = c->optimum[cur_pos].prev.link;
+       saved_prev_match_offset = c->optimum[cur_pos].prev.match_offset;
 
        do {
                prev_link = saved_prev_link;
                prev_match_offset = saved_prev_match_offset;
 
-               saved_prev_link = ctx->optimum[prev_link].prev.link;
-               saved_prev_match_offset = ctx->optimum[prev_link].prev.match_offset;
+               saved_prev_link = c->optimum[prev_link].prev.link;
+               saved_prev_match_offset = c->optimum[prev_link].prev.match_offset;
 
-               ctx->optimum[prev_link].next.link = cur_pos;
-               ctx->optimum[prev_link].next.match_offset = prev_match_offset;
+               c->optimum[prev_link].next.link = cur_pos;
+               c->optimum[prev_link].next.match_offset = prev_match_offset;
 
                cur_pos = prev_link;
        } while (cur_pos != 0);
 
-       ctx->optimum_cur_idx = ctx->optimum[0].next.link;
+       c->optimum_cur_idx = c->optimum[0].next.link;
 
-       return (struct raw_match)
-               { .len = ctx->optimum_cur_idx,
-                 .offset = ctx->optimum[0].next.match_offset,
+       return (struct lz_match)
+               { .len = c->optimum_cur_idx,
+                 .offset = c->optimum[0].next.match_offset,
                };
 }
 
 /*
- * lzx_lz_get_near_optimal_match() -
+ * Find the longest repeat offset match.
  *
- * Choose the "best" match or literal to use at the next position in the input.
+ * If no match of at least LZX_MIN_MATCH_LEN bytes is found, then return 0.
  *
- * Unlike a "greedy" parser that always takes the longest match, or even a
+ * If a match of at least LZX_MIN_MATCH_LEN bytes is found, then return its
+ * length and set *slot_ret to the index of its offset in @queue.
+ */
+static inline u32
+lzx_repsearch(const u8 * const strptr, const u32 bytes_remaining,
+             const struct lzx_lru_queue *queue, unsigned *slot_ret)
+{
+       BUILD_BUG_ON(LZX_MIN_MATCH_LEN != 2);
+       return lz_repsearch(strptr, bytes_remaining, LZX_MAX_MATCH_LEN,
+                           queue->R, LZX_NUM_RECENT_OFFSETS, slot_ret);
+}
+
+/*
+ * lzx_choose_near_optimal_item() -
+ *
+ * Choose an approximately optimal match or literal to use at the next position
+ * in the string, or "window", being LZ-encoded.
+ *
+ * This is based on algorithms used in 7-Zip, including the DEFLATE encoder
+ * and the LZMA encoder, written by Igor Pavlov.
+ *
+ * Unlike a greedy parser that always takes the longest match, or even a "lazy"
  * parser with one match/literal look-ahead like zlib, the algorithm used here
- * may look ahead many matches/literals to determine the best match/literal to
- * output next.  The motivation is that the compression ratio is improved if the
- * compressor can do things like use a shorter-than-possible match in order to
- * allow a longer match later, and also take into account the Huffman code cost
- * model rather than simply assuming that longer is better.  It is not a true
- * "optimal" parser, however, since some shortcuts can be taken; for example, if
- * a match is very long, the parser just chooses it immediately before too much
- * time is wasting considering many different alternatives that are unlikely to
- * be better.
- *
- * This algorithm is based on that used in 7-Zip's DEFLATE encoder.
+ * may look ahead many matches/literals to determine the approximately optimal
+ * match/literal to code next.  The motivation is that the compression ratio is
+ * improved if the compressor can do things like use a shorter-than-possible
+ * match in order to allow a longer match later, and also take into account the
+ * estimated real cost of coding each match/literal based on the underlying
+ * entropy encoding.
+ *
+ * Still, this is not a true optimal parser for several reasons:
+ *
+ * - Real compression formats use entropy encoding of the literal/match
+ *   sequence, so the real cost of coding each match or literal is unknown until
+ *   the parse is fully determined.  It can be approximated based on iterative
+ *   parses, but the end result is not guaranteed to be globally optimal.
+ *
+ * - Very long matches are chosen immediately.  This is because locations with
+ *   long matches are likely to have many possible alternatives that would cause
+ *   slow optimal parsing, but also such locations are already highly
+ *   compressible so it is not too harmful to just grab the longest match.
+ *
+ * - Not all possible matches at each location are considered because the
+ *   underlying match-finder limits the number and type of matches produced at
+ *   each position.  For example, for a given match length it's usually not
+ *   worth it to only consider matches other than the lowest-offset match,
+ *   except in the case of a repeat offset.
+ *
+ * - Although we take into account the adaptive state (in LZX, the recent offset
+ *   queue), coding decisions made with respect to the adaptive state will be
+ *   locally optimal but will not necessarily be globally optimal.  This is
+ *   because the algorithm only keeps the least-costly path to get to a given
+ *   location and does not take into account that a slightly more costly path
+ *   could result in a different adaptive state that ultimately results in a
+ *   lower global cost.
+ *
+ * - The array space used by this function is bounded, so in degenerate cases it
+ *   is forced to start returning matches/literals before the algorithm has
+ *   really finished.
  *
  * Each call to this function does one of two things:
  *
- * 1. Build a near-optimal sequence of matches/literals, up to some point, that
+ * 1. Build a sequence of near-optimal matches/literals, up to some point, that
  *    will be returned by subsequent calls to this function, then return the
  *    first one.
  *
  * OR
  *
  * 2. Return the next match/literal previously computed by a call to this
- *    function;
- *
- * This function relies on the following state in the compressor context:
- *
- *     ctx->window          (read-only: preprocessed data being compressed)
- *     ctx->cost            (read-only: cost model to use)
- *     ctx->optimum         (internal state; leave uninitialized)
- *     ctx->optimum_cur_idx (must set to 0 before first call)
- *     ctx->optimum_end_idx (must set to 0 before first call)
- *     ctx->hash_tab        (must set to 0 before first call)
- *     ctx->cached_matches  (internal state; leave uninitialized)
- *     ctx->cached_matches_pos (initialize to 0 before first call; save and
- *                              restore value if restarting parse from a
- *                              certain position)
- *     ctx->match_window_pos (must initialize to position of next match to
- *                            return; subsequent calls return subsequent
- *                            matches)
- *     ctx->match_window_end (must initialize to limit of match-finding region;
- *                            subsequent calls use the same limit)
+ *    function.
  *
  * The return value is a (length, offset) pair specifying the match or literal
- * chosen.  For literals, length is either 0 or 1 and offset is meaningless.
+ * chosen.  For literals, the length is 0 or 1 and the offset is meaningless.
  */
-static struct raw_match
-lzx_lz_get_near_optimal_match(struct lzx_compressor * ctx)
+static struct lz_match
+lzx_choose_near_optimal_item(struct lzx_compressor *c)
 {
-#if 0
-       /* Testing: literals only  */
-       ctx->match_window_pos++;
-       return (struct raw_match) { .len = 0 };
-#elif 0
-       /* Testing: greedy parsing  */
-       struct raw_match *matches;
        unsigned num_matches;
-       struct raw_match match = {.len = 0};
-
-       num_matches = lzx_lz_get_matches_caching(ctx, &matches);
-       if (num_matches) {
-               match = matches[num_matches - 1];
-               lzx_lz_skip_bytes(ctx, match.len - 1);
-       }
-       return match;
-#else
-       unsigned num_possible_matches;
-       struct raw_match *possible_matches;
-       struct raw_match match;
-       unsigned longest_match_len;
-       unsigned len, match_idx;
-
-       if (ctx->optimum_cur_idx != ctx->optimum_end_idx) {
+       const struct lz_match *matches;
+       struct lz_match match;
+       u32 longest_len;
+       u32 longest_rep_len;
+       unsigned longest_rep_slot;
+       unsigned cur_pos;
+       unsigned end_pos;
+       struct lzx_mc_pos_data *optimum = c->optimum;
+
+       if (c->optimum_cur_idx != c->optimum_end_idx) {
                /* Case 2: Return the next match/literal already found.  */
-               match.len = ctx->optimum[ctx->optimum_cur_idx].next.link -
-                                   ctx->optimum_cur_idx;
-               match.offset = ctx->optimum[ctx->optimum_cur_idx].next.match_offset;
+               match.len = optimum[c->optimum_cur_idx].next.link -
+                                   c->optimum_cur_idx;
+               match.offset = optimum[c->optimum_cur_idx].next.match_offset;
 
-               ctx->optimum_cur_idx = ctx->optimum[ctx->optimum_cur_idx].next.link;
+               c->optimum_cur_idx = optimum[c->optimum_cur_idx].next.link;
                return match;
        }
 
        /* Case 1:  Compute a new list of matches/literals to return.  */
 
-       ctx->optimum_cur_idx = 0;
-       ctx->optimum_end_idx = 0;
+       c->optimum_cur_idx = 0;
+       c->optimum_end_idx = 0;
 
-       /* Get matches at this position.  */
-       num_possible_matches = lzx_lz_get_matches_caching(ctx, &possible_matches);
+       /* Search for matches at repeat offsets.  As a heuristic, we only keep
+        * the one with the longest match length.  */
+       if (likely(c->match_window_pos >= 1)) {
+               longest_rep_len = lzx_repsearch(&c->cur_window[c->match_window_pos],
+                                               c->match_window_end - c->match_window_pos,
+                                               &c->queue,
+                                               &longest_rep_slot);
+       } else {
+               longest_rep_len = 0;
+       }
 
-       /* If no matches found, return literal.  */
-       if (num_possible_matches == 0)
-               return (struct raw_match){ .len = 0 };
+       /* If there's a long match with a repeat offset, choose it immediately.  */
+       if (longest_rep_len >= c->params.nice_match_length) {
+               lzx_skip_bytes(c, longest_rep_len);
+               return (struct lz_match) {
+                       .len = longest_rep_len,
+                       .offset = c->queue.R[longest_rep_slot],
+               };
+       }
 
-       /* The matches that were found are sorted by length.  Get the length of
-        * the longest one.  */
-       longest_match_len = possible_matches[num_possible_matches - 1].len;
+       /* Find other matches.  */
+       num_matches = lzx_get_matches(c, &matches);
 
-       /* Greedy heuristic:  if the longest match that was found is greater
-        * than the number of fast bytes, return it immediately; don't both
-        * doing more work.  */
-       if (longest_match_len > ctx->params.alg_params.slow.num_fast_bytes) {
-               lzx_lz_skip_bytes(ctx, longest_match_len - 1);
-               return possible_matches[num_possible_matches - 1];
+       /* If there's a long match, choose it immediately.  */
+       if (num_matches) {
+               longest_len = matches[num_matches - 1].len;
+               if (longest_len >= c->params.nice_match_length) {
+                       lzx_skip_bytes(c, longest_len - 1);
+                       return matches[num_matches - 1];
+               }
+       } else {
+               longest_len = 1;
        }
 
