]> wimlib.net Git - wimlib/blobdiff - src/lzx-compress.c
A few minor compressor cleanups
[wimlib] / src / lzx-compress.c
index a31fc2ab2271e889f5e9cd2bde4f2657bf5b8a0d..a972cc35bf3c24722372db9538c3b9a72f21f1c8 100644 (file)
@@ -1,11 +1,11 @@
 /*
  * lzx-compress.c
  *
- * LZX compression routines
+ * A compressor that produces output compatible with the LZX compression format.
  */
 
 /*
- * Copyright (C) 2012, 2013 Eric Biggers
+ * Copyright (C) 2012, 2013, 2014 Eric Biggers
  *
  * This file is part of wimlib, a library for working with WIM files.
  *
 
 
 /*
- * This file contains a compressor for the LZX compression format, as used in
- * the WIM file format.
+ * This file contains a compressor for the LZX ("Lempel-Ziv eXtended")
+ * compression format, as used in the WIM (Windows IMaging) file format.
  *
- * Format
- * ======
+ * Two different parsing algorithms are implemented: "near-optimal" and "lazy".
+ * "Near-optimal" is significantly slower than "lazy", but results in a better
+ * compression ratio.  The "near-optimal" algorithm is used at the default
+ * compression level.
  *
- * First, the primary reference for the LZX compression format is the
- * specification released by Microsoft.
+ * This file may need some slight modifications to be used outside of the WIM
+ * format.  In particular, in other situations the LZX block header might be
+ * slightly different, and a sliding window rather than a fixed-size window
+ * might be required.
  *
- * Second, the comments in lzx-decompress.c provide some more information about
- * the LZX compression format, including errors in the Microsoft specification.
+ * Note: LZX is a compression format derived from DEFLATE, the format used by
+ * zlib and gzip.  Both LZX and DEFLATE use LZ77 matching and Huffman coding.
+ * Certain details are quite similar, such as the method for storing Huffman
+ * codes.  However, the main differences are:
  *
- * Do note that LZX shares many similarities with DEFLATE, the algorithm used by
- * zlib and gzip.  Both LZX and DEFLATE use LZ77 matching and Huffman coding,
- * and certain other details are quite similar, such as the method for storing
- * Huffman codes.  However, some of the main differences are:
+ * - LZX preprocesses the data to attempt to make x86 machine code slightly more
+ *   compressible before attempting to compress it further.
  *
- * - LZX preprocesses the data before attempting to compress it.
  * - LZX uses a "main" alphabet which combines literals and matches, with the
  *   match symbols containing a "length header" (giving all or part of the match
- *   length) and a "position slot" (giving, roughly speaking, the order of
+ *   length) and an "offset slot" (giving, roughly speaking, the order of
  *   magnitude of the match offset).
- * - LZX does not have static Huffman blocks; however it does have two types of
- *   dynamic Huffman blocks ("aligned offset" and "verbatim").
- * - LZX has a minimum match length of 2 rather than 3.
- * - In LZX, match offsets 0 through 2 actually represent entries in an LRU
- *   queue of match offsets.
  *
- * Algorithms
- * ==========
+ * - LZX does not have static Huffman blocks (that is, the kind with preset
+ *   Huffman codes); however it does have two types of dynamic Huffman blocks
+ *   ("verbatim" and "aligned").
  *
- * There are actually two distinct overall algorithms implemented here.  We
- * shall refer to them as the "slow" algorithm and the "fast" algorithm.  The
- * "slow" algorithm spends more time compressing to achieve a higher compression
- * ratio compared to the "fast" algorithm.  More details are presented below.
+ * - LZX has a minimum match length of 2 rather than 3.  Length 2 matches can be
+ *   useful, but generally only if the parser is smart about choosing them.
  *
- * Slow algorithm
- * --------------
- *
- * The "slow" algorithm to generate LZX-compressed data is roughly as follows:
- *
- * 1. Preprocess the input data to translate the targets of x86 call instructions
- *    to absolute offsets.
- *
- * 2. Build the suffix array and inverse suffix array for the input data.
- *
- * 3. Build the longest common prefix array corresponding to the suffix array.
- *
- * 4. For each suffix rank, find the highest lower suffix rank that has a
- *    lower position, the lowest higher suffix rank that has a lower position,
- *    and the length of the common prefix shared between each.  (Position =
- *    index of suffix in original string, rank = index of suffix in suffix
- *    array.)  This information is later used to link suffix ranks into a
- *    doubly-linked list for searching the suffix array.
- *
- * 5. Set a default cost model for matches/literals.
- *
- * 6. Determine the lowest cost sequence of LZ77 matches ((offset, length) pairs)
- *    and literal bytes to divide the input into.  Raw match-finding is done by
- *    searching the suffix array using a linked list to avoid considering any
- *    suffixes that start after the current position.  Each run of the
- *    match-finder returns the lowest-cost longest match as well as any shorter
- *    matches that have even lower costs.  Each such run also adds the suffix
- *    rank of the current position into the linked list being used to search the
- *    suffix array.  Parsing, or match-choosing, is solved as a minimum-cost
- *    path problem using a forward "optimal parsing" algorithm based on the
- *    Deflate encoder from 7-Zip.  This algorithm moves forward calculating the
- *    minimum cost to reach each byte until either a very long match is found or
- *    until a position is found at which no matches start or overlap.
- *
- * 7. Build the Huffman codes needed to output the matches/literals.
- *
- * 8. Up to a certain number of iterations, use the resulting Huffman codes to
- *    refine a cost model and go back to Step #6 to determine an improved
- *    sequence of matches and literals.
- *
- * 9. Output the resulting block using the match/literal sequences and the
- *    Huffman codes that were computed for the block.
- *
- * Fast algorithm
- * --------------
- *
- * The fast algorithm (and the only one available in wimlib v1.5.1 and earlier)
- * spends much less time on the main bottlenecks of the compression process ---
- * that is the match finding, match choosing, and block splitting.  Matches are
- * found and chosen with hash chains using a greedy parse with one position of
- * look-ahead.  No block splitting is done; only compressing the full input into
- * an aligned offset block is considered.
- *
- * API
- * ===
- *
- * The old API (retained for backward compatibility) consists of just one function:
- *
- *     wimlib_lzx_compress()
- *
- * The new compressor has more potential parameters and needs more memory, so
- * the new API ties up memory allocations and compression parameters into a
- * context:
- *
- *     wimlib_lzx_alloc_context()
- *     wimlib_lzx_compress2()
- *     wimlib_lzx_free_context()
- *
- * Both wimlib_lzx_compress() and wimlib_lzx_compress2() are designed to
- * compress an in-memory buffer of up to 32768 bytes.  There is no sliding
- * window.  This is suitable for the WIM format, which uses fixed-size chunks
- * that are seemingly always 32768 bytes.  If needed, the compressor potentially
- * could be extended to support a larger and/or sliding window.
- *
- * Both wimlib_lzx_compress() and wimlib_lzx_compress2() return 0 if the data
- * could not be compressed to less than the size of the uncompressed data.
- * Again, this is suitable for the WIM format, which stores such data chunks
- * uncompressed.
- *
- * The functions in this API are exported from the library, although this is
- * only in case other programs happen to have uses for it other than WIM
- * reading/writing as already handled through the rest of the library.
- *
- * Acknowledgments
- * ===============
- *
- * Acknowledgments to several open-source projects and research papers that made
- * it possible to implement this code:
- *
- * - divsufsort (author: Yuta Mori), for the suffix array construction code.
- *
- * - "Linear-Time Longest-Common-Prefix Computation in Suffix Arrays and Its
- *   Applications" (Kasai et al. 2001), for the LCP array computation.
- *
- * - "LPF computation revisited" (Crochemore et al. 2009) for the prev and next
- *   array computations.
- *
- * - 7-Zip (author: Igor Pavlov) for the algorithm for forward optimal parsing
- *   (match-choosing).
- *
- * - zlib (author: Jean-loup Gailly and Mark Adler), for the hash table
- *   match-finding algorithm.
- *
- * - lzx-compress (author: Matthew T. Russotto), on which some parts of this
- *   code were originally based.
+ * - In LZX, offset slots 0 through 2 actually represent entries in an LRU queue
+ *   of match offsets.  This is very useful for certain types of files, such as
+ *   binary files that have repeating records.
  */
 
 #ifdef HAVE_CONFIG_H
 #  include "config.h"
 #endif
 
-#include "wimlib.h"
-#include "wimlib/compress.h"
+#include "wimlib/compress_common.h"
+#include "wimlib/compressor_ops.h"
+#include "wimlib/endianness.h"
 #include "wimlib/error.h"
+#include "wimlib/lz_mf.h"
+#include "wimlib/lz_repsearch.h"
 #include "wimlib/lzx.h"
 #include "wimlib/util.h"
-#include <pthread.h>
-#include <math.h>
-#include <string.h>
 
-#ifdef ENABLE_LZX_DEBUG
-#  include <wimlib/decompress.h>
-#endif
+#include <string.h>
+#include <limits.h>
 
-#include "divsufsort/divsufsort.h"
+#define LZX_OPTIM_ARRAY_LENGTH 4096
 
-typedef freq_t input_idx_t;
-typedef u32 sym_cost_t;
-typedef u32 block_cost_t;
-#define INFINITE_SYM_COST      ((sym_cost_t)~0U)
-#define INFINITE_BLOCK_COST    ((block_cost_t)~0U)
+#define LZX_DIV_BLOCK_SIZE     32768
 
-#define LZX_OPTIM_ARRAY_SIZE   4096
+#define LZX_CACHE_PER_POS      8
 
-/* Currently, this constant can't simply be changed because the code currently
- * uses a static number of position slots (and may make other assumptions as
- * well).  */
-#define LZX_MAX_WINDOW_SIZE    32768
+#define LZX_MAX_MATCHES_PER_POS        (LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1)
 
-/* This may be WIM-specific  */
-#define LZX_DEFAULT_BLOCK_SIZE  32768
+#define LZX_CACHE_LEN (LZX_DIV_BLOCK_SIZE * (LZX_CACHE_PER_POS + 1))
 
-#define LZX_MAX_CACHE_PER_POS  10
+struct lzx_compressor;
 
-/* Codewords for the LZX main, length, and aligned offset Huffman codes  */
+/* Codewords for the LZX Huffman codes.  */
 struct lzx_codewords {
-       u16 main[LZX_MAINCODE_NUM_SYMBOLS];
-       u16 len[LZX_LENCODE_NUM_SYMBOLS];
-       u16 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+       u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u32 len[LZX_LENCODE_NUM_SYMBOLS];
+       u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* Codeword lengths (in bits) for the LZX main, length, and aligned offset
- * Huffman codes.
- *
- * A 0 length means the codeword has zero frequency.
- */
+/* Codeword lengths (in bits) for the LZX Huffman codes.
+ * A zero length means the corresponding codeword has zero frequency.  */
 struct lzx_lens {
-       u8 main[LZX_MAINCODE_NUM_SYMBOLS];
+       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
        u8 len[LZX_LENCODE_NUM_SYMBOLS];
        u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* Costs for the LZX main, length, and aligned offset Huffman symbols.
- *
- * If a codeword has zero frequency, it must still be assigned some nonzero cost
- * --- generally a high cost, since even if it gets used in the next iteration,
- * it probably will not be used very times.  */
+/* Estimated cost, in bits, to output each symbol in the LZX Huffman codes.  */
 struct lzx_costs {
-       sym_cost_t main[LZX_MAINCODE_NUM_SYMBOLS];
-       sym_cost_t len[LZX_LENCODE_NUM_SYMBOLS];
-       sym_cost_t aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u8 len[LZX_LENCODE_NUM_SYMBOLS];
+       u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* The LZX main, length, and aligned offset Huffman codes  */
+/* Codewords and lengths for the LZX Huffman codes.  */
 struct lzx_codes {
        struct lzx_codewords codewords;
        struct lzx_lens lens;
 };
 
-/* Tables for tallying symbol frequencies in the three LZX alphabets  */
+/* Symbol frequency counters for the LZX Huffman codes.  */
 struct lzx_freqs {
-       freq_t main[LZX_MAINCODE_NUM_SYMBOLS];
-       freq_t len[LZX_LENCODE_NUM_SYMBOLS];
-       freq_t aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+       u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u32 len[LZX_LENCODE_NUM_SYMBOLS];
+       u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
 };
 
-/* LZX intermediate match/literal format  */
-struct lzx_match {
-       /* Bit     Description
-        *
-        * 31      1 if a match, 0 if a literal.
-        *
-        * 30-25   position slot.  This can be at most 50, so it will fit in 6
-        *         bits.
-        *
-        * 8-24    position footer.  This is the offset of the real formatted
-        *         offset from the position base.  This can be at most 17 bits
-        *         (since lzx_extra_bits[LZX_NUM_POSITION_SLOTS - 1] is 17).
-        *
-        * 0-7     length of match, minus 2.  This can be at most
-        *         (LZX_MAX_MATCH_LEN - 2) == 255, so it will fit in 8 bits.  */
-       u32 data;
-};
+/* Intermediate LZX match/literal format  */
+struct lzx_item {
 
-/* Raw LZ match/literal format: just a length and offset.
- *
- * The length is the number of bytes of the match, and the offset is the number
- * of bytes back in the input the match is from the current position.
- *
- * If @len < LZX_MIN_MATCH_LEN, then it's really just a literal byte and @offset is
- * meaningless.  */
-struct raw_match {
-       u16 len;
-       input_idx_t offset;
+       /* Bits 0  -  9: Main symbol
+        * Bits 10 - 17: Length symbol
+        * Bits 18 - 22: Number of extra offset bits
+        * Bits 23+    : Extra offset bits  */
+       u64 data;
 };
 
-/* Specification for an LZX block.  */
-struct lzx_block_spec {
-
-       /* One of the LZX_BLOCKTYPE_* constants indicating which type of this
-        * block.  */
-       int block_type;
-
-       /* 0-based position in the window at which this block starts.  */
-       input_idx_t window_pos;
-
-       /* The number of bytes of uncompressed data this block represents.  */
-       input_idx_t block_size;
-
-       /* The position in the 'chosen_matches' array in the `struct
-        * lzx_compressor' at which the match/literal specifications for
-        * this block begin.  */
-       input_idx_t chosen_matches_start_pos;
-
-       /* The number of match/literal specifications for this block.  */
-       input_idx_t num_chosen_matches;
-
-       /* Huffman codes for this block.  */
-       struct lzx_codes codes;
+/* Internal compression parameters  */
+struct lzx_compressor_params {
+       u32 (*choose_items_for_block)(struct lzx_compressor *, u32, u32);
+       u32 num_optim_passes;
+       enum lz_mf_algo mf_algo;
+       u32 min_match_length;
+       u32 nice_match_length;
+       u32 max_search_depth;
 };
 
 /*
- * An array of these structures is used during the match-choosing algorithm.
- * They correspond to consecutive positions in the window and are used to keep
- * track of the cost to reach each position, and the match/literal choices that
- * need to be chosen to reach that position.
+ * Match chooser position data:
+ *
+ * An array of these structures is used during the near-optimal match-choosing
+ * algorithm.  They correspond to consecutive positions in the window and are
+ * used to keep track of the cost to reach each position, and the match/literal
+ * choices that need to be chosen to reach that position.
  */
-struct lzx_optimal {
-       /* The approximate minimum cost, in bits, to reach this position in the
-        * window which has been found so far.  */
-       block_cost_t cost;
-
-       /* The union here is just for clarity, since the fields are used in two
-        * slightly different ways.  Initially, the @prev structure is filled in
-        * first, and links go from later in the window to earlier in the
-        * window.  Later, @next structure is filled in and links go from
-        * earlier in the window to later in the window.  */
-       union {
-               struct {
-                       /* Position of the start of the match or literal that
-                        * was taken to get to this position in the approximate
-                        * minimum-cost parse.  */
-                       input_idx_t link;
-
-                       /* Offset (as in an LZ (length, offset) pair) of the
-                        * match or literal that was taken to get to this
-                        * position in the approximate minimum-cost parse.  */
-                       input_idx_t match_offset;
-               } prev;
-               struct {
-                       /* Position at which the match or literal starting at
-                        * this position ends in the minimum-cost parse.  */
-                       input_idx_t link;
-
-                       /* Offset (as in an LZ (length, offset) pair) of the
-                        * match or literal starting at this position in the
-                        * approximate minimum-cost parse.  */
-                       input_idx_t match_offset;
-               } next;
-       };
-
-       /* The match offset LRU queue that will exist when the approximate
-        * minimum-cost path to reach this position is taken.  */
-       struct lzx_lru_queue queue;
-};
+struct lzx_mc_pos_data {
 
-/* Suffix array link  */
-struct salink {
-       /* Rank of highest ranked suffix that has rank lower than the suffix
-        * corresponding to this structure and either has a lower position
-        * (initially) or has a position lower than the highest position at
-        * which matches have been searched for so far, or -1 if there is no
-        * such suffix.  */
-       input_idx_t prev;
-
-       /* Rank of lowest ranked suffix that has rank greater than the suffix
-        * corresponding to this structure and either has a lower position
-        * (intially) or has a position lower than the highest position at which
-        * matches have been searched for so far, or -1 if there is no such
-        * suffix.  */
-       input_idx_t next;
-
-       /* Length of longest common prefix between the suffix corresponding to
-        * this structure and the suffix with rank @prev, or 0 if @prev is -1.
-        */
-       input_idx_t lcpprev;
+       /* The cost, in bits, of the lowest-cost path that has been found to
+        * reach this position.  This can change as progressively lower cost
+        * paths are found to reach this position.  */
+       u32 cost;
+#define MC_INFINITE_COST UINT32_MAX
 
-       /* Length of longest common prefix between the suffix corresponding to
-        * this structure and the suffix with rank @next, or 0 if @next is -1.
+       /* The match or literal that was taken to reach this position.  This can
+        * change as progressively lower cost paths are found to reach this
+        * position.
+        *
+        * This variable is divided into two bitfields.
+        *
+        * Literals:
+        *      Low bits are 1, high bits are the literal.
+        *
+        * Explicit offset matches:
+        *      Low bits are the match length, high bits are the offset plus 2.
+        *
+        * Repeat offset matches:
+        *      Low bits are the match length, high bits are the queue index.
         */
-       input_idx_t lcpnext;
-};
+       u32 mc_item_data;
+#define MC_OFFSET_SHIFT 9
+#define MC_LEN_MASK ((1 << MC_OFFSET_SHIFT) - 1)
 
