]> wimlib.net Git - wimlib/blobdiff - src/lzx-compress.c
A few minor compressor cleanups
[wimlib] / src / lzx-compress.c
index edd1249e75a0f46d5fa60c4b662e9b87170888aa..a972cc35bf3c24722372db9538c3b9a72f21f1c8 100644 (file)
 
 
 /*
- * This file contains a compressor for the LZX ("Lempel-Ziv eXtended"?)
- * compression format, as used in the WIM (Windows IMaging) file format.  This
- * code may need some slight modifications to be used outside of the WIM format.
- * In particular, in other situations the LZX block header might be slightly
- * different, and a sliding window rather than a fixed-size window might be
- * required.
+ * This file contains a compressor for the LZX ("Lempel-Ziv eXtended")
+ * compression format, as used in the WIM (Windows IMaging) file format.
  *
- * ----------------------------------------------------------------------------
+ * Two different parsing algorithms are implemented: "near-optimal" and "lazy".
+ * "Near-optimal" is significantly slower than "lazy", but results in a better
+ * compression ratio.  The "near-optimal" algorithm is used at the default
+ * compression level.
  *
- *                              Format Overview
+ * This file may need some slight modifications to be used outside of the WIM
+ * format.  In particular, in other situations the LZX block header might be
+ * slightly different, and a sliding window rather than a fixed-size window
+ * might be required.
  *
- * The primary reference for LZX is the specification released by Microsoft.
- * However, the comments in lzx-decompress.c provide more information about LZX
- * and note some errors in the Microsoft specification.
- *
- * LZX shares many similarities with DEFLATE, the format used by zlib and gzip.
- * Both LZX and DEFLATE use LZ77 matching and Huffman coding.  Certain details
- * are quite similar, such as the method for storing Huffman codes.  However,
- * the main differences are:
+ * Note: LZX is a compression format derived from DEFLATE, the format used by
+ * zlib and gzip.  Both LZX and DEFLATE use LZ77 matching and Huffman coding.
+ * Certain details are quite similar, such as the method for storing Huffman
+ * codes.  However, the main differences are:
  *
  * - LZX preprocesses the data to attempt to make x86 machine code slightly more
  *   compressible before attempting to compress it further.
  *
  * - LZX uses a "main" alphabet which combines literals and matches, with the
  *   match symbols containing a "length header" (giving all or part of the match
- *   length) and a "position slot" (giving, roughly speaking, the order of
+ *   length) and an "offset slot" (giving, roughly speaking, the order of
  *   magnitude of the match offset).
  *
  * - LZX does not have static Huffman blocks (that is, the kind with preset
  *   Huffman codes); however it does have two types of dynamic Huffman blocks
  *   ("verbatim" and "aligned").
  *
- * - LZX has a minimum match length of 2 rather than 3.
- *
- * - In LZX, match offsets 0 through 2 actually represent entries in an LRU
- *   queue of match offsets.  This is very useful for certain types of files,
- *   such as binary files that have repeating records.
- *
- * ----------------------------------------------------------------------------
- *
- *                           Algorithmic Overview
- *
- * At a high level, any implementation of LZX compression must operate as
- * follows:
- *
- * 1. Preprocess the input data to translate the targets of 32-bit x86 call
- *    instructions to absolute offsets.  (Actually, this is required for WIM,
- *    but might not be in other places LZX is used.)
- *
- * 2. Find a sequence of LZ77-style matches and literal bytes that expands to
- *    the preprocessed data.
- *
- * 3. Divide the match/literal sequence into one or more LZX blocks, each of
- *    which may be "uncompressed", "verbatim", or "aligned".
- *
- * 4. Output each LZX block.
- *
- * Step (1) is fairly straightforward.  It requires looking for 0xe8 bytes in
- * the input data and performing a translation on the 4 bytes following each
- * one.
- *
- * Step (4) is complicated, but it is mostly determined by the LZX format.  The
- * only real choice we have is what algorithm to use to build the length-limited
- * canonical Huffman codes.  See lzx_write_all_blocks() for details.
- *
- * That leaves steps (2) and (3) as where all the hard stuff happens.  Focusing
- * on step (2), we need to do LZ77-style parsing on the input data, or "window",
- * to divide it into a sequence of matches and literals.  Each position in the
- * window might have multiple matches associated with it, and we need to choose
- * which one, if any, to actually use.  Therefore, the problem can really be
- * divided into two areas of concern: (a) finding matches at a given position,
- * which we shall call "match-finding", and (b) choosing whether to use a
- * match or a literal at a given position, and if using a match, which one (if
- * there is more than one available).  We shall call this "match-choosing".  We
- * first consider match-finding, then match-choosing.
- *
- * ----------------------------------------------------------------------------
- *
- *                              Match-finding
- *
- * Given a position in the window, we want to find LZ77-style "matches" with
- * that position at previous positions in the window.  With LZX, the minimum
- * match length is 2 and the maximum match length is 257.  The only restriction
- * on offsets is that LZX does not allow the last 2 bytes of the window to match
- * the beginning of the window.
- *
- * There are a number of algorithms that can be used for this, including hash
- * chains, binary trees, and suffix arrays.  Binary trees generally work well
- * for LZX compression since it uses medium-size windows (2^15 to 2^21 bytes).
- * However, when compressing in a fast mode where many positions are skipped
- * (not searched for matches), hash chains are faster.
+ * - LZX has a minimum match length of 2 rather than 3.  Length 2 matches can be
+ *   useful, but generally only if the parser is smart about choosing them.
  *
- * Since the match-finders are not specific to LZX, I will not explain them in
- * detail here.  Instead, see lz_hash_chains.c and lz_binary_trees.c.
- *
- * ----------------------------------------------------------------------------
- *
- *                              Match-choosing
- *
- * Usually, choosing the longest match is best because it encodes the most data
- * in that one item.  However, sometimes the longest match is not optimal
- * because (a) choosing a long match now might prevent using an even longer
- * match later, or (b) more generally, what we actually care about is the number
- * of bits it will ultimately take to output each match or literal, which is
- * actually dependent on the entropy encoding using by the underlying
- * compression format.  Consequently, a longer match usually, but not always,
- * takes fewer bits to encode than multiple shorter matches or literals that
- * cover the same data.
- *
- * This problem of choosing the truly best match/literal sequence is probably
- * impossible to solve efficiently when combined with entropy encoding.  If we
- * knew how many bits it takes to output each match/literal, then we could
- * choose the optimal sequence using shortest-path search a la Dijkstra's
- * algorithm.  However, with entropy encoding, the chosen match/literal sequence
- * affects its own encoding.  Therefore, we can't know how many bits it will
- * take to actually output any one match or literal until we have actually
- * chosen the full sequence of matches and literals.
- *
- * Notwithstanding the entropy encoding problem, we also aren't guaranteed to
- * choose the optimal match/literal sequence unless the match-finder (see
- * section "Match-finder") provides the match-chooser with all possible matches
- * at each position.  However, this is not computationally efficient.  For
- * example, there might be many matches of the same length, and usually (but not
- * always) the best choice is the one with the smallest offset.  So in practice,
- * it's fine to only consider the smallest offset for a given match length at a
- * given position.  (Actually, for LZX, it's also worth considering repeat
- * offsets.)
- *
- * In addition, as mentioned earlier, in LZX we have the choice of using
- * multiple blocks, each of which resets the Huffman codes.  This expands the
- * search space even further.  Therefore, to simplify the problem, we currently
- * we don't attempt to actually choose the LZX blocks based on the data.
- * Instead, we just divide the data into fixed-size blocks of LZX_DIV_BLOCK_SIZE
- * bytes each, and always use verbatim or aligned blocks (never uncompressed).
- * A previous version of this code recursively split the input data into
- * equal-sized blocks, up to a maximum depth, and chose the lowest-cost block
- * divisions.  However, this made compression much slower and did not actually
- * help very much.  It remains an open question whether a sufficiently fast and
- * useful block-splitting algorithm is possible for LZX.  Essentially the same
- * problem also applies to DEFLATE.  The Microsoft LZX compressor seemingly does
- * do block splitting, although I don't know how fast or useful it is,
- * specifically.
- *
- * Now, back to the entropy encoding problem.  The "solution" is to use an
- * iterative approach to compute a good, but not necessarily optimal,
- * match/literal sequence.  Start with a fixed assignment of symbol costs and
- * choose an "optimal" match/literal sequence based on those costs, using
- * shortest-path seach a la Dijkstra's algorithm.  Then, for each iteration of
- * the optimization, update the costs based on the entropy encoding of the
- * current match/literal sequence, then choose a new match/literal sequence
- * based on the updated costs.  Usually, the actual cost to output the current
- * match/literal sequence will decrease in each iteration until it converges on
- * a fixed point.  This result may not be the truly optimal match/literal
- * sequence, but it usually is much better than one chosen by doing a "greedy"
- * parse where we always chooe the longest match.
- *
- * An alternative to both greedy parsing and iterative, near-optimal parsing is
- * "lazy" parsing.  Briefly, "lazy" parsing considers just the longest match at
- * each position, but it waits to choose that match until it has also examined
- * the next position.  This is actually a useful approach; it's used by zlib,
- * for example.  Therefore, for fast compression we combine lazy parsing with
- * the hash chain max-finder.  For normal/high compression we combine
- * near-optimal parsing with the binary tree match-finder.
+ * - In LZX, offset slots 0 through 2 actually represent entries in an LRU queue
+ *   of match offsets.  This is very useful for certain types of files, such as
+ *   binary files that have repeating records.
  */
 
 #ifdef HAVE_CONFIG_H
 #  include "config.h"
 #endif
 
-#include "wimlib/compressor_ops.h"
 #include "wimlib/compress_common.h"
+#include "wimlib/compressor_ops.h"
+#include "wimlib/endianness.h"
 #include "wimlib/error.h"
 #include "wimlib/lz_mf.h"
+#include "wimlib/lz_repsearch.h"
 #include "wimlib/lzx.h"
 #include "wimlib/util.h"
+
 #include <string.h>
+#include <limits.h>
 
 #define LZX_OPTIM_ARRAY_LENGTH 4096
 
 
 #define LZX_CACHE_LEN (LZX_DIV_BLOCK_SIZE * (LZX_CACHE_PER_POS + 1))
 
-/* Codewords for the LZX main, length, and aligned offset Huffman codes  */
+struct lzx_compressor;
+
+/* Codewords for the LZX Huffman codes.  */
 struct lzx_codewords {
        u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
        u32 len[LZX_LENCODE_NUM_SYMBOLS];
        u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* Codeword lengths (in bits) for the LZX main, length, and aligned offset
- * Huffman codes.
- *
- * A 0 length means the codeword has zero frequency.
- */
+/* Codeword lengths (in bits) for the LZX Huffman codes.
+ * A zero length means the corresponding codeword has zero frequency.  */
 struct lzx_lens {
        u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
        u8 len[LZX_LENCODE_NUM_SYMBOLS];
        u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* Costs for the LZX main, length, and aligned offset Huffman symbols.
- *
- * If a codeword has zero frequency, it must still be assigned some nonzero cost
- * --- generally a high cost, since even if it gets used in the next iteration,
- * it probably will not be used very many times.  */
+/* Estimated cost, in bits, to output each symbol in the LZX Huffman codes.  */
 struct lzx_costs {
        u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
        u8 len[LZX_LENCODE_NUM_SYMBOLS];
        u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* The LZX main, length, and aligned offset Huffman codes  */
+/* Codewords and lengths for the LZX Huffman codes.  */
 struct lzx_codes {
        struct lzx_codewords codewords;
        struct lzx_lens lens;
 };
 
-/* Tables for tallying symbol frequencies in the three LZX alphabets  */
+/* Symbol frequency counters for the LZX Huffman codes.  */
 struct lzx_freqs {
        u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
        u32 len[LZX_LENCODE_NUM_SYMBOLS];
        u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* LZX intermediate match/literal format  */
+/* Intermediate LZX match/literal format  */
 struct lzx_item {
-       /* Bit     Description
-        *
-        * 31      1 if a match, 0 if a literal.
-        *
-        * 30-25   position slot.  This can be at most 50, so it will fit in 6
-        *         bits.
-        *
-        * 8-24    position footer.  This is the offset of the real formatted
-        *         offset from the position base.  This can be at most 17 bits
-        *         (since lzx_extra_bits[LZX_MAX_POSITION_SLOTS - 1] is 17).
-        *
-        * 0-7     length of match, minus 2.  This can be at most
-        *         (LZX_MAX_MATCH_LEN - 2) == 255, so it will fit in 8 bits.  */
-       u32 data;
-};
-
-/* Specification for an LZX block.  */
-struct lzx_block_spec {
-
-       /* One of the LZX_BLOCKTYPE_* constants indicating which type of this
-        * block.  */
-       int block_type;
 
-       /* 0-based position in the window at which this block starts.  */
-       u32 window_pos;
-
-       /* The number of bytes of uncompressed data this block represents.  */
-       u32 block_size;
-
-       /* The match/literal sequence for this block.  */
-       struct lzx_item *chosen_items;
-
-       /* The length of the @chosen_items sequence.  */
-       u32 num_chosen_items;
-
-       /* Huffman codes for this block.  */
-       struct lzx_codes codes;
+       /* Bits 0  -  9: Main symbol
+        * Bits 10 - 17: Length symbol
+        * Bits 18 - 22: Number of extra offset bits
+        * Bits 23+    : Extra offset bits  */
+       u64 data;
 };
 
-struct lzx_compressor;
-
+/* Internal compression parameters  */
 struct lzx_compressor_params {
-       struct lz_match (*choose_item_func)(struct lzx_compressor *);
-       enum lz_mf_algo mf_algo;
+       u32 (*choose_items_for_block)(struct lzx_compressor *, u32, u32);
        u32 num_optim_passes;
+       enum lz_mf_algo mf_algo;
        u32 min_match_length;
        u32 nice_match_length;
        u32 max_search_depth;
 };
 
-/* State of the LZX compressor.  */
-struct lzx_compressor {
+/*
+ * Match chooser position data:
+ *
+ * An array of these structures is used during the near-optimal match-choosing
+ * algorithm.  They correspond to consecutive positions in the window and are
+ * used to keep track of the cost to reach each position, and the match/literal
+ * choices that need to be chosen to reach that position.
+ */
+struct lzx_mc_pos_data {
 
-       /* The buffer of data to be compressed.
+       /* The cost, in bits, of the lowest-cost path that has been found to
+        * reach this position.  This can change as progressively lower cost
+        * paths are found to reach this position.  */
+       u32 cost;
+#define MC_INFINITE_COST UINT32_MAX
+
+       /* The match or literal that was taken to reach this position.  This can
+        * change as progressively lower cost paths are found to reach this
+        * position.
+        *
+        * This variable is divided into two bitfields.
         *
-        * 0xe8 byte preprocessing is done directly on the data here before
-        * further compression.
+        * Literals:
+        *      Low bits are 1, high bits are the literal.
+        *
+        * Explicit offset matches:
+        *      Low bits are the match length, high bits are the offset plus 2.
+        *
+        * Repeat offset matches:
+        *      Low bits are the match length, high bits are the queue index.
+        */
+       u32 mc_item_data;
+#define MC_OFFSET_SHIFT 9
+#define MC_LEN_MASK ((1 << MC_OFFSET_SHIFT) - 1)
+
+       /* The state of the LZX recent match offsets queue at this position.
+        * This is filled in lazily, only after the minimum-cost path to this
+        * position is found.
         *
-        * Note that this compressor does *not* use a real sliding window!!!!
-        * It's not needed in the WIM format, since every chunk is compressed
-        * independently.  This is by design, to allow random access to the
-        * chunks.  */
+        * Note: the way we handle this adaptive state in the "minimum-cost"
+        * parse is actually only an approximation.  It's possible for the
+        * globally optimal, minimum cost path to contain a prefix, ending at a
+        * position, where that path prefix is *not* the minimum cost path to
+        * that position.  This can happen if such a path prefix results in a
+        * different adaptive state which results in lower costs later.  We do
+        * not solve this problem; we only consider the lowest cost to reach
+        * each position, which seems to be an acceptable approximation.  */
+       struct lzx_lru_queue queue _aligned_attribute(16);
+
+} _aligned_attribute(16);
+
+/* State of the LZX compressor  */
+struct lzx_compressor {
+
+       /* Internal compression parameters  */
+       struct lzx_compressor_params params;
+
+       /* The preprocessed buffer of data being compressed  */
        u8 *cur_window;
 
        /* Number of bytes of data to be compressed, which is the number of
         * bytes of data in @cur_window that are actually valid.  */
        u32 cur_window_size;
 
-       /* Allocated size of @cur_window.  */
-       u32 max_window_size;
+       /* log2 order of the LZX window size for LZ match offset encoding
+        * purposes.  Will be >= LZX_MIN_WINDOW_ORDER and <=
+        * LZX_MAX_WINDOW_ORDER.
+        *
+        * Note: 1 << @window_order is normally equal to @max_window_size,
+        * a.k.a. the allocated size of @cur_window, but it will be greater than
+        * @max_window_size in the event that the compressor was created with a
+        * non-power-of-2 block size.  (See lzx_get_window_order().)  */
+       unsigned window_order;
+
+       /* Number of symbols in the main alphabet.  This depends on
+        * @window_order, since @window_order determines the maximum possible
+        * offset.  It does not, however, depend on the *actual* size of the
+        * current data buffer being processed, which might be less than 1 <<
+        * @window_order.  */
+       unsigned num_main_syms;
 