-       /* Calculate the cost to reach the next position by outputting a
-        * literal.  */
-#if LZX_PARAM_ACCOUNT_FOR_LRU
-       ctx->optimum[0].queue = ctx->queue;
-       ctx->optimum[1].queue = ctx->optimum[0].queue;
-#endif
-       ctx->optimum[1].cost = lzx_literal_cost(ctx->window[ctx->match_window_pos],
-                                               &ctx->costs);
-       ctx->optimum[1].prev.link = 0;
+       /* Calculate the cost to reach the next position by coding a literal.  */
+       optimum[1].queue = c->queue;
+       optimum[1].cost = lzx_literal_cost(c->cur_window[c->match_window_pos - 1],
+                                             &c->costs);
+       optimum[1].prev.link = 0;
 
        /* Calculate the cost to reach any position up to and including that
-        * reached by the longest match, using the shortest (i.e. closest) match
-        * that reaches each position.  */
-       match_idx = 0;
-       BUILD_BUG_ON(LZX_MIN_MATCH != 2);
-       for (len = LZX_MIN_MATCH; len <= longest_match_len; len++) {
-
-               LZX_ASSERT(match_idx < num_possible_matches);
-
-       #if LZX_PARAM_ACCOUNT_FOR_LRU
-               ctx->optimum[len].queue = ctx->optimum[0].queue;
-       #endif
-               ctx->optimum[len].prev.link = 0;
-               ctx->optimum[len].prev.match_offset = possible_matches[match_idx].offset;
-               ctx->optimum[len].cost = lzx_match_cost(len,
-                                                       possible_matches[match_idx].offset,
-                                                       &ctx->costs
-                                               #if LZX_PARAM_ACCOUNT_FOR_LRU
-                                                       , &ctx->optimum[len].queue
-                                               #endif
-                                                       );
-               if (len == possible_matches[match_idx].len)
-                       match_idx++;
+        * reached by the longest match.
+        *
+        * Note: We consider only the lowest-offset match that reaches each
+        * position.
+        *
+        * Note: Some of the cost calculation stays the same for each offset,
+        * regardless of how many lengths it gets used for.  Therefore, to
+        * improve performance, we hand-code the cost calculation instead of
+        * calling lzx_match_cost() to do a from-scratch cost evaluation at each
+        * length.  */
+       for (unsigned i = 0, len = 2; i < num_matches; i++) {
+               u32 offset;
+               struct lzx_lru_queue queue;
+               u32 position_cost;
+               unsigned position_slot;
+               unsigned num_extra_bits;
+
+               offset = matches[i].offset;
+               queue = c->queue;
+               position_cost = 0;
+
+               position_slot = lzx_get_position_slot(offset, &queue);
+               num_extra_bits = lzx_get_num_extra_bits(position_slot);
+               if (num_extra_bits >= 3) {
+                       position_cost += num_extra_bits - 3;
+                       position_cost += c->costs.aligned[(offset + LZX_OFFSET_OFFSET) & 7];
+               } else {
+                       position_cost += num_extra_bits;
+               }
+
+               do {
+                       u32 cost;
+                       unsigned len_header;
+                       unsigned main_symbol;
+
+                       cost = position_cost;
+
+                       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+                               len_header = len - LZX_MIN_MATCH_LEN;
+                       } else {
+                               len_header = LZX_NUM_PRIMARY_LENS;
+                               cost += c->costs.len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
+                       }
+
+                       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
+                       cost += c->costs.main[main_symbol];
+
+                       optimum[len].queue = queue;
+                       optimum[len].prev.link = 0;
+                       optimum[len].prev.match_offset = offset;
+                       optimum[len].cost = cost;
+               } while (++len <= matches[i].len);
        }
+       end_pos = longest_len;
 
-       unsigned cur_pos = 0;
+       if (longest_rep_len) {
 
-       /* len_end: greatest index forward at which costs have been calculated
-        * so far  */
-       unsigned len_end = longest_match_len;
+               LZX_ASSERT(longest_rep_len >= LZX_MIN_MATCH_LEN);
 
+               u32 cost;
 
-       for (;;) {
-               /* Advance to next position.  */
-               cur_pos++;
+               while (end_pos < longest_rep_len)
+                       optimum[++end_pos].cost = MC_INFINITE_COST;
 
-               if (cur_pos == len_end || cur_pos == LZX_PARAM_OPTIM_ARRAY_SIZE)
-                       return lzx_lz_reverse_near_optimal_match_list(ctx, cur_pos);
+               cost = lzx_repmatch_cost(longest_rep_len, longest_rep_slot,
+                                        &c->costs);
+               if (cost <= optimum[longest_rep_len].cost) {
+                       optimum[longest_rep_len].queue = c->queue;
+                       swap(optimum[longest_rep_len].queue.R[0],
+                            optimum[longest_rep_len].queue.R[longest_rep_slot]);
+                       optimum[longest_rep_len].prev.link = 0;
+                       optimum[longest_rep_len].prev.match_offset =
+                               optimum[longest_rep_len].queue.R[0];
+                       optimum[longest_rep_len].cost = cost;
+               }
+       }
 
-               /* retrieve the number of matches available at this position  */
-               num_possible_matches = lzx_lz_get_matches_caching(ctx,
-                                                                 &possible_matches);
+       /* Step forward, calculating the estimated minimum cost to reach each
+        * position.  The algorithm may find multiple paths to reach each
+        * position; only the lowest-cost path is saved.
+        *
+        * The progress of the parse is tracked in the @optimum array, which for
+        * each position contains the minimum cost to reach that position, the
+        * index of the start of the match/literal taken to reach that position
+        * through the minimum-cost path, the offset of the match taken (not
+        * relevant for literals), and the adaptive state that will exist at
+        * that position after the minimum-cost path is taken.  The @cur_pos
+        * variable stores the position at which the algorithm is currently
+        * considering coding choices, and the @end_pos variable stores the
+        * greatest position at which the costs of coding choices have been
+        * saved.
+        *
+        * The loop terminates when any one of the following conditions occurs:
+        *
+        * 1. A match with length greater than or equal to @nice_match_length is
+        *    found.  When this occurs, the algorithm chooses this match
+        *    unconditionally, and consequently the near-optimal match/literal
+        *    sequence up to and including that match is fully determined and it
+        *    can begin returning the match/literal list.
+        *
+        * 2. @cur_pos reaches a position not overlapped by a preceding match.
+        *    In such cases, the near-optimal match/literal sequence up to
+        *    @cur_pos is fully determined and it can begin returning the
+        *    match/literal list.
+        *
+        * 3. Failing either of the above in a degenerate case, the loop
+        *    terminates when space in the @optimum array is exhausted.
+        *    This terminates the algorithm and forces it to start returning
+        *    matches/literals even though they may not be globally optimal.
+        *
+        * Upon loop termination, a nonempty list of matches/literals will have
+        * been produced and stored in the @optimum array.  These
+        * matches/literals are linked in reverse order, so the last thing this
+        * function does is reverse this list and return the first
+        * match/literal, leaving the rest to be returned immediately by
+        * subsequent calls to this function.
+        */
+       cur_pos = 0;
+       for (;;) {
+               u32 cost;
 
-               unsigned new_len = 0;
+               /* Advance to next position.  */
+               cur_pos++;
 
-               if (num_possible_matches != 0) {
-                       new_len = possible_matches[num_possible_matches - 1].len;
+               /* Check termination conditions (2) and (3) noted above.  */
+               if (cur_pos == end_pos || cur_pos == LZX_OPTIM_ARRAY_LENGTH)
+                       return lzx_match_chooser_reverse_list(c, cur_pos);
+
+               /* Search for matches at repeat offsets.  Again, as a heuristic
+                * we only keep the longest one.  */
+               longest_rep_len = lzx_repsearch(&c->cur_window[c->match_window_pos],
+                                               c->match_window_end - c->match_window_pos,
+                                               &optimum[cur_pos].queue,
+                                               &longest_rep_slot);
+
+               /* If we found a long match at a repeat offset, choose it
+                * immediately.  */
+               if (longest_rep_len >= c->params.nice_match_length) {
+                       /* Build the list of matches to return and get
+                        * the first one.  */
+                       match = lzx_match_chooser_reverse_list(c, cur_pos);
+
+                       /* Append the long match to the end of the list.  */
+                       optimum[cur_pos].next.match_offset =
+                               optimum[cur_pos].queue.R[longest_rep_slot];
+                       optimum[cur_pos].next.link = cur_pos + longest_rep_len;
+                       c->optimum_end_idx = cur_pos + longest_rep_len;
+
+                       /* Skip over the remaining bytes of the long match.  */
+                       lzx_skip_bytes(c, longest_rep_len);
+
+                       /* Return first match in the list.  */
+                       return match;
+               }
 
-                       /* Greedy heuristic:  if we found a match greater than
-                        * the number of fast bytes, stop immediately.  */
-                       if (new_len > ctx->params.alg_params.slow.num_fast_bytes) {
+               /* Find other matches.  */
+               num_matches = lzx_get_matches(c, &matches);
 
+               /* If there's a long match, choose it immediately.  */
+               if (num_matches) {
+                       longest_len = matches[num_matches - 1].len;
+                       if (longest_len >= c->params.nice_match_length) {
                                /* Build the list of matches to return and get
                                 * the first one.  */
-                               match = lzx_lz_reverse_near_optimal_match_list(ctx, cur_pos);
+                               match = lzx_match_chooser_reverse_list(c, cur_pos);
 
                                /* Append the long match to the end of the list.  */
-                               ctx->optimum[cur_pos].next.match_offset =
-                                       possible_matches[num_possible_matches - 1].offset;
-                               ctx->optimum[cur_pos].next.link = cur_pos + new_len;
-                               ctx->optimum_end_idx = cur_pos + new_len;
+                               optimum[cur_pos].next.match_offset =
+                                       matches[num_matches - 1].offset;
+                               optimum[cur_pos].next.link = cur_pos + longest_len;
+                               c->optimum_end_idx = cur_pos + longest_len;
 
                                /* Skip over the remaining bytes of the long match.  */
-                               lzx_lz_skip_bytes(ctx, new_len - 1);
+                               lzx_skip_bytes(c, longest_len - 1);
 
-                               /* Return first match in the list  */
+                               /* Return first match in the list.  */
                                return match;
                        }
+               } else {
+                       longest_len = 1;
                }
 
-               /* Consider proceeding with a literal byte.  */
-               u32 cur_cost = ctx->optimum[cur_pos].cost;
-               u32 cur_plus_literal_cost = cur_cost +
-                       lzx_literal_cost(ctx->window[ctx->match_window_pos - 1],
-                                        &ctx->costs);
-               if (cur_plus_literal_cost < ctx->optimum[cur_pos + 1].cost) {
-                       ctx->optimum[cur_pos + 1].cost = cur_plus_literal_cost;
-                       ctx->optimum[cur_pos + 1].prev.link = cur_pos;
-               #if LZX_PARAM_ACCOUNT_FOR_LRU
-                       ctx->optimum[cur_pos + 1].queue = ctx->optimum[cur_pos].queue;
-               #endif
+               /* If we are reaching any positions for the first time, we need
+                * to initialize their costs to infinity.  */
+               while (end_pos < cur_pos + longest_len)
+                       optimum[++end_pos].cost = MC_INFINITE_COST;
+
+               /* Consider coding a literal.  */
+               cost = optimum[cur_pos].cost +
+                       lzx_literal_cost(c->cur_window[c->match_window_pos - 1],
+                                        &c->costs);
+               if (cost < optimum[cur_pos + 1].cost) {
+                       optimum[cur_pos + 1].queue = optimum[cur_pos].queue;
+                       optimum[cur_pos + 1].cost = cost;
+                       optimum[cur_pos + 1].prev.link = cur_pos;
                }
 