-/* State of the LZX compressor.  */
+       /* The state of the LZX recent match offsets queue at this position.
+        * This is filled in lazily, only after the minimum-cost path to this
+        * position is found.
+        *
+        * Note: the way we handle this adaptive state in the "minimum-cost"
+        * parse is actually only an approximation.  It's possible for the
+        * globally optimal, minimum cost path to contain a prefix, ending at a
+        * position, where that path prefix is *not* the minimum cost path to
+        * that position.  This can happen if such a path prefix results in a
+        * different adaptive state which results in lower costs later.  We do
+        * not solve this problem; we only consider the lowest cost to reach
+        * each position, which seems to be an acceptable approximation.  */
+       struct lzx_lru_queue queue _aligned_attribute(16);
+
+} _aligned_attribute(16);
+
+/* State of the LZX compressor  */
 struct lzx_compressor {
 
-       /* The parameters that were used to create the compressor.  */
-       struct wimlib_lzx_params params;
+       /* Internal compression parameters  */
+       struct lzx_compressor_params params;
 
-       /* The buffer of data to be compressed.
-        *
-        * 0xe8 byte preprocessing is done directly on the data here before
-        * further compression.
-        *
-        * Note that this compressor does *not* use a sliding window!!!!  It's
-        * not needed in the WIM format, since every chunk is compressed
-        * independently.  This is by design, to allow random access to the
-        * chunks.
-        *
-        * We reserve a few extra bytes to potentially allow reading off the end
-        * of the array in the match-finding code for optimization purposes.
-        */
-       u8 window[LZX_MAX_WINDOW_SIZE + 12];
+       /* The preprocessed buffer of data being compressed  */
+       u8 *cur_window;
 
        /* Number of bytes of data to be compressed, which is the number of
-        * bytes of data in @window that are actually valid.  */
-       input_idx_t window_size;
+        * bytes of data in @cur_window that are actually valid.  */
+       u32 cur_window_size;
+
+       /* log2 order of the LZX window size for LZ match offset encoding
+        * purposes.  Will be >= LZX_MIN_WINDOW_ORDER and <=
+        * LZX_MAX_WINDOW_ORDER.
+        *
+        * Note: 1 << @window_order is normally equal to @max_window_size,
+        * a.k.a. the allocated size of @cur_window, but it will be greater than
+        * @max_window_size in the event that the compressor was created with a
+        * non-power-of-2 block size.  (See lzx_get_window_order().)  */
+       unsigned window_order;
+
+       /* Number of symbols in the main alphabet.  This depends on
+        * @window_order, since @window_order determines the maximum possible
+        * offset.  It does not, however, depend on the *actual* size of the
+        * current data buffer being processed, which might be less than 1 <<
+        * @window_order.  */
+       unsigned num_main_syms;
+
+       /* Lempel-Ziv match-finder  */
+       struct lz_mf *mf;
+
+       /* Match-finder wrapper functions and data for near-optimal parsing.
+        *
+        * When doing more than one match-choosing pass over the data, matches
+        * found by the match-finder are cached to achieve a slight speedup when
+        * the same matches are needed on subsequent passes.  This is suboptimal
+        * because different matches may be preferred with different cost
+        * models, but it is a very worthwhile speedup.  */
+       unsigned (*get_matches_func)(struct lzx_compressor *, const struct lz_match **);
+       void (*skip_bytes_func)(struct lzx_compressor *, unsigned n);
+       u32 match_window_pos;
+       u32 match_window_end;
+       struct lz_match *cached_matches;
+       struct lz_match *cache_ptr;
+       struct lz_match *cache_limit;
+
+       /* Position data for near-optimal parsing.  */
+       struct lzx_mc_pos_data optimum[LZX_OPTIM_ARRAY_LENGTH + LZX_MAX_MATCH_LEN];
+
+       /* The cost model currently being used for near-optimal parsing.  */
+       struct lzx_costs costs;
 
        /* The current match offset LRU queue.  */
        struct lzx_lru_queue queue;
 
-       /* Space for the sequences of matches/literals that were chosen for each
-        * block.  */
-       struct lzx_match *chosen_matches;
-
-       struct raw_match *cached_matches;
-       unsigned cached_matches_pos;
-       bool matches_cached;
+       /* Frequency counters for the current block.  */
+       struct lzx_freqs freqs;
 
-       /* Information about the LZX blocks the preprocessed input was divided
-        * into.  */
-       struct lzx_block_spec *block_specs;
+       /* The Huffman codes for the current and previous blocks.  */
+       struct lzx_codes codes[2];
 
-       /* Number of LZX blocks the input was divided into; a.k.a. the number of
-        * elements of @block_specs that are valid.  */
-       unsigned num_blocks;
+       /* Which 'struct lzx_codes' is being used for the current block.  The
+        * other was used for the previous block (if this isn't the first
+        * block).  */
+       unsigned int codes_index;
 
-       /* This is simply filled in with zeroes and used to avoid special-casing
-        * the output of the first compressed Huffman code, which conceptually
-        * has a delta taken from a code with all symbols having zero-length
-        * codewords.  */
-       struct lzx_codes zero_codes;
+       /* Dummy lengths that are always 0.  */
+       struct lzx_lens zero_lens;
 
-       /* Slow algorithm only: The current cost model.  */
-       struct lzx_costs costs;
+       /* Matches/literals that were chosen for the current block.  */
+       struct lzx_item chosen_items[LZX_DIV_BLOCK_SIZE];
 
-       /* Slow algorithm only: Suffix array for window.
-        * This is a mapping from suffix rank to suffix position.
-        *
-        * Suffix rank means the index of the suffix in the sorted list of
-        * suffixes, whereas suffix position means the index in the string at
-        * which the suffix starts.
-        */
-       input_idx_t *SA;
+       /* Table mapping match offset => offset slot for small offsets  */
+#define LZX_NUM_FAST_OFFSETS 32768
+       u8 offset_slot_fast[LZX_NUM_FAST_OFFSETS];
+};
 
-       /* Slow algorithm only: Inverse suffix array for window.
-        * This is a mapping from suffix position to suffix rank.
-        * In other words, if 0 <= r < window_size, then ISA[SA[r]] == r.  */
-       input_idx_t *ISA;
+/*
+ * Structure to keep track of the current state of sending bits to the
+ * compressed output buffer.
+ *
+ * The LZX bitstream is encoded as a sequence of 16-bit coding units.
+ */
+struct lzx_output_bitstream {
 
-       /* Slow algorithm only: Longest Common Prefix array.  LCP[i] is the
-        * number of initial bytes that the suffixes at positions SA[i - 1] and
-        * SA[i] share.  LCP[0] is undefined.  */
-       input_idx_t *LCP;
+       /* Bits that haven't yet been written to the output buffer.  */
+       u32 bitbuf;
 
-       /* Slow algorithm only: Suffix array links.
-        *
-        * During a linear scan of the input string to find matches, this array
-        * used to keep track of which rank suffixes in the suffix array appear
-        * before the current position.  Instead of searching in the original
-        * suffix array, scans for matches at a given position traverse a linked
-        * list containing only suffixes that appear before that position.  */
-       struct salink *salink;
-
-       /* Slow algorithm only: Position in window of next match to return.
-        * This cannot simply be modified, as the match-finder must still be
-        * synchronized on the same position.  To seek forwards or backwards,
-        * use lzx_lz_skip_bytes() or lzx_lz_rewind_matchfinder(), respectively.
-        */
-       input_idx_t match_window_pos;
+       /* Number of bits currently held in @bitbuf.  */
+       u32 bitcount;
 
-       /* Slow algorithm only: The match-finder shall ensure the length of
-        * matches does not exceed this position in the input.  */
-       input_idx_t match_window_end;
+       /* Pointer to the start of the output buffer.  */
+       le16 *start;
 
-       /* Slow algorithm only: Temporary space used for match-choosing
-        * algorithm.
-        *
-        * The size of this array must be at least LZX_MAX_MATCH_LEN but
-        * otherwise is arbitrary.  More space simply allows the match-choosing
-        * algorithm to potentially find better matches (depending on the input,
-        * as always).  */
-       struct lzx_optimal *optimum;
+       /* Pointer to the position in the output buffer at which the next coding
+        * unit should be written.  */
+       le16 *next;
 
-       /* Slow algorithm only: Variables used by the match-choosing algorithm.
-        *
-        * When matches have been chosen, optimum_cur_idx is set to the position
-        * in the window of the next match/literal to return and optimum_end_idx
-        * is set to the position in the window at the end of the last
-        * match/literal to return.  */
-       u32 optimum_cur_idx;
-       u32 optimum_end_idx;
+       /* Pointer past the end of the output buffer.  */
+       le16 *end;
 };
 
-/* Returns the LZX position slot that corresponds to a given formatted offset.
+/*
+ * Initialize the output bitstream.
+ *
+ * @os
+ *     The output bitstream structure to initialize.
+ * @buffer
+ *     The buffer being written to.
+ * @size
+ *     Size of @buffer, in bytes.
+ */
+static void
+lzx_init_output(struct lzx_output_bitstream *os, void *buffer, u32 size)
+{
+       os->bitbuf = 0;
+       os->bitcount = 0;
+       os->start = buffer;
+       os->next = os->start;
+       os->end = os->start + size / sizeof(le16);
+}
+
+/*
+ * Write some bits to the output bitstream.
  *
- * Logically, this returns the smallest i such that
- * formatted_offset >= lzx_position_base[i].
+ * The bits are given by the low-order @num_bits bits of @bits.  Higher-order
+ * bits in @bits cannot be set.  At most 17 bits can be written at once.
  *
- * The actual implementation below takes advantage of the regularity of the
- * numbers in the lzx_position_base array to calculate the slot directly from
- * the formatted offset without actually looking at the array.
+ * @max_num_bits is a compile-time constant that specifies the maximum number of
+ * bits that can ever be written at the call site.  Currently, it is used to
+ * optimize away the conditional code for writing a second 16-bit coding unit
+ * when writing fewer than 17 bits.
+ *
+ * If the output buffer space is exhausted, then the bits will be ignored, and
+ * lzx_flush_output() will return 0 when it gets called.
  */
-static _always_inline_attribute unsigned
-lzx_get_position_slot_raw(unsigned formatted_offset)
+static inline void
+lzx_write_varbits(struct lzx_output_bitstream *os,
+                 const u32 bits, const unsigned int num_bits,
+                 const unsigned int max_num_bits)
 {
-#if 0
-       /*
-        * Slots 36-49 (formatted_offset >= 262144) can be found by
-        * (formatted_offset/131072) + 34 == (formatted_offset >> 17) + 34;
-        * however, this check for formatted_offset >= 262144 is commented out
-        * because WIM chunks cannot be that large.
-        */
-       if (formatted_offset >= 262144) {
-               return (formatted_offset >> 17) + 34;
-       } else
-#endif
-       {
-               /* Note: this part here only works if:
-                *
-                *    2 <= formatted_offset < 655360
-                *
-                * It is < 655360 because the frequency of the position bases
-                * increases starting at the 655360 entry, and it is >= 2
-                * because the below calculation fails if the most significant
-                * bit is lower than the 2's place. */
-               LZX_ASSERT(2 <= formatted_offset && formatted_offset < 655360);
-               unsigned mssb_idx = bsr32(formatted_offset);
-               return (mssb_idx << 1) |
-                       ((formatted_offset >> (mssb_idx - 1)) & 1);
+       /* This code is optimized for LZX, which never needs to write more than
+        * 17 bits at once.  */
+       LZX_ASSERT(num_bits <= 17);
+       LZX_ASSERT(num_bits <= max_num_bits);
+       LZX_ASSERT(os->bitcount <= 15);
+
+       /* Add the bits to the bit buffer variable.  @bitcount will be at most
+        * 15, so there will be just enough space for the maximum possible
+        * @num_bits of 17.  */
+       os->bitcount += num_bits;
+       os->bitbuf = (os->bitbuf << num_bits) | bits;
+
+       /* Check whether any coding units need to be written.  */
+       if (os->bitcount >= 16) {
+
+               os->bitcount -= 16;
+
+               /* Write a coding unit, unless it would overflow the buffer.  */
+               if (os->next != os->end)
+                       *os->next++ = cpu_to_le16(os->bitbuf >> os->bitcount);
+
+               /* If writing 17 bits, a second coding unit might need to be
+                * written.  But because 'max_num_bits' is a compile-time
+                * constant, the compiler will optimize away this code at most
+                * call sites.  */
+               if (max_num_bits == 17 && os->bitcount == 16) {
+                       if (os->next != os->end)
+                               *os->next++ = cpu_to_le16(os->bitbuf);
+                       os->bitcount = 0;
+               }
        }
 }
 
-
-/* Returns the LZX position slot that corresponds to a given match offset,
- * taking into account the recent offset queue (and optionally updating it).  */
-static _always_inline_attribute unsigned
-lzx_get_position_slot(unsigned offset, struct lzx_lru_queue *queue)
+/* Use when @num_bits is a compile-time constant.  Otherwise use
+ * lzx_write_varbits().  */
+static inline void
+lzx_write_bits(struct lzx_output_bitstream *os,
+              const u32 bits, const unsigned int num_bits)
 {
-       unsigned position_slot;
-
-       /* See if the offset was recently used.  */
-       for (unsigned i = 0; i < LZX_NUM_RECENT_OFFSETS; i++) {
-               if (offset == queue->R[i]) {
-                       /* Found it.  */
-
-                       /* Bring the repeat offset to the front of the
-                        * queue.  Note: this is, in fact, not a real
-                        * LRU queue because repeat matches are simply
-                        * swapped to the front.  */
-                       swap(queue->R[0], queue->R[i]);
-                       /* For recent offsets, the position slot is simply the
-                        * index of the entry in the queue.  */
-
-                       return i;
-               }
-       }
+       lzx_write_varbits(os, bits, num_bits, num_bits);
+}
 
-       /* The offset was not recently used; look up its real position slot.  */
-       position_slot = lzx_get_position_slot_raw(offset + LZX_OFFSET_OFFSET);
+/*
+ * Flush the last coding unit to the output buffer if needed.  Return the total
+ * number of bytes written to the output buffer, or 0 if an overflow occurred.
+ */
+static u32
+lzx_flush_output(struct lzx_output_bitstream *os)
+{
+       if (os->next == os->end)
+               return 0;
 
-       /* Bring the new offset to the front of the queue.  */
-       for (unsigned i = LZX_NUM_RECENT_OFFSETS - 1; i > 0; i--)
-               queue->R[i] = queue->R[i - 1];
-       queue->R[0] = offset;
+       if (os->bitcount != 0)
+               *os->next++ = cpu_to_le16(os->bitbuf << (16 - os->bitcount));
 
-       return position_slot;
+       return (const u8 *)os->next - (const u8 *)os->start;
 }
 
 /* Build the main, length, and aligned offset Huffman codes used in LZX.
@@ -565,10 +403,10 @@ lzx_get_position_slot(unsigned offset, struct lzx_lru_queue *queue)
  * This takes as input the frequency tables for each code and produces as output
  * a set of tables that map symbols to codewords and codeword lengths.  */
 static void
-lzx_make_huffman_codes(const struct lzx_freqs *freqs,
-                      struct lzx_codes *codes)
+lzx_make_huffman_codes(const struct lzx_freqs *freqs, struct lzx_codes *codes,
+                      unsigned num_main_syms)
 {
-       make_canonical_huffman_code(LZX_MAINCODE_NUM_SYMBOLS,
+       make_canonical_huffman_code(num_main_syms,
                                    LZX_MAX_MAIN_CODEWORD_LEN,
                                    freqs->main,
                                    codes->lens.main,
@@ -587,2395 +425,1910 @@ lzx_make_huffman_codes(const struct lzx_freqs *freqs,
                                    codes->codewords.aligned);
 }
 
-/*
- * Output an LZX match.
- *
- * @out:         The bitstream to write the match to.
- * @block_type:  The type of the LZX block (LZX_BLOCKTYPE_ALIGNED or LZX_BLOCKTYPE_VERBATIM)
- * @match:      The match.
- * @codes:      Pointer to a structure that contains the codewords for the
- *              main, length, and aligned offset Huffman codes.
- */
-static void
-lzx_write_match(struct output_bitstream *out, int block_type,
-               struct lzx_match match, const struct lzx_codes *codes)
+static unsigned
+lzx_compute_precode_items(const u8 lens[restrict],
+                         const u8 prev_lens[restrict],
+                         const unsigned num_lens,
+                         u32 precode_freqs[restrict],
+                         unsigned precode_items[restrict])
 {
-       /* low 8 bits are the match length minus 2 */
-       unsigned match_len_minus_2 = match.data & 0xff;
-       /* Next 17 bits are the position footer */
-       unsigned position_footer = (match.data >> 8) & 0x1ffff; /* 17 bits */
-       /* Next 6 bits are the position slot. */
-       unsigned position_slot = (match.data >> 25) & 0x3f;     /* 6 bits */
-       unsigned len_header;
-       unsigned len_footer;
-       unsigned main_symbol;
-       unsigned num_extra_bits;
-       unsigned verbatim_bits;
-       unsigned aligned_bits;
-
-       /* If the match length is less than MIN_MATCH_LEN (= 2) +
-        * NUM_PRIMARY_LENS (= 7), the length header contains
-        * the match length minus MIN_MATCH_LEN, and there is no
-        * length footer.
-        *
-        * Otherwise, the length header contains
-        * NUM_PRIMARY_LENS, and the length footer contains
-        * the match length minus NUM_PRIMARY_LENS minus
-        * MIN_MATCH_LEN. */
-       if (match_len_minus_2 < LZX_NUM_PRIMARY_LENS) {
-               len_header = match_len_minus_2;
-               /* No length footer-- mark it with a special
-                * value. */
-               len_footer = (unsigned)(-1);
-       } else {
-               len_header = LZX_NUM_PRIMARY_LENS;
-               len_footer = match_len_minus_2 - LZX_NUM_PRIMARY_LENS;
-       }
-
-       /* Combine the position slot with the length header into a single symbol
-        * that will be encoded with the main tree.
-        *
-        * The actual main symbol is offset by LZX_NUM_CHARS because values
-        * under LZX_NUM_CHARS are used to indicate a literal byte rather than a
-        * match.  */
-       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-
-       /* Output main symbol. */
-       bitstream_put_bits(out, codes->codewords.main[main_symbol],
-                          codes->lens.main[main_symbol]);
-
-       /* If there is a length footer, output it using the
-        * length Huffman code. */
-       if (len_footer != (unsigned)(-1)) {
-               bitstream_put_bits(out, codes->codewords.len[len_footer],
-                                  codes->lens.len[len_footer]);
-       }
-
-       num_extra_bits = lzx_get_num_extra_bits(position_slot);
-
-       /* For aligned offset blocks with at least 3 extra bits, output the
-        * verbatim bits literally, then the aligned bits encoded using the
-        * aligned offset tree.  Otherwise, only the verbatim bits need to be
-        * output. */
-       if ((block_type == LZX_BLOCKTYPE_ALIGNED) && (num_extra_bits >= 3)) {
+       unsigned *itemptr;
+       unsigned run_start;
+       unsigned run_end;
+       unsigned extra_bits;
+       int delta;
+       u8 len;
+
+       itemptr = precode_items;
+       run_start = 0;
+       do {
+               /* Find the next run of codeword lengths.  */
 