-       /* Compression parameters.  */
-       struct lzx_compressor_params params;
+       /* Lempel-Ziv match-finder  */
+       struct lz_mf *mf;
 
+       /* Match-finder wrapper functions and data for near-optimal parsing.
+        *
+        * When doing more than one match-choosing pass over the data, matches
+        * found by the match-finder are cached to achieve a slight speedup when
+        * the same matches are needed on subsequent passes.  This is suboptimal
+        * because different matches may be preferred with different cost
+        * models, but it is a very worthwhile speedup.  */
        unsigned (*get_matches_func)(struct lzx_compressor *, const struct lz_match **);
        void (*skip_bytes_func)(struct lzx_compressor *, unsigned n);
+       u32 match_window_pos;
+       u32 match_window_end;
+       struct lz_match *cached_matches;
+       struct lz_match *cache_ptr;
+       struct lz_match *cache_limit;
 
-       /* Number of symbols in the main alphabet (depends on the
-        * @max_window_size since it determines the maximum allowed offset).  */
-       unsigned num_main_syms;
+       /* Position data for near-optimal parsing.  */
+       struct lzx_mc_pos_data optimum[LZX_OPTIM_ARRAY_LENGTH + LZX_MAX_MATCH_LEN];
+
+       /* The cost model currently being used for near-optimal parsing.  */
+       struct lzx_costs costs;
 
        /* The current match offset LRU queue.  */
        struct lzx_lru_queue queue;
 
-       /* Space for the sequences of matches/literals that were chosen for each
-        * block.  */
-       struct lzx_item *chosen_items;
+       /* Frequency counters for the current block.  */
+       struct lzx_freqs freqs;
 
-       /* Information about the LZX blocks the preprocessed input was divided
-        * into.  */
-       struct lzx_block_spec *block_specs;
+       /* The Huffman codes for the current and previous blocks.  */
+       struct lzx_codes codes[2];
 
-       /* Number of LZX blocks the input was divided into; a.k.a. the number of
-        * elements of @block_specs that are valid.  */
-       unsigned num_blocks;
+       /* Which 'struct lzx_codes' is being used for the current block.  The
+        * other was used for the previous block (if this isn't the first
+        * block).  */
+       unsigned int codes_index;
 
-       /* This is simply filled in with zeroes and used to avoid special-casing
-        * the output of the first compressed Huffman code, which conceptually
-        * has a delta taken from a code with all symbols having zero-length
-        * codewords.  */
-       struct lzx_codes zero_codes;
+       /* Dummy lengths that are always 0.  */
+       struct lzx_lens zero_lens;
 
-       /* The current cost model.  */
-       struct lzx_costs costs;
+       /* Matches/literals that were chosen for the current block.  */
+       struct lzx_item chosen_items[LZX_DIV_BLOCK_SIZE];
 
-       /* Lempel-Ziv match-finder.  */
-       struct lz_mf *mf;
+       /* Table mapping match offset => offset slot for small offsets  */
+#define LZX_NUM_FAST_OFFSETS 32768
+       u8 offset_slot_fast[LZX_NUM_FAST_OFFSETS];
+};
 
-       /* Position in window of next match to return.  */
-       u32 match_window_pos;
+/*
+ * Structure to keep track of the current state of sending bits to the
+ * compressed output buffer.
+ *
+ * The LZX bitstream is encoded as a sequence of 16-bit coding units.
+ */
+struct lzx_output_bitstream {
 
-       /* The end-of-block position.  We can't allow any matches to span this
-        * position.  */
-       u32 match_window_end;
+       /* Bits that haven't yet been written to the output buffer.  */
+       u32 bitbuf;
 
-       /* When doing more than one match-choosing pass over the data, matches
-        * found by the match-finder are cached in the following array to
-        * achieve a slight speedup when the same matches are needed on
-        * subsequent passes.  This is suboptimal because different matches may
-        * be preferred with different cost models, but seems to be a worthwhile
-        * speedup.  */
-       struct lz_match *cached_matches;
-       struct lz_match *cache_ptr;
-       struct lz_match *cache_limit;
+       /* Number of bits currently held in @bitbuf.  */
+       u32 bitcount;
 
-       /* Match-chooser state, used when doing near-optimal parsing.
-        *
-        * When matches have been chosen, optimum_cur_idx is set to the position
-        * in the window of the next match/literal to return and optimum_end_idx
-        * is set to the position in the window at the end of the last
-        * match/literal to return.  */
-       struct lzx_mc_pos_data *optimum;
-       unsigned optimum_cur_idx;
-       unsigned optimum_end_idx;
-
-       /* Previous match, used when doing lazy parsing.  */
-       struct lz_match prev_match;
+       /* Pointer to the start of the output buffer.  */
+       le16 *start;
+
+       /* Pointer to the position in the output buffer at which the next coding
+        * unit should be written.  */
+       le16 *next;
+
+       /* Pointer past the end of the output buffer.  */
+       le16 *end;
 };
 
 /*
- * Match chooser position data:
- *
- * An array of these structures is used during the match-choosing algorithm.
- * They correspond to consecutive positions in the window and are used to keep
- * track of the cost to reach each position, and the match/literal choices that
- * need to be chosen to reach that position.
+ * Initialize the output bitstream.
+ *
+ * @os
+ *     The output bitstream structure to initialize.
+ * @buffer
+ *     The buffer being written to.
+ * @size
+ *     Size of @buffer, in bytes.
  */
-struct lzx_mc_pos_data {
-       /* The approximate minimum cost, in bits, to reach this position in the
-        * window which has been found so far.  */
-       u32 cost;
-#define MC_INFINITE_COST ((u32)~0UL)
-
-       /* The union here is just for clarity, since the fields are used in two
-        * slightly different ways.  Initially, the @prev structure is filled in
-        * first, and links go from later in the window to earlier in the
-        * window.  Later, @next structure is filled in and links go from
-        * earlier in the window to later in the window.  */
-       union {
-               struct {
-                       /* Position of the start of the match or literal that
-                        * was taken to get to this position in the approximate
-                        * minimum-cost parse.  */
-                       u32 link;
-
-                       /* Offset (as in an LZ (length, offset) pair) of the
-                        * match or literal that was taken to get to this
-                        * position in the approximate minimum-cost parse.  */
-                       u32 match_offset;
-               } prev;
-               struct {
-                       /* Position at which the match or literal starting at
-                        * this position ends in the minimum-cost parse.  */
-                       u32 link;
-
-                       /* Offset (as in an LZ (length, offset) pair) of the
-                        * match or literal starting at this position in the
-                        * approximate minimum-cost parse.  */
-                       u32 match_offset;
-               } next;
-       };
-
-       /* Adaptive state that exists after an approximate minimum-cost path to
-        * reach this position is taken.  */
-       struct lzx_lru_queue queue;
-};
+static void
+lzx_init_output(struct lzx_output_bitstream *os, void *buffer, u32 size)
+{
+       os->bitbuf = 0;
+       os->bitcount = 0;
+       os->start = buffer;
+       os->next = os->start;
+       os->end = os->start + size / sizeof(le16);
+}
 
-/* Returns the LZX position slot that corresponds to a given match offset,
- * taking into account the recent offset queue and updating it if the offset is
- * found in it.  */
-static unsigned
-lzx_get_position_slot(u32 offset, struct lzx_lru_queue *queue)
+/*
+ * Write some bits to the output bitstream.
+ *
+ * The bits are given by the low-order @num_bits bits of @bits.  Higher-order
+ * bits in @bits cannot be set.  At most 17 bits can be written at once.
+ *
+ * @max_num_bits is a compile-time constant that specifies the maximum number of
+ * bits that can ever be written at the call site.  Currently, it is used to
+ * optimize away the conditional code for writing a second 16-bit coding unit
+ * when writing fewer than 17 bits.
+ *
+ * If the output buffer space is exhausted, then the bits will be ignored, and
+ * lzx_flush_output() will return 0 when it gets called.
+ */
+static inline void
+lzx_write_varbits(struct lzx_output_bitstream *os,
+                 const u32 bits, const unsigned int num_bits,
+                 const unsigned int max_num_bits)
 {
-       unsigned position_slot;
-
-       /* See if the offset was recently used.  */
-       for (int i = 0; i < LZX_NUM_RECENT_OFFSETS; i++) {
-               if (offset == queue->R[i]) {
-                       /* Found it.  */
-
-                       /* Bring the repeat offset to the front of the
-                        * queue.  Note: this is, in fact, not a real
-                        * LRU queue because repeat matches are simply
-                        * swapped to the front.  */
-                       swap(queue->R[0], queue->R[i]);
-
-                       /* The resulting position slot is simply the first index
-                        * at which the offset was found in the queue.  */
-                       return i;
+       /* This code is optimized for LZX, which never needs to write more than
+        * 17 bits at once.  */
+       LZX_ASSERT(num_bits <= 17);
+       LZX_ASSERT(num_bits <= max_num_bits);
+       LZX_ASSERT(os->bitcount <= 15);
+
+       /* Add the bits to the bit buffer variable.  @bitcount will be at most
+        * 15, so there will be just enough space for the maximum possible
+        * @num_bits of 17.  */
+       os->bitcount += num_bits;
+       os->bitbuf = (os->bitbuf << num_bits) | bits;
+
+       /* Check whether any coding units need to be written.  */
+       if (os->bitcount >= 16) {
+
+               os->bitcount -= 16;
+
+               /* Write a coding unit, unless it would overflow the buffer.  */
+               if (os->next != os->end)
+                       *os->next++ = cpu_to_le16(os->bitbuf >> os->bitcount);
+
+               /* If writing 17 bits, a second coding unit might need to be
+                * written.  But because 'max_num_bits' is a compile-time
+                * constant, the compiler will optimize away this code at most
+                * call sites.  */
+               if (max_num_bits == 17 && os->bitcount == 16) {
+                       if (os->next != os->end)
+                               *os->next++ = cpu_to_le16(os->bitbuf);
+                       os->bitcount = 0;
                }
        }
+}
+
+/* Use when @num_bits is a compile-time constant.  Otherwise use
+ * lzx_write_varbits().  */
+static inline void
+lzx_write_bits(struct lzx_output_bitstream *os,
+              const u32 bits, const unsigned int num_bits)
+{
+       lzx_write_varbits(os, bits, num_bits, num_bits);
+}
 
-       /* The offset was not recently used; look up its real position slot.  */
-       position_slot = lzx_get_position_slot_raw(offset + LZX_OFFSET_OFFSET);
+/*
+ * Flush the last coding unit to the output buffer if needed.  Return the total
+ * number of bytes written to the output buffer, or 0 if an overflow occurred.
+ */
+static u32
+lzx_flush_output(struct lzx_output_bitstream *os)
+{
+       if (os->next == os->end)
+               return 0;
 
-       /* Bring the new offset to the front of the queue.  */
-       for (int i = LZX_NUM_RECENT_OFFSETS - 1; i > 0; i--)
-               queue->R[i] = queue->R[i - 1];
-       queue->R[0] = offset;
+       if (os->bitcount != 0)
+               *os->next++ = cpu_to_le16(os->bitbuf << (16 - os->bitcount));
 
-       return position_slot;
+       return (const u8 *)os->next - (const u8 *)os->start;
 }
 
 /* Build the main, length, and aligned offset Huffman codes used in LZX.
@@ -484,8 +403,7 @@ lzx_get_position_slot(u32 offset, struct lzx_lru_queue *queue)
  * This takes as input the frequency tables for each code and produces as output
  * a set of tables that map symbols to codewords and codeword lengths.  */
 static void
-lzx_make_huffman_codes(const struct lzx_freqs *freqs,
-                      struct lzx_codes *codes,
+lzx_make_huffman_codes(const struct lzx_freqs *freqs, struct lzx_codes *codes,
                       unsigned num_main_syms)
 {
        make_canonical_huffman_code(num_main_syms,
@@ -507,240 +425,93 @@ lzx_make_huffman_codes(const struct lzx_freqs *freqs,
                                    codes->codewords.aligned);
 }
 
-/*
- * Output a precomputed LZX match.
- *
- * @out:
- *     The bitstream to which to write the match.
- * @block_type:
- *     The type of the LZX block (LZX_BLOCKTYPE_ALIGNED or
- *     LZX_BLOCKTYPE_VERBATIM)
- * @match:
- *     The match data.
- * @codes:
- *     Pointer to a structure that contains the codewords for the main, length,
- *     and aligned offset Huffman codes for the current LZX compressed block.
- */
-static void
-lzx_write_match(struct output_bitstream *out, int block_type,
-               struct lzx_item match, const struct lzx_codes *codes)
+static unsigned
+lzx_compute_precode_items(const u8 lens[restrict],
+                         const u8 prev_lens[restrict],
+                         const unsigned num_lens,
+                         u32 precode_freqs[restrict],
+                         unsigned precode_items[restrict])
 {
-       /* low 8 bits are the match length minus 2 */
-       unsigned match_len_minus_2 = match.data & 0xff;
-       /* Next 17 bits are the position footer */
-       unsigned position_footer = (match.data >> 8) & 0x1ffff; /* 17 bits */
-       /* Next 6 bits are the position slot. */
-       unsigned position_slot = (match.data >> 25) & 0x3f;     /* 6 bits */
-       unsigned len_header;
-       unsigned len_footer;
-       unsigned main_symbol;
-       unsigned num_extra_bits;
-       unsigned verbatim_bits;
-       unsigned aligned_bits;
-
-       /* If the match length is less than MIN_MATCH_LEN (= 2) +
-        * NUM_PRIMARY_LENS (= 7), the length header contains
-        * the match length minus MIN_MATCH_LEN, and there is no
-        * length footer.
-        *
-        * Otherwise, the length header contains
-        * NUM_PRIMARY_LENS, and the length footer contains
-        * the match length minus NUM_PRIMARY_LENS minus
-        * MIN_MATCH_LEN. */
-       if (match_len_minus_2 < LZX_NUM_PRIMARY_LENS) {
-               len_header = match_len_minus_2;
-       } else {
-               len_header = LZX_NUM_PRIMARY_LENS;
-               len_footer = match_len_minus_2 - LZX_NUM_PRIMARY_LENS;
-       }
+       unsigned *itemptr;
+       unsigned run_start;
+       unsigned run_end;
+       unsigned extra_bits;
+       int delta;
+       u8 len;
+
+       itemptr = precode_items;
+       run_start = 0;
+       do {
+               /* Find the next run of codeword lengths.  */
 
-       /* Combine the position slot with the length header into a single symbol
-        * that will be encoded with the main code.
-        *
-        * The actual main symbol is offset by LZX_NUM_CHARS because values
-        * under LZX_NUM_CHARS are used to indicate a literal byte rather than a
-        * match.  */
-       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-
-       /* Output main symbol. */
-       bitstream_put_bits(out, codes->codewords.main[main_symbol],
-                          codes->lens.main[main_symbol]);
-
-       /* If there is a length footer, output it using the
-        * length Huffman code. */
-       if (len_header == LZX_NUM_PRIMARY_LENS)
-               bitstream_put_bits(out, codes->codewords.len[len_footer],
-                                  codes->lens.len[len_footer]);
-
-       num_extra_bits = lzx_get_num_extra_bits(position_slot);
-
-       /* For aligned offset blocks with at least 3 extra bits, output the
-        * verbatim bits literally, then the aligned bits encoded using the
-        * aligned offset code.  Otherwise, only the verbatim bits need to be
-        * output. */
-       if ((block_type == LZX_BLOCKTYPE_ALIGNED) && (num_extra_bits >= 3)) {
-
-               verbatim_bits = position_footer >> 3;
-               bitstream_put_bits(out, verbatim_bits,
-                                  num_extra_bits - 3);
-
-               aligned_bits = (position_footer & 7);
-               bitstream_put_bits(out,
-                                  codes->codewords.aligned[aligned_bits],
-                                  codes->lens.aligned[aligned_bits]);
-       } else {
-               /* verbatim bits is the same as the position
-                * footer, in this case. */
-               bitstream_put_bits(out, position_footer, num_extra_bits);
-       }
-}
+               /* len = the length being repeated  */
+               len = lens[run_start];
 
-/* Output an LZX literal (encoded with the main Huffman code).  */
-static void
-lzx_write_literal(struct output_bitstream *out, u8 literal,
-                 const struct lzx_codes *codes)
-{
-       bitstream_put_bits(out,
-                          codes->codewords.main[literal],
-                          codes->lens.main[literal]);
-}
+               run_end = run_start + 1;
 
-static unsigned
-lzx_build_precode(const u8 lens[restrict],
-                 const u8 prev_lens[restrict],
-                 const unsigned num_syms,
-                 u32 precode_freqs[restrict LZX_PRECODE_NUM_SYMBOLS],
-                 u8 output_syms[restrict num_syms],
-                 u8 precode_lens[restrict LZX_PRECODE_NUM_SYMBOLS],
-                 u32 precode_codewords[restrict LZX_PRECODE_NUM_SYMBOLS],
-                 unsigned *num_additional_bits_ret)
-{
-       memset(precode_freqs, 0,
-              LZX_PRECODE_NUM_SYMBOLS * sizeof(precode_freqs[0]));
-
-       /* Since the code word lengths use a form of RLE encoding, the goal here
-        * is to find each run of identical lengths when going through them in
-        * symbol order (including runs of length 1).  For each run, as many
-        * lengths are encoded using RLE as possible, and the rest are output
-        * literally.
-        *
-        * output_syms[] will be filled in with the length symbols that will be
-        * output, including RLE codes, not yet encoded using the precode.
-        *
-        * cur_run_len keeps track of how many code word lengths are in the
-        * current run of identical lengths.  */
-       unsigned output_syms_idx = 0;
-       unsigned cur_run_len = 1;
-       unsigned num_additional_bits = 0;
-       for (unsigned i = 1; i <= num_syms; i++) {
-
-               if (i != num_syms && lens[i] == lens[i - 1]) {
-                       /* Still in a run--- keep going. */
-                       cur_run_len++;
+               /* Fast case for a single length.  */
+               if (likely(run_end == num_lens || len != lens[run_end])) {
+                       delta = prev_lens[run_start] - len;
+                       if (delta < 0)
+                               delta += 17;
+                       precode_freqs[delta]++;
+                       *itemptr++ = delta;
+                       run_start++;
                        continue;
                }
 