-               if (num_possible_matches == 0)
-                       continue;
-
-               /* Consider proceeding with a match.  */
-
-               while (len_end < cur_pos + new_len)
-                       ctx->optimum[++len_end].cost = ~(u32)0;
-
-               match_idx = 0;
-               for (len = LZX_MIN_MATCH; len <= new_len; len++) {
-                       LZX_ASSERT(match_idx < num_possible_matches);
-               #if LZX_PARAM_ACCOUNT_FOR_LRU
-                       struct lzx_lru_queue q = ctx->optimum[cur_pos].queue;
-               #endif
-                       u32 cost = cur_cost + lzx_match_cost(len,
-                                                            possible_matches[match_idx].offset,
-                                                            &ctx->costs
-                                                       #if LZX_PARAM_ACCOUNT_FOR_LRU
-                                                            , &q
-                                                       #endif
-                                                            );
-
-                       if (cost < ctx->optimum[cur_pos + len].cost) {
-                               ctx->optimum[cur_pos + len].cost = cost;
-                               ctx->optimum[cur_pos + len].prev.link = cur_pos;
-                               ctx->optimum[cur_pos + len].prev.match_offset =
-                                               possible_matches[match_idx].offset;
-                       #if LZX_PARAM_ACCOUNT_FOR_LRU
-                               ctx->optimum[cur_pos + len].queue = q;
-                       #endif
+               /* Consider coding a match.
+                *
+                * The hard-coded cost calculation is done for the same reason
+                * stated in the comment for the similar loop earlier.
+                * Actually, it is *this* one that has the biggest effect on
+                * performance; overall LZX compression is > 10% faster with
+                * this code compared to calling lzx_match_cost() with each
+                * length.  */
+               for (unsigned i = 0, len = 2; i < num_matches; i++) {
+                       u32 offset;
+                       u32 position_cost;
+                       unsigned position_slot;
+                       unsigned num_extra_bits;
+
+                       offset = matches[i].offset;
+                       position_cost = optimum[cur_pos].cost;
+
+                       /* Yet another optimization: instead of calling
+                        * lzx_get_position_slot(), hand-inline the search of
+                        * the repeat offset queue.  Then we can omit the
+                        * extra_bits calculation for repeat offset matches, and
+                        * also only compute the updated queue if we actually do
+                        * find a new lowest cost path.  */
+                       for (position_slot = 0; position_slot < LZX_NUM_RECENT_OFFSETS; position_slot++)
+                               if (offset == optimum[cur_pos].queue.R[position_slot])
+                                       goto have_position_cost;
+
+                       position_slot = lzx_get_position_slot_raw(offset + LZX_OFFSET_OFFSET);
+
+                       num_extra_bits = lzx_get_num_extra_bits(position_slot);
+                       if (num_extra_bits >= 3) {
+                               position_cost += num_extra_bits - 3;
+                               position_cost += c->costs.aligned[
+                                               (offset + LZX_OFFSET_OFFSET) & 7];
+                       } else {
+                               position_cost += num_extra_bits;
                        }
 
-                       if (len == possible_matches[match_idx].len)
-                               match_idx++;
-               }
-       }
-#endif
-}
+               have_position_cost:
 
-static unsigned
-lzx_huffman_code_output_cost(const u8 lens[restrict],
-                            const freq_t freqs[restrict],
-                            unsigned num_syms)
-{
-       unsigned cost = 0;
+                       do {
+                               u32 cost;
+                               unsigned len_header;
+                               unsigned main_symbol;
 
-       for (unsigned i = 0; i < num_syms; i++)
-               cost += (unsigned)lens[i] * (unsigned)freqs[i];
+                               cost = position_cost;
 
-       return cost;
+                               if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+                                       len_header = len - LZX_MIN_MATCH_LEN;
+                               } else {
+                                       len_header = LZX_NUM_PRIMARY_LENS;
+                                       cost += c->costs.len[len -
+                                                       LZX_MIN_MATCH_LEN -
+                                                       LZX_NUM_PRIMARY_LENS];
+                               }
+
+                               main_symbol = ((position_slot << 3) | len_header) +
+                                               LZX_NUM_CHARS;
+                               cost += c->costs.main[main_symbol];
+
+                               if (cost < optimum[cur_pos + len].cost) {
+                                       if (position_slot < LZX_NUM_RECENT_OFFSETS) {
+                                               optimum[cur_pos + len].queue = optimum[cur_pos].queue;
+                                               swap(optimum[cur_pos + len].queue.R[0],
+                                                    optimum[cur_pos + len].queue.R[position_slot]);
+                                       } else {
+                                               optimum[cur_pos + len].queue.R[0] = offset;
+                                               optimum[cur_pos + len].queue.R[1] = optimum[cur_pos].queue.R[0];
+                                               optimum[cur_pos + len].queue.R[2] = optimum[cur_pos].queue.R[1];
+                                       }
+                                       optimum[cur_pos + len].prev.link = cur_pos;
+                                       optimum[cur_pos + len].prev.match_offset = offset;
+                                       optimum[cur_pos + len].cost = cost;
+                               }
+                       } while (++len <= matches[i].len);
+               }
+
+               /* Consider coding a repeat offset match.
+                *
+                * As a heuristic, we only consider the longest length of the
+                * longest repeat offset match.  This does not, however,
+                * necessarily mean that we will never consider any other repeat
+                * offsets, because above we detect repeat offset matches that
+                * were found by the regular match-finder.  Therefore, this
+                * special handling of the longest repeat-offset match is only
+                * helpful for coding a repeat offset match that was *not* found
+                * by the match-finder, e.g. due to being obscured by a less
+                * distant match that is at least as long.
+                *
+                * Note: an alternative, used in LZMA, is to consider every
+                * length of every repeat offset match.  This is a more thorough
+                * search, and it makes it unnecessary to detect repeat offset
+                * matches that were found by the regular match-finder.  But by
+                * my tests, for LZX the LZMA method slows down the compressor
+                * by ~10% and doesn't actually help the compression ratio too
+                * much.
+                *
+                * Also tested a compromise approach: consider every 3rd length
+                * of the longest repeat offset match.  Still didn't seem quite
+                * worth it, though.
+                */
+               if (longest_rep_len) {
+
+                       LZX_ASSERT(longest_rep_len >= LZX_MIN_MATCH_LEN);
+
+                       while (end_pos < cur_pos + longest_rep_len)
+                               optimum[++end_pos].cost = MC_INFINITE_COST;
+
+                       cost = optimum[cur_pos].cost +
+                               lzx_repmatch_cost(longest_rep_len, longest_rep_slot,
+                                                 &c->costs);
+                       if (cost <= optimum[cur_pos + longest_rep_len].cost) {
+                               optimum[cur_pos + longest_rep_len].queue =
+                                       optimum[cur_pos].queue;
+                               swap(optimum[cur_pos + longest_rep_len].queue.R[0],
+                                    optimum[cur_pos + longest_rep_len].queue.R[longest_rep_slot]);
+                               optimum[cur_pos + longest_rep_len].prev.link =
+                                       cur_pos;
+                               optimum[cur_pos + longest_rep_len].prev.match_offset =
+                                       optimum[cur_pos + longest_rep_len].queue.R[0];
+                               optimum[cur_pos + longest_rep_len].cost =
+                                       cost;
+                       }
+               }
+       }
 }
 
-/* Return the number of bits required to output the lengths for the specified
- * Huffman code in compressed format (encoded with a precode).  */
-static unsigned
-lzx_code_cost(const u8 lens[], const u8 prev_lens[], unsigned num_syms)
+static struct lz_match
+lzx_choose_lazy_item(struct lzx_compressor *c)
 {
-       u8 output_syms[num_syms];
-       freq_t precode_freqs[LZX_PRETREE_NUM_SYMBOLS];
-       u8 precode_lens[LZX_PRETREE_NUM_SYMBOLS];
-       u16 precode_codewords[LZX_PRETREE_NUM_SYMBOLS];
-       unsigned cost = 0;
-       unsigned num_additional_bits;
+       const struct lz_match *matches;
+       struct lz_match cur_match;
+       struct lz_match next_match;
+       u32 num_matches;
+
+       if (c->prev_match.len) {
+               cur_match = c->prev_match;
+               c->prev_match.len = 0;
+       } else {
+               num_matches = lzx_get_matches(c, &matches);
+               if (num_matches == 0 ||
+                   (matches[num_matches - 1].len <= 3 &&
+                    (matches[num_matches - 1].len <= 2 ||
+                     matches[num_matches - 1].offset > 4096)))
+               {
+                       return (struct lz_match) { };
+               }
 
-       /* Acount for the lengths of the precode itself.  */
-       cost += LZX_PRETREE_NUM_SYMBOLS * LZX_PRETREE_ELEMENT_SIZE;
+               cur_match = matches[num_matches - 1];
+       }
+
+       if (cur_match.len >= c->params.nice_match_length) {
+               lzx_skip_bytes(c, cur_match.len - 1);
+               return cur_match;
+       }
 
-       lzx_build_precode(lens, prev_lens, num_syms,
-                         precode_freqs, output_syms,
-                         precode_lens, precode_codewords,
-                         &num_additional_bits);
+       num_matches = lzx_get_matches(c, &matches);
+       if (num_matches == 0 ||
+           (matches[num_matches - 1].len <= 3 &&
+            (matches[num_matches - 1].len <= 2 ||
+             matches[num_matches - 1].offset > 4096)))
+       {
+               lzx_skip_bytes(c, cur_match.len - 2);
+               return cur_match;
+       }
 
-       /* Account for all precode symbols output.  */
-       cost += lzx_huffman_code_output_cost(precode_lens, precode_freqs,
-                                            LZX_PRETREE_NUM_SYMBOLS);
+       next_match = matches[num_matches - 1];
 
-       /* Account for additional bits.  */
-       cost += num_additional_bits;
+       if (next_match.len <= cur_match.len) {
+               lzx_skip_bytes(c, cur_match.len - 2);
+               return cur_match;
+       } else {
+               c->prev_match = next_match;
+               return (struct lz_match) { };
+       }
+}
 
-       return cost;
+/*
+ * Return the next match or literal to use, delegating to the currently selected
+ * match-choosing algorithm.
+ *
+ * If the length of the returned 'struct lz_match' is less than
+ * LZX_MIN_MATCH_LEN, then it is really a literal.
+ */
+static inline struct lz_match
+lzx_choose_item(struct lzx_compressor *c)
+{
+       return (*c->params.choose_item_func)(c);
 }
 