-               verbatim_bits = position_footer >> 3;
-               bitstream_put_bits(out, verbatim_bits,
-                                  num_extra_bits - 3);
+               /* len = the length being repeated  */
+               len = lens[run_start];
 
-               aligned_bits = (position_footer & 7);
-               bitstream_put_bits(out,
-                                  codes->codewords.aligned[aligned_bits],
-                                  codes->lens.aligned[aligned_bits]);
-       } else {
-               /* verbatim bits is the same as the position
-                * footer, in this case. */
-               bitstream_put_bits(out, position_footer, num_extra_bits);
-       }
-}
+               run_end = run_start + 1;
 
-static unsigned
-lzx_build_precode(const u8 lens[restrict],
-                 const u8 prev_lens[restrict],
-                 const unsigned num_syms,
-                 freq_t precode_freqs[restrict LZX_PRECODE_NUM_SYMBOLS],
-                 u8 output_syms[restrict num_syms],
-                 u8 precode_lens[restrict LZX_PRECODE_NUM_SYMBOLS],
-                 u16 precode_codewords[restrict LZX_PRECODE_NUM_SYMBOLS],
-                 unsigned *num_additional_bits_ret)
-{
-       memset(precode_freqs, 0,
-              LZX_PRECODE_NUM_SYMBOLS * sizeof(precode_freqs[0]));
-
-       /* Since the code word lengths use a form of RLE encoding, the goal here
-        * is to find each run of identical lengths when going through them in
-        * symbol order (including runs of length 1).  For each run, as many
-        * lengths are encoded using RLE as possible, and the rest are output
-        * literally.
-        *
-        * output_syms[] will be filled in with the length symbols that will be
-        * output, including RLE codes, not yet encoded using the pre-tree.
-        *
-        * cur_run_len keeps track of how many code word lengths are in the
-        * current run of identical lengths.  */
-       unsigned output_syms_idx = 0;
-       unsigned cur_run_len = 1;
-       unsigned num_additional_bits = 0;
-       for (unsigned i = 1; i <= num_syms; i++) {
-
-               if (i != num_syms && lens[i] == lens[i - 1]) {
-                       /* Still in a run--- keep going. */
-                       cur_run_len++;
+               /* Fast case for a single length.  */
+               if (likely(run_end == num_lens || len != lens[run_end])) {
+                       delta = prev_lens[run_start] - len;
+                       if (delta < 0)
+                               delta += 17;
+                       precode_freqs[delta]++;
+                       *itemptr++ = delta;
+                       run_start++;
                        continue;
                }
 
-               /* Run ended! Check if it is a run of zeroes or a run of
-                * nonzeroes. */
-
-               /* The symbol that was repeated in the run--- not to be confused
-                * with the length *of* the run (cur_run_len) */
-               unsigned len_in_run = lens[i - 1];
-
-               if (len_in_run == 0) {
-                       /* A run of 0's.  Encode it in as few length
-                        * codes as we can. */
+               /* Extend the run.  */
+               do {
+                       run_end++;
+               } while (run_end != num_lens && len == lens[run_end]);
 
-                       /* The magic length 18 indicates a run of 20 + n zeroes,
-                        * where n is an uncompressed literal 5-bit integer that
-                        * follows the magic length. */
-                       while (cur_run_len >= 20) {
-                               unsigned additional_bits;
+               if (len == 0) {
+                       /* Run of zeroes.  */
 
-                               additional_bits = min(cur_run_len - 20, 0x1f);
-                               num_additional_bits += 5;
+                       /* Symbol 18: RLE 20 to 51 zeroes at a time.  */
+                       while ((run_end - run_start) >= 20) {
+                               extra_bits = min((run_end - run_start) - 20, 0x1f);
                                precode_freqs[18]++;
-                               output_syms[output_syms_idx++] = 18;
-                               output_syms[output_syms_idx++] = additional_bits;
-                               cur_run_len -= 20 + additional_bits;
+                               *itemptr++ = 18 | (extra_bits << 5);
+                               run_start += 20 + extra_bits;
                        }
 
-                       /* The magic length 17 indicates a run of 4 + n zeroes,
-                        * where n is an uncompressed literal 4-bit integer that
-                        * follows the magic length. */
-                       while (cur_run_len >= 4) {
-                               unsigned additional_bits;
-
-                               additional_bits = min(cur_run_len - 4, 0xf);
-                               num_additional_bits += 4;
+                       /* Symbol 17: RLE 4 to 19 zeroes at a time.  */
+                       if ((run_end - run_start) >= 4) {
+                               extra_bits = min((run_end - run_start) - 4, 0xf);
                                precode_freqs[17]++;
-                               output_syms[output_syms_idx++] = 17;
-                               output_syms[output_syms_idx++] = additional_bits;
-                               cur_run_len -= 4 + additional_bits;
+                               *itemptr++ = 17 | (extra_bits << 5);
+                               run_start += 4 + extra_bits;
                        }
-
                } else {
 
                        /* A run of nonzero lengths. */
 
-                       /* The magic length 19 indicates a run of 4 + n
-                        * nonzeroes, where n is a literal bit that follows the
-                        * magic length, and where the value of the lengths in
-                        * the run is given by an extra length symbol, encoded
-                        * with the precode, that follows the literal bit.
-                        *
-                        * The extra length symbol is encoded as a difference
-                        * from the length of the codeword for the first symbol
-                        * in the run in the previous tree.
-                        * */
-                       while (cur_run_len >= 4) {
-                               unsigned additional_bits;
-                               signed char delta;
-
-                               additional_bits = (cur_run_len > 4);
-                               num_additional_bits += 1;
-                               delta = (signed char)prev_lens[i - cur_run_len] -
-                                       (signed char)len_in_run;
+                       /* Symbol 19: RLE 4 to 5 of any length at a time.  */
+                       while ((run_end - run_start) >= 4) {
+                               extra_bits = (run_end - run_start) > 4;
+                               delta = prev_lens[run_start] - len;
                                if (delta < 0)
                                        delta += 17;
                                precode_freqs[19]++;
-                               precode_freqs[(unsigned char)delta]++;
-                               output_syms[output_syms_idx++] = 19;
-                               output_syms[output_syms_idx++] = additional_bits;
-                               output_syms[output_syms_idx++] = delta;
-                               cur_run_len -= 4 + additional_bits;
+                               precode_freqs[delta]++;
+                               *itemptr++ = 19 | (extra_bits << 5) | (delta << 6);
+                               run_start += 4 + extra_bits;
                        }
                }
 
-               /* Any remaining lengths in the run are outputted without RLE,
-                * as a difference from the length of that codeword in the
-                * previous tree. */
-               while (cur_run_len > 0) {
-                       signed char delta;
-
-                       delta = (signed char)prev_lens[i - cur_run_len] -
-                               (signed char)len_in_run;
+               /* Output any remaining lengths without RLE.  */
+               while (run_start != run_end) {
+                       delta = prev_lens[run_start] - len;
                        if (delta < 0)
                                delta += 17;
-
-                       precode_freqs[(unsigned char)delta]++;
-                       output_syms[output_syms_idx++] = delta;
-                       cur_run_len--;
+                       precode_freqs[delta]++;
+                       *itemptr++ = delta;
+                       run_start++;
                }
+       } while (run_start != num_lens);
 
-               cur_run_len = 1;
-       }
-
-       /* Build the precode from the frequencies of the length symbols. */
-
-       make_canonical_huffman_code(LZX_PRECODE_NUM_SYMBOLS,
-                                   LZX_MAX_PRE_CODEWORD_LEN,
-                                   precode_freqs, precode_lens,
-                                   precode_codewords);
-
-       *num_additional_bits_ret = num_additional_bits;
-
-       return output_syms_idx;
+       return itemptr - precode_items;
 }
 
 /*
- * Writes a compressed Huffman code to the output, preceded by the precode for
- * it.
- *
- * The Huffman code is represented in the output as a series of path lengths
- * from which the canonical Huffman code can be reconstructed.  The path lengths
- * themselves are compressed using a separate Huffman code, the precode, which
- * consists of LZX_PRECODE_NUM_SYMBOLS (= 20) symbols that cover all possible
- * code lengths, plus extra codes for repeated lengths.  The path lengths of the
- * precode precede the path lengths of the larger code and are uncompressed,
- * consisting of 20 entries of 4 bits each.
- *
- * @out:               Bitstream to write the code to.
- * @lens:              The code lengths for the Huffman code, indexed by symbol.
- * @prev_lens:         Code lengths for this Huffman code, indexed by symbol,
- *                     in the *previous block*, or all zeroes if this is the
- *                     first block.
- * @num_syms:          The number of symbols in the code.
+ * Output a Huffman code in the compressed form used in LZX.
+ *
+ * The Huffman code is represented in the output as a logical series of codeword
+ * lengths from which the Huffman code, which must be in canonical form, can be
+ * reconstructed.
+ *
+ * The codeword lengths are themselves compressed using a separate Huffman code,
+ * the "precode", which contains a symbol for each possible codeword length in
+ * the larger code as well as several special symbols to represent repeated
+ * codeword lengths (a form of run-length encoding).  The precode is itself
+ * constructed in canonical form, and its codeword lengths are represented
+ * literally in 20 4-bit fields that immediately precede the compressed codeword
+ * lengths of the larger code.
+ *
+ * Furthermore, the codeword lengths of the larger code are actually represented
+ * as deltas from the codeword lengths of the corresponding code in the previous
+ * block.
+ *
+ * @os:
+ *     Bitstream to which to write the compressed Huffman code.
+ * @lens:
+ *     The codeword lengths, indexed by symbol, in the Huffman code.
+ * @prev_lens:
+ *     The codeword lengths, indexed by symbol, in the corresponding Huffman
+ *     code in the previous block, or all zeroes if this is the first block.
+ * @num_lens:
+ *     The number of symbols in the Huffman code.
  */
 static void
-lzx_write_compressed_code(struct output_bitstream *out,
+lzx_write_compressed_code(struct lzx_output_bitstream *os,
                          const u8 lens[restrict],
                          const u8 prev_lens[restrict],
-                         unsigned num_syms)
+                         unsigned num_lens)
 {
-       freq_t precode_freqs[LZX_PRECODE_NUM_SYMBOLS];
-       u8 output_syms[num_syms];
+       u32 precode_freqs[LZX_PRECODE_NUM_SYMBOLS];
        u8 precode_lens[LZX_PRECODE_NUM_SYMBOLS];
-       u16 precode_codewords[LZX_PRECODE_NUM_SYMBOLS];
+       u32 precode_codewords[LZX_PRECODE_NUM_SYMBOLS];
+       unsigned precode_items[num_lens];
+       unsigned num_precode_items;
+       unsigned precode_item;
+       unsigned precode_sym;
        unsigned i;
-       unsigned num_output_syms;
-       u8 precode_sym;
-       unsigned dummy;
-
-       num_output_syms = lzx_build_precode(lens,
-                                           prev_lens,
-                                           num_syms,
-                                           precode_freqs,
-                                           output_syms,
-                                           precode_lens,
-                                           precode_codewords,
-                                           &dummy);
-
-       /* Write the lengths of the precode codes to the output. */
+
        for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
-               bitstream_put_bits(out, precode_lens[i],
-                                  LZX_PRECODE_ELEMENT_SIZE);
+               precode_freqs[i] = 0;
 
-       /* Write the length symbols, encoded with the precode, to the output. */
+       /* Compute the "items" (RLE / literal tokens and extra bits) with which
+        * the codeword lengths in the larger code will be output.  */
+       num_precode_items = lzx_compute_precode_items(lens,
+                                                     prev_lens,
+                                                     num_lens,
+                                                     precode_freqs,
+                                                     precode_items);
 
-       for (i = 0; i < num_output_syms; ) {
-               precode_sym = output_syms[i++];
+       /* Build the precode.  */
+       make_canonical_huffman_code(LZX_PRECODE_NUM_SYMBOLS,
+                                   LZX_MAX_PRE_CODEWORD_LEN,
+                                   precode_freqs, precode_lens,
+                                   precode_codewords);
 
-               bitstream_put_bits(out, precode_codewords[precode_sym],
-                                  precode_lens[precode_sym]);
-               switch (precode_sym) {
-               case 17:
-                       bitstream_put_bits(out, output_syms[i++], 4);
-                       break;
-               case 18:
-                       bitstream_put_bits(out, output_syms[i++], 5);
-                       break;
-               case 19:
-                       bitstream_put_bits(out, output_syms[i++], 1);
-                       bitstream_put_bits(out,
-                                          precode_codewords[output_syms[i]],
-                                          precode_lens[output_syms[i]]);
-                       i++;
-                       break;
-               default:
-                       break;
+       /* Output the lengths of the codewords in the precode.  */
+       for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
+               lzx_write_bits(os, precode_lens[i], LZX_PRECODE_ELEMENT_SIZE);
+
+       /* Output the encoded lengths of the codewords in the larger code.  */
+       for (i = 0; i < num_precode_items; i++) {
+               precode_item = precode_items[i];
+               precode_sym = precode_item & 0x1F;
+               lzx_write_varbits(os, precode_codewords[precode_sym],
+                                 precode_lens[precode_sym],
+                                 LZX_MAX_PRE_CODEWORD_LEN);
+               if (precode_sym >= 17) {
+                       if (precode_sym == 17) {
+                               lzx_write_bits(os, precode_item >> 5, 4);
+                       } else if (precode_sym == 18) {
+                               lzx_write_bits(os, precode_item >> 5, 5);
+                       } else {
+                               lzx_write_bits(os, (precode_item >> 5) & 1, 1);
+                               precode_sym = precode_item >> 6;
+                               lzx_write_varbits(os, precode_codewords[precode_sym],
+                                                 precode_lens[precode_sym],
+                                                 LZX_MAX_PRE_CODEWORD_LEN);
+                       }
                }
        }
 }
 
+/* Output a match or literal.  */
+static inline void
+lzx_write_item(struct lzx_output_bitstream *os, struct lzx_item item,
+              unsigned ones_if_aligned, const struct lzx_codes *codes)
+{
+       u64 data = item.data;
+       unsigned main_symbol;
+       unsigned len_symbol;
+       unsigned num_extra_bits;
+       u32 extra_bits;
+
+       main_symbol = data & 0x3FF;
+
+       lzx_write_varbits(os, codes->codewords.main[main_symbol],
+                         codes->lens.main[main_symbol],
+                         LZX_MAX_MAIN_CODEWORD_LEN);
+
+       if (main_symbol < LZX_NUM_CHARS)  /* Literal?  */
+               return;
+
+       len_symbol = (data >> 10) & 0xFF;
+
+       if (len_symbol != LZX_LENCODE_NUM_SYMBOLS) {
+               lzx_write_varbits(os, codes->codewords.len[len_symbol],
+                                 codes->lens.len[len_symbol],
+                                 LZX_MAX_LEN_CODEWORD_LEN);
+       }
+
+       num_extra_bits = (data >> 18) & 0x1F;
+       if (num_extra_bits == 0)  /* Small offset or repeat offset match?  */
+               return;
+
+       extra_bits = data >> 23;
+
+       /*if (block_type == LZX_BLOCKTYPE_ALIGNED && num_extra_bits >= 3) {*/
+       if ((num_extra_bits & ones_if_aligned) >= 3) {
+
+               /* Aligned offset blocks: The low 3 bits of the extra offset
+                * bits are Huffman-encoded using the aligned offset code.  The
+                * remaining bits are output literally.  */
+
+               lzx_write_varbits(os, extra_bits >> 3, num_extra_bits - 3, 14);
+
+               lzx_write_varbits(os, codes->codewords.aligned[extra_bits & 7],
+                                 codes->lens.aligned[extra_bits & 7],
+                                 LZX_MAX_ALIGNED_CODEWORD_LEN);
+       } else {
+               /* Verbatim blocks, or fewer than 3 extra bits:  All extra
+                * offset bits are output literally.  */
+               lzx_write_varbits(os, extra_bits, num_extra_bits, 17);
+       }
+}
+
 /*
- * Writes all compressed matches and literal bytes in an LZX block to the the
- * output bitstream.
+ * Write all matches and literal bytes (which were precomputed) in an LZX
+ * compressed block to the output bitstream in the final compressed
+ * representation.
  *
- * @ostream
+ * @os
  *     The output bitstream.
  * @block_type
- *     The type of the block (LZX_BLOCKTYPE_ALIGNED or LZX_BLOCKTYPE_VERBATIM).
- * @match_tab
- *     The array of matches/literals that will be output (length @match_count).
- * @match_count
- *     Number of matches/literals to be output.
+ *     The chosen type of the LZX compressed block (LZX_BLOCKTYPE_ALIGNED or
+ *     LZX_BLOCKTYPE_VERBATIM).
+ * @items
+ *     The array of matches/literals to output.
+ * @num_items
+ *     Number of matches/literals to output (length of @items).
  * @codes
- *     Pointer to a structure that contains the codewords for the main, length,
- *     and aligned offset Huffman codes.
+ *     The main, length, and aligned offset Huffman codes for the current
+ *     LZX compressed block.
  */
 static void
-lzx_write_matches_and_literals(struct output_bitstream *ostream,
-                              int block_type,
-                              const struct lzx_match match_tab[],
-                              unsigned match_count,
-                              const struct lzx_codes *codes)
+lzx_write_items(struct lzx_output_bitstream *os, int block_type,
+               const struct lzx_item items[], u32 num_items,
+               const struct lzx_codes *codes)
 {
-       for (unsigned i = 0; i < match_count; i++) {
-               struct lzx_match match = match_tab[i];
-
-               /* High bit of the match indicates whether the match is an
-                * actual match (1) or a literal uncompressed byte (0)  */
-               if (match.data & 0x80000000) {
-                       /* match */
-                       lzx_write_match(ostream, block_type,
-                                       match, codes);
-               } else {
-                       /* literal byte */
-                       bitstream_put_bits(ostream,
-                                          codes->codewords.main[match.data],
-                                          codes->lens.main[match.data]);
-               }
-       }
-}
-
-static void
-lzx_assert_codes_valid(const struct lzx_codes * codes)
-{
-#ifdef ENABLE_LZX_DEBUG
-       unsigned i;
+       unsigned ones_if_aligned = 0U - (block_type == LZX_BLOCKTYPE_ALIGNED);
 