-               /* Run ended! Check if it is a run of zeroes or a run of
-                * nonzeroes. */
-
-               /* The symbol that was repeated in the run--- not to be confused
-                * with the length *of* the run (cur_run_len) */
-               unsigned len_in_run = lens[i - 1];
-
-               if (len_in_run == 0) {
-                       /* A run of 0's.  Encode it in as few length
-                        * codes as we can. */
+               /* Extend the run.  */
+               do {
+                       run_end++;
+               } while (run_end != num_lens && len == lens[run_end]);
 
-                       /* The magic length 18 indicates a run of 20 + n zeroes,
-                        * where n is an uncompressed literal 5-bit integer that
-                        * follows the magic length. */
-                       while (cur_run_len >= 20) {
-                               unsigned additional_bits;
+               if (len == 0) {
+                       /* Run of zeroes.  */
 
-                               additional_bits = min(cur_run_len - 20, 0x1f);
-                               num_additional_bits += 5;
+                       /* Symbol 18: RLE 20 to 51 zeroes at a time.  */
+                       while ((run_end - run_start) >= 20) {
+                               extra_bits = min((run_end - run_start) - 20, 0x1f);
                                precode_freqs[18]++;
-                               output_syms[output_syms_idx++] = 18;
-                               output_syms[output_syms_idx++] = additional_bits;
-                               cur_run_len -= 20 + additional_bits;
+                               *itemptr++ = 18 | (extra_bits << 5);
+                               run_start += 20 + extra_bits;
                        }
 
-                       /* The magic length 17 indicates a run of 4 + n zeroes,
-                        * where n is an uncompressed literal 4-bit integer that
-                        * follows the magic length. */
-                       while (cur_run_len >= 4) {
-                               unsigned additional_bits;
-
-                               additional_bits = min(cur_run_len - 4, 0xf);
-                               num_additional_bits += 4;
+                       /* Symbol 17: RLE 4 to 19 zeroes at a time.  */
+                       if ((run_end - run_start) >= 4) {
+                               extra_bits = min((run_end - run_start) - 4, 0xf);
                                precode_freqs[17]++;
-                               output_syms[output_syms_idx++] = 17;
-                               output_syms[output_syms_idx++] = additional_bits;
-                               cur_run_len -= 4 + additional_bits;
+                               *itemptr++ = 17 | (extra_bits << 5);
+                               run_start += 4 + extra_bits;
                        }
-
                } else {
 
                        /* A run of nonzero lengths. */
 
-                       /* The magic length 19 indicates a run of 4 + n
-                        * nonzeroes, where n is a literal bit that follows the
-                        * magic length, and where the value of the lengths in
-                        * the run is given by an extra length symbol, encoded
-                        * with the precode, that follows the literal bit.
-                        *
-                        * The extra length symbol is encoded as a difference
-                        * from the length of the codeword for the first symbol
-                        * in the run in the previous code.
-                        * */
-                       while (cur_run_len >= 4) {
-                               unsigned additional_bits;
-                               signed char delta;
-
-                               additional_bits = (cur_run_len > 4);
-                               num_additional_bits += 1;
-                               delta = (signed char)prev_lens[i - cur_run_len] -
-                                       (signed char)len_in_run;
+                       /* Symbol 19: RLE 4 to 5 of any length at a time.  */
+                       while ((run_end - run_start) >= 4) {
+                               extra_bits = (run_end - run_start) > 4;
+                               delta = prev_lens[run_start] - len;
                                if (delta < 0)
                                        delta += 17;
                                precode_freqs[19]++;
-                               precode_freqs[(unsigned char)delta]++;
-                               output_syms[output_syms_idx++] = 19;
-                               output_syms[output_syms_idx++] = additional_bits;
-                               output_syms[output_syms_idx++] = delta;
-                               cur_run_len -= 4 + additional_bits;
+                               precode_freqs[delta]++;
+                               *itemptr++ = 19 | (extra_bits << 5) | (delta << 6);
+                               run_start += 4 + extra_bits;
                        }
                }
 
-               /* Any remaining lengths in the run are outputted without RLE,
-                * as a difference from the length of that codeword in the
-                * previous code. */
-               while (cur_run_len > 0) {
-                       signed char delta;
-
-                       delta = (signed char)prev_lens[i - cur_run_len] -
-                               (signed char)len_in_run;
+               /* Output any remaining lengths without RLE.  */
+               while (run_start != run_end) {
+                       delta = prev_lens[run_start] - len;
                        if (delta < 0)
                                delta += 17;
-
-                       precode_freqs[(unsigned char)delta]++;
-                       output_syms[output_syms_idx++] = delta;
-                       cur_run_len--;
+                       precode_freqs[delta]++;
+                       *itemptr++ = delta;
+                       run_start++;
                }
+       } while (run_start != num_lens);
 
-               cur_run_len = 1;
-       }
-
-       /* Build the precode from the frequencies of the length symbols. */
-
-       make_canonical_huffman_code(LZX_PRECODE_NUM_SYMBOLS,
-                                   LZX_MAX_PRE_CODEWORD_LEN,
-                                   precode_freqs, precode_lens,
-                                   precode_codewords);
-
-       *num_additional_bits_ret = num_additional_bits;
-
-       return output_syms_idx;
+       return itemptr - precode_items;
 }
 
 /*
@@ -762,78 +533,134 @@ lzx_build_precode(const u8 lens[restrict],
  * as deltas from the codeword lengths of the corresponding code in the previous
  * block.
  *
- * @out:
+ * @os:
  *     Bitstream to which to write the compressed Huffman code.
  * @lens:
  *     The codeword lengths, indexed by symbol, in the Huffman code.
  * @prev_lens:
  *     The codeword lengths, indexed by symbol, in the corresponding Huffman
  *     code in the previous block, or all zeroes if this is the first block.
- * @num_syms:
+ * @num_lens:
  *     The number of symbols in the Huffman code.
  */
 static void
-lzx_write_compressed_code(struct output_bitstream *out,
+lzx_write_compressed_code(struct lzx_output_bitstream *os,
                          const u8 lens[restrict],
                          const u8 prev_lens[restrict],
-                         unsigned num_syms)
+                         unsigned num_lens)
 {
        u32 precode_freqs[LZX_PRECODE_NUM_SYMBOLS];
-       u8 output_syms[num_syms];
        u8 precode_lens[LZX_PRECODE_NUM_SYMBOLS];
        u32 precode_codewords[LZX_PRECODE_NUM_SYMBOLS];
+       unsigned precode_items[num_lens];
+       unsigned num_precode_items;
+       unsigned precode_item;
+       unsigned precode_sym;
        unsigned i;
-       unsigned num_output_syms;
-       u8 precode_sym;
-       unsigned dummy;
-
-       num_output_syms = lzx_build_precode(lens,
-                                           prev_lens,
-                                           num_syms,
-                                           precode_freqs,
-                                           output_syms,
-                                           precode_lens,
-                                           precode_codewords,
-                                           &dummy);
-
-       /* Write the lengths of the precode codes to the output. */
+
        for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
-               bitstream_put_bits(out, precode_lens[i],
-                                  LZX_PRECODE_ELEMENT_SIZE);
+               precode_freqs[i] = 0;
 
-       /* Write the length symbols, encoded with the precode, to the output. */
+       /* Compute the "items" (RLE / literal tokens and extra bits) with which
+        * the codeword lengths in the larger code will be output.  */
+       num_precode_items = lzx_compute_precode_items(lens,
+                                                     prev_lens,
+                                                     num_lens,
+                                                     precode_freqs,
+                                                     precode_items);
 
-       for (i = 0; i < num_output_syms; ) {
-               precode_sym = output_syms[i++];
+       /* Build the precode.  */
+       make_canonical_huffman_code(LZX_PRECODE_NUM_SYMBOLS,
+                                   LZX_MAX_PRE_CODEWORD_LEN,
+                                   precode_freqs, precode_lens,
+                                   precode_codewords);
 
-               bitstream_put_bits(out, precode_codewords[precode_sym],
-                                  precode_lens[precode_sym]);
-               switch (precode_sym) {
-               case 17:
-                       bitstream_put_bits(out, output_syms[i++], 4);
-                       break;
-               case 18:
-                       bitstream_put_bits(out, output_syms[i++], 5);
-                       break;
-               case 19:
-                       bitstream_put_bits(out, output_syms[i++], 1);
-                       bitstream_put_bits(out,
-                                          precode_codewords[output_syms[i]],
-                                          precode_lens[output_syms[i]]);
-                       i++;
-                       break;
-               default:
-                       break;
+       /* Output the lengths of the codewords in the precode.  */
+       for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
+               lzx_write_bits(os, precode_lens[i], LZX_PRECODE_ELEMENT_SIZE);
+
+       /* Output the encoded lengths of the codewords in the larger code.  */
+       for (i = 0; i < num_precode_items; i++) {
+               precode_item = precode_items[i];
+               precode_sym = precode_item & 0x1F;
+               lzx_write_varbits(os, precode_codewords[precode_sym],
+                                 precode_lens[precode_sym],
+                                 LZX_MAX_PRE_CODEWORD_LEN);
+               if (precode_sym >= 17) {
+                       if (precode_sym == 17) {
+                               lzx_write_bits(os, precode_item >> 5, 4);
+                       } else if (precode_sym == 18) {
+                               lzx_write_bits(os, precode_item >> 5, 5);
+                       } else {
+                               lzx_write_bits(os, (precode_item >> 5) & 1, 1);
+                               precode_sym = precode_item >> 6;
+                               lzx_write_varbits(os, precode_codewords[precode_sym],
+                                                 precode_lens[precode_sym],
+                                                 LZX_MAX_PRE_CODEWORD_LEN);
+                       }
                }
        }
 }
 
+/* Output a match or literal.  */
+static inline void
+lzx_write_item(struct lzx_output_bitstream *os, struct lzx_item item,
+              unsigned ones_if_aligned, const struct lzx_codes *codes)
+{
+       u64 data = item.data;
+       unsigned main_symbol;
+       unsigned len_symbol;
+       unsigned num_extra_bits;
+       u32 extra_bits;
+
+       main_symbol = data & 0x3FF;
+
+       lzx_write_varbits(os, codes->codewords.main[main_symbol],
+                         codes->lens.main[main_symbol],
+                         LZX_MAX_MAIN_CODEWORD_LEN);
+
+       if (main_symbol < LZX_NUM_CHARS)  /* Literal?  */
+               return;
+
+       len_symbol = (data >> 10) & 0xFF;
+
+       if (len_symbol != LZX_LENCODE_NUM_SYMBOLS) {
+               lzx_write_varbits(os, codes->codewords.len[len_symbol],
+                                 codes->lens.len[len_symbol],
+                                 LZX_MAX_LEN_CODEWORD_LEN);
+       }
+
+       num_extra_bits = (data >> 18) & 0x1F;
+       if (num_extra_bits == 0)  /* Small offset or repeat offset match?  */
+               return;
+
+       extra_bits = data >> 23;
+
+       /*if (block_type == LZX_BLOCKTYPE_ALIGNED && num_extra_bits >= 3) {*/
+       if ((num_extra_bits & ones_if_aligned) >= 3) {
+
+               /* Aligned offset blocks: The low 3 bits of the extra offset
+                * bits are Huffman-encoded using the aligned offset code.  The
+                * remaining bits are output literally.  */
+
+               lzx_write_varbits(os, extra_bits >> 3, num_extra_bits - 3, 14);
+
+               lzx_write_varbits(os, codes->codewords.aligned[extra_bits & 7],
+                                 codes->lens.aligned[extra_bits & 7],
+                                 LZX_MAX_ALIGNED_CODEWORD_LEN);
+       } else {
+               /* Verbatim blocks, or fewer than 3 extra bits:  All extra
+                * offset bits are output literally.  */
+               lzx_write_varbits(os, extra_bits, num_extra_bits, 17);
+       }
+}
+
 /*
  * Write all matches and literal bytes (which were precomputed) in an LZX
  * compressed block to the output bitstream in the final compressed
  * representation.
  *
- * @ostream
+ * @os
  *     The output bitstream.
  * @block_type
  *     The chosen type of the LZX compressed block (LZX_BLOCKTYPE_ALIGNED or
@@ -847,41 +674,34 @@ lzx_write_compressed_code(struct output_bitstream *out,
  *     LZX compressed block.
  */
 static void
-lzx_write_items(struct output_bitstream *ostream, int block_type,
+lzx_write_items(struct lzx_output_bitstream *os, int block_type,
                const struct lzx_item items[], u32 num_items,
                const struct lzx_codes *codes)
 {
-       for (u32 i = 0; i < num_items; i++) {
-               /* The high bit of the 32-bit intermediate representation
-                * indicates whether the item is an actual LZ-style match (1) or
-                * a literal byte (0).  */
-               if (items[i].data & 0x80000000)
-                       lzx_write_match(ostream, block_type, items[i], codes);
-               else
-                       lzx_write_literal(ostream, items[i].data, codes);
-       }
+       unsigned ones_if_aligned = 0U - (block_type == LZX_BLOCKTYPE_ALIGNED);
+
+       for (u32 i = 0; i < num_items; i++)
+               lzx_write_item(os, items[i], ones_if_aligned, codes);
 }
 
-/* Write an LZX aligned offset or verbatim block to the output.  */
+/* Write an LZX aligned offset or verbatim block to the output bitstream.  */
 static void
 lzx_write_compressed_block(int block_type,
-                          unsigned block_size,
-                          unsigned max_window_size,
+                          u32 block_size,
+                          unsigned window_order,
                           unsigned num_main_syms,
                           struct lzx_item * chosen_items,
-                          unsigned num_chosen_items,
+                          u32 num_chosen_items,
                           const struct lzx_codes * codes,
-                          const struct lzx_codes * prev_codes,
-                          struct output_bitstream * ostream)
+                          const struct lzx_lens * prev_lens,
+                          struct lzx_output_bitstream * os)
 {
-       unsigned i;
-
        LZX_ASSERT(block_type == LZX_BLOCKTYPE_ALIGNED ||
                   block_type == LZX_BLOCKTYPE_VERBATIM);
 
        /* The first three bits indicate the type of block and are one of the
         * LZX_BLOCKTYPE_* constants.  */
-       bitstream_put_bits(ostream, block_type, 3);
+       lzx_write_bits(os, block_type, 3);
 
        /* Output the block size.
         *
@@ -899,283 +719,90 @@ lzx_write_compressed_block(int block_type,
         * because WIMs created with chunk size greater than 32768 can seemingly
         * only be opened by wimlib anyway.  */
        if (block_size == LZX_DEFAULT_BLOCK_SIZE) {
-               bitstream_put_bits(ostream, 1, 1);
+               lzx_write_bits(os, 1, 1);
        } else {
-               bitstream_put_bits(ostream, 0, 1);
+               lzx_write_bits(os, 0, 1);
 
-               if (max_window_size >= 65536)
-                       bitstream_put_bits(ostream, block_size >> 16, 8);
+               if (window_order >= 16)
+                       lzx_write_bits(os, block_size >> 16, 8);
 
-               bitstream_put_bits(ostream, block_size, 16);
+               lzx_write_bits(os, block_size & 0xFFFF, 16);
        }
 
-       /* Write out lengths of the main code. Note that the LZX specification
-        * incorrectly states that the aligned offset code comes after the
-        * length code, but in fact it is the very first code to be written
-        * (before the main code).  */
-       if (block_type == LZX_BLOCKTYPE_ALIGNED)
-               for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
-                       bitstream_put_bits(ostream, codes->lens.aligned[i],
-                                          LZX_ALIGNEDCODE_ELEMENT_SIZE);
-
-       /* Write the precode and lengths for the first LZX_NUM_CHARS symbols in
-        * the main code, which are the codewords for literal bytes.  */
-       lzx_write_compressed_code(ostream,
-                                 codes->lens.main,
-                                 prev_codes->lens.main,
-                                 LZX_NUM_CHARS);
+       /* If it's an aligned offset block, output the aligned offset code.  */
+       if (block_type == LZX_BLOCKTYPE_ALIGNED) {
+               for (int i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+                       lzx_write_bits(os, codes->lens.aligned[i],
+                                      LZX_ALIGNEDCODE_ELEMENT_SIZE);
+               }
+       }
 
-       /* Write the precode and lengths for the rest of the main code, which
-        * are the codewords for match headers.  */
-       lzx_write_compressed_code(ostream,
-                                 codes->lens.main + LZX_NUM_CHARS,
-                                 prev_codes->lens.main + LZX_NUM_CHARS,
+       /* Output the main code (two parts).  */
+       lzx_write_compressed_code(os, codes->lens.main,
+                                 prev_lens->main,
+                                 LZX_NUM_CHARS);
+       lzx_write_compressed_code(os, codes->lens.main + LZX_NUM_CHARS,
+                                 prev_lens->main + LZX_NUM_CHARS,
                                  num_main_syms - LZX_NUM_CHARS);
 