-/* Account for extra bits in the main symbols.  */
+/* Set default symbol costs for the LZX Huffman codes.  */
 static void
-lzx_update_mainsym_match_costs(int block_type,
-                              u8 main_lens[LZX_MAINTREE_NUM_SYMBOLS])
+lzx_set_default_costs(struct lzx_costs * costs, unsigned num_main_syms)
 {
        unsigned i;
 
-       LZX_ASSERT(block_type == LZX_BLOCKTYPE_ALIGNED ||
-                  block_type == LZX_BLOCKTYPE_VERBATIM);
+       /* Main code (part 1): Literal symbols  */
+       for (i = 0; i < LZX_NUM_CHARS; i++)
+               costs->main[i] = 8;
 
-       for (i = LZX_NUM_CHARS; i < LZX_MAINTREE_NUM_SYMBOLS; i++) {
-               unsigned position_slot = (i >> 3) & 0x1f;
+       /* Main code (part 2): Match header symbols  */
+       for (; i < num_main_syms; i++)
+               costs->main[i] = 10;
 
-               /* If it's a verbatim block, add the number of extra bits
-                * corresponding to the position slot.
-                *
-                * If it's an aligned block and there would normally be at least
-                * 3 extra bits, count 3 less because they will be output as an
-                * aligned offset symbol instead.  */
-               unsigned num_extra_bits = lzx_get_num_extra_bits(position_slot);
-
-               if (block_type == LZX_BLOCKTYPE_ALIGNED && num_extra_bits >= 3)
-                       num_extra_bits -= 3;
-               main_lens[i] += num_extra_bits;
-       }
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               costs->len[i] = 8;
+
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               costs->aligned[i] = 3;
 }
 
-/*
- * Compute the costs, in bits, to output a compressed block as aligned offset
- * and verbatim.
- *
- * @block_size
- *     Number of bytes of uncompressed data the block represents.
- * @codes
- *     Huffman codes that will be used when outputting the block.
- * @prev_codes
- *     Huffman codes for the previous block, or all zeroes if this is the first
- *     block.
- * @freqs
- *     Frequencies of Huffman symbols that will be output in the block.
- * @aligned_cost_ret
- *     Cost of aligned block will be returned here.
- * @verbatim_cost_ret
- *     Cost of verbatim block will be returned here.
- */
-static void
-lzx_compute_compressed_block_costs(unsigned block_size,
-                                  const struct lzx_codes *codes,
-                                  const struct lzx_codes *prev_codes,
-                                  const struct lzx_freqs *freqs,
-                                  unsigned * aligned_cost_ret,
-                                  unsigned * verbatim_cost_ret)
+/* Given the frequencies of symbols in an LZX-compressed block and the
+ * corresponding Huffman codes, return LZX_BLOCKTYPE_ALIGNED or
+ * LZX_BLOCKTYPE_VERBATIM if an aligned offset or verbatim block, respectively,
+ * will take fewer bits to output.  */
+static int
+lzx_choose_verbatim_or_aligned(const struct lzx_freqs * freqs,
+                              const struct lzx_codes * codes)
 {
-       unsigned common_cost = 0;
        unsigned aligned_cost = 0;
        unsigned verbatim_cost = 0;
 
-       u8 updated_main_lens[LZX_MAINTREE_NUM_SYMBOLS];
-
-       /* Account for cost of block header.  */
-       common_cost += LZX_BLOCKTYPE_NBITS;
-       if (block_size == LZX_DEFAULT_BLOCK_SIZE)
-               common_cost += 1;
+       /* Verbatim blocks have a constant 3 bits per position footer.  Aligned
+        * offset blocks have an aligned offset symbol per position footer, plus
+        * an extra 24 bits per block to output the lengths necessary to
+        * reconstruct the aligned offset code itself.  */
+       for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+               verbatim_cost += 3 * freqs->aligned[i];
+               aligned_cost += codes->lens.aligned[i] * freqs->aligned[i];
+       }
+       aligned_cost += LZX_ALIGNEDCODE_ELEMENT_SIZE * LZX_ALIGNEDCODE_NUM_SYMBOLS;
+       if (aligned_cost < verbatim_cost)
+               return LZX_BLOCKTYPE_ALIGNED;
        else
-               common_cost += LZX_BLOCKSIZE_NBITS;
-
-       /* Account for cost of outputting aligned offset code.  */
-       aligned_cost += LZX_ALIGNEDTREE_NUM_SYMBOLS * LZX_ALIGNEDTREE_ELEMENT_SIZE;
-
-       /* Account for cost of outputting main and length codes.  */
-       common_cost += lzx_code_cost(codes->lens.main,
-                                    prev_codes->lens.main,
-                                    LZX_NUM_CHARS);
-       common_cost += lzx_code_cost(codes->lens.main + LZX_NUM_CHARS,
-                                    prev_codes->lens.main + LZX_NUM_CHARS,
-                                    LZX_MAINTREE_NUM_SYMBOLS - LZX_NUM_CHARS);
-       common_cost += lzx_code_cost(codes->lens.len,
-                                    prev_codes->lens.len,
-                                    LZX_LENTREE_NUM_SYMBOLS);
-
-       /* Account for cost to output main, length, and aligned symbols, taking
-        * into account extra position bits.  */
-
-       memcpy(updated_main_lens, codes->lens.main, LZX_MAINTREE_NUM_SYMBOLS);
-       lzx_update_mainsym_match_costs(LZX_BLOCKTYPE_VERBATIM, updated_main_lens);
-       verbatim_cost += lzx_huffman_code_output_cost(updated_main_lens,
-                                                     freqs->main,
-                                                     LZX_MAINTREE_NUM_SYMBOLS);
-       memcpy(updated_main_lens, codes->lens.main, LZX_MAINTREE_NUM_SYMBOLS);
-       lzx_update_mainsym_match_costs(LZX_BLOCKTYPE_ALIGNED, updated_main_lens);
-       aligned_cost += lzx_huffman_code_output_cost(updated_main_lens,
-                                                    freqs->main,
-                                                    LZX_MAINTREE_NUM_SYMBOLS);
-
-       common_cost += lzx_huffman_code_output_cost(codes->lens.len,
-                                                   freqs->len,
-                                                   LZX_LENTREE_NUM_SYMBOLS);
-
-       aligned_cost += lzx_huffman_code_output_cost(codes->lens.aligned,
-                                                    freqs->aligned,
-                                                    LZX_ALIGNEDTREE_NUM_SYMBOLS);
-
-       *aligned_cost_ret = aligned_cost + common_cost;
-       *verbatim_cost_ret = verbatim_cost + common_cost;
+               return LZX_BLOCKTYPE_VERBATIM;
 }
 
-/* Prepare a (nonsplit) compressed block.  */
-static unsigned
-lzx_prepare_compressed_block(struct lzx_compressor *ctx, unsigned block_number,
-                            struct lzx_codes *prev_codes)
+/* Find a sequence of matches/literals with which to output the specified LZX
+ * block, then set the block's type to that which has the minimum cost to output
+ * (either verbatim or aligned).  */
+static void
+lzx_choose_items_for_block(struct lzx_compressor *c, struct lzx_block_spec *spec)
 {
-       struct lzx_block_spec *spec = &ctx->block_specs[block_number - 1];
-       unsigned orig_cached_matches_pos = ctx->cached_matches_pos;
-       struct lzx_lru_queue orig_queue = ctx->queue;
+       const struct lzx_lru_queue orig_queue = c->queue;
+       u32 num_passes_remaining = c->params.num_optim_passes;
        struct lzx_freqs freqs;
-       unsigned cost;
-
-       /* Here's where the real work happens.  The following loop runs one or
-        * more times, each time using a cost model based on the Huffman codes
-        * computed from the previous iteration (the first iteration uses a
-        * default model).  Each iteration of the loop uses a heuristic
-        * algorithm to divide the block into near-optimal matches/literals from
-        * beginning to end.  */
-       LZX_ASSERT(ctx->params.alg_params.slow.num_optim_passes >= 1);
-       spec->num_chosen_matches = 0;
-       for (unsigned pass = 0; pass < ctx->params.alg_params.slow.num_optim_passes; pass++)
-       {
-               LZX_DEBUG("Block %u: Match-choosing pass %u of %u",
-                         block_number, pass + 1,
-                         ctx->params.alg_params.slow.num_optim_passes);
-
-               /* Reset frequency tables.  */
-               memset(&freqs, 0, sizeof(freqs));
+       const u8 *window_ptr;
+       const u8 *window_end;
+       struct lzx_item *next_chosen_item;
+       struct lz_match lz_match;
+       struct lzx_item lzx_item;
 
-               /* Reset match offset LRU queue.  */
-               ctx->queue = orig_queue;
+       LZX_ASSERT(num_passes_remaining >= 1);
+       LZX_ASSERT(lz_mf_get_position(c->mf) == spec->window_pos);
 
-               /* Reset match-finding position.  */
-               ctx->cached_matches_pos = orig_cached_matches_pos;
-               ctx->match_window_pos = spec->window_pos;
-               ctx->match_window_end = spec->window_pos + spec->block_size;
+       c->match_window_end = spec->window_pos + spec->block_size;
 
-               /* Set cost model.  */
-               lzx_set_costs(ctx, &spec->codes.lens);
-
-               unsigned window_pos = spec->window_pos;
-               unsigned end = window_pos + spec->block_size;
-
-               while (window_pos < end) {
-                       struct raw_match match;
-                       struct lzx_match lzx_match;
-
-                       match = lzx_lz_get_near_optimal_match(ctx);
+       if (c->params.num_optim_passes > 1) {
+               if (spec->block_size == c->cur_window_size)
+                       c->get_matches_func = lzx_get_matches_fillcache_singleblock;
+               else
+                       c->get_matches_func = lzx_get_matches_fillcache_multiblock;
+               c->skip_bytes_func = lzx_skip_bytes_fillcache;
+       } else {
+               if (spec->block_size == c->cur_window_size)
+                       c->get_matches_func = lzx_get_matches_nocache_singleblock;
+               else
+                       c->get_matches_func = lzx_get_matches_nocache_multiblock;
+               c->skip_bytes_func = lzx_skip_bytes_nocache;
+       }
 
-                       if (match.len >= LZX_MIN_MATCH) {
+       /* The first optimal parsing pass is done using the cost model already
+        * set in c->costs.  Each later pass is done using a cost model
+        * computed from the previous pass.
+        *
+        * To improve performance we only generate the array containing the
+        * matches and literals in intermediate form on the final pass.  */
 
-                               /* Best to output a match here.  */
+       while (--num_passes_remaining) {
+               c->match_window_pos = spec->window_pos;
+               c->cache_ptr = c->cached_matches;
+               memset(&freqs, 0, sizeof(freqs));
+               window_ptr = &c->cur_window[spec->window_pos];
+               window_end = window_ptr + spec->block_size;
 