-       for (i = 0; i < LZX_MAINCODE_NUM_SYMBOLS; i++)
-               LZX_ASSERT(codes->lens.main[i] <= LZX_MAX_MAIN_CODEWORD_LEN);
-
-       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
-               LZX_ASSERT(codes->lens.len[i] <= LZX_MAX_LEN_CODEWORD_LEN);
-
-       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
-               LZX_ASSERT(codes->lens.aligned[i] <= LZX_MAX_ALIGNED_CODEWORD_LEN);
-
-       const unsigned tablebits = 10;
-       u16 decode_table[(1 << tablebits) +
-                        (2 * max(LZX_MAINCODE_NUM_SYMBOLS, LZX_LENCODE_NUM_SYMBOLS))]
-                        _aligned_attribute(DECODE_TABLE_ALIGNMENT);
-       LZX_ASSERT(0 == make_huffman_decode_table(decode_table,
-                                                 LZX_MAINCODE_NUM_SYMBOLS,
-                                                 min(tablebits, LZX_MAINCODE_TABLEBITS),
-                                                 codes->lens.main,
-                                                 LZX_MAX_MAIN_CODEWORD_LEN));
-       LZX_ASSERT(0 == make_huffman_decode_table(decode_table,
-                                                 LZX_LENCODE_NUM_SYMBOLS,
-                                                 min(tablebits, LZX_LENCODE_TABLEBITS),
-                                                 codes->lens.len,
-                                                 LZX_MAX_LEN_CODEWORD_LEN));
-       LZX_ASSERT(0 == make_huffman_decode_table(decode_table,
-                                                 LZX_ALIGNEDCODE_NUM_SYMBOLS,
-                                                 min(tablebits, LZX_ALIGNEDCODE_TABLEBITS),
-                                                 codes->lens.aligned,
-                                                 LZX_MAX_ALIGNED_CODEWORD_LEN));
-#endif /* ENABLE_LZX_DEBUG */
+       for (u32 i = 0; i < num_items; i++)
+               lzx_write_item(os, items[i], ones_if_aligned, codes);
 }
 
-/* Write an LZX aligned offset or verbatim block to the output.  */
+/* Write an LZX aligned offset or verbatim block to the output bitstream.  */
 static void
 lzx_write_compressed_block(int block_type,
-                          unsigned block_size,
-                          struct lzx_match * chosen_matches,
-                          unsigned num_chosen_matches,
+                          u32 block_size,
+                          unsigned window_order,
+                          unsigned num_main_syms,
+                          struct lzx_item * chosen_items,
+                          u32 num_chosen_items,
                           const struct lzx_codes * codes,
-                          const struct lzx_codes * prev_codes,
-                          struct output_bitstream * ostream)
+                          const struct lzx_lens * prev_lens,
+                          struct lzx_output_bitstream * os)
 {
-       unsigned i;
-
        LZX_ASSERT(block_type == LZX_BLOCKTYPE_ALIGNED ||
                   block_type == LZX_BLOCKTYPE_VERBATIM);
-       LZX_ASSERT(block_size <= LZX_MAX_WINDOW_SIZE);
-       LZX_ASSERT(num_chosen_matches <= LZX_MAX_WINDOW_SIZE);
-       lzx_assert_codes_valid(codes);
 
        /* The first three bits indicate the type of block and are one of the
         * LZX_BLOCKTYPE_* constants.  */
-       bitstream_put_bits(ostream, block_type, LZX_BLOCKTYPE_NBITS);
+       lzx_write_bits(os, block_type, 3);
 
-       /* The next bit indicates whether the block size is the default (32768),
-        * indicated by a 1 bit, or whether the block size is given by the next
-        * 16 bits, indicated by a 0 bit.  */
+       /* Output the block size.
+        *
+        * The original LZX format seemed to always encode the block size in 3
+        * bytes.  However, the implementation in WIMGAPI, as used in WIM files,
+        * uses the first bit to indicate whether the block is the default size
+        * (32768) or a different size given explicitly by the next 16 bits.
+        *
+        * By default, this compressor uses a window size of 32768 and therefore
+        * follows the WIMGAPI behavior.  However, this compressor also supports
+        * window sizes greater than 32768 bytes, which do not appear to be
+        * supported by WIMGAPI.  In such cases, we retain the default size bit
+        * to mean a size of 32768 bytes but output non-default block size in 24
+        * bits rather than 16.  The compatibility of this behavior is unknown
+        * because WIMs created with chunk size greater than 32768 can seemingly
+        * only be opened by wimlib anyway.  */
        if (block_size == LZX_DEFAULT_BLOCK_SIZE) {
-               bitstream_put_bits(ostream, 1, 1);
+               lzx_write_bits(os, 1, 1);
        } else {
-               bitstream_put_bits(ostream, 0, 1);
-               bitstream_put_bits(ostream, block_size, LZX_BLOCKSIZE_NBITS);
+               lzx_write_bits(os, 0, 1);
+
+               if (window_order >= 16)
+                       lzx_write_bits(os, block_size >> 16, 8);
+
+               lzx_write_bits(os, block_size & 0xFFFF, 16);
+       }
+
+       /* If it's an aligned offset block, output the aligned offset code.  */
+       if (block_type == LZX_BLOCKTYPE_ALIGNED) {
+               for (int i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+                       lzx_write_bits(os, codes->lens.aligned[i],
+                                      LZX_ALIGNEDCODE_ELEMENT_SIZE);
+               }
        }
 
-       /* Write out lengths of the main code. Note that the LZX specification
-        * incorrectly states that the aligned offset code comes after the
-        * length code, but in fact it is the very first tree to be written
-        * (before the main code).  */
-       if (block_type == LZX_BLOCKTYPE_ALIGNED)
-               for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
-                       bitstream_put_bits(ostream, codes->lens.aligned[i],
-                                          LZX_ALIGNEDCODE_ELEMENT_SIZE);
-
-       LZX_DEBUG("Writing main code...");
-
-       /* Write the pre-tree and lengths for the first LZX_NUM_CHARS symbols in
-        * the main code, which are the codewords for literal bytes.  */
-       lzx_write_compressed_code(ostream,
-                                 codes->lens.main,
-                                 prev_codes->lens.main,
+       /* Output the main code (two parts).  */
+       lzx_write_compressed_code(os, codes->lens.main,
+                                 prev_lens->main,
                                  LZX_NUM_CHARS);
+       lzx_write_compressed_code(os, codes->lens.main + LZX_NUM_CHARS,
+                                 prev_lens->main + LZX_NUM_CHARS,
+                                 num_main_syms - LZX_NUM_CHARS);
 
-       /* Write the pre-tree and lengths for the rest of the main code, which
-        * are the codewords for match headers.  */
-       lzx_write_compressed_code(ostream,
-                                 codes->lens.main + LZX_NUM_CHARS,
-                                 prev_codes->lens.main + LZX_NUM_CHARS,
-                                 LZX_MAINCODE_NUM_SYMBOLS - LZX_NUM_CHARS);
+       /* Output the length code.  */
+       lzx_write_compressed_code(os, codes->lens.len,
+                                 prev_lens->len,
+                                 LZX_LENCODE_NUM_SYMBOLS);
 
-       LZX_DEBUG("Writing length code...");
+       /* Output the compressed matches and literals.  */
+       lzx_write_items(os, block_type, chosen_items, num_chosen_items, codes);
+}
 
-       /* Write the pre-tree and lengths for the length code.  */
-       lzx_write_compressed_code(ostream,
-                                 codes->lens.len,
-                                 prev_codes->lens.len,
-                                 LZX_LENCODE_NUM_SYMBOLS);
+/* Don't allow matches to span the end of an LZX block.  */
+static inline unsigned
+maybe_truncate_matches(struct lz_match matches[], unsigned num_matches,
+                      struct lzx_compressor *c)
+{
+       if (c->match_window_end < c->cur_window_size && num_matches != 0) {
+               u32 limit = c->match_window_end - c->match_window_pos;
 
-       LZX_DEBUG("Writing matches and literals...");
+               if (limit >= LZX_MIN_MATCH_LEN) {
 
-       /* Write the actual matches and literals.  */
-       lzx_write_matches_and_literals(ostream, block_type,
-                                      chosen_matches, num_chosen_matches,
-                                      codes);
+                       unsigned i = num_matches - 1;
+                       do {
+                               if (matches[i].len >= limit) {
+                                       matches[i].len = limit;
 
-       LZX_DEBUG("Done writing block.");
+                                       /* Truncation might produce multiple
+                                        * matches with length 'limit'.  Keep at
+                                        * most 1.  */
+                                       num_matches = i + 1;
+                               }
+                       } while (i--);
+               } else {
+                       num_matches = 0;
+               }
+       }
+       return num_matches;
 }
 
-/* Write out the LZX blocks that were computed.  */
-static void
-lzx_write_all_blocks(struct lzx_compressor *ctx, struct output_bitstream *ostream)
+static unsigned
+lzx_get_matches_fillcache_singleblock(struct lzx_compressor *c,
+                                     const struct lz_match **matches_ret)
 {
-       const struct lzx_codes *prev_codes = &ctx->zero_codes;
-       for (unsigned i = 0; i < ctx->num_blocks; i++) {
-               const struct lzx_block_spec *spec = &ctx->block_specs[i];
-
-               LZX_DEBUG("Writing block %u/%u (type=%d, size=%u, num_chosen_matches=%u)...",
-                         i + 1, ctx->num_blocks,
-                         spec->block_type, spec->block_size,
-                         spec->num_chosen_matches);
-
-               lzx_write_compressed_block(spec->block_type,
-                                          spec->block_size,
-                                          &ctx->chosen_matches[spec->chosen_matches_start_pos],
-                                          spec->num_chosen_matches,
-                                          &spec->codes,
-                                          prev_codes,
-                                          ostream);
-               prev_codes = &spec->codes;
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
+
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       if (likely(cache_ptr <= c->cache_limit)) {
+               num_matches = lz_mf_get_matches(c->mf, matches);
+               cache_ptr->len = num_matches;
+               c->cache_ptr = matches + num_matches;
+       } else {
+               num_matches = 0;
        }
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
 }
 
-/* Constructs an LZX match from a literal byte and updates the main code symbol
- * frequencies.  */
-static u32
-lzx_record_literal(u8 literal, void *_freqs)
+static unsigned
+lzx_get_matches_fillcache_multiblock(struct lzx_compressor *c,
+                                    const struct lz_match **matches_ret)
 {
-       struct lzx_freqs *freqs = _freqs;
-
-       freqs->main[literal]++;
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
 
-       return (u32)literal;
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       if (likely(cache_ptr <= c->cache_limit)) {
+               num_matches = lz_mf_get_matches(c->mf, matches);
+               num_matches = maybe_truncate_matches(matches, num_matches, c);
+               cache_ptr->len = num_matches;
+               c->cache_ptr = matches + num_matches;
+       } else {
+               num_matches = 0;
+       }
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
 }
 
-/* Constructs an LZX match from an offset and a length, and updates the LRU
- * queue and the frequency of symbols in the main, length, and aligned offset
- * alphabets.  The return value is a 32-bit number that provides the match in an
- * intermediate representation documented below.  */
-static u32
-lzx_record_match(unsigned match_offset, unsigned match_len,
-                void *_freqs, void *_queue)
+static unsigned
+lzx_get_matches_usecache(struct lzx_compressor *c,
+                        const struct lz_match **matches_ret)
 {
-       struct lzx_freqs *freqs = _freqs;
-       struct lzx_lru_queue *queue = _queue;
-       unsigned position_slot;
-       unsigned position_footer;
-       u32 len_header;
-       unsigned main_symbol;
-       unsigned len_footer;
-       unsigned adjusted_match_len;
-
-       LZX_ASSERT(match_len >= LZX_MIN_MATCH_LEN && match_len <= LZX_MAX_MATCH_LEN);
-
-       /* The match offset shall be encoded as a position slot (itself encoded
-        * as part of the main symbol) and a position footer.  */
-       position_slot = lzx_get_position_slot(match_offset, queue);
-       position_footer = (match_offset + LZX_OFFSET_OFFSET) &
-                               ((1U << lzx_get_num_extra_bits(position_slot)) - 1);
-
-       /* The match length shall be encoded as a length header (itself encoded
-        * as part of the main symbol) and an optional length footer.  */
-       adjusted_match_len = match_len - LZX_MIN_MATCH_LEN;
-       if (adjusted_match_len < LZX_NUM_PRIMARY_LENS) {
-               /* No length footer needed.  */
-               len_header = adjusted_match_len;
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
+
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       if (cache_ptr <= c->cache_limit) {
+               num_matches = cache_ptr->len;
+               c->cache_ptr = matches + num_matches;
        } else {
-               /* Length footer needed.  It will be encoded using the length
-                * code.  */
-               len_header = LZX_NUM_PRIMARY_LENS;
-               len_footer = adjusted_match_len - LZX_NUM_PRIMARY_LENS;
-               freqs->len[len_footer]++;
+               num_matches = 0;
        }
-
-       /* Account for the main symbol.  */
-       main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-
-       freqs->main[main_symbol]++;
-
-       /* In an aligned offset block, 3 bits of the position footer are output
-        * as an aligned offset symbol.  Account for this, although we may
-        * ultimately decide to output the block as verbatim.  */
-
-       /* The following check is equivalent to:
-        *
-        * if (lzx_extra_bits[position_slot] >= 3)
-        *
-        * Note that this correctly excludes position slots that correspond to
-        * recent offsets.  */
-       if (position_slot >= 8)
-               freqs->aligned[position_footer & 7]++;
-
-       /* Pack the position slot, position footer, and match length into an
-        * intermediate representation.
-        *
-        * bits    description
-        * ----    -----------------------------------------------------------
-        *
-        * 31      1 if a match, 0 if a literal.
-        *
-        * 30-25   position slot.  This can be at most 50, so it will fit in 6
-        *         bits.
-        *
-        * 8-24    position footer.  This is the offset of the real formatted
-        *         offset from the position base.  This can be at most 17 bits
-        *         (since lzx_extra_bits[LZX_NUM_POSITION_SLOTS - 1] is 17).
-        *
-        * 0-7     length of match, offset by 2.  This can be at most
-        *         (LZX_MAX_MATCH_LEN - 2) == 255, so it will fit in 8 bits.  */
-       BUILD_BUG_ON(LZX_NUM_POSITION_SLOTS > 64);
-       LZX_ASSERT(lzx_get_num_extra_bits(LZX_NUM_POSITION_SLOTS - 1) <= 17);
-       BUILD_BUG_ON(LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1 > 256);
-       return 0x80000000 |
-               (position_slot << 25) |
-               (position_footer << 8) |
-               (adjusted_match_len);
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
 }
 
-/* Returns the cost, in bits, to output a literal byte using the specified cost
- * model.  */
-static sym_cost_t
-lzx_literal_cost(u8 c, const struct lzx_costs * costs)
+static unsigned
+lzx_get_matches_usecache_nocheck(struct lzx_compressor *c,
+                                const struct lz_match **matches_ret)
 {
-       return costs->main[c];
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
+
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       num_matches = cache_ptr->len;
+       c->cache_ptr = matches + num_matches;
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
 }
 
-/* Given a (length, offset) pair that could be turned into a valid LZX match as
- * well as costs for the codewords in the main, length, and aligned Huffman
- * codes, return the approximate number of bits it will take to represent this
- * match in the compressed output.  Take into account the match offset LRU
- * queue and optionally update it.  */
-static sym_cost_t
-lzx_match_cost(unsigned length, unsigned offset, const struct lzx_costs *costs,
-              struct lzx_lru_queue *queue)
+static unsigned
+lzx_get_matches_nocache_singleblock(struct lzx_compressor *c,
+                                   const struct lz_match **matches_ret)
 {
-       unsigned position_slot;
-       unsigned len_header, main_symbol;
-       sym_cost_t cost = 0;
-
-       position_slot = lzx_get_position_slot(offset, queue);
-
-       len_header = min(length - LZX_MIN_MATCH_LEN, LZX_NUM_PRIMARY_LENS);
-       main_symbol = (position_slot << 3) | len_header | LZX_NUM_CHARS;
-
-       /* Account for main symbol.  */
-       cost += costs->main[main_symbol];
-
-       /* Account for extra position information.  */
-       unsigned num_extra_bits = lzx_get_num_extra_bits(position_slot);
-       if (num_extra_bits >= 3) {
-               cost += num_extra_bits - 3;
-               cost += costs->aligned[(offset + LZX_OFFSET_OFFSET) & 7];
-       } else {
-               cost += num_extra_bits;
-       }
-
-       /* Account for extra length information.  */
-       if (len_header == LZX_NUM_PRIMARY_LENS)
-               cost += costs->len[length - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
-
-       return cost;
+       struct lz_match *matches;
+       unsigned num_matches;
 
+       matches = c->cache_ptr;
+       num_matches = lz_mf_get_matches(c->mf, matches);
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
 }
 