-       /* Write the precode and lengths for the length code.  */
-       lzx_write_compressed_code(ostream,
-                                 codes->lens.len,
-                                 prev_codes->lens.len,
+       /* Output the length code.  */
+       lzx_write_compressed_code(os, codes->lens.len,
+                                 prev_lens->len,
                                  LZX_LENCODE_NUM_SYMBOLS);
 
-       /* Write the actual matches and literals.  */
-       lzx_write_items(ostream, block_type,
-                       chosen_items, num_chosen_items, codes);
+       /* Output the compressed matches and literals.  */
+       lzx_write_items(os, block_type, chosen_items, num_chosen_items, codes);
 }
 
-/* Write out the LZX blocks that were computed.  */
-static void
-lzx_write_all_blocks(struct lzx_compressor *c, struct output_bitstream *ostream)
+/* Don't allow matches to span the end of an LZX block.  */
+static inline unsigned
+maybe_truncate_matches(struct lz_match matches[], unsigned num_matches,
+                      struct lzx_compressor *c)
 {
+       if (c->match_window_end < c->cur_window_size && num_matches != 0) {
+               u32 limit = c->match_window_end - c->match_window_pos;
 
-       const struct lzx_codes *prev_codes = &c->zero_codes;
-       for (unsigned i = 0; i < c->num_blocks; i++) {
-               const struct lzx_block_spec *spec = &c->block_specs[i];
-
-               LZX_DEBUG("Writing block %u/%u (type=%d, size=%u, num_chosen_items=%u)...",
-                         i + 1, c->num_blocks,
-                         spec->block_type, spec->block_size,
-                         spec->num_chosen_items);
+               if (limit >= LZX_MIN_MATCH_LEN) {
 
-               lzx_write_compressed_block(spec->block_type,
-                                          spec->block_size,
-                                          c->max_window_size,
-                                          c->num_main_syms,
-                                          spec->chosen_items,
-                                          spec->num_chosen_items,
-                                          &spec->codes,
-                                          prev_codes,
-                                          ostream);
+                       unsigned i = num_matches - 1;
+                       do {
+                               if (matches[i].len >= limit) {
+                                       matches[i].len = limit;
 
-               prev_codes = &spec->codes;
+                                       /* Truncation might produce multiple
+                                        * matches with length 'limit'.  Keep at
+                                        * most 1.  */
+                                       num_matches = i + 1;
+                               }
+                       } while (i--);
+               } else {
+                       num_matches = 0;
+               }
        }
+       return num_matches;
 }
 
-/* Constructs an LZX match from a literal byte and updates the main code symbol
- * frequencies.  */
-static inline u32
-lzx_tally_literal(u8 lit, struct lzx_freqs *freqs)
+static unsigned
+lzx_get_matches_fillcache_singleblock(struct lzx_compressor *c,
+                                     const struct lz_match **matches_ret)
 {
-       freqs->main[lit]++;
-       return (u32)lit;
-}
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
 
-/* Constructs an LZX match from an offset and a length, and updates the LRU
- * queue and the frequency of symbols in the main, length, and aligned offset
- * alphabets.  The return value is a 32-bit number that provides the match in an
- * intermediate representation documented below.  */
-static inline u32
-lzx_tally_match(unsigned match_len, u32 match_offset,
-               struct lzx_freqs *freqs, struct lzx_lru_queue *queue)
-{
-       unsigned position_slot;
-       unsigned position_footer;
-       u32 len_header;
-       unsigned main_symbol;
-       unsigned len_footer;
-       unsigned adjusted_match_len;
-
-       LZX_ASSERT(match_len >= LZX_MIN_MATCH_LEN && match_len <= LZX_MAX_MATCH_LEN);
-
-       /* The match offset shall be encoded as a position slot (itself encoded
-        * as part of the main symbol) and a position footer.  */
-       position_slot = lzx_get_position_slot(match_offset, queue);
-       position_footer = (match_offset + LZX_OFFSET_OFFSET) &
-                               ((1U << lzx_get_num_extra_bits(position_slot)) - 1);
-
-       /* The match length shall be encoded as a length header (itself encoded
-        * as part of the main symbol) and an optional length footer.  */
-       adjusted_match_len = match_len - LZX_MIN_MATCH_LEN;
-       if (adjusted_match_len < LZX_NUM_PRIMARY_LENS) {
-               /* No length footer needed.  */
-               len_header = adjusted_match_len;
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       if (likely(cache_ptr <= c->cache_limit)) {
+               num_matches = lz_mf_get_matches(c->mf, matches);
+               cache_ptr->len = num_matches;
+               c->cache_ptr = matches + num_matches;
        } else {
-               /* Length footer needed.  It will be encoded using the length
-                * code.  */
-               len_header = LZX_NUM_PRIMARY_LENS;
-               len_footer = adjusted_match_len - LZX_NUM_PRIMARY_LENS;
-               freqs->len[len_footer]++;
+               num_matches = 0;
        }
-
-       /* Account for the main symbol.  */
-       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-
-       freqs->main[main_symbol]++;
-
-       /* In an aligned offset block, 3 bits of the position footer are output
-        * as an aligned offset symbol.  Account for this, although we may
-        * ultimately decide to output the block as verbatim.  */
-
-       /* The following check is equivalent to:
-        *
-        * if (lzx_extra_bits[position_slot] >= 3)
-        *
-        * Note that this correctly excludes position slots that correspond to
-        * recent offsets.  */
-       if (position_slot >= 8)
-               freqs->aligned[position_footer & 7]++;
-
-       /* Pack the position slot, position footer, and match length into an
-        * intermediate representation.  See `struct lzx_item' for details.
-        */
-       LZX_ASSERT(LZX_MAX_POSITION_SLOTS <= 64);
-       LZX_ASSERT(lzx_get_num_extra_bits(LZX_MAX_POSITION_SLOTS - 1) <= 17);
-       LZX_ASSERT(LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1 <= 256);
-
-       LZX_ASSERT(position_slot      <= (1U << (31 - 25)) - 1);
-       LZX_ASSERT(position_footer    <= (1U << (25 -  8)) - 1);
-       LZX_ASSERT(adjusted_match_len <= (1U << (8  -  0)) - 1);
-       return 0x80000000 |
-               (position_slot << 25) |
-               (position_footer << 8) |
-               (adjusted_match_len);
-}
-
-/* Returns the cost, in bits, to output a literal byte using the specified cost
- * model.  */
-static u32
-lzx_literal_cost(u8 c, const struct lzx_costs * costs)
-{
-       return costs->main[c];
-}
-
-/* Given a (length, offset) pair that could be turned into a valid LZX match as
- * well as costs for the codewords in the main, length, and aligned Huffman
- * codes, return the approximate number of bits it will take to represent this
- * match in the compressed output.  Take into account the match offset LRU
- * queue and also updates it.  */
-static u32
-lzx_match_cost(unsigned length, u32 offset, const struct lzx_costs *costs,
-              struct lzx_lru_queue *queue)
-{
-       unsigned position_slot;
-       unsigned len_header, main_symbol;
-       unsigned num_extra_bits;
-       u32 cost = 0;
-
-       position_slot = lzx_get_position_slot(offset, queue);
-
-       len_header = min(length - LZX_MIN_MATCH_LEN, LZX_NUM_PRIMARY_LENS);
-       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-
-       /* Account for main symbol.  */
-       cost += costs->main[main_symbol];
-
-       /* Account for extra position information.  */
-       num_extra_bits = lzx_get_num_extra_bits(position_slot);
-       if (num_extra_bits >= 3) {
-               cost += num_extra_bits - 3;
-               cost += costs->aligned[(offset + LZX_OFFSET_OFFSET) & 7];
-       } else {
-               cost += num_extra_bits;
-       }
-
-       /* Account for extra length information.  */
-       if (len_header == LZX_NUM_PRIMARY_LENS)
-               cost += costs->len[length - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
-
-       return cost;
-
-}
-
-
-/* Set the cost model @c->costs from the Huffman codeword lengths specified in
- * @lens.
- *
- * The cost model and codeword lengths are almost the same thing, but the
- * Huffman codewords with length 0 correspond to symbols with zero frequency
- * that still need to be assigned actual costs.  The specific values assigned
- * are arbitrary, but they should be fairly high (near the maximum codeword
- * length) to take into account the fact that uses of these symbols are expected
- * to be rare.  */
-static void
-lzx_set_costs(struct lzx_compressor *c, const struct lzx_lens * lens,
-             unsigned nostat)
-{
-       unsigned i;
-
-       /* Main code  */
-       for (i = 0; i < c->num_main_syms; i++)
-               c->costs.main[i] = lens->main[i] ? lens->main[i] : nostat;
-
-       /* Length code  */
-       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
-               c->costs.len[i] = lens->len[i] ? lens->len[i] : nostat;
-
-       /* Aligned offset code  */
-       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
-               c->costs.aligned[i] = lens->aligned[i] ? lens->aligned[i] : nostat / 2;
-}
-
-/* Don't allow matches to span the end of an LZX block.  */
-static inline u32
-maybe_truncate_matches(struct lz_match matches[], u32 num_matches,
-                      struct lzx_compressor *c)
-{
-       if (c->match_window_end < c->cur_window_size && num_matches != 0) {
-               u32 limit = c->match_window_end - c->match_window_pos;
-
-               if (limit >= LZX_MIN_MATCH_LEN) {
-
-                       u32 i = num_matches - 1;
-                       do {
-                               if (matches[i].len >= limit) {
-                                       matches[i].len = limit;
-
-                                       /* Truncation might produce multiple
-                                        * matches with length 'limit'.  Keep at
-                                        * most 1.  */
-                                       num_matches = i + 1;
-                               }
-                       } while (i--);
-               } else {
-                       num_matches = 0;
-               }
-       }
-       return num_matches;
-}
-
-static unsigned
-lzx_get_matches_fillcache_singleblock(struct lzx_compressor *c,
-                                     const struct lz_match **matches_ret)
-{
-       struct lz_match *cache_ptr;
-       struct lz_match *matches;
-       unsigned num_matches;
-
-       cache_ptr = c->cache_ptr;
-       matches = cache_ptr + 1;
-       if (likely(cache_ptr <= c->cache_limit)) {
-               num_matches = lz_mf_get_matches(c->mf, matches);
-               cache_ptr->len = num_matches;
-               c->cache_ptr = matches + num_matches;
-       } else {
-               num_matches = 0;
-       }
-       c->match_window_pos++;
-       *matches_ret = matches;
-       return num_matches;
-}
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
+}
 
 static unsigned
 lzx_get_matches_fillcache_multiblock(struct lzx_compressor *c,
@@ -1270,13 +897,14 @@ lzx_get_matches_nocache_multiblock(struct lzx_compressor *c,
 /*
  * Find matches at the next position in the window.
  *
+ * This uses a wrapper function around the underlying match-finder.
+ *
  * Returns the number of matches found and sets *matches_ret to point to the
  * matches array.  The matches will be sorted by strictly increasing length and
  * offset.
  */
 static inline unsigned
-lzx_get_matches(struct lzx_compressor *c,
-               const struct lz_match **matches_ret)
+lzx_get_matches(struct lzx_compressor *c, const struct lz_match **matches_ret)
 {
        return (*c->get_matches_func)(c, matches_ret);
 }
@@ -1336,6 +964,8 @@ lzx_skip_bytes_nocache(struct lzx_compressor *c, unsigned n)
 /*
  * Skip the specified number of positions in the window (don't search for
  * matches at them).
+ *
+ * This uses a wrapper function around the underlying match-finder.
  */
 static inline void
 lzx_skip_bytes(struct lzx_compressor *c, unsigned n)
@@ -1343,546 +973,914 @@ lzx_skip_bytes(struct lzx_compressor *c, unsigned n)
        return (*c->skip_bytes_func)(c, n);
 }
 
-/*
- * Reverse the linked list of near-optimal matches so that they can be returned
- * in forwards order.
- *
- * Returns the first match in the list.
- */
-static struct lz_match
-lzx_match_chooser_reverse_list(struct lzx_compressor *c, unsigned cur_pos)
+/* Tally, and optionally record, the specified literal byte.  */
+static inline void
+lzx_declare_literal(struct lzx_compressor *c, unsigned literal,
+                   struct lzx_item **next_chosen_item)
+{
+       unsigned main_symbol = literal;
+
+       c->freqs.main[main_symbol]++;
+
+       if (next_chosen_item) {
+               *(*next_chosen_item)++ = (struct lzx_item) {
+                       .data = main_symbol,
+               };
+       }
+}
+
+/* Tally, and optionally record, the specified repeat offset match.  */
+static inline void
+lzx_declare_repeat_offset_match(struct lzx_compressor *c,
+                               unsigned len, unsigned rep_index,
+                               struct lzx_item **next_chosen_item)
 {
-       unsigned prev_link, saved_prev_link;
-       unsigned prev_match_offset, saved_prev_match_offset;
+       unsigned len_header;
+       unsigned main_symbol;
+       unsigned len_symbol;
 
-       c->optimum_end_idx = cur_pos;
+       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+               len_header = len - LZX_MIN_MATCH_LEN;
+               len_symbol = LZX_LENCODE_NUM_SYMBOLS;
+       } else {
+               len_header = LZX_NUM_PRIMARY_LENS;
+               len_symbol = len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS;
+               c->freqs.len[len_symbol]++;
+       }
 
-       saved_prev_link = c->optimum[cur_pos].prev.link;
-       saved_prev_match_offset = c->optimum[cur_pos].prev.match_offset;
+       main_symbol = LZX_NUM_CHARS + ((rep_index << 3) | len_header);
 
-       do {
-               prev_link = saved_prev_link;
-               prev_match_offset = saved_prev_match_offset;
+       c->freqs.main[main_symbol]++;
+
+       if (next_chosen_item) {
+               *(*next_chosen_item)++ = (struct lzx_item) {
+                       .data = (u64)main_symbol | ((u64)len_symbol << 10),
+               };
+       }
+}
+
+/* Tally, and optionally record, the specified explicit offset match.  */
+static inline void
+lzx_declare_explicit_offset_match(struct lzx_compressor *c, unsigned len, u32 offset,
+                                 struct lzx_item **next_chosen_item)
+{
+       unsigned len_header;
+       unsigned main_symbol;
+       unsigned len_symbol;
+       unsigned offset_slot;
+       unsigned num_extra_bits;
+       u32 extra_bits;
+
+       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+               len_header = len - LZX_MIN_MATCH_LEN;
+               len_symbol = LZX_LENCODE_NUM_SYMBOLS;
+       } else {
+               len_header = LZX_NUM_PRIMARY_LENS;
+               len_symbol = len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS;
+               c->freqs.len[len_symbol]++;
+       }
 
-               saved_prev_link = c->optimum[prev_link].prev.link;
-               saved_prev_match_offset = c->optimum[prev_link].prev.match_offset;
+       offset_slot = lzx_get_offset_slot_raw(offset + LZX_OFFSET_OFFSET);
 
-               c->optimum[prev_link].next.link = cur_pos;
-               c->optimum[prev_link].next.match_offset = prev_match_offset;
+       main_symbol = LZX_NUM_CHARS + ((offset_slot << 3) | len_header);
 
-               cur_pos = prev_link;
-       } while (cur_pos != 0);
+       c->freqs.main[main_symbol]++;
 
-       c->optimum_cur_idx = c->optimum[0].next.link;
+       if (offset_slot >= 8)
+               c->freqs.aligned[(offset + LZX_OFFSET_OFFSET) & 7]++;
 
-       return (struct lz_match)
-               { .len = c->optimum_cur_idx,
-                 .offset = c->optimum[0].next.match_offset,
+       if (next_chosen_item) {
+
+               num_extra_bits = lzx_extra_offset_bits[offset_slot];
+
+               extra_bits = (offset + LZX_OFFSET_OFFSET) -
+                            lzx_offset_slot_base[offset_slot];
+
+               *(*next_chosen_item)++ = (struct lzx_item) {
+                       .data = (u64)main_symbol |
+                               ((u64)len_symbol << 10) |
+                               ((u64)num_extra_bits << 18) |
+                               ((u64)extra_bits << 23),
                };
+       }
 }
 