-                               LZX_ASSERT(match.len <= LZX_MAX_MATCH);
-                               LZX_ASSERT(!memcmp(&ctx->window[window_pos],
-                                                  &ctx->window[window_pos - match.offset],
-                                                  match.len));
+               while (window_ptr != window_end) {
 
-                               /* Tally symbol frequencies.  */
-                               lzx_match.data = lzx_record_match(match.offset,
-                                                                 match.len,
-                                                                 &freqs,
-                                                                 &ctx->queue);
+                       lz_match = lzx_choose_item(c);
 
-                               window_pos += match.len;
+                       LZX_ASSERT(!(lz_match.len == LZX_MIN_MATCH_LEN &&
+                                    lz_match.offset == c->max_window_size -
+                                                        LZX_MIN_MATCH_LEN));
+                       if (lz_match.len >= LZX_MIN_MATCH_LEN) {
+                               lzx_tally_match(lz_match.len, lz_match.offset,
+                                               &freqs, &c->queue);
+                               window_ptr += lz_match.len;
                        } else {
-                               /* Best to output a literal here.  */
-
-                               /* Tally symbol frequencies.  */
-                               lzx_match.data = lzx_record_literal(ctx->window[window_pos],
-                                                                   &freqs);
-
-                               window_pos += 1;
-                       }
-
-                       /* If it's the last pass, save the match/literal in
-                        * intermediate form.  */
-                       if (pass == ctx->params.alg_params.slow.num_optim_passes - 1) {
-                               ctx->chosen_matches[spec->chosen_matches_start_pos +
-                                                   spec->num_chosen_matches] = lzx_match;
-
-                               spec->num_chosen_matches++;
+                               lzx_tally_literal(*window_ptr, &freqs);
+                               window_ptr += 1;
                        }
                }
-               LZX_ASSERT(window_pos == end);
-
-               /* Build Huffman codes using the new frequencies.  */
-               lzx_make_huffman_codes(&freqs, &spec->codes);
-
-               /* The first time we get here is when the full input has been
-                * processed, so the match-finding is done.  */
-               ctx->matches_already_found = true;
+               lzx_make_huffman_codes(&freqs, &spec->codes, c->num_main_syms);
+               lzx_set_costs(c, &spec->codes.lens, 15);
+               c->queue = orig_queue;
+               if (c->cache_ptr <= c->cache_limit) {
+                       c->get_matches_func = lzx_get_matches_usecache_nocheck;
+                       c->skip_bytes_func = lzx_skip_bytes_usecache_nocheck;
+               } else {
+                       c->get_matches_func = lzx_get_matches_usecache;
+                       c->skip_bytes_func = lzx_skip_bytes_usecache;
+               }
        }
 
-       LZX_DEBUG("Block %u: saved %u matches/literals @ %u",
-                 block_number, spec->num_chosen_matches,
-                 spec->chosen_matches_start_pos);
-
-       unsigned aligned_cost;
-       unsigned verbatim_cost;
+       c->match_window_pos = spec->window_pos;
+       c->cache_ptr = c->cached_matches;
+       memset(&freqs, 0, sizeof(freqs));
+       window_ptr = &c->cur_window[spec->window_pos];
+       window_end = window_ptr + spec->block_size;
 
-       lzx_compute_compressed_block_costs(spec->block_size,
-                                          &spec->codes,
-                                          prev_codes,
-                                          &freqs,
-                                          &aligned_cost,
-                                          &verbatim_cost);
-
-       /* Choose whether to make the block aligned offset or verbatim.  */
-       if (aligned_cost < verbatim_cost) {
-               spec->block_type = LZX_BLOCKTYPE_ALIGNED;
-               cost = aligned_cost;
-               LZX_DEBUG("Using aligned block (cost %u vs %u for verbatim)",
-                         aligned_cost, verbatim_cost);
-       } else {
-               spec->block_type = LZX_BLOCKTYPE_VERBATIM;
-               cost = verbatim_cost;
-               LZX_DEBUG("Using verbatim block (cost %u vs %u for aligned)",
-                         verbatim_cost, aligned_cost);
-       }
+       spec->chosen_items = &c->chosen_items[spec->window_pos];
+       next_chosen_item = spec->chosen_items;
 
-       LZX_DEBUG("Block %u is %u => %u bytes unsplit.",
-                 block_number, spec->block_size, cost / 8);
+       unsigned unseen_cost = 9;
+       while (window_ptr != window_end) {
 
-       return cost;
-}
+               lz_match = lzx_choose_item(c);
 
-/*
- * lzx_prepare_block_recursive() -
- *
- * Given a (possibly nonproper) sub-sequence of the preprocessed input, compute
- * the LZX block(s) that it should be output as.
- *
- * This function initially considers the case where the given sub-sequence of
- * the preprocessed input be output as a single block.  This block is calculated
- * and its cost (number of bits required to output it) is computed.
- *
- * Then, if @max_split_level is greater than zero, a split into two evenly sized
- * subblocks is considered.  The block is recursively split in this way,
- * potentially up to the depth specified by @max_split_level.  The cost of the
- * split block is compared to the cost of the single block, and the lower cost
- * solution is used.
- *
- * For each compressed output block computed, the sequence of matches/literals
- * and the corresponding Huffman codes for the block are produced and saved.
- *
- * The return value is the approximate number of bits the block (or all
- * subblocks, in the case that the split block had lower cost), will take up
- * when written to the compressed output.
- */
-static unsigned
-lzx_prepare_block_recursive(struct lzx_compressor * ctx,
-                           unsigned block_number,
-                           unsigned max_split_level,
-                           struct lzx_codes **prev_codes_p)
-{
-       struct lzx_block_spec *spec = &ctx->block_specs[block_number - 1];
-       unsigned cost;
-       unsigned orig_cached_matches_pos;
-       struct lzx_lru_queue orig_queue, nonsplit_queue;
-       struct lzx_codes *prev_codes = *prev_codes_p;
-
-       LZX_DEBUG("Preparing block %u...", block_number);
-
-       /* Save positions of chosen and cached matches, and the match offset LRU
-        * queue, so that they can be restored if splitting is attempted.  */
-       orig_cached_matches_pos = ctx->cached_matches_pos;
-       orig_queue = ctx->queue;
-
-       /* Consider outputting the input subsequence as a single block.  */
-       spec->is_split = 0;
-       cost = lzx_prepare_compressed_block(ctx, block_number, prev_codes);
-       nonsplit_queue = ctx->queue;
-
-       *prev_codes_p = &spec->codes;
-
-       /* If the maximum split level is at least one, consider splitting the
-        * block in two.  */
-       if (max_split_level--) {
-
-               LZX_DEBUG("Calculating split of block %u...", block_number);
-
-               struct lzx_block_spec *spec1, *spec2;
-               unsigned split_cost;
-
-               ctx->cached_matches_pos = orig_cached_matches_pos;
-               ctx->queue = orig_queue;
-
-               /* Prepare and get the cost of the first sub-block.  */
-               spec1 = &ctx->block_specs[block_number * 2 - 1];
-               spec1->codes.lens = spec->codes.lens;
-               spec1->window_pos = spec->window_pos;
-               spec1->block_size = spec->block_size / 2;
-               spec1->chosen_matches_start_pos = spec->chosen_matches_start_pos +
-                                                 LZX_MAX_WINDOW_SIZE;
-               split_cost = lzx_prepare_block_recursive(ctx,
-                                                        block_number * 2,
-                                                        max_split_level,
-                                                        &prev_codes);
-
-               /* Prepare and get the cost of the second sub-block.  */
-               spec2 = spec1 + 1;
-               spec2->codes.lens = spec->codes.lens;
-               spec2->window_pos = spec->window_pos + spec1->block_size;
-               spec2->block_size = spec->block_size - spec1->block_size;
-               spec2->chosen_matches_start_pos = spec1->chosen_matches_start_pos +
-                                                 spec1->block_size;
-               split_cost += lzx_prepare_block_recursive(ctx,
-                                                         block_number * 2 + 1,
-                                                         max_split_level,
-                                                         &prev_codes);
-
-               /* Compare the cost of the whole block with that of the split
-                * block.  Choose the lower cost solution.  */
-               if (split_cost < cost) {
-                       LZX_DEBUG("Splitting block %u is worth it "
-                                 "(%u => %u bytes).",
-                                 block_number, cost / 8, split_cost / 8);
-                       spec->is_split = 1;
-                       cost = split_cost;
-                       *prev_codes_p = prev_codes;
+               LZX_ASSERT(!(lz_match.len == LZX_MIN_MATCH_LEN &&
+                            lz_match.offset == c->max_window_size -
+                                                LZX_MIN_MATCH_LEN));
+               if (lz_match.len >= LZX_MIN_MATCH_LEN) {
+                       lzx_item.data = lzx_tally_match(lz_match.len,
+                                                        lz_match.offset,
+                                                        &freqs, &c->queue);
+                       window_ptr += lz_match.len;
                } else {
-                       LZX_DEBUG("Splitting block %u is NOT worth it "
-                                 "(%u => %u bytes).",
-                                 block_number, cost / 8, split_cost / 8);
-                       ctx->queue = nonsplit_queue;
+                       lzx_item.data = lzx_tally_literal(*window_ptr, &freqs);
+                       window_ptr += 1;
                }
-       }
+               *next_chosen_item++ = lzx_item;
 
-       return cost;
+               /* When doing one-pass "near-optimal" parsing, update the cost
+                * model occassionally.  */
+               if (unlikely((next_chosen_item - spec->chosen_items) % 2048 == 0) &&
+                   c->params.choose_item_func == lzx_choose_near_optimal_item &&
+                   c->params.num_optim_passes == 1)
+               {
+                       lzx_make_huffman_codes(&freqs, &spec->codes, c->num_main_syms);
+                       lzx_set_costs(c, &spec->codes.lens, unseen_cost);
+                       if (unseen_cost < 15)
+                               unseen_cost++;
+               }
+       }
+       spec->num_chosen_items = next_chosen_item - spec->chosen_items;
+       lzx_make_huffman_codes(&freqs, &spec->codes, c->num_main_syms);
+       spec->block_type = lzx_choose_verbatim_or_aligned(&freqs, &spec->codes);
 }
 