-/* Very fast heuristic cost evaluation to use in the inner loop of the
- * match-finder.  */
-static sym_cost_t
-lzx_match_cost_fast(unsigned offset, const struct lzx_lru_queue *queue)
+static unsigned
+lzx_get_matches_nocache_multiblock(struct lzx_compressor *c,
+                                  const struct lz_match **matches_ret)
 {
-       for (unsigned i = 0; i < LZX_NUM_RECENT_OFFSETS; i++)
-               if (offset == queue->R[i])
-                       return i;
+       struct lz_match *matches;
+       unsigned num_matches;
 
-       BUILD_BUG_ON(LZX_MAX_WINDOW_SIZE >= (sym_cost_t)~0U);
-       return offset;
+       matches = c->cache_ptr;
+       num_matches = lz_mf_get_matches(c->mf, matches);
+       num_matches = maybe_truncate_matches(matches, num_matches, c);
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
 }
 
-/* Set the cost model @ctx->costs from the Huffman codeword lengths specified in
- * @lens.
+/*
+ * Find matches at the next position in the window.
  *
- * The cost model and codeword lengths are almost the same thing, but the
- * Huffman codewords with length 0 correspond to symbols with zero frequency
- * that still need to be assigned actual costs.  The specific values assigned
- * are arbitrary, but they should be fairly high (near the maximum codeword
- * length) to take into account the fact that uses of these symbols are expected
- * to be rare.  */
-static void
-lzx_set_costs(struct lzx_compressor * ctx, const struct lzx_lens * lens)
+ * This uses a wrapper function around the underlying match-finder.
+ *
+ * Returns the number of matches found and sets *matches_ret to point to the
+ * matches array.  The matches will be sorted by strictly increasing length and
+ * offset.
+ */
+static inline unsigned
+lzx_get_matches(struct lzx_compressor *c, const struct lz_match **matches_ret)
 {
-       unsigned i;
-
-       /* Main code  */
-       for (i = 0; i < LZX_MAINCODE_NUM_SYMBOLS; i++) {
-               ctx->costs.main[i] = lens->main[i];
-               if (ctx->costs.main[i] == 0)
-                       ctx->costs.main[i] = ctx->params.alg_params.slow.main_nostat_cost;
-       }
-
-       /* Length code  */
-       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++) {
-               ctx->costs.len[i] = lens->len[i];
-               if (ctx->costs.len[i] == 0)
-                       ctx->costs.len[i] = ctx->params.alg_params.slow.len_nostat_cost;
-       }
-
-       /* Aligned offset code  */
-       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
-               ctx->costs.aligned[i] = lens->aligned[i];
-               if (ctx->costs.aligned[i] == 0)
-                       ctx->costs.aligned[i] = ctx->params.alg_params.slow.aligned_nostat_cost;
-       }
+       return (*c->get_matches_func)(c, matches_ret);
 }
 
-/* Advance the suffix array match-finder to the next position.  */
 static void
-lzx_lz_update_salink(input_idx_t i,
-                    const input_idx_t SA[restrict],
-                    const input_idx_t ISA[restrict],
-                    struct salink link[restrict])
+lzx_skip_bytes_fillcache(struct lzx_compressor *c, unsigned n)
 {
-       /* r = Rank of the suffix at the current position.  */
-       const input_idx_t r = ISA[i];
-
-       /* next = rank of LOWEST ranked suffix that is ranked HIGHER than the
-        * current suffix AND has a LOWER position, or -1 if none exists.  */
-       const input_idx_t next = link[r].next;
-
-       /* prev = rank of HIGHEST ranked suffix that is ranked LOWER than the
-        * current suffix AND has a LOWER position, or -1 if none exists.  */
-       const input_idx_t prev = link[r].prev;
-
-       /* Link the suffix at the current position into the linked list that
-        * contains all suffixes in the suffix array that are appear at or
-        * before the current position, sorted by rank.
-        *
-        * Save the values of all fields we overwrite so that rollback is
-        * possible.  */
-       if (next != (input_idx_t)~0U) {
+       struct lz_match *cache_ptr;
 
-               link[next].prev = r;
-               link[next].lcpprev = link[r].lcpnext;
+       cache_ptr = c->cache_ptr;
+       c->match_window_pos += n;
+       lz_mf_skip_positions(c->mf, n);
+       if (cache_ptr <= c->cache_limit) {
+               do {
+                       cache_ptr->len = 0;
+                       cache_ptr += 1;
+               } while (--n && cache_ptr <= c->cache_limit);
        }
+       c->cache_ptr = cache_ptr;
+}
 
-       if (prev != (input_idx_t)~0U) {
+static void
+lzx_skip_bytes_usecache(struct lzx_compressor *c, unsigned n)
+{
+       struct lz_match *cache_ptr;
 
-               link[prev].next = r;
-               link[prev].lcpnext = link[r].lcpprev;
+       cache_ptr = c->cache_ptr;
+       c->match_window_pos += n;
+       if (cache_ptr <= c->cache_limit) {
+               do {
+                       cache_ptr += 1 + cache_ptr->len;
+               } while (--n && cache_ptr <= c->cache_limit);
        }
+       c->cache_ptr = cache_ptr;
 }
 
-/* Rewind the suffix array match-finder to the specified position.
- *
- * This undoes a series of updates by lzx_lz_update_salink().  */
 static void
-lzx_lz_rewind_matchfinder(struct lzx_compressor *ctx,
-                         const unsigned orig_pos)
+lzx_skip_bytes_usecache_nocheck(struct lzx_compressor *c, unsigned n)
 {
-       LZX_DEBUG("Rewind match-finder %u => %u", ctx->match_window_pos, orig_pos);
+       struct lz_match *cache_ptr;
 
-       if (ctx->match_window_pos == orig_pos)
-               return;
+       cache_ptr = c->cache_ptr;
+       c->match_window_pos += n;
+       do {
+               cache_ptr += 1 + cache_ptr->len;
+       } while (--n);
+       c->cache_ptr = cache_ptr;
+}
 
-       LZX_ASSERT(ctx->match_window_pos > orig_pos);
-       LZX_ASSERT(orig_pos == 0);
-       ctx->matches_cached = true;
-       ctx->cached_matches_pos = 0;
-       ctx->match_window_pos = orig_pos;
+static void
+lzx_skip_bytes_nocache(struct lzx_compressor *c, unsigned n)
+{
+       c->match_window_pos += n;
+       lz_mf_skip_positions(c->mf, n);
 }
 
 /*
- * Use the suffix array match-finder to retrieve a list of LZ matches at the
- * current position.
+ * Skip the specified number of positions in the window (don't search for
+ * matches at them).
  *
- * [in]    @i          Current position in the window.
- * [in]    @SA         Suffix array for the window.
- * [in]    @ISA                Inverse suffix array for the window.
- * [inout] @link       Suffix array links used internally by the match-finder.
- * [out]   @matches    The (length, offset) pairs of the resulting matches will
- *                             be written here, sorted in decreasing order by
- *                             length.  All returned lengths will be unique.
- * [in]    @queue      Recently used match offsets, used when evaluating the
- *                             cost of matches.
- * [in]           @min_match_len       Minimum match length to return.
- * [in]           @max_matches_to_consider     Maximum number of matches to consider at
- *                                     the position.
- * [in]           @max_matches_to_return       Maximum number of matches to return.
- *
- * The return value is the number of matches found and written to @matches.
+ * This uses a wrapper function around the underlying match-finder.
  */
-static unsigned
-lzx_lz_get_matches(const input_idx_t i,
-                  const input_idx_t SA[const restrict],
-                  const input_idx_t ISA[const restrict],
-                  struct salink link[const restrict],
-                  struct raw_match matches[const restrict],
-                  const struct lzx_lru_queue * const restrict queue,
-                  const unsigned min_match_len,
-                  const uint32_t max_matches_to_consider,
-                  const uint32_t max_matches_to_return)
+static inline void
+lzx_skip_bytes(struct lzx_compressor *c, unsigned n)
 {
-       /* r = Rank of the suffix at the current position.  */
-       const input_idx_t r = ISA[i];
-
-       /* Prepare for searching the current position.  */
-       lzx_lz_update_salink(i, SA, ISA, link);
-
-       /* L = rank of next suffix to the left;
-        * R = rank of next suffix to the right;
-        * lenL = length of match between current position and the suffix with rank L;
-        * lenR = length of match between current position and the suffix with rank R.
-        *
-        * This is left and right relative to the rank of the current suffix.
-        * Since the suffixes in the suffix array are sorted, the longest
-        * matches are immediately to the left and right (using the linked list
-        * to ignore all suffixes that occur later in the window).  The match
-        * length decreases the farther left and right we go.  We shall keep the
-        * length on both sides in sync in order to choose the lowest-cost match
-        * of each length.
-        */
-       input_idx_t L = link[r].prev;
-       input_idx_t R = link[r].next;
-       input_idx_t lenL = link[r].lcpprev;
-       input_idx_t lenR = link[r].lcpnext;
-
-       /* nmatches = number of matches found so far.  */
-       unsigned nmatches = 0;
-
-       /* best_cost = cost of lowest-cost match found so far.
-        *
-        * We keep track of this so that we can ignore shorter matches that do
-        * not have lower costs than a longer matches already found.
-        */
-       sym_cost_t best_cost = INFINITE_SYM_COST;
+       return (*c->skip_bytes_func)(c, n);
+}
 
-       /* count_remaining = maximum number of possible matches remaining to be
-        * considered.  */
-       uint32_t count_remaining = max_matches_to_consider;
+/* Tally, and optionally record, the specified literal byte.  */
+static inline void
+lzx_declare_literal(struct lzx_compressor *c, unsigned literal,
+                   struct lzx_item **next_chosen_item)
+{
+       unsigned main_symbol = literal;
 
-       /* pending = match currently being considered for a specific length.  */
-       struct raw_match pending;
+       c->freqs.main[main_symbol]++;
 
-       while (lenL >= min_match_len || lenR >= min_match_len)
-       {
-               pending.len = lenL;
-               pending.offset = (input_idx_t)~0U;
-               sym_cost_t pending_cost = INFINITE_SYM_COST;
-               sym_cost_t cost;
+       if (next_chosen_item) {
+               *(*next_chosen_item)++ = (struct lzx_item) {
+                       .data = main_symbol,
+               };
+       }
+}
 
-               /* Extend left.  */
-               if (lenL >= min_match_len && lenL >= lenR) {
-                       for (;;) {
+/* Tally, and optionally record, the specified repeat offset match.  */
+static inline void
+lzx_declare_repeat_offset_match(struct lzx_compressor *c,
+                               unsigned len, unsigned rep_index,
+                               struct lzx_item **next_chosen_item)
+{
+       unsigned len_header;
+       unsigned main_symbol;
+       unsigned len_symbol;
 
-                               if (--count_remaining == 0)
-                                       goto out_save_pending;
+       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+               len_header = len - LZX_MIN_MATCH_LEN;
+               len_symbol = LZX_LENCODE_NUM_SYMBOLS;
+       } else {
+               len_header = LZX_NUM_PRIMARY_LENS;
+               len_symbol = len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS;
+               c->freqs.len[len_symbol]++;
+       }
 
-                               input_idx_t offset = i - SA[L];
+       main_symbol = LZX_NUM_CHARS + ((rep_index << 3) | len_header);
 
-                               /* Save match if it has smaller cost.  */
-                               cost = lzx_match_cost_fast(offset, queue);
-                               if (cost < pending_cost) {
-                                       pending.offset = offset;
-                                       pending_cost = cost;
-                               }
+       c->freqs.main[main_symbol]++;
 
-                               if (link[L].lcpprev < lenL) {
-                                       /* Match length decreased.  */
-
-                                       lenL = link[L].lcpprev;
-
-                                       /* Save the pending match unless the
-                                        * right side still may have matches of
-                                        * this length to be scanned, or if a
-                                        * previous (longer) match had lower
-                                        * cost.  */
-                                       if (pending.len > lenR) {
-                                               if (pending_cost < best_cost) {
-                                                       best_cost = pending_cost;
-                                                       matches[nmatches++] = pending;
-                                                       if (nmatches == max_matches_to_return)
-                                                               return nmatches;
-                                               }
-                                               pending.len = lenL;
-                                               pending.offset = (input_idx_t)~0U;
-                                               pending_cost = INFINITE_SYM_COST;
-                                       }
-                                       if (lenL < min_match_len || lenL < lenR)
-                                               break;
-                               }
-                               L = link[L].prev;
-                       }
-               }
+       if (next_chosen_item) {
+               *(*next_chosen_item)++ = (struct lzx_item) {
+                       .data = (u64)main_symbol | ((u64)len_symbol << 10),
+               };
+       }
+}
 
-               pending.len = lenR;
+/* Tally, and optionally record, the specified explicit offset match.  */
+static inline void
+lzx_declare_explicit_offset_match(struct lzx_compressor *c, unsigned len, u32 offset,
+                                 struct lzx_item **next_chosen_item)
+{
+       unsigned len_header;
+       unsigned main_symbol;
+       unsigned len_symbol;
+       unsigned offset_slot;
+       unsigned num_extra_bits;
+       u32 extra_bits;
 
-               /* Extend right.  */
-               if (lenR >= min_match_len && lenR > lenL) {
-                       for (;;) {
+       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+               len_header = len - LZX_MIN_MATCH_LEN;
+               len_symbol = LZX_LENCODE_NUM_SYMBOLS;
+       } else {
+               len_header = LZX_NUM_PRIMARY_LENS;
+               len_symbol = len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS;
+               c->freqs.len[len_symbol]++;
+       }
 
-                               if (--count_remaining == 0)
-                                       goto out_save_pending;
+       offset_slot = lzx_get_offset_slot_raw(offset + LZX_OFFSET_OFFSET);
 
-                               input_idx_t offset = i - SA[R];
+       main_symbol = LZX_NUM_CHARS + ((offset_slot << 3) | len_header);
 
-                               /* Save match if it has smaller cost.  */
-                               cost = lzx_match_cost_fast(offset, queue);
-                               if (cost < pending_cost) {
-                                       pending.offset = offset;
-                                       pending_cost = cost;
-                               }
+       c->freqs.main[main_symbol]++;
 
-                               if (link[R].lcpnext < lenR) {
-                                       /* Match length decreased.  */
+       if (offset_slot >= 8)
+               c->freqs.aligned[(offset + LZX_OFFSET_OFFSET) & 7]++;
 
-                                       lenR = link[R].lcpnext;
+       if (next_chosen_item) {
 
-                                       /* Save the pending match unless a
-                                        * previous (longer) match had lower
-                                        * cost.  */
-                                       if (pending_cost < best_cost) {
-                                               matches[nmatches++] = pending;
-                                               best_cost = pending_cost;
-                                               if (nmatches == max_matches_to_return)
-                                                       return nmatches;
-                                       }
+               num_extra_bits = lzx_extra_offset_bits[offset_slot];
 
-                                       if (lenR < min_match_len || lenR <= lenL)
-                                               break;
+               extra_bits = (offset + LZX_OFFSET_OFFSET) -
+                            lzx_offset_slot_base[offset_slot];
 
-                                       pending.len = lenR;
-                                       pending.offset = (input_idx_t)~0U;
-                                       pending_cost = INFINITE_SYM_COST;
-                               }
-                               R = link[R].next;
-                       }
-               }
+               *(*next_chosen_item)++ = (struct lzx_item) {
+                       .data = (u64)main_symbol |
+                               ((u64)len_symbol << 10) |
+                               ((u64)num_extra_bits << 18) |
+                               ((u64)extra_bits << 23),
+               };
        }
-       goto out;
+}
 
-out_save_pending:
-       if (pending.offset != (input_idx_t)~0U)
-               matches[nmatches++] = pending;
+/* Tally, and optionally record, the specified match or literal.  */
+static inline void
+lzx_declare_item(struct lzx_compressor *c, u32 mc_item_data,
+                struct lzx_item **next_chosen_item)
+{
+       u32 len = mc_item_data & MC_LEN_MASK;
+       u32 offset_data = mc_item_data >> MC_OFFSET_SHIFT;
+
+       if (len == 1)
+               lzx_declare_literal(c, offset_data, next_chosen_item);
+       else if (offset_data < LZX_NUM_RECENT_OFFSETS)
+               lzx_declare_repeat_offset_match(c, len, offset_data,
+                                               next_chosen_item);
+       else
+               lzx_declare_explicit_offset_match(c, len,
+                                                 offset_data - LZX_OFFSET_OFFSET,
+                                                 next_chosen_item);
+}
 
-out:
-       return nmatches;
+static inline void
+lzx_record_item_list(struct lzx_compressor *c,
+                    struct lzx_mc_pos_data *cur_optimum_ptr,
+                    struct lzx_item **next_chosen_item)
+{
+       struct lzx_mc_pos_data *end_optimum_ptr;
+       u32 saved_item;
+       u32 item;
+
+       /* The list is currently in reverse order (last item to first item).
+        * Reverse it.  */
+       end_optimum_ptr = cur_optimum_ptr;
+       saved_item = cur_optimum_ptr->mc_item_data;
+       do {
+               item = saved_item;
+               cur_optimum_ptr -= item & MC_LEN_MASK;
+               saved_item = cur_optimum_ptr->mc_item_data;
+               cur_optimum_ptr->mc_item_data = item;
+       } while (cur_optimum_ptr != c->optimum);
+
+       /* Walk the list of items from beginning to end, tallying and recording
+        * each item.  */
+       do {
+               lzx_declare_item(c, cur_optimum_ptr->mc_item_data, next_chosen_item);
+               cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK;
+       } while (cur_optimum_ptr != end_optimum_ptr);
 }
 
+static inline void
+lzx_tally_item_list(struct lzx_compressor *c, struct lzx_mc_pos_data *cur_optimum_ptr)
+{
+       /* Since we're just tallying the items, we don't need to reverse the
+        * list.  Processing the items in reverse order is fine.  */
+       do {
+               lzx_declare_item(c, cur_optimum_ptr->mc_item_data, NULL);
+               cur_optimum_ptr -= (cur_optimum_ptr->mc_item_data & MC_LEN_MASK);
+       } while (cur_optimum_ptr != c->optimum);
+}
 