-/*
- * lzx_choose_near_optimal_match() -
- *
- * Choose an approximately optimal match or literal to use at the next position
- * in the string, or "window", being LZ-encoded.
- *
- * This is based on algorithms used in 7-Zip, including the DEFLATE encoder
- * and the LZMA encoder, written by Igor Pavlov.
- *
- * Unlike a greedy parser that always takes the longest match, or even a "lazy"
- * parser with one match/literal look-ahead like zlib, the algorithm used here
- * may look ahead many matches/literals to determine the approximately optimal
- * match/literal to code next.  The motivation is that the compression ratio is
- * improved if the compressor can do things like use a shorter-than-possible
- * match in order to allow a longer match later, and also take into account the
- * estimated real cost of coding each match/literal based on the underlying
- * entropy encoding.
- *
- * Still, this is not a true optimal parser for several reasons:
- *
- * - Real compression formats use entropy encoding of the literal/match
- *   sequence, so the real cost of coding each match or literal is unknown until
- *   the parse is fully determined.  It can be approximated based on iterative
- *   parses, but the end result is not guaranteed to be globally optimal.
- *
- * - Very long matches are chosen immediately.  This is because locations with
- *   long matches are likely to have many possible alternatives that would cause
- *   slow optimal parsing, but also such locations are already highly
- *   compressible so it is not too harmful to just grab the longest match.
- *
- * - Not all possible matches at each location are considered because the
- *   underlying match-finder limits the number and type of matches produced at
- *   each position.  For example, for a given match length it's usually not
- *   worth it to only consider matches other than the lowest-offset match,
- *   except in the case of a repeat offset.
- *
- * - Although we take into account the adaptive state (in LZX, the recent offset
- *   queue), coding decisions made with respect to the adaptive state will be
- *   locally optimal but will not necessarily be globally optimal.  This is
- *   because the algorithm only keeps the least-costly path to get to a given
- *   location and does not take into account that a slightly more costly path
- *   could result in a different adaptive state that ultimately results in a
- *   lower global cost.
- *
- * - The array space used by this function is bounded, so in degenerate cases it
- *   is forced to start returning matches/literals before the algorithm has
- *   really finished.
- *
- * Each call to this function does one of two things:
- *
- * 1. Build a sequence of near-optimal matches/literals, up to some point, that
- *    will be returned by subsequent calls to this function, then return the
- *    first one.
- *
- * OR
- *
- * 2. Return the next match/literal previously computed by a call to this
- *    function.
+/* Tally, and optionally record, the specified match or literal.  */
+static inline void
+lzx_declare_item(struct lzx_compressor *c, u32 mc_item_data,
+                struct lzx_item **next_chosen_item)
+{
+       u32 len = mc_item_data & MC_LEN_MASK;
+       u32 offset_data = mc_item_data >> MC_OFFSET_SHIFT;
+
+       if (len == 1)
+               lzx_declare_literal(c, offset_data, next_chosen_item);
+       else if (offset_data < LZX_NUM_RECENT_OFFSETS)
+               lzx_declare_repeat_offset_match(c, len, offset_data,
+                                               next_chosen_item);
+       else
+               lzx_declare_explicit_offset_match(c, len,
+                                                 offset_data - LZX_OFFSET_OFFSET,
+                                                 next_chosen_item);
+}
+
+static inline void
+lzx_record_item_list(struct lzx_compressor *c,
+                    struct lzx_mc_pos_data *cur_optimum_ptr,
+                    struct lzx_item **next_chosen_item)
+{
+       struct lzx_mc_pos_data *end_optimum_ptr;
+       u32 saved_item;
+       u32 item;
+
+       /* The list is currently in reverse order (last item to first item).
+        * Reverse it.  */
+       end_optimum_ptr = cur_optimum_ptr;
+       saved_item = cur_optimum_ptr->mc_item_data;
+       do {
+               item = saved_item;
+               cur_optimum_ptr -= item & MC_LEN_MASK;
+               saved_item = cur_optimum_ptr->mc_item_data;
+               cur_optimum_ptr->mc_item_data = item;
+       } while (cur_optimum_ptr != c->optimum);
+
+       /* Walk the list of items from beginning to end, tallying and recording
+        * each item.  */
+       do {
+               lzx_declare_item(c, cur_optimum_ptr->mc_item_data, next_chosen_item);
+               cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK;
+       } while (cur_optimum_ptr != end_optimum_ptr);
+}
+
+static inline void
+lzx_tally_item_list(struct lzx_compressor *c, struct lzx_mc_pos_data *cur_optimum_ptr)
+{
+       /* Since we're just tallying the items, we don't need to reverse the
+        * list.  Processing the items in reverse order is fine.  */
+       do {
+               lzx_declare_item(c, cur_optimum_ptr->mc_item_data, NULL);
+               cur_optimum_ptr -= (cur_optimum_ptr->mc_item_data & MC_LEN_MASK);
+       } while (cur_optimum_ptr != c->optimum);
+}
+
+/* Tally, and optionally (if next_chosen_item != NULL) record, in order, all
+ * items in the current list of items found by the match-chooser.  */
+static void
+lzx_declare_item_list(struct lzx_compressor *c, struct lzx_mc_pos_data *cur_optimum_ptr,
+                     struct lzx_item **next_chosen_item)
+{
+       if (next_chosen_item)
+               lzx_record_item_list(c, cur_optimum_ptr, next_chosen_item);
+       else
+               lzx_tally_item_list(c, cur_optimum_ptr);
+}
+
+/* Set the cost model @c->costs from the Huffman codeword lengths specified in
+ * @lens.
  *
- * The return value is a (length, offset) pair specifying the match or literal
- * chosen.  For literals, the length is 0 or 1 and the offset is meaningless.
- */
-static struct lz_match
-lzx_choose_near_optimal_item(struct lzx_compressor *c)
+ * The cost model and codeword lengths are almost the same thing, but the
+ * Huffman codewords with length 0 correspond to symbols with zero frequency
+ * that still need to be assigned actual costs.  The specific values assigned
+ * are arbitrary, but they should be fairly high (near the maximum codeword
+ * length) to take into account the fact that uses of these symbols are expected
+ * to be rare.  */
+static void
+lzx_set_costs(struct lzx_compressor *c, const struct lzx_lens * lens)
 {
-       unsigned num_matches;
-       const struct lz_match *matches;
-       struct lz_match match;
-       unsigned longest_len;
-       unsigned longest_rep_len;
-       u32 longest_rep_offset;
-       unsigned cur_pos;
-       unsigned end_pos;
-       struct lzx_mc_pos_data *optimum = c->optimum;
-
-       if (c->optimum_cur_idx != c->optimum_end_idx) {
-               /* Case 2: Return the next match/literal already found.  */
-               match.len = optimum[c->optimum_cur_idx].next.link -
-                                   c->optimum_cur_idx;
-               match.offset = optimum[c->optimum_cur_idx].next.match_offset;
-
-               c->optimum_cur_idx = optimum[c->optimum_cur_idx].next.link;
-               return match;
+       unsigned i;
+
+       /* Main code  */
+       for (i = 0; i < c->num_main_syms; i++)
+               c->costs.main[i] = lens->main[i] ? lens->main[i] : 15;
+
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               c->costs.len[i] = lens->len[i] ? lens->len[i] : 15;
+
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               c->costs.aligned[i] = lens->aligned[i] ? lens->aligned[i] : 7;
+}
+
+/* Set default LZX Huffman symbol costs to bootstrap the iterative optimization
+ * algorithm.  */
+static void
+lzx_set_default_costs(struct lzx_costs * costs, unsigned num_main_syms)
+{
+       unsigned i;
+
+       /* Main code (part 1): Literal symbols  */
+       for (i = 0; i < LZX_NUM_CHARS; i++)
+               costs->main[i] = 8;
+
+       /* Main code (part 2): Match header symbols  */
+       for (; i < num_main_syms; i++)
+               costs->main[i] = 10;
+
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               costs->len[i] = 8;
+
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               costs->aligned[i] = 3;
+}
+
+/* Return the cost, in bits, to output a literal byte using the specified cost
+ * model.  */
+static inline u32
+lzx_literal_cost(unsigned literal, const struct lzx_costs * costs)
+{
+       return costs->main[literal];
+}
+
+/* Return the cost, in bits, to output a match of the specified length and
+ * offset slot using the specified cost model.  Does not take into account
+ * extra offset bits.  */
+static inline u32
+lzx_match_cost_raw(unsigned len, unsigned offset_slot,
+                  const struct lzx_costs *costs)
+{
+       u32 cost;
+       unsigned len_header;
+       unsigned main_symbol;
+
+       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+               len_header = len - LZX_MIN_MATCH_LEN;
+               cost = 0;
+       } else {
+               len_header = LZX_NUM_PRIMARY_LENS;
+
+               /* Account for length symbol.  */
+               cost = costs->len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
        }
 
-       /* Case 1:  Compute a new list of matches/literals to return.  */
-
-       c->optimum_cur_idx = 0;
-       c->optimum_end_idx = 0;
-
-       /* Search for matches at recent offsets.  Only keep the one with the
-        * longest match length.  */
-       longest_rep_len = LZX_MIN_MATCH_LEN - 1;
-       if (c->match_window_pos >= 1) {
-               unsigned limit = min(LZX_MAX_MATCH_LEN,
-                                    c->match_window_end - c->match_window_pos);
-               for (int i = 0; i < LZX_NUM_RECENT_OFFSETS; i++) {
-                       u32 offset = c->queue.R[i];
-                       const u8 *strptr = &c->cur_window[c->match_window_pos];
-                       const u8 *matchptr = strptr - offset;
-                       unsigned len = 0;
-                       while (len < limit && strptr[len] == matchptr[len])
-                               len++;
-                       if (len > longest_rep_len) {
-                               longest_rep_len = len;
-                               longest_rep_offset = offset;
+       /* Account for main symbol.  */
+       main_symbol = LZX_NUM_CHARS + ((offset_slot << 3) | len_header);
+       cost += costs->main[main_symbol];
+
+       return cost;
+}
+
+/* Equivalent to lzx_match_cost_raw(), but assumes the length is small enough
+ * that it doesn't require a length symbol.  */
+static inline u32
+lzx_match_cost_raw_smalllen(unsigned len, unsigned offset_slot,
+                           const struct lzx_costs *costs)
+{
+       LZX_ASSERT(len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS);
+       return costs->main[LZX_NUM_CHARS +
+                          ((offset_slot << 3) | (len - LZX_MIN_MATCH_LEN))];
+}
+
+/*
+ * Consider coding the match at repeat offset index @rep_idx.  Consider each
+ * length from the minimum (2) to the full match length (@rep_len).
+ */
+static inline void
+lzx_consider_repeat_offset_match(struct lzx_compressor *c,
+                                struct lzx_mc_pos_data *cur_optimum_ptr,
+                                unsigned rep_len, unsigned rep_idx)
+{
+       u32 base_cost = cur_optimum_ptr->cost;
+       u32 cost;
+       unsigned len;
+
+#if 1   /* Optimized version */
+
+       if (rep_len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS) {
+               /* All lengths being considered are small.  */
+               len = 2;
+               do {
+                       cost = base_cost +
+                              lzx_match_cost_raw_smalllen(len, rep_idx, &c->costs);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (rep_idx << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
                        }
-               }
-       }
+               } while (++len <= rep_len);
+       } else {
+               /* Some lengths being considered are small, and some are big.
+                * Start with the optimized loop for small lengths, then switch
+                * to the optimized loop for big lengths.  */
+               len = 2;
+               do {
+                       cost = base_cost +
+                              lzx_match_cost_raw_smalllen(len, rep_idx, &c->costs);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (rep_idx << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS);
 
-       /* If there's a long match with a recent offset, take it.  */
-       if (longest_rep_len >= c->params.nice_match_length) {
-               lzx_skip_bytes(c, longest_rep_len);
-               return (struct lz_match) {
-                       .len = longest_rep_len,
-                       .offset = longest_rep_offset,
-               };
+               /* The main symbol is now fixed.  */
+               base_cost += c->costs.main[LZX_NUM_CHARS +
+                                          ((rep_idx << 3) | LZX_NUM_PRIMARY_LENS)];
+               do {
+                       cost = base_cost +
+                              c->costs.len[len - LZX_MIN_MATCH_LEN -
+                                           LZX_NUM_PRIMARY_LENS];
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (rep_idx << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len <= rep_len);
        }
 
-       /* Search other matches.  */
-       num_matches = lzx_get_matches(c, &matches);
+#else   /* Unoptimized version  */
+
+       len = 2;
+       do {
+               cost = base_cost +
+                      lzx_match_cost_raw(len, rep_idx, &c->costs);
+               if (cost < (cur_optimum_ptr + len)->cost) {
+                       (cur_optimum_ptr + len)->mc_item_data =
+                               (rep_idx << MC_OFFSET_SHIFT) | len;
+                       (cur_optimum_ptr + len)->cost = cost;
+               }
+       } while (++len <= rep_len);
+#endif
+}
+
+/*
+ * Consider coding each match in @matches as an explicit offset match.
+ *
+ * @matches must be sorted by strictly increasing length and strictly
+ * increasing offset.  This is guaranteed by the match-finder.
+ *
+ * We consider each length from the minimum (2) to the longest
+ * (matches[num_matches - 1].len).  For each length, we consider only
+ * the smallest offset for which that length is available.  Although
+ * this is not guaranteed to be optimal due to the possibility of a
+ * larger offset costing less than a smaller offset to code, this is a
+ * very useful heuristic.
+ */
+static inline void
+lzx_consider_explicit_offset_matches(struct lzx_compressor *c,
+                                    struct lzx_mc_pos_data *cur_optimum_ptr,
+                                    const struct lz_match matches[],
+                                    unsigned num_matches)
+{
+       LZX_ASSERT(num_matches > 0);
+
+       unsigned i;
+       unsigned len;
+       unsigned offset_slot;
+       u32 position_cost;
+       u32 cost;
+       u32 offset_data;
+
+
+#if 1  /* Optimized version */
+
+       if (matches[num_matches - 1].offset < LZX_NUM_FAST_OFFSETS) {
+
+               /*
+                * Offset is small; the offset slot can be looked up directly in
+                * c->offset_slot_fast.
+                *
+                * Additional optimizations:
+                *
+                * - Since the offset is small, it falls in the exponential part
+                *   of the offset slot bases and the number of extra offset
+                *   bits can be calculated directly as (offset_slot >> 1) - 1.
+                *
+                * - Just consider the number of extra offset bits; don't
+                *   account for the aligned offset code.  Usually this has
+                *   almost no effect on the compression ratio.
+                *
+                * - Start out in a loop optimized for small lengths.  When the
+                *   length becomes high enough that a length symbol will be
+                *   needed, jump into a loop optimized for big lengths.
+                */
+
+               LZX_ASSERT(offset_slot <= 37); /* for extra bits formula  */
+
+               len = 2;
+               i = 0;
+               do {
+                       offset_slot = c->offset_slot_fast[matches[i].offset];
+                       position_cost = cur_optimum_ptr->cost +
+                                       ((offset_slot >> 1) - 1);
+                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+                       do {
+                               if (len >= LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS)
+                                       goto biglen;
+                               cost = position_cost +
+                                      lzx_match_cost_raw_smalllen(len, offset_slot,
+                                                                  &c->costs);
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
+
+               return;
 
-       /* If there's a long match, take it.  */
-       if (num_matches) {
-               longest_len = matches[num_matches - 1].len;
-               if (longest_len >= c->params.nice_match_length) {
-                       lzx_skip_bytes(c, longest_len - 1);
-                       return matches[num_matches - 1];
-               }
+               do {
+                       offset_slot = c->offset_slot_fast[matches[i].offset];
+       biglen:
+                       position_cost = cur_optimum_ptr->cost +
+                                       ((offset_slot >> 1) - 1) +
+                                       c->costs.main[LZX_NUM_CHARS +
+                                                     ((offset_slot << 3) |
+                                                      LZX_NUM_PRIMARY_LENS)];
+                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+                       do {
+                               cost = position_cost +
+                                      c->costs.len[len - LZX_MIN_MATCH_LEN -
+                                                   LZX_NUM_PRIMARY_LENS];
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
        } else {
-               longest_len = 1;
+               len = 2;
+               i = 0;
+               do {
+                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+                       offset_slot = lzx_get_offset_slot_raw(offset_data);
+                       position_cost = cur_optimum_ptr->cost +
+                                       lzx_extra_offset_bits[offset_slot];
+                       do {
+                               cost = position_cost +
+                                      lzx_match_cost_raw(len, offset_slot, &c->costs);
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
        }
 
-       /* Calculate the cost to reach the next position by coding a literal.
-        */
-       optimum[1].queue = c->queue;
-       optimum[1].cost = lzx_literal_cost(c->cur_window[c->match_window_pos - 1],
-                                             &c->costs);
-       optimum[1].prev.link = 0;
+#else  /* Unoptimized version */
 
-       /* Calculate the cost to reach any position up to and including that
-        * reached by the longest match.
-        *
-        * Note: We consider only the lowest-offset match that reaches each
-        * position.
-        *
-        * Note: Some of the cost calculation stays the same for each offset,
-        * regardless of how many lengths it gets used for.  Therefore, to
-        * improve performance, we hand-code the cost calculation instead of
-        * calling lzx_match_cost() to do a from-scratch cost evaluation at each
-        * length.  */
-       for (unsigned i = 0, len = 2; i < num_matches; i++) {
-               u32 offset;
-               struct lzx_lru_queue queue;
-               u32 position_cost;
-               unsigned position_slot;
-               unsigned num_extra_bits;
-
-               offset = matches[i].offset;
-               queue = c->queue;
-               position_cost = 0;
-
-               position_slot = lzx_get_position_slot(offset, &queue);
-               num_extra_bits = lzx_get_num_extra_bits(position_slot);
+       unsigned num_extra_bits;
+
+       len = 2;
+       i = 0;
+       do {
+               offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+               position_cost = cur_optimum_ptr->cost;
+               offset_slot = lzx_get_offset_slot_raw(offset_data);
+               num_extra_bits = lzx_extra_offset_bits[offset_slot];
                if (num_extra_bits >= 3) {
                        position_cost += num_extra_bits - 3;
-                       position_cost += c->costs.aligned[(offset + LZX_OFFSET_OFFSET) & 7];
+                       position_cost += c->costs.aligned[offset_data & 7];
                } else {
                        position_cost += num_extra_bits;
                }
-
                do {
-                       unsigned len_header;
-                       unsigned main_symbol;
-                       u32 cost;
-
-                       cost = position_cost;
-
-                       len_header = min(len - LZX_MIN_MATCH_LEN, LZX_NUM_PRIMARY_LENS);
-                       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-                       cost += c->costs.main[main_symbol];
-                       if (len_header == LZX_NUM_PRIMARY_LENS)
-                               cost += c->costs.len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
-
-                       optimum[len].queue = queue;
-                       optimum[len].prev.link = 0;
-                       optimum[len].prev.match_offset = offset;
-                       optimum[len].cost = cost;
+                       cost = position_cost +
+                              lzx_match_cost_raw(len, offset_slot, &c->costs);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->cost = cost;
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (offset_data << MC_OFFSET_SHIFT) | len;
+                       }
                } while (++len <= matches[i].len);
-       }
-       end_pos = longest_len;
-
-       if (longest_rep_len >= LZX_MIN_MATCH_LEN) {
-               struct lzx_lru_queue queue;
-               u32 cost;
-
-               while (end_pos < longest_rep_len)
-                       optimum[++end_pos].cost = MC_INFINITE_COST;
-
-               queue = c->queue;
-               cost = lzx_match_cost(longest_rep_len, longest_rep_offset,
-                                     &c->costs, &queue);
-               if (cost <= optimum[longest_rep_len].cost) {
-                       optimum[longest_rep_len].queue = queue;
-                       optimum[longest_rep_len].prev.link = 0;
-                       optimum[longest_rep_len].prev.match_offset = longest_rep_offset;
-                       optimum[longest_rep_len].cost = cost;
-               }
-       }
+       } while (++i != num_matches);
+#endif
+}
 