-/* Empirical averages  */
-static const u8 lzx_default_mainsym_costs[LZX_MAINTREE_NUM_SYMBOLS] = {
-       7, 9, 9, 10, 9, 10, 10, 10, 9, 10, 9, 10, 10, 9, 10, 10, 9, 10, 10, 11,
-       10, 10, 10, 11, 10, 11, 11, 11, 10, 11, 11, 11, 8, 11, 9, 10, 9, 10, 11,
-       11, 9, 9, 11, 10, 10, 9, 9, 9, 8, 8, 8, 8, 8, 9, 9, 9, 8, 8, 9, 9, 9, 9,
-       10, 10, 10, 8, 9, 8, 8, 8, 8, 9, 9, 9, 10, 10, 8, 8, 9, 9, 8, 10, 9, 8,
-       8, 9, 8, 9, 9, 10, 10, 10, 9, 10, 11, 9, 10, 8, 9, 8, 8, 8, 8, 9, 8, 8,
-       9, 9, 8, 8, 8, 8, 8, 10, 8, 8, 7, 8, 9, 9, 9, 9, 10, 11, 10, 10, 11, 11,
-       10, 11, 11, 10, 10, 11, 11, 11, 10, 10, 11, 10, 11, 10, 11, 11, 10, 11,
-       11, 12, 11, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 12, 10, 11, 11, 11,
-       11, 11, 11, 12, 11, 11, 11, 11, 11, 12, 11, 11, 10, 11, 11, 11, 11, 11,
-       11, 11, 10, 11, 11, 11, 11, 11, 11, 11, 10, 11, 11, 11, 11, 11, 11, 11,
-       10, 11, 11, 11, 11, 11, 11, 11, 10, 11, 11, 11, 11, 12, 11, 11, 10, 11,
-       11, 11, 11, 12, 11, 11, 10, 11, 11, 11, 10, 12, 11, 11, 10, 10, 11, 10,
-       10, 11, 11, 11, 10, 11, 11, 11, 10, 11, 11, 11, 10, 11, 11, 11, 10, 11,
-       10, 9, 8, 7, 10, 10, 11, 10, 11, 7, 9, 9, 11, 11, 11, 12, 11, 9, 10, 10,
-       12, 12, 13, 13, 12, 11, 10, 12, 12, 14, 14, 14, 13, 12, 9, 12, 13, 14,
-       14, 14, 14, 14, 9, 10, 13, 14, 14, 14, 14, 14, 9, 9, 11, 11, 13, 13, 13,
-       14, 9, 9, 11, 12, 12, 13, 13, 13, 8, 8, 11, 11, 12, 12, 12, 11, 9, 9,
-       10, 11, 12, 12, 12, 11, 8, 9, 10, 10, 11, 12, 11, 10, 9, 9, 10, 11, 11,
-       12, 11, 10, 8, 9, 10, 10, 11, 11, 11, 9, 9, 9, 10, 11, 11, 11, 11, 9, 8,
-       8, 10, 10, 11, 11, 11, 9, 9, 9, 10, 10, 11, 11, 11, 9, 9, 8, 9, 10, 11,
-       11, 11, 9, 10, 9, 10, 11, 11, 11, 11, 9, 14, 9, 9, 10, 10, 11, 10, 9,
-       14, 9, 10, 11, 11, 11, 11, 9, 14, 9, 10, 10, 11, 11, 11, 9, 14, 10, 10,
-       11, 11, 12, 11, 10, 14, 10, 10, 10, 11, 11, 11, 10, 14, 11, 11, 11, 11,
-       12, 12, 10, 14, 10, 11, 11, 11, 12, 11, 10, 14, 11, 11, 11, 12, 12, 12,
-       11, 15, 11, 11, 11, 12, 12, 12, 11, 14, 12, 12, 12, 12, 13, 12, 11, 15,
-       12, 12, 12, 13, 13, 13, 12, 15, 14, 13, 14, 14, 14, 14, 13,
-};
-
-/* Empirical averages  */
-static const u8 lzx_default_lensym_costs[LZX_LENTREE_NUM_SYMBOLS] = {
-       5, 5, 5, 5, 5, 6, 5, 5, 6, 7, 7, 7, 8, 8, 7, 8, 9, 9, 9, 9, 10, 9, 9,
-       10, 9, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 11, 12, 12,
-       12, 12, 12, 12, 13, 12, 12, 12, 13, 12, 13, 13, 12, 12, 13, 12, 13, 13,
-       13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 13, 14, 13, 14, 13,
-       14, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14,
-       14, 14, 14, 14, 14, 14, 14, 14, 14, 10,
-};
-
-/*
- * Set default symbol costs.
- */
+/* Prepare the input window into one or more LZX blocks ready to be output.  */
 static void
-lzx_set_default_costs(struct lzx_lens * lens)
+lzx_prepare_blocks(struct lzx_compressor *c)
 {
-       unsigned i;
-
-#if LZX_PARAM_USE_EMPIRICAL_DEFAULT_COSTS
-       memcpy(&lens->main, lzx_default_mainsym_costs, LZX_MAINTREE_NUM_SYMBOLS);
-       memcpy(&lens->len, lzx_default_lensym_costs, LZX_LENTREE_NUM_SYMBOLS);
-
-#else
-       /* Literal symbols  */
-       for (i = 0; i < LZX_NUM_CHARS; i++)
-               lens->main[i] = 8;
-
-       /* Match header symbols  */
-       for (; i < LZX_MAINTREE_NUM_SYMBOLS; i++)
-               lens->main[i] = 10;
+       /* Set up a default cost model.  */
+       if (c->params.choose_item_func == lzx_choose_near_optimal_item)
+               lzx_set_default_costs(&c->costs, c->num_main_syms);
+
+       /* Set up the block specifications.
+        * TODO: The compression ratio could be slightly improved by performing
+        * data-dependent block splitting instead of using fixed-size blocks.
+        * Doing so well is a computationally hard problem, however.  */
+       c->num_blocks = DIV_ROUND_UP(c->cur_window_size, LZX_DIV_BLOCK_SIZE);
+       for (unsigned i = 0; i < c->num_blocks; i++) {
+               u32 pos = LZX_DIV_BLOCK_SIZE * i;
+               c->block_specs[i].window_pos = pos;
+               c->block_specs[i].block_size = min(c->cur_window_size - pos,
+                                                  LZX_DIV_BLOCK_SIZE);
+       }
 
-       /* Length symbols  */
-       for (i = 0; i < LZX_LENTREE_NUM_SYMBOLS; i++)
-               lens->len[i] = 8;
-#endif
+       /* Load the window into the match-finder.  */
+       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
 
-       /* Aligned offset symbols  */
-       for (i = 0; i < LZX_ALIGNEDTREE_NUM_SYMBOLS; i++)
-               lens->aligned[i] = 3;
+       /* Determine sequence of matches/literals to output for each block.  */
+       lzx_lru_queue_init(&c->queue);
+       c->optimum_cur_idx = 0;
+       c->optimum_end_idx = 0;
+       c->prev_match.len = 0;
+       for (unsigned i = 0; i < c->num_blocks; i++)
+               lzx_choose_items_for_block(c, &c->block_specs[i]);
 }
 
-/*
- * lzx_prepare_blocks() -
- *
- * Calculate the blocks to split the preprocessed data into.
- *
- * Input ---  the preprocessed data:
- *
- *     ctx->window[]
- *     ctx->window_size
- *
- * Working space:
- *     Match finding:
- *             ctx->hash_tab
- *             ctx->child_tab
- *             ctx->cached_matches
- *             ctx->cached_matches_pos
- *             ctx->matches_already_found
- *
- *     Block cost modeling:
- *             ctx->costs
- *             ctx->block_specs (also an output)
- *
- *     Match choosing:
- *             ctx->optimum
- *             ctx->optimum_cur_idx
- *             ctx->optimum_end_idx
- *             ctx->chosen_matches (also an output)
- *
- * Output --- the block specifications and the corresponding match/literal data:
- *
- *     ctx->block_specs[]
- *     ctx->chosen_matches[]
- *
- * The return value is the approximate number of bits the compressed data will
- * take up.
- */
-static unsigned
-lzx_prepare_blocks(struct lzx_compressor * ctx)
-{
-       /* This function merely does some initializations, then passes control
-        * to lzx_prepare_block_recursive().  */
-
-       /* 1. Initialize match-finding variables.  */
-
-       /* Zero all entries in the hash table, indicating that no length-3
-        * character sequences have been discovered in the input yet.  */
-       memset(ctx->hash_tab, 0, LZX_LZ_HASH_SIZE * 2 * sizeof(ctx->hash_tab[0]));
-       if (ctx->params.alg_params.slow.use_len2_matches)
-               memset(ctx->digram_tab, 0, 256 * 256 * sizeof(ctx->digram_tab[0]));
-       /* Note: ctx->child_tab need not be initialized.  */
-
-       /* No matches have been found and cached yet.  */
-       ctx->cached_matches_pos = 0;
-       ctx->matches_already_found = false;
-
-       /* 2. Initialize match-choosing variables.  */
-       ctx->optimum_cur_idx = 0;
-       ctx->optimum_end_idx = 0;
-       /* Note: ctx->optimum need not be initialized.  */
-       ctx->block_specs[0].chosen_matches_start_pos = 0;
-
-       /* 3. Set block 1 (index 0) to represent the entire input data.  */
-       ctx->block_specs[0].block_size = ctx->window_size;
-       ctx->block_specs[0].window_pos = 0;
-
-       /* 4. Set up a default Huffman symbol cost model for block 1 (index 0).
-        * The model will be refined later.  */
-       lzx_set_default_costs(&ctx->block_specs[0].codes.lens);
-
-       /* 5. Initialize the match offset LRU queue.  */
-       ctx->queue = (struct lzx_lru_queue){1, 1, 1};
-
-       /* 6. Pass control to recursive procedure.  */
-       struct lzx_codes * prev_codes = &ctx->zero_codes;
-       return lzx_prepare_block_recursive(ctx, 1,
-                                          ctx->params.alg_params.slow.num_split_passes,
-                                          &prev_codes);
-}
-
-/*
- * This is the fast version of lzx_prepare_blocks().  This version "quickly"
- * prepares a single compressed block containing the entire input.  See the
- * description of the "Fast algorithm" at the beginning of this file for more
- * information.
- *
- * Input ---  the preprocessed data:
- *
- *     ctx->window[]
- *     ctx->window_size
- *
- * Working space:
- *     ctx->queue
- *
- * Output --- the block specifications and the corresponding match/literal data:
- *
- *     ctx->block_specs[]
- *     ctx->chosen_matches[]
- */
 static void
-lzx_prepare_block_fast(struct lzx_compressor * ctx)
+lzx_build_params(unsigned int compression_level,
+                u32 max_window_size,
+                struct lzx_compressor_params *lzx_params)
 {
-       unsigned num_matches;
-       struct lzx_freqs freqs;
-       struct lzx_block_spec *spec;
-
-       /* Parameters to hash chain LZ match finder  */
-       static const struct lz_params lzx_lz_params = {
-               /* LZX_MIN_MATCH == 2, but 2-character matches are rarely
-                * useful; the minimum match for compression is set to 3
-                * instead. */
-               .min_match      = 3,
-               .max_match      = LZX_MAX_MATCH,
-               .good_match     = LZX_MAX_MATCH,
-               .nice_match     = LZX_MAX_MATCH,
-               .max_chain_len  = LZX_MAX_MATCH,
-               .max_lazy_match = LZX_MAX_MATCH,
-               .too_far        = 4096,
-       };
-
-       /* Initialize symbol frequencies and match offset LRU queue.  */
-       memset(&freqs, 0, sizeof(struct lzx_freqs));
-       ctx->queue = (struct lzx_lru_queue){ 1, 1, 1 };
-
-       /* Determine series of matches/literals to output.  */
-       num_matches = lz_analyze_block(ctx->window,
-                                      ctx->window_size,
-                                      (u32*)ctx->chosen_matches,
-                                      lzx_record_match,
-                                      lzx_record_literal,
-                                      &freqs,
-                                      &ctx->queue,
-                                      &freqs,
-                                      &lzx_lz_params);
-
-
-       /* Set up block specification.  */
-       spec = &ctx->block_specs[0];
-       spec->is_split = 0;
-       spec->block_type = LZX_BLOCKTYPE_ALIGNED;
-       spec->window_pos = 0;
-       spec->block_size = ctx->window_size;
-       spec->num_chosen_matches = num_matches;
-       spec->chosen_matches_start_pos = 0;
-       lzx_make_huffman_codes(&freqs, &spec->codes);
+       if (compression_level < 25) {
+               lzx_params->choose_item_func = lzx_choose_lazy_item;
+               lzx_params->num_optim_passes  = 1;
+               if (max_window_size <= 262144)
+                       lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
+               else
+                       lzx_params->mf_algo = LZ_MF_BINARY_TREES;
+               lzx_params->min_match_length  = 3;
+               lzx_params->nice_match_length = 25 + compression_level * 2;
+               lzx_params->max_search_depth  = 25 + compression_level;
+       } else {
+               lzx_params->choose_item_func = lzx_choose_near_optimal_item;
+               lzx_params->num_optim_passes  = compression_level / 20;
+               if (max_window_size <= 32768 && lzx_params->num_optim_passes == 1)
+                       lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
+               else
+                       lzx_params->mf_algo = LZ_MF_BINARY_TREES;
+               lzx_params->min_match_length  = (compression_level >= 45) ? 2 : 3;
+               lzx_params->nice_match_length = min(((u64)compression_level * 32) / 50,
+                                                   LZX_MAX_MATCH_LEN);
+               lzx_params->max_search_depth  = min(((u64)compression_level * 50) / 50,
+                                                   LZX_MAX_MATCH_LEN);
+       }
 }
 