-/* Tell the match-finder to skip the specified number of bytes (@n) in the
- * input.  */
+/* Tally, and optionally (if next_chosen_item != NULL) record, in order, all
+ * items in the current list of items found by the match-chooser.  */
 static void
-lzx_lz_skip_bytes(struct lzx_compressor *ctx, unsigned n)
+lzx_declare_item_list(struct lzx_compressor *c, struct lzx_mc_pos_data *cur_optimum_ptr,
+                     struct lzx_item **next_chosen_item)
 {
-       LZX_ASSERT(n <= ctx->match_window_end - ctx->match_window_pos);
-       if (ctx->matches_cached) {
-               ctx->match_window_pos += n;
-               while (n--) {
-                       ctx->cached_matches_pos +=
-                               ctx->cached_matches[ctx->cached_matches_pos].len + 1;
-               }
-       } else {
-               while (n--) {
-                       ctx->cached_matches[ctx->cached_matches_pos++].len = 0;
-                       lzx_lz_update_salink(ctx->match_window_pos++, ctx->SA,
-                                            ctx->ISA, ctx->salink);
-               }
-       }
+       if (next_chosen_item)
+               lzx_record_item_list(c, cur_optimum_ptr, next_chosen_item);
+       else
+               lzx_tally_item_list(c, cur_optimum_ptr);
 }
 
-/* Retrieve a list of matches available at the next position in the input.
+/* Set the cost model @c->costs from the Huffman codeword lengths specified in
+ * @lens.
  *
- * The matches are written to ctx->matches in decreasing order of length, and
- * the return value is the number of matches found.  */
-static unsigned
-lzx_lz_get_matches_caching(struct lzx_compressor *ctx,
-                          const struct lzx_lru_queue *queue,
-                          struct raw_match **matches_ret)
+ * The cost model and codeword lengths are almost the same thing, but the
+ * Huffman codewords with length 0 correspond to symbols with zero frequency
+ * that still need to be assigned actual costs.  The specific values assigned
+ * are arbitrary, but they should be fairly high (near the maximum codeword
+ * length) to take into account the fact that uses of these symbols are expected
+ * to be rare.  */
+static void
+lzx_set_costs(struct lzx_compressor *c, const struct lzx_lens * lens)
 {
-       unsigned num_matches;
-       struct raw_match *matches;
+       unsigned i;
 
-       LZX_ASSERT(ctx->match_window_pos <= ctx->match_window_end);
+       /* Main code  */
+       for (i = 0; i < c->num_main_syms; i++)
+               c->costs.main[i] = lens->main[i] ? lens->main[i] : 15;
 
-       matches = &ctx->cached_matches[ctx->cached_matches_pos + 1];
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               c->costs.len[i] = lens->len[i] ? lens->len[i] : 15;
 
-       if (ctx->matches_cached) {
-               num_matches = matches[-1].len;
-       } else {
-               unsigned min_match_len = LZX_MIN_MATCH_LEN;
-               if (min_match_len <= 2 && !ctx->params.alg_params.slow.use_len2_matches)
-                       min_match_len = 3;
-               const uint32_t max_search_depth = ctx->params.alg_params.slow.max_search_depth;
-               const uint32_t max_matches_per_pos = ctx->params.alg_params.slow.max_matches_per_pos;
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               c->costs.aligned[i] = lens->aligned[i] ? lens->aligned[i] : 7;
+}
 
-               if (unlikely(max_search_depth == 0 || max_matches_per_pos == 0))
-                       num_matches = 0;
-               else
-                       num_matches = lzx_lz_get_matches(ctx->match_window_pos,
-                                                        ctx->SA,
-                                                        ctx->ISA,
-                                                        ctx->salink,
-                                                        matches,
-                                                        queue,
-                                                        min_match_len,
-                                                        max_search_depth,
-                                                        max_matches_per_pos);
-               matches[-1].len = num_matches;
-       }
-       ctx->cached_matches_pos += num_matches + 1;
-       *matches_ret = matches;
+/* Set default LZX Huffman symbol costs to bootstrap the iterative optimization
+ * algorithm.  */
+static void
+lzx_set_default_costs(struct lzx_costs * costs, unsigned num_main_syms)
+{
+       unsigned i;
 
-       /* Cap the length of returned matches to the number of bytes remaining,
-        * if it is not the whole window.  */
-       if (ctx->match_window_end < ctx->window_size) {
-               unsigned maxlen = ctx->match_window_end - ctx->match_window_pos;
-               for (unsigned i = 0; i < num_matches; i++)
-                       if (matches[i].len > maxlen)
-                               matches[i].len = maxlen;
-       }
-#if 0
-       fprintf(stderr, "Pos %u/%u: %u matches\n",
-               ctx->match_window_pos, ctx->match_window_end, num_matches);
-       for (unsigned i = 0; i < num_matches; i++)
-               fprintf(stderr, "\tLen %u Offset %u\n", matches[i].len, matches[i].offset);
-#endif
+       /* Main code (part 1): Literal symbols  */
+       for (i = 0; i < LZX_NUM_CHARS; i++)
+               costs->main[i] = 8;
 
-#ifdef ENABLE_LZX_DEBUG
-       for (unsigned i = 0; i < num_matches; i++) {
-               LZX_ASSERT(matches[i].len >= LZX_MIN_MATCH_LEN);
-               LZX_ASSERT(matches[i].len <= LZX_MAX_MATCH_LEN);
-               LZX_ASSERT(matches[i].len <= ctx->match_window_end - ctx->match_window_pos);
-               LZX_ASSERT(matches[i].offset > 0);
-               LZX_ASSERT(matches[i].offset <= ctx->match_window_pos);
-               LZX_ASSERT(!memcmp(&ctx->window[ctx->match_window_pos],
-                                  &ctx->window[ctx->match_window_pos - matches[i].offset],
-                                  matches[i].len));
-       }
-#endif
+       /* Main code (part 2): Match header symbols  */
+       for (; i < num_main_syms; i++)
+               costs->main[i] = 10;
 
-       ctx->match_window_pos++;
-       return num_matches;
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               costs->len[i] = 8;
+
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               costs->aligned[i] = 3;
 }
 
-/*
- * Reverse the linked list of near-optimal matches so that they can be returned
- * in forwards order.
- *
- * Returns the first match in the list.
- */
-static struct raw_match
-lzx_lz_reverse_near_optimal_match_list(struct lzx_compressor *ctx,
-                                      unsigned cur_pos)
+/* Return the cost, in bits, to output a literal byte using the specified cost
+ * model.  */
+static inline u32
+lzx_literal_cost(unsigned literal, const struct lzx_costs * costs)
 {
-       unsigned prev_link, saved_prev_link;
-       unsigned prev_match_offset, saved_prev_match_offset;
-
-       ctx->optimum_end_idx = cur_pos;
-
-       saved_prev_link = ctx->optimum[cur_pos].prev.link;
-       saved_prev_match_offset = ctx->optimum[cur_pos].prev.match_offset;
-
-       do {
-               prev_link = saved_prev_link;
-               prev_match_offset = saved_prev_match_offset;
+       return costs->main[literal];
+}
 
-               saved_prev_link = ctx->optimum[prev_link].prev.link;
-               saved_prev_match_offset = ctx->optimum[prev_link].prev.match_offset;
+/* Return the cost, in bits, to output a match of the specified length and
+ * offset slot using the specified cost model.  Does not take into account
+ * extra offset bits.  */
+static inline u32
+lzx_match_cost_raw(unsigned len, unsigned offset_slot,
+                  const struct lzx_costs *costs)
+{
+       u32 cost;
+       unsigned len_header;
+       unsigned main_symbol;
 
-               ctx->optimum[prev_link].next.link = cur_pos;
-               ctx->optimum[prev_link].next.match_offset = prev_match_offset;
+       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+               len_header = len - LZX_MIN_MATCH_LEN;
+               cost = 0;
+       } else {
+               len_header = LZX_NUM_PRIMARY_LENS;
 
-               cur_pos = prev_link;
-       } while (cur_pos != 0);
+               /* Account for length symbol.  */
+               cost = costs->len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
+       }
 
-       ctx->optimum_cur_idx = ctx->optimum[0].next.link;
+       /* Account for main symbol.  */
+       main_symbol = LZX_NUM_CHARS + ((offset_slot << 3) | len_header);
+       cost += costs->main[main_symbol];
 
-       return (struct raw_match)
-               { .len = ctx->optimum_cur_idx,
-                 .offset = ctx->optimum[0].next.match_offset,
-               };
+       return cost;
 }
 
-#if 0
-static struct raw_match
-lzx_lz_get_greedy_match(struct lzx_compressor * ctx)
+/* Equivalent to lzx_match_cost_raw(), but assumes the length is small enough
+ * that it doesn't require a length symbol.  */
+static inline u32
+lzx_match_cost_raw_smalllen(unsigned len, unsigned offset_slot,
+                           const struct lzx_costs *costs)
 {
-       struct raw_match *matches;
-
-       if (!lzx_lz_get_matches_caching(ctx, &ctx->queue, &matches))
-               return (struct raw_match) {.len = 0};
-
-       lzx_lz_skip_bytes(ctx, matches[0].len - 1);
-       return matches[0];
+       LZX_ASSERT(len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS);
+       return costs->main[LZX_NUM_CHARS +
+                          ((offset_slot << 3) | (len - LZX_MIN_MATCH_LEN))];
 }
-#endif
 
-#if 0
-static struct raw_match
-lzx_lz_get_lazy_match(struct lzx_compressor * ctx)
+/*
+ * Consider coding the match at repeat offset index @rep_idx.  Consider each
+ * length from the minimum (2) to the full match length (@rep_len).
+ */
+static inline void
+lzx_consider_repeat_offset_match(struct lzx_compressor *c,
+                                struct lzx_mc_pos_data *cur_optimum_ptr,
+                                unsigned rep_len, unsigned rep_idx)
 {
-       unsigned num_matches;
-       struct raw_match *matches;
-       struct raw_match prev_match;
-       struct lzx_lru_queue queue;
-
-       if (ctx->optimum_cur_idx != ctx->optimum_end_idx)
-               goto retopt;
-
-       /* Check for matches at first position.  */
-       num_matches = lzx_lz_get_matches_caching(ctx, &ctx->queue, &matches);
-
-       /* Return literal if no matches were found.  */
-       if (num_matches == 0)
-               return (struct raw_match) { .len = 0 };
+       u32 base_cost = cur_optimum_ptr->cost;
+       u32 cost;
+       unsigned len;
 
-       /* Immediately choose match if longer than threshold.  */
-       if (matches[0].len > ctx->params.alg_params.slow.num_fast_bytes)
-               goto savecur;
+#if 1   /* Optimized version */
 
-       ctx->optimum_cur_idx = ctx->optimum_end_idx = 0;
-       for (;;) {
-               prev_match = matches[0];
-
-               /* Check for matches at next position.  */
-               num_matches = lzx_lz_get_matches_caching(ctx, &ctx->queue, &matches);
+       if (rep_len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS) {
+               /* All lengths being considered are small.  */
+               len = 2;
+               do {
+                       cost = base_cost +
+                              lzx_match_cost_raw_smalllen(len, rep_idx, &c->costs);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (rep_idx << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len <= rep_len);
+       } else {
+               /* Some lengths being considered are small, and some are big.
+                * Start with the optimized loop for small lengths, then switch
+                * to the optimized loop for big lengths.  */
+               len = 2;
+               do {
+                       cost = base_cost +
+                              lzx_match_cost_raw_smalllen(len, rep_idx, &c->costs);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (rep_idx << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS);
 
-               /* Choose previous match if there is not a match at this
-                * position.  */
-               if (num_matches == 0)
-                       goto saveprev;
-
-               /* Choose previous match the longest match at the next position
-                * is the same place, just one character shifted over.  */
-               if (matches[0].offset == prev_match.offset ||
-                   matches[0].len < prev_match.len)
-                       goto saveprev;
-
-               struct lzx_lru_queue q1 = ctx->queue, q2 = ctx->queue;
-               double lazycost = lzx_literal_cost(ctx->window[ctx->match_window_pos - 2],
-                                                    &ctx->costs) +
-                                   lzx_match_cost(matches[0].len, matches[0].offset,
-                                                  &ctx->costs, &q1);
-               double greedycost = lzx_match_cost(prev_match.len, prev_match.offset,
-                                                    &ctx->costs, &q2);
-               lazycost *= (double)prev_match.len / (1 + matches[0].len);
-
-               /* Choose previous match if greedy cost was lower.  */
-               if (greedycost <= lazycost)
-                       goto saveprev;
-
-               /* Choose literal at the previous position.  */
-               ctx->optimum[ctx->optimum_end_idx++].next.link = 0;
-
-
-               /* Immediately choose match if longer than threshold.  */
-               if (matches[0].len > ctx->params.alg_params.slow.num_fast_bytes)
-                       goto savecur;
+               /* The main symbol is now fixed.  */
+               base_cost += c->costs.main[LZX_NUM_CHARS +
+                                          ((rep_idx << 3) | LZX_NUM_PRIMARY_LENS)];
+               do {
+                       cost = base_cost +
+                              c->costs.len[len - LZX_MIN_MATCH_LEN -
+                                           LZX_NUM_PRIMARY_LENS];
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (rep_idx << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len <= rep_len);
        }
 
-savecur:
-       lzx_lz_skip_bytes(ctx, 1);
-       prev_match = matches[0];
-
-saveprev:
-       lzx_lz_skip_bytes(ctx, prev_match.len - 2);
-       ctx->optimum[ctx->optimum_end_idx].next.link = prev_match.len;
-       ctx->optimum[ctx->optimum_end_idx].next.match_offset = prev_match.offset;
-       ctx->optimum_end_idx++;
-retopt:
-       prev_match.len = ctx->optimum[ctx->optimum_cur_idx].next.link;
-       prev_match.offset = ctx->optimum[ctx->optimum_cur_idx].next.match_offset;
-       ctx->optimum_cur_idx++;
-       return prev_match;
-}
-#endif
+#else   /* Unoptimized version  */
 
+       len = 2;
+       do {
+               cost = base_cost +
+                      lzx_match_cost_raw(len, rep_idx, &c->costs);
+               if (cost < (cur_optimum_ptr + len)->cost) {
+                       (cur_optimum_ptr + len)->mc_item_data =
+                               (rep_idx << MC_OFFSET_SHIFT) | len;
+                       (cur_optimum_ptr + len)->cost = cost;
+               }
+       } while (++len <= rep_len);
+#endif
+}
 
 /*
- * lzx_lz_get_near_optimal_match() -
- *
- * Choose the optimal match or literal to use at the next position in the input.
- *
- * Unlike a greedy parser that always takes the longest match, or even a
- * parser with one match/literal look-ahead like zlib, the algorithm used here
- * may look ahead many matches/literals to determine the optimal match/literal to
- * output next.  The motivation is that the compression ratio is improved if the
- * compressor can do things like use a shorter-than-possible match in order to
- * allow a longer match later, and also take into account the Huffman code cost
- * model rather than simply assuming that longer is better.
- *
- * Still, this is not truly an optimal parser because very long matches are
- * taken immediately.  This is done to avoid considering many different
- * alternatives that are unlikely to significantly be better.
+ * Consider coding each match in @matches as an explicit offset match.
  *
- * This algorithm is based on that used in 7-Zip's DEFLATE encoder.
+ * @matches must be sorted by strictly increasing length and strictly
+ * increasing offset.  This is guaranteed by the match-finder.
  *
- * Each call to this function does one of two things:
- *
- * 1. Build a near-optimal sequence of matches/literals, up to some point, that
- *    will be returned by subsequent calls to this function, then return the
- *    first one.
- *
- * OR
- *
- * 2. Return the next match/literal previously computed by a call to this
- *    function;
- *
- * This function relies on the following state in the compressor context:
- *
- *     ctx->window          (read-only: preprocessed data being compressed)
- *     ctx->cost            (read-only: cost model to use)
- *     ctx->optimum         (internal state; leave uninitialized)
- *     ctx->optimum_cur_idx (must set to 0 before first call)
- *     ctx->optimum_end_idx (must set to 0 before first call)
- *     ctx->SA              (must be built before first call)
- *     ctx->ISA             (must be built before first call)
- *     ctx->salink          (must be built before first call)
- *     ctx->match_window_pos (must initialize to position of next match to
- *                            return; subsequent calls return subsequent
- *                            matches)
- *     ctx->match_window_end (must initialize to limit of match-finding region;
- *                            subsequent calls use the same limit)
- *
- * The return value is a (length, offset) pair specifying the match or literal
- * chosen.  For literals, the length is less than LZX_MIN_MATCH_LEN and the
- * offset is meaningless.
+ * We consider each length from the minimum (2) to the longest
+ * (matches[num_matches - 1].len).  For each length, we consider only
+ * the smallest offset for which that length is available.  Although
+ * this is not guaranteed to be optimal due to the possibility of a
+ * larger offset costing less than a smaller offset to code, this is a
+ * very useful heuristic.
  */
-static struct raw_match
-lzx_lz_get_near_optimal_match(struct lzx_compressor * ctx)
+static inline void
+lzx_consider_explicit_offset_matches(struct lzx_compressor *c,
+                                    struct lzx_mc_pos_data *cur_optimum_ptr,
+                                    const struct lz_match matches[],
+                                    unsigned num_matches)
 {
-       unsigned num_possible_matches;
-       struct raw_match *possible_matches;
-       struct raw_match match;
-       unsigned longest_match_len;
-
-       if (ctx->optimum_cur_idx != ctx->optimum_end_idx) {
-               /* Case 2: Return the next match/literal already found.  */
-               match.len = ctx->optimum[ctx->optimum_cur_idx].next.link -
-                                   ctx->optimum_cur_idx;
-               match.offset = ctx->optimum[ctx->optimum_cur_idx].next.match_offset;
-
-               ctx->optimum_cur_idx = ctx->optimum[ctx->optimum_cur_idx].next.link;
-               return match;
-       }
-
-       /* Case 1:  Compute a new list of matches/literals to return.  */
+       LZX_ASSERT(num_matches > 0);
 