-       /* Step forward, calculating the estimated minimum cost to reach each
-        * position.  The algorithm may find multiple paths to reach each
-        * position; only the lowest-cost path is saved.
-        *
-        * The progress of the parse is tracked in the @optimum array, which
-        * for each position contains the minimum cost to reach that position,
-        * the index of the start of the match/literal taken to reach that
-        * position through the minimum-cost path, the offset of the match taken
-        * (not relevant for literals), and the adaptive state that will exist
-        * at that position after the minimum-cost path is taken.  The @cur_pos
-        * variable stores the position at which the algorithm is currently
-        * considering coding choices, and the @end_pos variable stores the
-        * greatest position at which the costs of coding choices have been
-        * saved.  (Actually, the algorithm guarantees that all positions up to
-        * and including @end_pos are reachable by at least one path.)
-        *
-        * The loop terminates when any one of the following conditions occurs:
-        *
-        * 1. A match with length greater than or equal to @nice_match_length is
-        *    found.  When this occurs, the algorithm chooses this match
-        *    unconditionally, and consequently the near-optimal match/literal
-        *    sequence up to and including that match is fully determined and it
-        *    can begin returning the match/literal list.
-        *
-        * 2. @cur_pos reaches a position not overlapped by a preceding match.
-        *    In such cases, the near-optimal match/literal sequence up to
-        *    @cur_pos is fully determined and it can begin returning the
-        *    match/literal list.
-        *
-        * 3. Failing either of the above in a degenerate case, the loop
-        *    terminates when space in the @optimum array is exhausted.
-        *    This terminates the algorithm and forces it to start returning
-        *    matches/literals even though they may not be globally optimal.
+/*
+ * Search for repeat offset matches with the current position.
+ */
+static inline unsigned
+lzx_repsearch(const u8 * const strptr, const u32 bytes_remaining,
+             const struct lzx_lru_queue *queue, unsigned *rep_max_idx_ret)
+{
+       BUILD_BUG_ON(LZX_NUM_RECENT_OFFSETS != 3);
+       return lz_repsearch3(strptr, min(bytes_remaining, LZX_MAX_MATCH_LEN),
+                            queue->R, rep_max_idx_ret);
+}
+
+/*
+ * The main near-optimal parsing routine.
+ *
+ * Briefly, the algorithm does an approximate minimum-cost path search to find a
+ * "near-optimal" sequence of matches and literals to output, based on the
+ * current cost model.  The algorithm steps forward, position by position (byte
+ * by byte), and updates the minimum cost path to reach each later position that
+ * can be reached using a match or literal from the current position.  This is
+ * essentially Dijkstra's algorithm in disguise: the graph nodes are positions,
+ * the graph edges are possible matches/literals to code, and the cost of each
+ * edge is the estimated number of bits that will be required to output the
+ * corresponding match or literal.  But one difference is that we actually
+ * compute the lowest-cost path in pieces, where each piece is terminated when
+ * there are no choices to be made.
+ *
+ * This function will run this algorithm on the portion of the window from
+ * &c->cur_window[c->match_window_pos] to &c->cur_window[c->match_window_end].
+ *
+ * On entry, c->queue must be the current state of the match offset LRU queue,
+ * and c->costs must be the current cost model to use for Huffman symbols.
+ *
+ * On exit, c->queue will be the state that the LRU queue would be in if the
+ * chosen items were to be coded.
+ *
+ * If next_chosen_item != NULL, then all items chosen will be recorded (saved in
+ * the chosen_items array).  Otherwise, all items chosen will only be tallied
+ * (symbol frequencies tallied in c->freqs).
+ */
+static void
+lzx_optim_pass(struct lzx_compressor *c, struct lzx_item **next_chosen_item)
+{
+       const u8 *block_end;
+       struct lzx_lru_queue *begin_queue;
+       const u8 *window_ptr;
+       struct lzx_mc_pos_data *cur_optimum_ptr;
+       struct lzx_mc_pos_data *end_optimum_ptr;
+       const struct lz_match *matches;
+       unsigned num_matches;
+       unsigned longest_len;
+       unsigned rep_max_len;
+       unsigned rep_max_idx;
+       unsigned literal;
+       unsigned len;
+       u32 cost;
+       u32 offset_data;
+
+       block_end = &c->cur_window[c->match_window_end];
+       begin_queue = &c->queue;
+begin:
+       /* Start building a new list of items, which will correspond to the next
+        * piece of the overall minimum-cost path.
         *
-        * Upon loop termination, a nonempty list of matches/literals will have
-        * been produced and stored in the @optimum array.  These
-        * matches/literals are linked in reverse order, so the last thing this
-        * function does is reverse this list and return the first
-        * match/literal, leaving the rest to be returned immediately by
-        * subsequent calls to this function.
-        */
-       cur_pos = 0;
-       for (;;) {
-               u32 cost;
-
-               /* Advance to next position.  */
-               cur_pos++;
-
-               /* Check termination conditions (2) and (3) noted above.  */
-               if (cur_pos == end_pos || cur_pos == LZX_OPTIM_ARRAY_LENGTH)
-                       return lzx_match_chooser_reverse_list(c, cur_pos);
-
-               /* Search for matches at recent offsets.  */
-               longest_rep_len = LZX_MIN_MATCH_LEN - 1;
-               unsigned limit = min(LZX_MAX_MATCH_LEN,
-                                    c->match_window_end - c->match_window_pos);
-               for (int i = 0; i < LZX_NUM_RECENT_OFFSETS; i++) {
-                       u32 offset = optimum[cur_pos].queue.R[i];
-                       const u8 *strptr = &c->cur_window[c->match_window_pos];
-                       const u8 *matchptr = strptr - offset;
-                       unsigned len = 0;
-                       while (len < limit && strptr[len] == matchptr[len])
-                               len++;
-                       if (len > longest_rep_len) {
-                               longest_rep_len = len;
-                               longest_rep_offset = offset;
-                       }
-               }
+        * *begin_queue is the current state of the match offset LRU queue.  */
+
+       window_ptr = &c->cur_window[c->match_window_pos];
 
-               /* If we found a long match at a recent offset, choose it
-                * immediately.  */
-               if (longest_rep_len >= c->params.nice_match_length) {
-                       /* Build the list of matches to return and get
-                        * the first one.  */
-                       match = lzx_match_chooser_reverse_list(c, cur_pos);
+       if (window_ptr == block_end) {
+               c->queue = *begin_queue;
+               return;
+       }
 
-                       /* Append the long match to the end of the list.  */
-                       optimum[cur_pos].next.match_offset = longest_rep_offset;
-                       optimum[cur_pos].next.link = cur_pos + longest_rep_len;
-                       c->optimum_end_idx = cur_pos + longest_rep_len;
+       cur_optimum_ptr = c->optimum;
+       cur_optimum_ptr->cost = 0;
+       cur_optimum_ptr->queue = *begin_queue;
 
-                       /* Skip over the remaining bytes of the long match.  */
-                       lzx_skip_bytes(c, longest_rep_len);
+       end_optimum_ptr = cur_optimum_ptr;
 
-                       /* Return first match in the list.  */
-                       return match;
-               }
+       /* The following loop runs once for each per byte in the window, except
+        * in a couple shortcut cases.  */
+       for (;;) {
 
-               /* Search other matches.  */
+               /* Find explicit offset matches with the current position.  */
                num_matches = lzx_get_matches(c, &matches);
 
-               /* If there's a long match, take it.  */
                if (num_matches) {
+                       /*
+                        * Find the longest repeat offset match with the current
+                        * position.
+                        *
+                        * Heuristics:
+                        *
+                        * - Only search for repeat offset matches if the
+                        *   match-finder already found at least one match.
+                        *
+                        * - Only consider the longest repeat offset match.  It
+                        *   seems to be rare for the optimal parse to include a
+                        *   repeat offset match that doesn't have the longest
+                        *   length (allowing for the possibility that not all
+                        *   of that length is actually used).
+                        */
+                       rep_max_len = lzx_repsearch(window_ptr,
+                                                   block_end - window_ptr,
+                                                   &cur_optimum_ptr->queue,
+                                                   &rep_max_idx);
+
+                       if (rep_max_len) {
+                               /* If there's a very long repeat offset match,
+                                * choose it immediately.  */
+                               if (rep_max_len >= c->params.nice_match_length) {
+
+                                       swap(cur_optimum_ptr->queue.R[0],
+                                            cur_optimum_ptr->queue.R[rep_max_idx]);
+                                       begin_queue = &cur_optimum_ptr->queue;
+
+                                       cur_optimum_ptr += rep_max_len;
+                                       cur_optimum_ptr->mc_item_data =
+                                               (rep_max_idx << MC_OFFSET_SHIFT) |
+                                               rep_max_len;
+
+                                       lzx_skip_bytes(c, rep_max_len - 1);
+                                       break;
+                               }
+
+                               /* If reaching any positions for the first time,
+                                * initialize their costs to "infinity".  */
+                               while (end_optimum_ptr < cur_optimum_ptr + rep_max_len)
+                                       (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+
+                               /* Consider coding a repeat offset match.  */
+                               lzx_consider_repeat_offset_match(c,
+                                                                cur_optimum_ptr,
+                                                                rep_max_len,
+                                                                rep_max_idx);
+                       }
+
                        longest_len = matches[num_matches - 1].len;
+
+                       /* If there's a very long explicit offset match, choose
+                        * it immediately.  */
                        if (longest_len >= c->params.nice_match_length) {
-                               /* Build the list of matches to return and get
-                                * the first one.  */
-                               match = lzx_match_chooser_reverse_list(c, cur_pos);
 
-                               /* Append the long match to the end of the list.  */
-                               optimum[cur_pos].next.match_offset =
+                               cur_optimum_ptr->queue.R[2] =
+                                       cur_optimum_ptr->queue.R[1];
+                               cur_optimum_ptr->queue.R[1] =
+                                       cur_optimum_ptr->queue.R[0];
+                               cur_optimum_ptr->queue.R[0] =
                                        matches[num_matches - 1].offset;
-                               optimum[cur_pos].next.link = cur_pos + longest_len;
-                               c->optimum_end_idx = cur_pos + longest_len;
+                               begin_queue = &cur_optimum_ptr->queue;
 
-                               /* Skip over the remaining bytes of the long match.  */
-                               lzx_skip_bytes(c, longest_len - 1);
+                               offset_data = matches[num_matches - 1].offset +
+                                             LZX_OFFSET_OFFSET;
+                               cur_optimum_ptr += longest_len;
+                               cur_optimum_ptr->mc_item_data =
+                                       (offset_data << MC_OFFSET_SHIFT) |
+                                       longest_len;
 
-                               /* Return first match in the list.  */
-                               return match;
+                               lzx_skip_bytes(c, longest_len - 1);
+                               break;
                        }
+
+                       /* If reaching any positions for the first time,
+                        * initialize their costs to "infinity".  */
+                       while (end_optimum_ptr < cur_optimum_ptr + longest_len)
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+
+                       /* Consider coding an explicit offset match.  */
+                       lzx_consider_explicit_offset_matches(c, cur_optimum_ptr,
+                                                            matches, num_matches);
                } else {
-                       longest_len = 1;
+                       /* No matches found.  The only choice at this position
+                        * is to code a literal.  */
+
+                       if (end_optimum_ptr == cur_optimum_ptr) {
+                       #if 1
+                               /* Optimization for single literals.  */
+                               if (likely(cur_optimum_ptr == c->optimum)) {
+                                       lzx_declare_literal(c, *window_ptr++,
+                                                           next_chosen_item);
+                                       if (window_ptr == block_end) {
+                                               c->queue = cur_optimum_ptr->queue;
+                                               return;
+                                       }
+                                       continue;
+                               }
+                       #endif
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+                       }
                }
 
-               while (end_pos < cur_pos + longest_len)
-                       optimum[++end_pos].cost = MC_INFINITE_COST;
-
-               /* Consider coding a literal.  */
-               cost = optimum[cur_pos].cost +
-                       lzx_literal_cost(c->cur_window[c->match_window_pos - 1],
-                                        &c->costs);
-               if (cost < optimum[cur_pos + 1].cost) {
-                       optimum[cur_pos + 1].queue = optimum[cur_pos].queue;
-                       optimum[cur_pos + 1].cost = cost;
-                       optimum[cur_pos + 1].prev.link = cur_pos;
-               }
+               /* Consider coding a literal.
 
-               /* Consider coding a match.
-                *
-                * The hard-coded cost calculation is done for the same reason
-                * stated in the comment for the similar loop earlier.
-                * Actually, it is *this* one that has the biggest effect on
-                * performance; overall LZX compression is > 10% faster with
-                * this code compared to calling lzx_match_cost() with each
-                * length.  */
-               for (unsigned i = 0, len = 2; i < num_matches; i++) {
-                       u32 offset;
-                       struct lzx_lru_queue queue;
-                       u32 position_cost;
-                       unsigned position_slot;
-                       unsigned num_extra_bits;
-
-                       offset = matches[i].offset;
-                       queue = optimum[cur_pos].queue;
-                       position_cost = optimum[cur_pos].cost;
-
-                       position_slot = lzx_get_position_slot(offset, &queue);
-                       num_extra_bits = lzx_get_num_extra_bits(position_slot);
-                       if (num_extra_bits >= 3) {
-                               position_cost += num_extra_bits - 3;
-                               position_cost += c->costs.aligned[
-                                               (offset + LZX_OFFSET_OFFSET) & 7];
+                * To avoid an extra unpredictable brench, actually checking the
+                * preferability of coding a literal is integrated into the
+                * queue update code below.  */
+               literal = *window_ptr++;
+               cost = cur_optimum_ptr->cost + lzx_literal_cost(literal, &c->costs);
+
+               /* Advance to the next position.  */
+               cur_optimum_ptr++;
+
+               /* The lowest-cost path to the current position is now known.
+                * Finalize the recent offsets queue that results from taking
+                * this lowest-cost path.  */
+
+               if (cost < cur_optimum_ptr->cost) {
+                       /* Literal: queue remains unchanged.  */
+                       cur_optimum_ptr->cost = cost;
+                       cur_optimum_ptr->mc_item_data = (literal << MC_OFFSET_SHIFT) | 1;
+                       cur_optimum_ptr->queue = (cur_optimum_ptr - 1)->queue;
+               } else {
+                       /* Match: queue update is needed.  */
+                       len = cur_optimum_ptr->mc_item_data & MC_LEN_MASK;
+                       offset_data = cur_optimum_ptr->mc_item_data >> MC_OFFSET_SHIFT;
+                       if (offset_data >= LZX_NUM_RECENT_OFFSETS) {
+                               /* Explicit offset match: offset is inserted at front  */
+                               cur_optimum_ptr->queue.R[0] = offset_data - LZX_OFFSET_OFFSET;
+                               cur_optimum_ptr->queue.R[1] = (cur_optimum_ptr - len)->queue.R[0];
+                               cur_optimum_ptr->queue.R[2] = (cur_optimum_ptr - len)->queue.R[1];
                        } else {
-                               position_cost += num_extra_bits;
+                               /* Repeat offset match: offset is swapped to front  */
+                               cur_optimum_ptr->queue = (cur_optimum_ptr - len)->queue;
+                               swap(cur_optimum_ptr->queue.R[0],
+                                    cur_optimum_ptr->queue.R[offset_data]);
                        }
-
-                       do {
-                               unsigned len_header;
-                               unsigned main_symbol;
-                               u32 cost;
-
-                               cost = position_cost;
-
-                               len_header = min(len - LZX_MIN_MATCH_LEN,
-                                                LZX_NUM_PRIMARY_LENS);
-                               main_symbol = ((position_slot << 3) | len_header) +
-                                               LZX_NUM_CHARS;
-                               cost += c->costs.main[main_symbol];
-                               if (len_header == LZX_NUM_PRIMARY_LENS) {
-                                       cost += c->costs.len[len -
-                                                       LZX_MIN_MATCH_LEN -
-                                                       LZX_NUM_PRIMARY_LENS];
-                               }
-                               if (cost < optimum[cur_pos + len].cost) {
-                                       optimum[cur_pos + len].queue = queue;
-                                       optimum[cur_pos + len].prev.link = cur_pos;
-                                       optimum[cur_pos + len].prev.match_offset = offset;
-                                       optimum[cur_pos + len].cost = cost;
-                               }
-                       } while (++len <= matches[i].len);
                }
 