 static void
-do_call_insn_translation(u32 *call_insn_target, int input_pos,
-                        s32 file_size)
+lzx_build_mf_params(const struct lzx_compressor_params *lzx_params,
+                   u32 max_window_size, struct lz_mf_params *mf_params)
 {
-       s32 abs_offset;
-       s32 rel_offset;
-
-       rel_offset = le32_to_cpu(*call_insn_target);
-       if (rel_offset >= -input_pos && rel_offset < file_size) {
-               if (rel_offset < file_size - input_pos) {
-                       /* "good translation" */
-                       abs_offset = rel_offset + input_pos;
-               } else {
-                       /* "compensating translation" */
-                       abs_offset = rel_offset - file_size;
-               }
-               *call_insn_target = cpu_to_le32(abs_offset);
-       }
+       memset(mf_params, 0, sizeof(*mf_params));
+
+       mf_params->algorithm = lzx_params->mf_algo;
+       mf_params->max_window_size = max_window_size;
+       mf_params->min_match_len = lzx_params->min_match_length;
+       mf_params->max_match_len = LZX_MAX_MATCH_LEN;
+       mf_params->max_search_depth = lzx_params->max_search_depth;
+       mf_params->nice_match_len = lzx_params->nice_match_length;
 }
 
-/* This is the reverse of undo_call_insn_preprocessing() in lzx-decompress.c.
- * See the comment above that function for more information.  */
 static void
-do_call_insn_preprocessing(u8 data[], int size)
-{
-       for (int i = 0; i < size - 10; i++) {
-               if (data[i] == 0xe8) {
-                       do_call_insn_translation((u32*)&data[i + 1], i,
-                                                LZX_WIM_MAGIC_FILESIZE);
-                       i += 4;
-               }
-       }
-}
+lzx_free_compressor(void *_c);
 
-/* API function documented in wimlib.h  */
-WIMLIBAPI unsigned
-wimlib_lzx_compress2(const void                        * const restrict uncompressed_data,
-                    unsigned                     const          uncompressed_len,
-                    void                       * const restrict compressed_data,
-                    struct wimlib_lzx_context  * const restrict lzx_ctx)
+static u64
+lzx_get_needed_memory(size_t max_block_size, unsigned int compression_level)
 {
-       struct lzx_compressor *ctx = (struct lzx_compressor*)lzx_ctx;
-       struct output_bitstream ostream;
-       unsigned compressed_len;
+       struct lzx_compressor_params params;
+       u64 size = 0;
+       unsigned window_order;
+       u32 max_window_size;
 
-       if (uncompressed_len < 100) {
-               LZX_DEBUG("Too small to bother compressing.");
+       window_order = lzx_get_window_order(max_block_size);
+       if (window_order == 0)
                return 0;
-       }
-
-       if (uncompressed_len > 32768) {
-               LZX_DEBUG("Only up to 32768 bytes of uncompressed data are supported.");
-               return 0;
-       }
-
-       wimlib_assert(lzx_ctx != NULL);
-
-       LZX_DEBUG("Attempting to compress %u bytes...", uncompressed_len);
-
-       /* The input data must be preprocessed.  To avoid changing the original
-        * input, copy it to a temporary buffer.  */
-       memcpy(ctx->window, uncompressed_data, uncompressed_len);
-       ctx->window_size = uncompressed_len;
+       max_window_size = max_block_size;
 
-       /* This line is unnecessary; it just avoids inconsequential accesses of
-        * uninitialized memory that would show up in memory-checking tools such
-        * as valgrind.  */
-       memset(&ctx->window[ctx->window_size], 0, 12);
+       lzx_build_params(compression_level, max_window_size, &params);
 
-       LZX_DEBUG("Preprocessing data...");
+       size += sizeof(struct lzx_compressor);
 
-       /* Before doing any actual compression, do the call instruction (0xe8
-        * byte) translation on the uncompressed data.  */
-       do_call_insn_preprocessing(ctx->window, ctx->window_size);
+       size += max_window_size;
 
-       LZX_DEBUG("Preparing blocks...");
+       size += DIV_ROUND_UP(max_window_size, LZX_DIV_BLOCK_SIZE) *
+               sizeof(struct lzx_block_spec);
 
-       /* Prepare the compressed data.  */
-       if (ctx->params.algorithm == WIMLIB_LZX_ALGORITHM_FAST)
-               lzx_prepare_block_fast(ctx);
-       else
-               lzx_prepare_blocks(ctx);
+       size += max_window_size * sizeof(struct lzx_item);
 
-       LZX_DEBUG("Writing compressed blocks...");
-
-       /* Generate the compressed data.  */
-       init_output_bitstream(&ostream, compressed_data, ctx->window_size - 1);
-       lzx_write_all_blocks(ctx, &ostream);
-
-       LZX_DEBUG("Flushing bitstream...");
-       if (flush_output_bitstream(&ostream)) {
-               /* If the bitstream cannot be flushed, then the output space was
-                * exhausted.  */
-               LZX_DEBUG("Data did not compress to less than original length!");
-               return 0;
+       size += lz_mf_get_needed_memory(params.mf_algo, max_window_size);
+       if (params.choose_item_func == lzx_choose_near_optimal_item) {
+               size += (LZX_OPTIM_ARRAY_LENGTH + params.nice_match_length) *
+                       sizeof(struct lzx_mc_pos_data);
        }
-
-       /* Compute the length of the compressed data.  */
-       compressed_len = ostream.bit_output - (u8*)compressed_data;
-
-       LZX_DEBUG("Done: compressed %u => %u bytes.",
-                 uncompressed_len, compressed_len);
-
-#if defined(ENABLE_LZX_DEBUG) || defined(ENABLE_VERIFY_COMPRESSION)
-       /* Verify that we really get the same thing back when decompressing.  */
-       {
-               u8 buf[uncompressed_len];
-               int ret;
-               unsigned i;
-
-               ret = wimlib_lzx_decompress(compressed_data, compressed_len,
-                                           buf, uncompressed_len);
-               if (ret) {
-                       ERROR("Failed to decompress data we "
-                             "compressed using LZX algorithm");
-                       wimlib_assert(0);
-                       return 0;
-               }
-
-               bool bad = false;
-               const u8 * udata = uncompressed_data;
-               for (i = 0; i < uncompressed_len; i++) {
-                       if (buf[i] != udata[i]) {
-                               bad = true;
-                               ERROR("Data we compressed using LZX algorithm "
-                                     "didn't decompress to original "
-                                     "(difference at idx %u: c %#02x, u %#02x)",
-                                     i, buf[i], udata[i]);
-                       }
-               }
-               if (bad) {
-                       wimlib_assert(0);
-                       return 0;
-               }
-       }
-#endif
-       return compressed_len;
-}
-
-static bool
-lzx_params_compatible(const struct wimlib_lzx_params *oldparams,
-                     const struct wimlib_lzx_params *newparams)
-{
-       return 0 == memcmp(oldparams, newparams, sizeof(struct wimlib_lzx_params));
+       if (params.num_optim_passes > 1)
+               size += LZX_CACHE_LEN * sizeof(struct lz_match);
+       else
+               size += LZX_MAX_MATCHES_PER_POS * sizeof(struct lz_match);
+       return size;
 }
 
-/* API function documented in wimlib.h  */
-WIMLIBAPI int
-wimlib_lzx_alloc_context(const struct wimlib_lzx_params *params,
-                        struct wimlib_lzx_context **ctx_pp)
+static int
+lzx_create_compressor(size_t max_block_size, unsigned int compression_level,
+                     void **c_ret)
 {
-
-       LZX_DEBUG("Allocating LZX context...");
-
-       struct lzx_compressor *ctx;
-
-       static const struct wimlib_lzx_params fast_default = {
-               .size_of_this = sizeof(struct wimlib_lzx_params),
-               .algorithm = WIMLIB_LZX_ALGORITHM_FAST,
-               .use_defaults = 0,
-               .alg_params = {
-                       .fast = {
-                       },
-               },
-       };
-       static const struct wimlib_lzx_params slow_default = {
-               .size_of_this = sizeof(struct wimlib_lzx_params),
-               .algorithm = WIMLIB_LZX_ALGORITHM_SLOW,
-               .use_defaults = 0,
-               .alg_params = {
-                       .slow = {
-                               .use_len2_matches = 1,
-                               .num_fast_bytes = 32,
-                               .num_optim_passes = 3,
-                               .num_split_passes = 3,
-                               .main_nostat_cost = 15,
-                               .len_nostat_cost = 15,
-                               .aligned_nostat_cost = 7,
-                       },
-               },
-       };
-
-       if (params == NULL) {
-               LZX_DEBUG("Using default algorithm and parameters.");
-               params = &slow_default;
-       }
-
-       if (params->algorithm != WIMLIB_LZX_ALGORITHM_SLOW &&
-           params->algorithm != WIMLIB_LZX_ALGORITHM_FAST)
-       {
-               LZX_DEBUG("Invalid algorithm.");
+       struct lzx_compressor *c;
+       struct lzx_compressor_params params;
+       struct lz_mf_params mf_params;
+       unsigned window_order;
+       u32 max_window_size;
+
+       window_order = lzx_get_window_order(max_block_size);
+       if (window_order == 0)
                return WIMLIB_ERR_INVALID_PARAM;
-       }
+       max_window_size = max_block_size;
 