-       ctx->optimum_cur_idx = 0;
-       ctx->optimum_end_idx = 0;
-
-       /* Get matches at this position.  */
-       num_possible_matches = lzx_lz_get_matches_caching(ctx, &ctx->queue, &possible_matches);
-
-       /* If no matches found, return literal.  */
-       if (num_possible_matches == 0)
-               return (struct raw_match){ .len = 0 };
-
-       /* The matches that were found are sorted in decreasing order by length.
-        * Get the length of the longest one.  */
-       longest_match_len = possible_matches[0].len;
-
-       /* Greedy heuristic:  if the longest match that was found is greater
-        * than the number of fast bytes, return it immediately; don't both
-        * doing more work.  */
-       if (longest_match_len > ctx->params.alg_params.slow.num_fast_bytes) {
-               lzx_lz_skip_bytes(ctx, longest_match_len - 1);
-               return possible_matches[0];
-       }
-
-       /* Calculate the cost to reach the next position by outputting a
-        * literal.  */
-       ctx->optimum[0].queue = ctx->queue;
-       ctx->optimum[1].queue = ctx->optimum[0].queue;
-       ctx->optimum[1].cost = lzx_literal_cost(ctx->window[ctx->match_window_pos],
-                                               &ctx->costs);
-       ctx->optimum[1].prev.link = 0;
-
-       /* Calculate the cost to reach any position up to and including that
-        * reached by the longest match, using the shortest (i.e. closest) match
-        * that reaches each position.  */
-       BUILD_BUG_ON(LZX_MIN_MATCH_LEN != 2);
-       for (unsigned len = LZX_MIN_MATCH_LEN, match_idx = num_possible_matches - 1;
-            len <= longest_match_len; len++) {
-
-               LZX_ASSERT(match_idx < num_possible_matches);
-
-               ctx->optimum[len].queue = ctx->optimum[0].queue;
-               ctx->optimum[len].prev.link = 0;
-               ctx->optimum[len].prev.match_offset = possible_matches[match_idx].offset;
-               ctx->optimum[len].cost = lzx_match_cost(len,
-                                                       possible_matches[match_idx].offset,
-                                                       &ctx->costs,
-                                                       &ctx->optimum[len].queue);
-               if (len == possible_matches[match_idx].len)
-                       match_idx--;
-       }
-
-       unsigned cur_pos = 0;
-
-       /* len_end: greatest index forward at which costs have been calculated
-        * so far  */
-       unsigned len_end = longest_match_len;
+       unsigned i;
+       unsigned len;
+       unsigned offset_slot;
+       u32 position_cost;
+       u32 cost;
+       u32 offset_data;
 
-       for (;;) {
-               /* Advance to next position.  */
-               cur_pos++;
 
-               if (cur_pos == len_end || cur_pos == LZX_OPTIM_ARRAY_SIZE)
-                       return lzx_lz_reverse_near_optimal_match_list(ctx, cur_pos);
+#if 1  /* Optimized version */
 
-               /* retrieve the number of matches available at this position  */
-               num_possible_matches = lzx_lz_get_matches_caching(ctx, &ctx->optimum[cur_pos].queue,
-                                                                 &possible_matches);
+       if (matches[num_matches - 1].offset < LZX_NUM_FAST_OFFSETS) {
 
-               unsigned new_len = 0;
+               /*
+                * Offset is small; the offset slot can be looked up directly in
+                * c->offset_slot_fast.
+                *
+                * Additional optimizations:
+                *
+                * - Since the offset is small, it falls in the exponential part
+                *   of the offset slot bases and the number of extra offset
+                *   bits can be calculated directly as (offset_slot >> 1) - 1.
+                *
+                * - Just consider the number of extra offset bits; don't
+                *   account for the aligned offset code.  Usually this has
+                *   almost no effect on the compression ratio.
+                *
+                * - Start out in a loop optimized for small lengths.  When the
+                *   length becomes high enough that a length symbol will be
+                *   needed, jump into a loop optimized for big lengths.
+                */
 
-               if (num_possible_matches != 0) {
-                       new_len = possible_matches[0].len;
+               LZX_ASSERT(offset_slot <= 37); /* for extra bits formula  */
 
-                       /* Greedy heuristic:  if we found a match greater than
-                        * the number of fast bytes, stop immediately.  */
-                       if (new_len > ctx->params.alg_params.slow.num_fast_bytes) {
+               len = 2;
+               i = 0;
+               do {
+                       offset_slot = c->offset_slot_fast[matches[i].offset];
+                       position_cost = cur_optimum_ptr->cost +
+                                       ((offset_slot >> 1) - 1);
+                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+                       do {
+                               if (len >= LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS)
+                                       goto biglen;
+                               cost = position_cost +
+                                      lzx_match_cost_raw_smalllen(len, offset_slot,
+                                                                  &c->costs);
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
 
-                               /* Build the list of matches to return and get
-                                * the first one.  */
-                               match = lzx_lz_reverse_near_optimal_match_list(ctx, cur_pos);
+               return;
 
-                               /* Append the long match to the end of the list.  */
-                               ctx->optimum[cur_pos].next.match_offset =
-                                       possible_matches[0].offset;
-                               ctx->optimum[cur_pos].next.link = cur_pos + new_len;
-                               ctx->optimum_end_idx = cur_pos + new_len;
+               do {
+                       offset_slot = c->offset_slot_fast[matches[i].offset];
+       biglen:
+                       position_cost = cur_optimum_ptr->cost +
+                                       ((offset_slot >> 1) - 1) +
+                                       c->costs.main[LZX_NUM_CHARS +
+                                                     ((offset_slot << 3) |
+                                                      LZX_NUM_PRIMARY_LENS)];
+                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+                       do {
+                               cost = position_cost +
+                                      c->costs.len[len - LZX_MIN_MATCH_LEN -
+                                                   LZX_NUM_PRIMARY_LENS];
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
+       } else {
+               len = 2;
+               i = 0;
+               do {
+                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+                       offset_slot = lzx_get_offset_slot_raw(offset_data);
+                       position_cost = cur_optimum_ptr->cost +
+                                       lzx_extra_offset_bits[offset_slot];
+                       do {
+                               cost = position_cost +
+                                      lzx_match_cost_raw(len, offset_slot, &c->costs);
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
+       }
 
-                               /* Skip over the remaining bytes of the long match.  */
-                               lzx_lz_skip_bytes(ctx, new_len - 1);
+#else  /* Unoptimized version */
 
-                               /* Return first match in the list  */
-                               return match;
-                       }
-               }
+       unsigned num_extra_bits;
 
-               /* Consider proceeding with a literal byte.  */
-               block_cost_t cur_cost = ctx->optimum[cur_pos].cost;
-               block_cost_t cur_plus_literal_cost = cur_cost +
-                       lzx_literal_cost(ctx->window[ctx->match_window_pos - 1],
-                                        &ctx->costs);
-               if (cur_plus_literal_cost < ctx->optimum[cur_pos + 1].cost) {
-                       ctx->optimum[cur_pos + 1].cost = cur_plus_literal_cost;
-                       ctx->optimum[cur_pos + 1].prev.link = cur_pos;
-                       ctx->optimum[cur_pos + 1].queue = ctx->optimum[cur_pos].queue;
+       len = 2;
+       i = 0;
+       do {
+               offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+               position_cost = cur_optimum_ptr->cost;
+               offset_slot = lzx_get_offset_slot_raw(offset_data);
+               num_extra_bits = lzx_extra_offset_bits[offset_slot];
+               if (num_extra_bits >= 3) {
+                       position_cost += num_extra_bits - 3;
+                       position_cost += c->costs.aligned[offset_data & 7];
+               } else {
+                       position_cost += num_extra_bits;
                }
-
-               if (num_possible_matches == 0)
-                       continue;
-
-               /* Consider proceeding with a match.  */
-
-               while (len_end < cur_pos + new_len)
-                       ctx->optimum[++len_end].cost = INFINITE_BLOCK_COST;
-
-               for (unsigned len = LZX_MIN_MATCH_LEN, match_idx = num_possible_matches - 1;
-                    len <= new_len; len++) {
-                       LZX_ASSERT(match_idx < num_possible_matches);
-                       struct lzx_lru_queue q = ctx->optimum[cur_pos].queue;
-                       block_cost_t cost = cur_cost + lzx_match_cost(len,
-                                                                     possible_matches[match_idx].offset,
-                                                                     &ctx->costs,
-                                                                     &q);
-
-                       if (cost < ctx->optimum[cur_pos + len].cost) {
-                               ctx->optimum[cur_pos + len].cost = cost;
-                               ctx->optimum[cur_pos + len].prev.link = cur_pos;
-                               ctx->optimum[cur_pos + len].prev.match_offset =
-                                               possible_matches[match_idx].offset;
-                               ctx->optimum[cur_pos + len].queue = q;
+               do {
+                       cost = position_cost +
+                              lzx_match_cost_raw(len, offset_slot, &c->costs);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->cost = cost;
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (offset_data << MC_OFFSET_SHIFT) | len;
                        }
+               } while (++len <= matches[i].len);
+       } while (++i != num_matches);
+#endif
+}
 
-                       if (len == possible_matches[match_idx].len)
-                               match_idx--;
-               }
-       }
+/*
+ * Search for repeat offset matches with the current position.
+ */
+static inline unsigned
+lzx_repsearch(const u8 * const strptr, const u32 bytes_remaining,
+             const struct lzx_lru_queue *queue, unsigned *rep_max_idx_ret)
+{
+       BUILD_BUG_ON(LZX_NUM_RECENT_OFFSETS != 3);
+       return lz_repsearch3(strptr, min(bytes_remaining, LZX_MAX_MATCH_LEN),
+                            queue->R, rep_max_idx_ret);
 }
 
 /*
- * Set default symbol costs.
+ * The main near-optimal parsing routine.
+ *
+ * Briefly, the algorithm does an approximate minimum-cost path search to find a
+ * "near-optimal" sequence of matches and literals to output, based on the
+ * current cost model.  The algorithm steps forward, position by position (byte
+ * by byte), and updates the minimum cost path to reach each later position that
+ * can be reached using a match or literal from the current position.  This is
+ * essentially Dijkstra's algorithm in disguise: the graph nodes are positions,
+ * the graph edges are possible matches/literals to code, and the cost of each
+ * edge is the estimated number of bits that will be required to output the
+ * corresponding match or literal.  But one difference is that we actually
+ * compute the lowest-cost path in pieces, where each piece is terminated when
+ * there are no choices to be made.
+ *
+ * This function will run this algorithm on the portion of the window from
+ * &c->cur_window[c->match_window_pos] to &c->cur_window[c->match_window_end].
+ *
+ * On entry, c->queue must be the current state of the match offset LRU queue,
+ * and c->costs must be the current cost model to use for Huffman symbols.
+ *
+ * On exit, c->queue will be the state that the LRU queue would be in if the
+ * chosen items were to be coded.
+ *
+ * If next_chosen_item != NULL, then all items chosen will be recorded (saved in
+ * the chosen_items array).  Otherwise, all items chosen will only be tallied
+ * (symbol frequencies tallied in c->freqs).
  */
 static void
-lzx_set_default_costs(struct lzx_costs * costs)
+lzx_optim_pass(struct lzx_compressor *c, struct lzx_item **next_chosen_item)
 {
-       unsigned i;
+       const u8 *block_end;
+       struct lzx_lru_queue *begin_queue;
+       const u8 *window_ptr;
+       struct lzx_mc_pos_data *cur_optimum_ptr;
+       struct lzx_mc_pos_data *end_optimum_ptr;
+       const struct lz_match *matches;
+       unsigned num_matches;
+       unsigned longest_len;
+       unsigned rep_max_len;
+       unsigned rep_max_idx;
+       unsigned literal;
+       unsigned len;
+       u32 cost;
+       u32 offset_data;
+
+       block_end = &c->cur_window[c->match_window_end];
+       begin_queue = &c->queue;
+begin:
+       /* Start building a new list of items, which will correspond to the next
+        * piece of the overall minimum-cost path.
+        *
+        * *begin_queue is the current state of the match offset LRU queue.  */
 
-       /* Literal symbols  */
-       for (i = 0; i < LZX_NUM_CHARS; i++)
-               costs->main[i] = 8;
+       window_ptr = &c->cur_window[c->match_window_pos];
 
-       /* Match header symbols  */
-       for (; i < LZX_MAINCODE_NUM_SYMBOLS; i++)
-               costs->main[i] = 10;
+       if (window_ptr == block_end) {
+               c->queue = *begin_queue;
+               return;
+       }
 
-       /* Length symbols  */
-       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
-               costs->len[i] = 8;
+       cur_optimum_ptr = c->optimum;
+       cur_optimum_ptr->cost = 0;
+       cur_optimum_ptr->queue = *begin_queue;
 
-       /* Aligned offset symbols  */
-       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
-               costs->aligned[i] = 3;
-}
+       end_optimum_ptr = cur_optimum_ptr;
 
-/* Given the frequencies of symbols in a compressed block and the corresponding
- * Huffman codes, return LZX_BLOCKTYPE_ALIGNED or LZX_BLOCKTYPE_VERBATIM if an
- * aligned offset or verbatim block, respectively, will take fewer bits to
- * output.  */
-static int
-lzx_choose_verbatim_or_aligned(const struct lzx_freqs * freqs,
-                              const struct lzx_codes * codes)
-{
-       unsigned aligned_cost = 0;
-       unsigned verbatim_cost = 0;
+       /* The following loop runs once for each per byte in the window, except
+        * in a couple shortcut cases.  */
+       for (;;) {
 
-       /* Verbatim blocks have a constant 3 bits per position footer.  Aligned
-        * offset blocks have an aligned offset symbol per position footer, plus
-        * an extra 24 bits to output the lengths necessary to reconstruct the
-        * aligned offset code itself.  */
-       for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
-               verbatim_cost += 3 * freqs->aligned[i];
-               aligned_cost += codes->lens.aligned[i] * freqs->aligned[i];
-       }
-       aligned_cost += LZX_ALIGNEDCODE_ELEMENT_SIZE * LZX_ALIGNEDCODE_NUM_SYMBOLS;
-       if (aligned_cost < verbatim_cost)
-               return LZX_BLOCKTYPE_ALIGNED;
-       else
-               return LZX_BLOCKTYPE_VERBATIM;
-}
+               /* Find explicit offset matches with the current position.  */
+               num_matches = lzx_get_matches(c, &matches);
 
-/* Find a near-optimal sequence of matches/literals with which to output the
- * specified LZX block, and set its type to that which has the minimum cost to
- * output.  */
-static void
-lzx_optimize_block(struct lzx_compressor *ctx, struct lzx_block_spec *spec,
-                  unsigned num_passes)
-{
-       struct lzx_lru_queue orig_queue = ctx->queue;
-       struct lzx_freqs freqs;
+               if (num_matches) {
+                       /*
+                        * Find the longest repeat offset match with the current
+                        * position.
+                        *
+                        * Heuristics:
+                        *
+                        * - Only search for repeat offset matches if the
+                        *   match-finder already found at least one match.
+                        *
+                        * - Only consider the longest repeat offset match.  It
+                        *   seems to be rare for the optimal parse to include a
+                        *   repeat offset match that doesn't have the longest
+                        *   length (allowing for the possibility that not all
+                        *   of that length is actually used).
+                        */
+                       rep_max_len = lzx_repsearch(window_ptr,
+                                                   block_end - window_ptr,
+                                                   &cur_optimum_ptr->queue,
+                                                   &rep_max_idx);
+
+                       if (rep_max_len) {
+                               /* If there's a very long repeat offset match,
+                                * choose it immediately.  */
+                               if (rep_max_len >= c->params.nice_match_length) {
+
+                                       swap(cur_optimum_ptr->queue.R[0],
+                                            cur_optimum_ptr->queue.R[rep_max_idx]);
+                                       begin_queue = &cur_optimum_ptr->queue;
+
+                                       cur_optimum_ptr += rep_max_len;
+                                       cur_optimum_ptr->mc_item_data =
+                                               (rep_max_idx << MC_OFFSET_SHIFT) |
+                                               rep_max_len;
+
+                                       lzx_skip_bytes(c, rep_max_len - 1);
+                                       break;
+                               }
+
+                               /* If reaching any positions for the first time,
+                                * initialize their costs to "infinity".  */
+                               while (end_optimum_ptr < cur_optimum_ptr + rep_max_len)
+                                       (++end_optimum_ptr)->cost = MC_INFINITE_COST;
 
-       ctx->match_window_end = spec->window_pos + spec->block_size;
-       spec->chosen_matches_start_pos = spec->window_pos;
+                               /* Consider coding a repeat offset match.  */
+                               lzx_consider_repeat_offset_match(c,
+                                                                cur_optimum_ptr,
+                                                                rep_max_len,
+                                                                rep_max_idx);
+                       }
+
+                       longest_len = matches[num_matches - 1].len;
+
+                       /* If there's a very long explicit offset match, choose
+                        * it immediately.  */
+                       if (longest_len >= c->params.nice_match_length) {
+
+                               cur_optimum_ptr->queue.R[2] =
+                                       cur_optimum_ptr->queue.R[1];
+                               cur_optimum_ptr->queue.R[1] =
+                                       cur_optimum_ptr->queue.R[0];
+                               cur_optimum_ptr->queue.R[0] =
+                                       matches[num_matches - 1].offset;
+                               begin_queue = &cur_optimum_ptr->queue;
+
+                               offset_data = matches[num_matches - 1].offset +
+                                             LZX_OFFSET_OFFSET;
+                               cur_optimum_ptr += longest_len;
+                               cur_optimum_ptr->mc_item_data =
+                                       (offset_data << MC_OFFSET_SHIFT) |
+                                       longest_len;
+
+                               lzx_skip_bytes(c, longest_len - 1);
+                               break;
+                       }
+
+                       /* If reaching any positions for the first time,
+                        * initialize their costs to "infinity".  */
+                       while (end_optimum_ptr < cur_optimum_ptr + longest_len)
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+
+                       /* Consider coding an explicit offset match.  */
+                       lzx_consider_explicit_offset_matches(c, cur_optimum_ptr,
+                                                            matches, num_matches);
+               } else {
+                       /* No matches found.  The only choice at this position
+                        * is to code a literal.  */
+
+                       if (end_optimum_ptr == cur_optimum_ptr) {
+                       #if 1
+                               /* Optimization for single literals.  */
+                               if (likely(cur_optimum_ptr == c->optimum)) {
+                                       lzx_declare_literal(c, *window_ptr++,
+                                                           next_chosen_item);
+                                       if (window_ptr == block_end) {
+                                               c->queue = cur_optimum_ptr->queue;
+                                               return;
+                                       }
+                                       continue;
+                               }
+                       #endif
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+                       }
+               }
 
-       LZX_ASSERT(num_passes >= 1);
+               /* Consider coding a literal.
 