-               if (longest_rep_len >= LZX_MIN_MATCH_LEN) {
-                       struct lzx_lru_queue queue;
-
-                       while (end_pos < cur_pos + longest_rep_len)
-                               optimum[++end_pos].cost = MC_INFINITE_COST;
-
-                       queue = optimum[cur_pos].queue;
-
-                       cost = optimum[cur_pos].cost +
-                               lzx_match_cost(longest_rep_len, longest_rep_offset,
-                                              &c->costs, &queue);
-                       if (cost <= optimum[cur_pos + longest_rep_len].cost) {
-                               optimum[cur_pos + longest_rep_len].queue =
-                                       queue;
-                               optimum[cur_pos + longest_rep_len].prev.link =
-                                       cur_pos;
-                               optimum[cur_pos + longest_rep_len].prev.match_offset =
-                                       longest_rep_offset;
-                               optimum[cur_pos + longest_rep_len].cost =
-                                       cost;
-                       }
+               /*
+                * This loop will terminate when either of the following
+                * conditions is true:
+                *
+                * (1) cur_optimum_ptr == end_optimum_ptr
+                *
+                *      There are no paths that extend beyond the current
+                *      position.  In this case, any path to a later position
+                *      must pass through the current position, so we can go
+                *      ahead and choose the list of items that led to this
+                *      position.
+                *
+                * (2) cur_optimum_ptr == &c->optimum[LZX_OPTIM_ARRAY_LENGTH]
+                *
+                *      This bounds the number of times the algorithm can step
+                *      forward before it is guaranteed to start choosing items.
+                *      This limits the memory usage.  But
+                *      LZX_OPTIM_ARRAY_LENGTH is high enough that on most
+                *      inputs this limit is never reached.
+                *
+                * Note: no check for end-of-block is needed because
+                * end-of-block will trigger condition (1).
+                */
+               if (cur_optimum_ptr == end_optimum_ptr ||
+                   cur_optimum_ptr == &c->optimum[LZX_OPTIM_ARRAY_LENGTH])
+               {
+                       begin_queue = &cur_optimum_ptr->queue;
+                       break;
                }
        }
+
+       /* Choose the current list of items that constitute the minimum-cost
+        * path to the current position.  */
+       lzx_declare_item_list(c, cur_optimum_ptr, next_chosen_item);
+       goto begin;
 }
 
-static struct lz_match
-lzx_choose_lazy_item(struct lzx_compressor *c)
+/* Fast heuristic scoring for lazy parsing: how "good" is this match?  */
+static inline unsigned
+lzx_explicit_offset_match_score(unsigned len, u32 adjusted_offset)
 {
-       const struct lz_match *matches;
-       struct lz_match cur_match;
-       struct lz_match next_match;
-       u32 num_matches;
+       unsigned score = len;
+
+       if (adjusted_offset < 2048)
+               score++;
+
+       if (adjusted_offset < 1024)
+               score++;
+
+       return score;
+}
+
+static inline unsigned
+lzx_repeat_offset_match_score(unsigned len, unsigned slot)
+{
+       return len + 3;
+}
+
+/* Lazy parsing  */
+static u32
+lzx_choose_lazy_items_for_block(struct lzx_compressor *c,
+                               u32 block_start_pos, u32 block_size)
+{
+       const u8 *window_ptr;
+       const u8 *block_end;
+       struct lz_mf *mf;
+       struct lz_match *matches;
+       unsigned num_matches;
+       unsigned cur_len;
+       u32 cur_offset_data;
+       unsigned cur_score;
+       unsigned rep_max_len;
+       unsigned rep_max_idx;
+       unsigned rep_score;
+       unsigned prev_len;
+       unsigned prev_score;
+       u32 prev_offset_data;
+       unsigned skip_len;
+       struct lzx_item *next_chosen_item;
+
+       window_ptr = &c->cur_window[block_start_pos];
+       block_end = window_ptr + block_size;
+       matches = c->cached_matches;
+       mf = c->mf;
+       next_chosen_item = c->chosen_items;
+
+       prev_len = 0;
+       prev_offset_data = 0;
+       prev_score = 0;
+
+       while (window_ptr != block_end) {
+
+               /* Find explicit offset matches with the current position.  */
+               num_matches = lz_mf_get_matches(mf, matches);
+               window_ptr++;
 
-       if (c->prev_match.len) {
-               cur_match = c->prev_match;
-               c->prev_match.len = 0;
-       } else {
-               num_matches = lzx_get_matches(c, &matches);
                if (num_matches == 0 ||
-                   (matches[num_matches - 1].len <= 3 &&
-                    (matches[num_matches - 1].len <= 2 ||
-                     matches[num_matches - 1].offset > 4096)))
+                   (matches[num_matches - 1].len == 3 &&
+                    matches[num_matches - 1].offset >= 8192 - LZX_OFFSET_OFFSET &&
+                    matches[num_matches - 1].offset != c->queue.R[0] &&
+                    matches[num_matches - 1].offset != c->queue.R[1] &&
+                    matches[num_matches - 1].offset != c->queue.R[2]))
                {
-                       return (struct lz_match) { };
+                       /* No match found, or the only match found was a distant
+                        * length 3 match.  Output the previous match if there
+                        * is one; otherwise output a literal.  */
+
+               no_match_found:
+
+                       if (prev_len) {
+                               skip_len = prev_len - 2;
+                               goto output_prev_match;
+                       } else {
+                               lzx_declare_literal(c, *(window_ptr - 1),
+                                                   &next_chosen_item);
+                               continue;
+                       }
                }
 
-               cur_match = matches[num_matches - 1];
-       }
+               /* Find the longest repeat offset match with the current
+                * position.  */
+               if (likely(block_end - (window_ptr - 1) >= 2)) {
+                       rep_max_len = lzx_repsearch((window_ptr - 1),
+                                                   block_end - (window_ptr - 1),
+                                                   &c->queue, &rep_max_idx);
+               } else {
+                       rep_max_len = 0;
+               }
 
-       if (cur_match.len >= c->params.nice_match_length) {
-               lzx_skip_bytes(c, cur_match.len - 1);
-               return cur_match;
-       }
+               cur_len = matches[num_matches - 1].len;
+               cur_offset_data = matches[num_matches - 1].offset + LZX_OFFSET_OFFSET;
+               cur_score = lzx_explicit_offset_match_score(cur_len, cur_offset_data);
 
-       num_matches = lzx_get_matches(c, &matches);
-       if (num_matches == 0 ||
-           (matches[num_matches - 1].len <= 3 &&
-            (matches[num_matches - 1].len <= 2 ||
-             matches[num_matches - 1].offset > 4096)))
-       {
-               lzx_skip_bytes(c, cur_match.len - 2);
-               return cur_match;
-       }
+               /* Select the better of the explicit and repeat offset matches.  */
+               if (rep_max_len >= 3 &&
+                   (rep_score = lzx_repeat_offset_match_score(rep_max_len,
+                                                              rep_max_idx)) >= cur_score)
+               {
+                       cur_len = rep_max_len;
+                       cur_offset_data = rep_max_idx;
+                       cur_score = rep_score;
+               }
 
-       next_match = matches[num_matches - 1];
+               if (unlikely(cur_len > block_end - (window_ptr - 1))) {
+                       /* Nearing end of block.  */
+                       cur_len = block_end - (window_ptr - 1);
+                       if (cur_len < 3)
+                               goto no_match_found;
+               }
 
-       if (next_match.len <= cur_match.len) {
-               lzx_skip_bytes(c, cur_match.len - 2);
-               return cur_match;
-       } else {
-               c->prev_match = next_match;
-               return (struct lz_match) { };
-       }
-}
+               if (prev_len == 0 || cur_score > prev_score) {
+                       /* No previous match, or the current match is better
+                        * than the previous match.
+                        *
+                        * If there's a previous match, then output a literal in
+                        * its place.
+                        *
+                        * In both cases, if the current match is very long,
+                        * then output it immediately.  Otherwise, attempt a
+                        * lazy match by waiting to see if there's a better
+                        * match at the next position.  */
 
-/*
- * Return the next match or literal to use, delegating to the currently selected
- * match-choosing algorithm.
- *
- * If the length of the returned 'struct lz_match' is less than
- * LZX_MIN_MATCH_LEN, then it is really a literal.
- */
-static inline struct lz_match
-lzx_choose_item(struct lzx_compressor *c)
-{
-       return (*c->params.choose_item_func)(c);
-}
+                       if (prev_len)
+                               lzx_declare_literal(c, *(window_ptr - 2), &next_chosen_item);
 
-/* Set default symbol costs for the LZX Huffman codes.  */
-static void
-lzx_set_default_costs(struct lzx_costs * costs, unsigned num_main_syms)
-{
-       unsigned i;
+                       prev_len = cur_len;
+                       prev_offset_data = cur_offset_data;
+                       prev_score = cur_score;
 
-       /* Main code (part 1): Literal symbols  */
-       for (i = 0; i < LZX_NUM_CHARS; i++)
-               costs->main[i] = 8;
+                       if (prev_len >= c->params.nice_match_length) {
+                               skip_len = prev_len - 1;
+                               goto output_prev_match;
+                       }
+                       continue;
+               }
 
-       /* Main code (part 2): Match header symbols  */
-       for (; i < num_main_syms; i++)
-               costs->main[i] = 10;
+               /* Current match is not better than the previous match, so
+                * output the previous match.  */
 
-       /* Length code  */
-       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
-               costs->len[i] = 8;
+               skip_len = prev_len - 2;
 
-       /* Aligned offset code  */
-       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
-               costs->aligned[i] = 3;
+       output_prev_match:
+               if (prev_offset_data < LZX_NUM_RECENT_OFFSETS) {
+                       lzx_declare_repeat_offset_match(c, prev_len,
+                                                       prev_offset_data,
+                                                       &next_chosen_item);
+                       swap(c->queue.R[0], c->queue.R[prev_offset_data]);
+               } else {
+                       lzx_declare_explicit_offset_match(c, prev_len,
+                                                         prev_offset_data - LZX_OFFSET_OFFSET,
+                                                         &next_chosen_item);
+                       c->queue.R[2] = c->queue.R[1];
+                       c->queue.R[1] = c->queue.R[0];
+                       c->queue.R[0] = prev_offset_data - LZX_OFFSET_OFFSET;
+               }
+               lz_mf_skip_positions(mf, skip_len);
+               window_ptr += skip_len;
+               prev_len = 0;
+       }
+
+       return next_chosen_item - c->chosen_items;
 }
 
 /* Given the frequencies of symbols in an LZX-compressed block and the
@@ -1893,207 +1891,232 @@ static int
 lzx_choose_verbatim_or_aligned(const struct lzx_freqs * freqs,
                               const struct lzx_codes * codes)
 {
-       unsigned aligned_cost = 0;
-       unsigned verbatim_cost = 0;
+       u32 aligned_cost = 0;
+       u32 verbatim_cost = 0;
 
-       /* Verbatim blocks have a constant 3 bits per position footer.  Aligned
-        * offset blocks have an aligned offset symbol per position footer, plus
-        * an extra 24 bits per block to output the lengths necessary to
-        * reconstruct the aligned offset code itself.  */
+       /* A verbatim block requires 3 bits in each place that an aligned symbol
+        * would be used in an aligned offset block.  */
        for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
                verbatim_cost += 3 * freqs->aligned[i];
                aligned_cost += codes->lens.aligned[i] * freqs->aligned[i];
        }
+
+       /* Account for output of the aligned offset code.  */
        aligned_cost += LZX_ALIGNEDCODE_ELEMENT_SIZE * LZX_ALIGNEDCODE_NUM_SYMBOLS;
+
        if (aligned_cost < verbatim_cost)
                return LZX_BLOCKTYPE_ALIGNED;
        else
                return LZX_BLOCKTYPE_VERBATIM;
 }
 
-/* Find a sequence of matches/literals with which to output the specified LZX
- * block, then set the block's type to that which has the minimum cost to output
- * (either verbatim or aligned).  */
-static void
-lzx_choose_items_for_block(struct lzx_compressor *c, struct lzx_block_spec *spec)
+/* Near-optimal parsing  */
+static u32
+lzx_choose_near_optimal_items_for_block(struct lzx_compressor *c,
+                                       u32 block_start_pos, u32 block_size)
 {
-       const struct lzx_lru_queue orig_queue = c->queue;
        u32 num_passes_remaining = c->params.num_optim_passes;
-       struct lzx_freqs freqs;
-       const u8 *window_ptr;
-       const u8 *window_end;
+       struct lzx_lru_queue orig_queue;
        struct lzx_item *next_chosen_item;
-       struct lz_match lz_match;
-       struct lzx_item lzx_item;
-
-       LZX_ASSERT(num_passes >= 1);
-       LZX_ASSERT(lz_mf_get_position(c->mf) == spec->window_pos);
+       struct lzx_item **next_chosen_item_ptr;
 
-       c->match_window_end = spec->window_pos + spec->block_size;
-
-       if (c->params.num_optim_passes > 1) {
-               if (spec->block_size == c->cur_window_size)
+       /* Choose appropriate match-finder wrapper functions.  */
+       if (num_passes_remaining > 1) {
+               if (block_size == c->cur_window_size)
                        c->get_matches_func = lzx_get_matches_fillcache_singleblock;
                else
                        c->get_matches_func = lzx_get_matches_fillcache_multiblock;
                c->skip_bytes_func = lzx_skip_bytes_fillcache;
        } else {
-               if (spec->block_size == c->cur_window_size)
+               if (block_size == c->cur_window_size)
                        c->get_matches_func = lzx_get_matches_nocache_singleblock;
                else
                        c->get_matches_func = lzx_get_matches_nocache_multiblock;
                c->skip_bytes_func = lzx_skip_bytes_nocache;
        }
 
-       /* The first optimal parsing pass is done using the cost model already
-        * set in c->costs.  Each later pass is done using a cost model
-        * computed from the previous pass.
+       /* No matches will extend beyond the end of the block.  */
+       c->match_window_end = block_start_pos + block_size;
+
+       /* The first optimization pass will use a default cost model.  Each
+        * additional optimization pass will use a cost model computed from the
+        * previous pass.
         *
         * To improve performance we only generate the array containing the
-        * matches and literals in intermediate form on the final pass.  */
+        * matches and literals in intermediate form on the final pass.  For
+        * earlier passes, tallying symbol frequencies is sufficient.  */
+       lzx_set_default_costs(&c->costs, c->num_main_syms);
 
-       while (--num_passes_remaining) {
-               c->match_window_pos = spec->window_pos;
+       next_chosen_item_ptr = NULL;
+       orig_queue = c->queue;
+       do {
+               /* Reset the match-finder wrapper.  */
+               c->match_window_pos = block_start_pos;
                c->cache_ptr = c->cached_matches;
-               memset(&freqs, 0, sizeof(freqs));
-               window_ptr = &c->cur_window[spec->window_pos];
-               window_end = window_ptr + spec->block_size;
 
-               while (window_ptr != window_end) {
+               if (num_passes_remaining == 1) {
+                       /* Last pass: actually generate the items.  */
+                       next_chosen_item = c->chosen_items;
+                       next_chosen_item_ptr = &next_chosen_item;
+               }
 
-                       lz_match = lzx_choose_item(c);
+               /* Choose the items.  */
+               lzx_optim_pass(c, next_chosen_item_ptr);
 
-                       LZX_ASSERT(!(lz_match.len == LZX_MIN_MATCH_LEN &&
-                                    lz_match.offset == c->max_window_size -
-                                                        LZX_MIN_MATCH_LEN));
-                       if (lz_match.len >= LZX_MIN_MATCH_LEN) {
-                               lzx_tally_match(lz_match.len, lz_match.offset,
-                                               &freqs, &c->queue);
-                               window_ptr += lz_match.len;
-                       } else {
-                               lzx_tally_literal(*window_ptr, &freqs);
-                               window_ptr += 1;
-                       }
-               }
-               lzx_make_huffman_codes(&freqs, &spec->codes, c->num_main_syms);
-               lzx_set_costs(c, &spec->codes.lens, 15);
-               c->queue = orig_queue;
-               if (c->cache_ptr <= c->cache_limit) {
-                       c->get_matches_func = lzx_get_matches_usecache_nocheck;
-                       c->skip_bytes_func = lzx_skip_bytes_usecache_nocheck;
-               } else {
-                       c->get_matches_func = lzx_get_matches_usecache;
-                       c->skip_bytes_func = lzx_skip_bytes_usecache;
-               }
-       }
+               if (num_passes_remaining > 1) {
+                       /* This isn't the last pass.  */
 
-       c->match_window_pos = spec->window_pos;
-       c->cache_ptr = c->cached_matches;
-       memset(&freqs, 0, sizeof(freqs));
-       window_ptr = &c->cur_window[spec->window_pos];
-       window_end = window_ptr + spec->block_size;
+                       /* Make the Huffman codes from the symbol frequencies.  */
+                       lzx_make_huffman_codes(&c->freqs, &c->codes[c->codes_index],
+                                              c->num_main_syms);
 
-       spec->chosen_items = &c->chosen_items[spec->window_pos];
-       next_chosen_item = spec->chosen_items;
+                       /* Update symbol costs.  */
+                       lzx_set_costs(c, &c->codes[c->codes_index].lens);
 
-       unsigned unseen_cost = 9;
-       while (window_ptr != window_end) {
+                       /* Reset symbol frequencies.  */
+                       memset(&c->freqs, 0, sizeof(c->freqs));
 
-               lz_match = lzx_choose_item(c);
+                       /* Reset the match offset LRU queue to what it was at
+                        * the beginning of the block.  */
+                       c->queue = orig_queue;
 