-       if (params->use_defaults) {
-               if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW)
-                       params = &slow_default;
-               else
-                       params = &fast_default;
-       }
-
-       if (params->size_of_this != sizeof(struct wimlib_lzx_params)) {
-               LZX_DEBUG("Invalid parameter structure size!");
+       lzx_build_params(compression_level, max_window_size, &params);
+       lzx_build_mf_params(&params, max_window_size, &mf_params);
+       if (!lz_mf_params_valid(&mf_params))
                return WIMLIB_ERR_INVALID_PARAM;
-       }
-
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
-               if (params->alg_params.slow.num_fast_bytes < 3 ||
-                   params->alg_params.slow.num_fast_bytes > 257)
-               {
-                       LZX_DEBUG("Invalid number of fast bytes!");
-                       return WIMLIB_ERR_INVALID_PARAM;
-               }
-
-               if (params->alg_params.slow.num_optim_passes < 1)
-               {
-                       LZX_DEBUG("Invalid number of optimization passes!");
-                       return WIMLIB_ERR_INVALID_PARAM;
-               }
-
-               if (params->alg_params.slow.main_nostat_cost < 1 ||
-                   params->alg_params.slow.main_nostat_cost > 16)
-               {
-                       LZX_DEBUG("Invalid main_nostat_cost!");
-                       return WIMLIB_ERR_INVALID_PARAM;
-               }
-
-               if (params->alg_params.slow.len_nostat_cost < 1 ||
-                   params->alg_params.slow.len_nostat_cost > 16)
-               {
-                       LZX_DEBUG("Invalid len_nostat_cost!");
-                       return WIMLIB_ERR_INVALID_PARAM;
-               }
-
-               if (params->alg_params.slow.aligned_nostat_cost < 1 ||
-                   params->alg_params.slow.aligned_nostat_cost > 8)
-               {
-                       LZX_DEBUG("Invalid aligned_nostat_cost!");
-                       return WIMLIB_ERR_INVALID_PARAM;
-               }
-       }
-
-       if (ctx_pp == NULL) {
-               LZX_DEBUG("Check parameters only.");
-               return 0;
-       }
-
-       ctx = *(struct lzx_compressor**)ctx_pp;
-
-       if (ctx && lzx_params_compatible(&ctx->params, params))
-               return 0;
-
-       LZX_DEBUG("Allocating memory.");
-
-       ctx = MALLOC(sizeof(struct lzx_compressor));
-       if (ctx == NULL)
-               goto err;
-
-       size_t block_specs_length;
 
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW)
-               block_specs_length = ((1 << (params->alg_params.slow.num_split_passes + 1)) - 1);
-       else
-               block_specs_length = 1;
-       ctx->block_specs = MALLOC(block_specs_length * sizeof(ctx->block_specs[0]));
-       if (ctx->block_specs == NULL)
-               goto err_free_ctx;
-
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
-               ctx->hash_tab = MALLOC((LZX_LZ_HASH_SIZE + 2 * LZX_MAX_WINDOW_SIZE) *
-                                       sizeof(ctx->hash_tab[0]));
-               if (ctx->hash_tab == NULL)
-                       goto err_free_block_specs;
-               ctx->child_tab = ctx->hash_tab + LZX_LZ_HASH_SIZE;
-       } else {
-               ctx->hash_tab = NULL;
-               ctx->child_tab = NULL;
+       c = CALLOC(1, sizeof(struct lzx_compressor));
+       if (!c)
+               goto oom;
+
+       c->params = params;
+       c->num_main_syms = lzx_get_num_main_syms(window_order);
+       c->max_window_size = max_window_size;
+       c->window_order = window_order;
+
+       c->cur_window = ALIGNED_MALLOC(max_window_size, 16);
+       if (!c->cur_window)
+               goto oom;
+
+       c->block_specs = MALLOC(DIV_ROUND_UP(max_window_size,
+                                            LZX_DIV_BLOCK_SIZE) *
+                               sizeof(struct lzx_block_spec));
+       if (!c->block_specs)
+               goto oom;
+
+       c->chosen_items = MALLOC(max_window_size * sizeof(struct lzx_item));
+       if (!c->chosen_items)
+               goto oom;
+
+       c->mf = lz_mf_alloc(&mf_params);
+       if (!c->mf)
+               goto oom;
+
+       if (params.choose_item_func == lzx_choose_near_optimal_item) {
+               c->optimum = MALLOC((LZX_OPTIM_ARRAY_LENGTH +
+                                    params.nice_match_length) *
+                                   sizeof(struct lzx_mc_pos_data));
+               if (!c->optimum)
+                       goto oom;
        }
 
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW &&
-           params->alg_params.slow.use_len2_matches)
-       {
-               ctx->digram_tab = MALLOC(256 * 256 * sizeof(ctx->digram_tab[0]));
-               if (ctx->digram_tab == NULL)
-                       goto err_free_hash_tab;
+       if (params.num_optim_passes > 1) {
+               c->cached_matches = MALLOC(LZX_CACHE_LEN *
+                                          sizeof(struct lz_match));
+               if (!c->cached_matches)
+                       goto oom;
+               c->cache_limit = c->cached_matches + LZX_CACHE_LEN -
+                                (LZX_MAX_MATCHES_PER_POS + 1);
        } else {
-               ctx->digram_tab = NULL;
+               c->cached_matches = MALLOC(LZX_MAX_MATCHES_PER_POS *
+                                          sizeof(struct lz_match));
+               if (!c->cached_matches)
+                       goto oom;
        }
 
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
-               ctx->cached_matches = MALLOC(10 * LZX_MAX_WINDOW_SIZE *
-                                            sizeof(ctx->cached_matches[0]));
-               if (ctx->cached_matches == NULL)
-                       goto err_free_digram_tab;
-       } else {
-               ctx->cached_matches = NULL;
-       }
+       *c_ret = c;
+       return 0;
 
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
-               ctx->optimum = MALLOC((LZX_PARAM_OPTIM_ARRAY_SIZE + LZX_MAX_MATCH) *
-                                      sizeof(ctx->optimum[0]));
-               if (ctx->optimum == NULL)
-                       goto err_free_cached_matches;
-       } else {
-               ctx->optimum = NULL;
-       }
+oom:
+       lzx_free_compressor(c);
+       return WIMLIB_ERR_NOMEM;
+}
 
-       size_t chosen_matches_length;
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW)
-               chosen_matches_length = LZX_MAX_WINDOW_SIZE *
-                                       (params->alg_params.slow.num_split_passes + 1);
-       else
-               chosen_matches_length = LZX_MAX_WINDOW_SIZE;
+static size_t
+lzx_compress(const void *uncompressed_data, size_t uncompressed_size,
+            void *compressed_data, size_t compressed_size_avail, void *_c)
+{
+       struct lzx_compressor *c = _c;
+       struct lzx_output_bitstream os;
 
-       ctx->chosen_matches = MALLOC(chosen_matches_length *
-                                    sizeof(ctx->chosen_matches[0]));
-       if (ctx->chosen_matches == NULL)
-               goto err_free_optimum;
+       /* Don't bother compressing very small inputs.  */
+       if (uncompressed_size < 100)
+               return 0;
 
-       memcpy(&ctx->params, params, sizeof(struct wimlib_lzx_params));
-       memset(&ctx->zero_codes, 0, sizeof(ctx->zero_codes));
+       /* The input data must be preprocessed.  To avoid changing the original
+        * input, copy it to a temporary buffer.  */
+       memcpy(c->cur_window, uncompressed_data, uncompressed_size);
+       c->cur_window_size = uncompressed_size;
 
-       LZX_DEBUG("Successfully allocated new LZX context.");
+       /* Preprocess the data.  */
+       lzx_do_e8_preprocessing(c->cur_window, c->cur_window_size);
 
-       wimlib_lzx_free_context(*ctx_pp);
-       *ctx_pp = (struct wimlib_lzx_context*)ctx;
-       return 0;
+       /* Prepare the compressed data.  */
+       lzx_prepare_blocks(c);
 
-err_free_optimum:
-       FREE(ctx->optimum);
-err_free_cached_matches:
-       FREE(ctx->cached_matches);
-err_free_digram_tab:
-       FREE(ctx->digram_tab);
-err_free_hash_tab:
-       FREE(ctx->hash_tab);
-err_free_block_specs:
-       FREE(ctx->block_specs);
-err_free_ctx:
-       FREE(ctx);
-err:
-       LZX_DEBUG("Ran out of memory.");
-       return WIMLIB_ERR_NOMEM;
+       /* Generate the compressed data and return its size, or 0 if an overflow
+        * occurred.  */
+       lzx_init_output(&os, compressed_data, compressed_size_avail);
+       lzx_write_all_blocks(c, &os);
+       return lzx_flush_output(&os);
 }
 
-/* API function documented in wimlib.h  */
-WIMLIBAPI void
-wimlib_lzx_free_context(struct wimlib_lzx_context *_ctx)
+static void
+lzx_free_compressor(void *_c)
 {
-       struct lzx_compressor *ctx = (struct lzx_compressor*)_ctx;
-
-       if (ctx) {
-               FREE(ctx->chosen_matches);
-               FREE(ctx->optimum);
-               FREE(ctx->cached_matches);
-               FREE(ctx->digram_tab);
-               FREE(ctx->hash_tab);
-               FREE(ctx->block_specs);
-               FREE(ctx);
+       struct lzx_compressor *c = _c;
+
+       if (c) {
+               ALIGNED_FREE(c->cur_window);
+               FREE(c->block_specs);
+               FREE(c->chosen_items);
+               lz_mf_free(c->mf);
+               FREE(c->optimum);
+               FREE(c->cached_matches);
+               FREE(c);
        }
 }
 
-/* API function documented in wimlib.h  */
-WIMLIBAPI unsigned
-wimlib_lzx_compress(const void * const restrict uncompressed_data,
-                   unsigned     const          uncompressed_len,
-                   void       * const restrict compressed_data)
-{
-       int ret;
-       struct wimlib_lzx_context *ctx;
-       unsigned compressed_len;
-
-       ret = wimlib_lzx_alloc_context(NULL, &ctx);
-       if (ret) {
-               wimlib_assert(ret != WIMLIB_ERR_INVALID_PARAM);
-               WARNING("Couldn't allocate LZX compression context: %"TS"",
-                       wimlib_get_error_string(ret));
-               return 0;
-       }
-
-       compressed_len = wimlib_lzx_compress2(uncompressed_data,
-                                             uncompressed_len,
-                                             compressed_data,
-                                             ctx);
-
-       wimlib_lzx_free_context(ctx);
-
-       return compressed_len;
-}
+const struct compressor_ops lzx_compressor_ops = {
+       .get_needed_memory  = lzx_get_needed_memory,
+       .create_compressor  = lzx_create_compressor,
+       .compress           = lzx_compress,
+       .free_compressor    = lzx_free_compressor,
+};