-               LZX_ASSERT(!(lz_match.len == LZX_MIN_MATCH_LEN &&
-                            lz_match.offset == c->max_window_size -
-                                                LZX_MIN_MATCH_LEN));
-               if (lz_match.len >= LZX_MIN_MATCH_LEN) {
-                       lzx_item.data = lzx_tally_match(lz_match.len,
-                                                        lz_match.offset,
-                                                        &freqs, &c->queue);
-                       window_ptr += lz_match.len;
-               } else {
-                       lzx_item.data = lzx_tally_literal(*window_ptr, &freqs);
-                       window_ptr += 1;
+                       /* Choose appopriate match-finder wrapper functions.  */
+                       if (c->cache_ptr <= c->cache_limit) {
+                               c->get_matches_func = lzx_get_matches_usecache_nocheck;
+                               c->skip_bytes_func = lzx_skip_bytes_usecache_nocheck;
+                       } else {
+                               c->get_matches_func = lzx_get_matches_usecache;
+                               c->skip_bytes_func = lzx_skip_bytes_usecache;
+                       }
                }
-               *next_chosen_item++ = lzx_item;
+       } while (--num_passes_remaining);
 
-               /* When doing one-pass "near-optimal" parsing, update the cost
-                * model occassionally.  */
-               if (unlikely((next_chosen_item - spec->chosen_items) % 2048 == 0) &&
-                   c->params.choose_item_func == lzx_choose_near_optimal_item &&
-                   c->params.num_optim_passes == 1)
-               {
-                       lzx_make_huffman_codes(&freqs, &spec->codes, c->num_main_syms);
-                       lzx_set_costs(c, &spec->codes.lens, unseen_cost);
-                       if (unseen_cost < 15)
-                               unseen_cost++;
-               }
-       }
-       spec->num_chosen_items = next_chosen_item - spec->chosen_items;
-       lzx_make_huffman_codes(&freqs, &spec->codes, c->num_main_syms);
-       spec->block_type = lzx_choose_verbatim_or_aligned(&freqs, &spec->codes);
+       /* Return the number of items chosen.  */
+       return next_chosen_item - c->chosen_items;
+}
+
+/*
+ * Choose the matches/literals with which to output the block of data beginning
+ * at '&c->cur_window[block_start_pos]' and extending for 'block_size' bytes.
+ *
+ * The frequences of the Huffman symbols in the block will be tallied in
+ * 'c->freqs'.
+ *
+ * 'c->queue' must specify the state of the queue at the beginning of this block.
+ * This function will update it to the state of the queue at the end of this
+ * block.
+ *
+ * Returns the number of matches/literals that were chosen and written to
+ * 'c->chosen_items' in the 'struct lzx_item' intermediate representation.
+ */
+static u32
+lzx_choose_items_for_block(struct lzx_compressor *c,
+                          u32 block_start_pos, u32 block_size)
+{
+       return (*c->params.choose_items_for_block)(c, block_start_pos, block_size);
 }
 
-/* Prepare the input window into one or more LZX blocks ready to be output.  */
+/* Initialize c->offset_slot_fast.  */
 static void
-lzx_prepare_blocks(struct lzx_compressor *c)
+lzx_init_offset_slot_fast(struct lzx_compressor *c)
 {
-       /* Set up a default cost model.  */
-       if (c->params.choose_item_func == lzx_choose_near_optimal_item)
-               lzx_set_default_costs(&c->costs, c->num_main_syms);
+       u8 slot = 0;
 
-       /* Set up the block specifications.
-        * TODO: The compression ratio could be slightly improved by performing
-        * data-dependent block splitting instead of using fixed-size blocks.
-        * Doing so well is a computationally hard problem, however.  */
-       c->num_blocks = DIV_ROUND_UP(c->cur_window_size, LZX_DIV_BLOCK_SIZE);
-       for (unsigned i = 0; i < c->num_blocks; i++) {
-               u32 pos = LZX_DIV_BLOCK_SIZE * i;
-               c->block_specs[i].window_pos = pos;
-               c->block_specs[i].block_size = min(c->cur_window_size - pos,
-                                                  LZX_DIV_BLOCK_SIZE);
-       }
+       for (u32 offset = 0; offset < LZX_NUM_FAST_OFFSETS; offset++) {
 
-       /* Load the window into the match-finder.  */
-       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
+               while (offset + LZX_OFFSET_OFFSET >= lzx_offset_slot_base[slot + 1])
+                       slot++;
 
-       /* Determine sequence of matches/literals to output for each block.  */
-       lzx_lru_queue_init(&c->queue);
-       c->optimum_cur_idx = 0;
-       c->optimum_end_idx = 0;
-       c->prev_match.len = 0;
-       for (unsigned i = 0; i < c->num_blocks; i++)
-               lzx_choose_items_for_block(c, &c->block_specs[i]);
+               c->offset_slot_fast[offset] = slot;
+       }
 }
 
+/* Set internal compression parameters for the specified compression level and
+ * maximum window size.  */
 static void
-lzx_build_params(unsigned int compression_level,
-                u32 max_window_size,
+lzx_build_params(unsigned int compression_level, u32 max_window_size,
                 struct lzx_compressor_params *lzx_params)
 {
        if (compression_level < 25) {
-               lzx_params->choose_item_func = lzx_choose_lazy_item;
-               lzx_params->num_optim_passes  = 1;
+
+               /* Fast compression: Use lazy parsing.  */
+
+               lzx_params->choose_items_for_block = lzx_choose_lazy_items_for_block;
+               lzx_params->num_optim_passes = 1;
+
+               /* When lazy parsing, the hash chain match-finding algorithm is
+                * fastest unless the window is too large.
+                *
+                * TODO: something like hash arrays would actually be better
+                * than binary trees on large windows.  */
                if (max_window_size <= 262144)
                        lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
                else
                        lzx_params->mf_algo = LZ_MF_BINARY_TREES;
-               lzx_params->min_match_length  = 3;
+
+               /* When lazy parsing, don't bother with length 2 matches.  */
+               lzx_params->min_match_length = 3;
+
+               /* Scale nice_match_length and max_search_depth with the
+                * compression level.  */
                lzx_params->nice_match_length = 25 + compression_level * 2;
-               lzx_params->max_search_depth  = 25 + compression_level;
+               lzx_params->max_search_depth = 25 + compression_level;
        } else {
-               lzx_params->choose_item_func = lzx_choose_near_optimal_item;
-               lzx_params->num_optim_passes  = compression_level / 20;
+
+               /* Normal / high compression: Use near-optimal parsing.  */
+
+               lzx_params->choose_items_for_block = lzx_choose_near_optimal_items_for_block;
+
+               /* Set a number of optimization passes appropriate for the
+                * compression level.  */
+
+               lzx_params->num_optim_passes = 1;
+
+               if (compression_level >= 40)
+                       lzx_params->num_optim_passes++;
+
+               /* Use more optimization passes for higher compression levels.
+                * But the more passes there are, the less they help --- so
+                * don't add them linearly.  */
+               if (compression_level >= 70) {
+                       lzx_params->num_optim_passes++;
+                       if (compression_level >= 100)
+                               lzx_params->num_optim_passes++;
+                       if (compression_level >= 150)
+                               lzx_params->num_optim_passes++;
+                       if (compression_level >= 200)
+                               lzx_params->num_optim_passes++;
+                       if (compression_level >= 300)
+                               lzx_params->num_optim_passes++;
+               }
+
+               /* When doing near-optimal parsing, the hash chain match-finding
+                * algorithm is good if the window size is small and we're only
+                * doing one optimization pass.  Otherwise, the binary tree
+                * algorithm is the way to go.  */
                if (max_window_size <= 32768 && lzx_params->num_optim_passes == 1)
                        lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
                else
                        lzx_params->mf_algo = LZ_MF_BINARY_TREES;
-               lzx_params->min_match_length  = (compression_level >= 45) ? 2 : 3;
+
+               /* When doing near-optimal parsing, allow length 2 matches if
+                * the compression level is sufficiently high.  */
+               if (compression_level >= 45)
+                       lzx_params->min_match_length = 2;
+               else
+                       lzx_params->min_match_length = 3;
+
+               /* Scale nice_match_length and max_search_depth with the
+                * compression level.  */
                lzx_params->nice_match_length = min(((u64)compression_level * 32) / 50,
                                                    LZX_MAX_MATCH_LEN);
-               lzx_params->max_search_depth  = min(((u64)compression_level * 50) / 50,
-                                                   LZX_MAX_MATCH_LEN);
+               lzx_params->max_search_depth = min(((u64)compression_level * 50) / 50,
+                                                  LZX_MAX_MATCH_LEN);
        }
 }
 
+/* Given the internal compression parameters and maximum window size, build the
+ * Lempel-Ziv match-finder parameters.  */
 static void
 lzx_build_mf_params(const struct lzx_compressor_params *lzx_params,
                    u32 max_window_size, struct lz_mf_params *mf_params)
@@ -2112,30 +2135,29 @@ static void
 lzx_free_compressor(void *_c);
 
 static u64
-lzx_get_needed_memory(size_t max_window_size, unsigned int compression_level)
+lzx_get_needed_memory(size_t max_block_size, unsigned int compression_level)
 {
        struct lzx_compressor_params params;
        u64 size = 0;
+       unsigned window_order;
+       u32 max_window_size;
 
-       if (!lzx_window_size_valid(max_window_size))
+       window_order = lzx_get_window_order(max_block_size);
+       if (window_order == 0)
                return 0;
+       max_window_size = max_block_size;
 
        lzx_build_params(compression_level, max_window_size, &params);
 
        size += sizeof(struct lzx_compressor);
 
+       /* cur_window */
        size += max_window_size;
 
-       size += DIV_ROUND_UP(max_window_size, LZX_DIV_BLOCK_SIZE) *
-               sizeof(struct lzx_block_spec);
-
-       size += max_window_size * sizeof(struct lzx_item);
-
+       /* mf */
        size += lz_mf_get_needed_memory(params.mf_algo, max_window_size);
-       if (params.choose_item_func == lzx_choose_near_optimal_item) {
-               size += (LZX_OPTIM_ARRAY_LENGTH + params.nice_match_length) *
-                       sizeof(struct lzx_mc_pos_data);
-       }
+
+       /* cached_matches */
        if (params.num_optim_passes > 1)
                size += LZX_CACHE_LEN * sizeof(struct lz_match);
        else
@@ -2144,15 +2166,19 @@ lzx_get_needed_memory(size_t max_window_size, unsigned int compression_level)
 }
 
 static int
-lzx_create_compressor(size_t max_window_size, unsigned int compression_level,
+lzx_create_compressor(size_t max_block_size, unsigned int compression_level,
                      void **c_ret)
 {
        struct lzx_compressor *c;
        struct lzx_compressor_params params;
        struct lz_mf_params mf_params;
+       unsigned window_order;
+       u32 max_window_size;
 
-       if (!lzx_window_size_valid(max_window_size))
+       window_order = lzx_get_window_order(max_block_size);
+       if (window_order == 0)
                return WIMLIB_ERR_INVALID_PARAM;
+       max_window_size = max_block_size;
 
        lzx_build_params(compression_level, max_window_size, &params);
        lzx_build_mf_params(&params, max_window_size, &mf_params);
@@ -2164,35 +2190,19 @@ lzx_create_compressor(size_t max_window_size, unsigned int compression_level,
                goto oom;
 
        c->params = params;
-       c->num_main_syms = lzx_get_num_main_syms(max_window_size);
-       c->max_window_size = max_window_size;
+       c->num_main_syms = lzx_get_num_main_syms(window_order);
+       c->window_order = window_order;
 
+       /* The window is allocated as 16-byte aligned to speed up memcpy() and
+        * enable lzx_e8_filter() optimization on x86_64.  */
        c->cur_window = ALIGNED_MALLOC(max_window_size, 16);
        if (!c->cur_window)
                goto oom;
 
-       c->block_specs = MALLOC(DIV_ROUND_UP(max_window_size,
-                                            LZX_DIV_BLOCK_SIZE) *
-                               sizeof(struct lzx_block_spec));
-       if (!c->block_specs)
-               goto oom;
-
-       c->chosen_items = MALLOC(max_window_size * sizeof(struct lzx_item));
-       if (!c->chosen_items)
-               goto oom;
-
        c->mf = lz_mf_alloc(&mf_params);
        if (!c->mf)
                goto oom;
 
-       if (params.choose_item_func == lzx_choose_near_optimal_item) {
-               c->optimum = MALLOC((LZX_OPTIM_ARRAY_LENGTH +
-                                    params.nice_match_length) *
-                                   sizeof(struct lzx_mc_pos_data));
-               if (!c->optimum)
-                       goto oom;
-       }
-
        if (params.num_optim_passes > 1) {
                c->cached_matches = MALLOC(LZX_CACHE_LEN *
                                           sizeof(struct lz_match));
@@ -2207,6 +2217,8 @@ lzx_create_compressor(size_t max_window_size, unsigned int compression_level,
                        goto oom;
        }
 
+       lzx_init_offset_slot_fast(c);
+
        *c_ret = c;
        return 0;
 
@@ -2220,44 +2232,85 @@ lzx_compress(const void *uncompressed_data, size_t uncompressed_size,
             void *compressed_data, size_t compressed_size_avail, void *_c)
 {
        struct lzx_compressor *c = _c;
-       struct output_bitstream ostream;
-       size_t compressed_size;
+       struct lzx_output_bitstream os;
+       u32 num_chosen_items;
+       const struct lzx_lens *prev_lens;
+       u32 block_start_pos;
+       u32 block_size;
+       int block_type;
 
-       if (uncompressed_size < 100) {
-               LZX_DEBUG("Too small to bother compressing.");
+       /* Don't bother compressing very small inputs.  */
+       if (uncompressed_size < 100)
                return 0;
-       }
-
-       LZX_DEBUG("Attempting to compress %zu bytes...",
-                 uncompressed_size);
 
        /* The input data must be preprocessed.  To avoid changing the original
-        * input, copy it to a temporary buffer.  */
+        * input data, copy it to a temporary buffer.  */
        memcpy(c->cur_window, uncompressed_data, uncompressed_size);
        c->cur_window_size = uncompressed_size;
 
-       /* Before doing any actual compression, do the call instruction (0xe8
-        * byte) translation on the uncompressed data.  */
+       /* Preprocess the data.  */
        lzx_do_e8_preprocessing(c->cur_window, c->cur_window_size);
 
-       /* Prepare the compressed data.  */
-       lzx_prepare_blocks(c);
+       /* Load the window into the match-finder.  */
+       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
+
+       /* Initialize the match offset LRU queue.  */
+       lzx_lru_queue_init(&c->queue);
 
-       /* Generate the compressed data.  */
-       init_output_bitstream(&ostream, compressed_data, compressed_size_avail);
-       lzx_write_all_blocks(c, &ostream);
+       /* Initialize the output bitstream.  */
+       lzx_init_output(&os, compressed_data, compressed_size_avail);
 
-       compressed_size = flush_output_bitstream(&ostream);
-       if (compressed_size == (u32)~0UL) {
-               LZX_DEBUG("Data did not compress to %zu bytes or less!",
-                         compressed_size_avail);
-               return 0;
-       }
+       /* Compress the data block by block.
+        *
+        * TODO: The compression ratio could be slightly improved by performing
+        * data-dependent block splitting instead of using fixed-size blocks.
+        * Doing so well is a computationally hard problem, however.  */
+       block_start_pos = 0;
+       c->codes_index = 0;
+       prev_lens = &c->zero_lens;
+       do {
+               /* Compute the block size.  */
+               block_size = min(LZX_DIV_BLOCK_SIZE,
+                                uncompressed_size - block_start_pos);
+
+               /* Reset symbol frequencies.  */
+               memset(&c->freqs, 0, sizeof(c->freqs));
+
+               /* Prepare the matches/literals for the block.  */
+               num_chosen_items = lzx_choose_items_for_block(c,
+                                                             block_start_pos,
+                                                             block_size);
+
+               /* Make the Huffman codes from the symbol frequencies.  */
+               lzx_make_huffman_codes(&c->freqs, &c->codes[c->codes_index],
+                                      c->num_main_syms);
+
+               /* Choose the best block type.
+                *
+                * Note: we currently don't consider uncompressed blocks.  */
+               block_type = lzx_choose_verbatim_or_aligned(&c->freqs,
+                                                           &c->codes[c->codes_index]);
+
+               /* Write the compressed block to the output buffer.  */
+               lzx_write_compressed_block(block_type,
+                                          block_size,
+                                          c->window_order,
+                                          c->num_main_syms,
+                                          c->chosen_items,
+                                          num_chosen_items,
+                                          &c->codes[c->codes_index],
+                                          prev_lens,
+                                          &os);
+
+               /* The current codeword lengths become the previous lengths.  */
+               prev_lens = &c->codes[c->codes_index].lens;
+               c->codes_index ^= 1;
+
+               block_start_pos += block_size;
 
-       LZX_DEBUG("Done: compressed %zu => %zu bytes.",
-                 uncompressed_size, compressed_size);
+       } while (block_start_pos != uncompressed_size);
 
-       return compressed_size;
+       return lzx_flush_output(&os);
 }
 
 static void
@@ -2267,10 +2320,7 @@ lzx_free_compressor(void *_c)
 
        if (c) {
                ALIGNED_FREE(c->cur_window);
-               FREE(c->block_specs);
-               FREE(c->chosen_items);
                lz_mf_free(c->mf);
-               FREE(c->optimum);
                FREE(c->cached_matches);
                FREE(c);
        }