-       /* The first optimal parsing pass is done using the cost model already
-        * set in ctx->costs.  Each later pass is done using a cost model
-        * computed from the previous pass.  */
-       for (unsigned pass = 0; pass < num_passes; pass++) {
+                * To avoid an extra unpredictable brench, actually checking the
+                * preferability of coding a literal is integrated into the
+                * queue update code below.  */
+               literal = *window_ptr++;
+               cost = cur_optimum_ptr->cost + lzx_literal_cost(literal, &c->costs);
 
-               lzx_lz_rewind_matchfinder(ctx, spec->window_pos);
-               ctx->queue = orig_queue;
-               spec->num_chosen_matches = 0;
-               memset(&freqs, 0, sizeof(freqs));
+               /* Advance to the next position.  */
+               cur_optimum_ptr++;
 
-               for (unsigned i = spec->window_pos; i < spec->window_pos + spec->block_size; ) {
-                       struct raw_match raw_match;
-                       struct lzx_match lzx_match;
+               /* The lowest-cost path to the current position is now known.
+                * Finalize the recent offsets queue that results from taking
+                * this lowest-cost path.  */
 
-                       raw_match = lzx_lz_get_near_optimal_match(ctx);
-                       if (raw_match.len >= LZX_MIN_MATCH_LEN) {
-                               lzx_match.data = lzx_record_match(raw_match.offset, raw_match.len,
-                                                                 &freqs, &ctx->queue);
-                               i += raw_match.len;
+               if (cost < cur_optimum_ptr->cost) {
+                       /* Literal: queue remains unchanged.  */
+                       cur_optimum_ptr->cost = cost;
+                       cur_optimum_ptr->mc_item_data = (literal << MC_OFFSET_SHIFT) | 1;
+                       cur_optimum_ptr->queue = (cur_optimum_ptr - 1)->queue;
+               } else {
+                       /* Match: queue update is needed.  */
+                       len = cur_optimum_ptr->mc_item_data & MC_LEN_MASK;
+                       offset_data = cur_optimum_ptr->mc_item_data >> MC_OFFSET_SHIFT;
+                       if (offset_data >= LZX_NUM_RECENT_OFFSETS) {
+                               /* Explicit offset match: offset is inserted at front  */
+                               cur_optimum_ptr->queue.R[0] = offset_data - LZX_OFFSET_OFFSET;
+                               cur_optimum_ptr->queue.R[1] = (cur_optimum_ptr - len)->queue.R[0];
+                               cur_optimum_ptr->queue.R[2] = (cur_optimum_ptr - len)->queue.R[1];
                        } else {
-                               lzx_match.data = lzx_record_literal(ctx->window[i], &freqs);
-                               i += 1;
+                               /* Repeat offset match: offset is swapped to front  */
+                               cur_optimum_ptr->queue = (cur_optimum_ptr - len)->queue;
+                               swap(cur_optimum_ptr->queue.R[0],
+                                    cur_optimum_ptr->queue.R[offset_data]);
                        }
-                       ctx->chosen_matches[spec->chosen_matches_start_pos +
-                                           spec->num_chosen_matches++] = lzx_match;
                }
 
-               lzx_make_huffman_codes(&freqs, &spec->codes);
-               if (pass < num_passes - 1)
-                       lzx_set_costs(ctx, &spec->codes.lens);
+               /*
+                * This loop will terminate when either of the following
+                * conditions is true:
+                *
+                * (1) cur_optimum_ptr == end_optimum_ptr
+                *
+                *      There are no paths that extend beyond the current
+                *      position.  In this case, any path to a later position
+                *      must pass through the current position, so we can go
+                *      ahead and choose the list of items that led to this
+                *      position.
+                *
+                * (2) cur_optimum_ptr == &c->optimum[LZX_OPTIM_ARRAY_LENGTH]
+                *
+                *      This bounds the number of times the algorithm can step
+                *      forward before it is guaranteed to start choosing items.
+                *      This limits the memory usage.  But
+                *      LZX_OPTIM_ARRAY_LENGTH is high enough that on most
+                *      inputs this limit is never reached.
+                *
+                * Note: no check for end-of-block is needed because
+                * end-of-block will trigger condition (1).
+                */
+               if (cur_optimum_ptr == end_optimum_ptr ||
+                   cur_optimum_ptr == &c->optimum[LZX_OPTIM_ARRAY_LENGTH])
+               {
+                       begin_queue = &cur_optimum_ptr->queue;
+                       break;
+               }
        }
-       spec->block_type = lzx_choose_verbatim_or_aligned(&freqs, &spec->codes);
+
+       /* Choose the current list of items that constitute the minimum-cost
+        * path to the current position.  */
+       lzx_declare_item_list(c, cur_optimum_ptr, next_chosen_item);
+       goto begin;
 }
 
-static void
-lzx_optimize_blocks(struct lzx_compressor *ctx)
+/* Fast heuristic scoring for lazy parsing: how "good" is this match?  */
+static inline unsigned
+lzx_explicit_offset_match_score(unsigned len, u32 adjusted_offset)
 {
-       lzx_lru_queue_init(&ctx->queue);
-       ctx->optimum_cur_idx = 0;
-       ctx->optimum_end_idx = 0;
+       unsigned score = len;
 
-       const unsigned num_passes = ctx->params.alg_params.slow.num_optim_passes;
+       if (adjusted_offset < 2048)
+               score++;
 
-       for (unsigned i = 0; i < ctx->num_blocks; i++)
-               lzx_optimize_block(ctx, &ctx->block_specs[i], num_passes);
-}
+       if (adjusted_offset < 1024)
+               score++;
 
-static bool entropy_val_tab_inited = false;
-static double entropy_val_tab[LZX_MAX_WINDOW_SIZE];
-static pthread_mutex_t entropy_val_tab_mutex = PTHREAD_MUTEX_INITIALIZER;
+       return score;
+}
 
-static double entropy_val(unsigned count)
+static inline unsigned
+lzx_repeat_offset_match_score(unsigned len, unsigned slot)
 {
-       /*return count * log(count);*/
-       return entropy_val_tab[count];
+       return len + 3;
 }
 
-/* Split a LZX block into several if it is advantageous to do so.
- *
- * TODO:  This doesn't work very well yet.  Should optimal parsing be done
- * before or after splitting?  */
-static void
-lzx_block_split(const u32 matches[restrict],
-               const input_idx_t n,
-               const double epsilon,
-               const unsigned max_num_blocks,
-               const unsigned min_block_len,
-               struct lzx_block_spec block_specs[restrict],
-               unsigned * const restrict num_blocks_ret)
+/* Lazy parsing  */
+static u32
+lzx_choose_lazy_items_for_block(struct lzx_compressor *c,
+                               u32 block_start_pos, u32 block_size)
 {
-       const double block_overhead = 1500;
-
-       if (!entropy_val_tab_inited) {
-               pthread_mutex_lock(&entropy_val_tab_mutex);
-               if (!entropy_val_tab_inited) {
-                       entropy_val_tab[0] = 0;
-                       for (input_idx_t i = 1; i < LZX_MAX_WINDOW_SIZE; i++)
-                               entropy_val_tab[i] = i * log2(i);
-                       entropy_val_tab_inited = true;
-               }
-               pthread_mutex_unlock(&entropy_val_tab_mutex);
-       }
+       const u8 *window_ptr;
+       const u8 *block_end;
+       struct lz_mf *mf;
+       struct lz_match *matches;
+       unsigned num_matches;
+       unsigned cur_len;
+       u32 cur_offset_data;
+       unsigned cur_score;
+       unsigned rep_max_len;
+       unsigned rep_max_idx;
+       unsigned rep_score;
+       unsigned prev_len;
+       unsigned prev_score;
+       u32 prev_offset_data;
+       unsigned skip_len;
+       struct lzx_item *next_chosen_item;
+
+       window_ptr = &c->cur_window[block_start_pos];
+       block_end = window_ptr + block_size;
+       matches = c->cached_matches;
+       mf = c->mf;
+       next_chosen_item = c->chosen_items;
+
+       prev_len = 0;
+       prev_offset_data = 0;
+       prev_score = 0;
+
+       while (window_ptr != block_end) {
+
+               /* Find explicit offset matches with the current position.  */
+               num_matches = lz_mf_get_matches(mf, matches);
+               window_ptr++;
+
+               if (num_matches == 0 ||
+                   (matches[num_matches - 1].len == 3 &&
+                    matches[num_matches - 1].offset >= 8192 - LZX_OFFSET_OFFSET &&
+                    matches[num_matches - 1].offset != c->queue.R[0] &&
+                    matches[num_matches - 1].offset != c->queue.R[1] &&
+                    matches[num_matches - 1].offset != c->queue.R[2]))
+               {
+                       /* No match found, or the only match found was a distant
+                        * length 3 match.  Output the previous match if there
+                        * is one; otherwise output a literal.  */
+
+               no_match_found:
 
-       u16 main_syms[n];
-       u8 len_syms[n];
-       u8 aligned_syms[n];
-       input_idx_t orig_input_indices[n + 1];
-
-       LZX_ASSERT(epsilon >= 0);
-       LZX_ASSERT(max_num_blocks >= 1);
-
-       /* For convenience, extract the main, length, and aligned symbols from
-        * the matches.  Every position will have a main symbol, but not every
-        * position will have a length and aligned symbol.  Special values
-        * larger than the valid symbols are used to indicate the absense of a
-        * symbol. */
-       orig_input_indices[0] = 0;
-       for (input_idx_t i = 0, orig_input_idx = 0; i < n; i++) {
-               u32 match = matches[i];
-               u16 main_sym;
-               u8 len_sym = LZX_LENCODE_NUM_SYMBOLS;
-               u8 aligned_sym = LZX_ALIGNEDCODE_NUM_SYMBOLS;
-               if (match & 0x80000000) {
-                       unsigned match_len_minus_2 = match & 0xff;
-                       unsigned position_footer = (match >> 8) & 0x1ffff;
-                       unsigned position_slot = (match >> 25) & 0x3f;
-                       unsigned len_header;
-
-                       if (match_len_minus_2 < LZX_NUM_PRIMARY_LENS) {
-                               len_header = match_len_minus_2;
+                       if (prev_len) {
+                               skip_len = prev_len - 2;
+                               goto output_prev_match;
                        } else {
-                               len_header = LZX_NUM_PRIMARY_LENS;
-                               len_sym = match_len_minus_2 - LZX_NUM_PRIMARY_LENS;
+                               lzx_declare_literal(c, *(window_ptr - 1),
+                                                   &next_chosen_item);
+                               continue;
                        }
-                       main_sym = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
-                       if (position_slot >= 8)
-                               aligned_sym = position_footer & 7;
-                       orig_input_idx += match_len_minus_2 + 2;
-               } else {
-                       main_sym = match;
-                       orig_input_idx++;
                }
-               main_syms[i] = main_sym;
-               len_syms[i] = len_sym;
-               aligned_syms[i] = aligned_sym;
-               orig_input_indices[i + 1] = orig_input_idx;
-       }
 
-       /* Compute the number of sliding windows that will be used for the
-        * entropy calculations. */
-       int num_windows = 0;
-       unsigned window_len;
-       {
-               double e = min_block_len;
-               do {
-                       window_len = e;
-                       num_windows++;
-                       e *= epsilon + 1;
-               } while (window_len < n);
-       }
-
-       /* Compute the length of each sliding window. */
-       unsigned window_lens[num_windows];
-       {
-               double e = min_block_len;
-               unsigned window_idx = 0;
-               do {
-                       window_len = e;
-                       window_lens[window_idx++] = min(window_len, n);
-                       e *= epsilon + 1;
-               } while (window_len < n);
-       }
-
-       /* Best estimated compression size, in bits, found so far for the input
-        * matches up to each position. */
-       unsigned shortest_paths[n + 1];
-
-       /* Pointers to follow to get the sequence of blocks that represents the
-        * shortest path (in terms of estimated compressed size) up to each
-        * position in the input matches. */
-       input_idx_t back_ptrs[n + 1];
-
-       for (input_idx_t i = 0; i < n + 1; i++) {
-               shortest_paths[i] = ~0U;
-               back_ptrs[i] = 0;
-       }
-       shortest_paths[0] = 0;
+               /* Find the longest repeat offset match with the current
+                * position.  */
+               if (likely(block_end - (window_ptr - 1) >= 2)) {
+                       rep_max_len = lzx_repsearch((window_ptr - 1),
+                                                   block_end - (window_ptr - 1),
+                                                   &c->queue, &rep_max_idx);
+               } else {
+                       rep_max_len = 0;
+               }
 
-       {
-               /* Initialize the per-window symbol and entropy counters */
-               input_idx_t mainsym_ctrs[num_windows][LZX_MAINCODE_NUM_SYMBOLS];
-               input_idx_t lensym_ctrs[num_windows][LZX_LENCODE_NUM_SYMBOLS + 1];
-               input_idx_t alignedsym_ctrs[num_windows][LZX_ALIGNEDCODE_NUM_SYMBOLS + 1];
-               ZERO_ARRAY(mainsym_ctrs);
-               ZERO_ARRAY(lensym_ctrs);
-               ZERO_ARRAY(alignedsym_ctrs);
+               cur_len = matches[num_matches - 1].len;
+               cur_offset_data = matches[num_matches - 1].offset + LZX_OFFSET_OFFSET;
+               cur_score = lzx_explicit_offset_match_score(cur_len, cur_offset_data);
 
+               /* Select the better of the explicit and repeat offset matches.  */
+               if (rep_max_len >= 3 &&
+                   (rep_score = lzx_repeat_offset_match_score(rep_max_len,
+                                                              rep_max_idx)) >= cur_score)
                {
-                       int start_win_idx = 0;
-                       for (input_idx_t i = 0; i < n; i++) {
-                               while (i >= window_lens[start_win_idx])
-                                       start_win_idx++;
-                               for (int j = start_win_idx; j < num_windows; j++) {
-                                       mainsym_ctrs[j][main_syms[i]]++;
-                                       lensym_ctrs[j][len_syms[i]]++;
-                                       alignedsym_ctrs[j][aligned_syms[i]]++;
-                               }
-                       }
+                       cur_len = rep_max_len;
+                       cur_offset_data = rep_max_idx;
+                       cur_score = rep_score;
                }
 
-               double entropy_ctrs[num_windows];
-               for (int i = 0; i < num_windows; i++) {
-                       entropy_ctrs[i] = 0;
-                       for (unsigned j = 0; j < LZX_MAINCODE_NUM_SYMBOLS; j++)
-                               entropy_ctrs[i] += entropy_val(mainsym_ctrs[i][j]);
-                       for (unsigned j = 0; j < LZX_LENCODE_NUM_SYMBOLS; j++)
-                               entropy_ctrs[i] += entropy_val(lensym_ctrs[i][j]);
-                       for (unsigned j = 0; j < LZX_ALIGNEDCODE_NUM_SYMBOLS; j++)
-                               entropy_ctrs[i] += entropy_val(alignedsym_ctrs[i][j]);
+               if (unlikely(cur_len > block_end - (window_ptr - 1))) {
+                       /* Nearing end of block.  */
+                       cur_len = block_end - (window_ptr - 1);
+                       if (cur_len < 3)
+                               goto no_match_found;
                }
 
-               /* Slide the windows along the input and compute the shortest
-                * path to each position in the matches. */
-               int end_window_idx = (int)num_windows - 1;
-               for (input_idx_t i = 0; i < n; i++) {
-                       for (int j = 0; j <= end_window_idx; j++) {
-                               if (shortest_paths[i] == ~0U)
-                                       continue;
-                               unsigned num_mainsyms = window_lens[j];
-                               unsigned num_lensyms = window_lens[j] -
-                                                      lensym_ctrs[j][LZX_LENCODE_NUM_SYMBOLS];
-                               unsigned num_alignedsyms = window_lens[j] -
-                                                          alignedsym_ctrs[j][LZX_ALIGNEDCODE_NUM_SYMBOLS];
-                               unsigned entropy = entropy_val(num_mainsyms) +
-                                                  entropy_val(num_lensyms) +
-                                                  entropy_val(num_alignedsyms) -
-                                                  entropy_ctrs[j];
-                               unsigned est_csize = entropy + block_overhead;
-
-                               unsigned end_idx = i + window_lens[j];
-                               if (est_csize + shortest_paths[i] < shortest_paths[end_idx]) {
-                                       shortest_paths[end_idx] = est_csize + shortest_paths[i];
-                                       back_ptrs[end_idx] = i;
-                               }
-                       }
-                       /* Remove left symbol from windows */
-                       for (int j = 0; j <= end_window_idx; j++) {
-                               input_idx_t orig_maincnt = mainsym_ctrs[j][main_syms[i]]--;
-                               entropy_ctrs[j] -= entropy_val(orig_maincnt);
-                               entropy_ctrs[j] += entropy_val(orig_maincnt - 1);
-
-                               input_idx_t orig_lencnt =
-                                               lensym_ctrs[j][len_syms[i]]--;
-                               if (len_syms[i] != LZX_LENCODE_NUM_SYMBOLS) {
-                                       entropy_ctrs[j] -= entropy_val(orig_lencnt);
-                                       entropy_ctrs[j] += entropy_val(orig_lencnt - 1);
-                               }
+               if (prev_len == 0 || cur_score > prev_score) {
+                       /* No previous match, or the current match is better
+                        * than the previous match.
+                        *
+                        * If there's a previous match, then output a literal in
+                        * its place.
+                        *
+                        * In both cases, if the current match is very long,
+                        * then output it immediately.  Otherwise, attempt a
+                        * lazy match by waiting to see if there's a better
+                        * match at the next position.  */
 
-                               input_idx_t orig_alignedcnt =
-                                               alignedsym_ctrs[j][aligned_syms[i]]--;
-                               if (aligned_syms[i] != LZX_ALIGNEDCODE_NUM_SYMBOLS) {
-                                       entropy_ctrs[j] -= entropy_val(orig_alignedcnt);
-                                       entropy_ctrs[j] += entropy_val(orig_alignedcnt - 1);
-                               }
-                       }
+                       if (prev_len)
+                               lzx_declare_literal(c, *(window_ptr - 2), &next_chosen_item);
 
-                       /* Calculate index of longest window remaining */
-                       while (end_window_idx >= 0 && window_lens[end_window_idx] >= n - i)
-                               end_window_idx--;
-
-                       /* Append right symbol to windows */
-                       for (int j = 0; j <= end_window_idx; j++) {
-                               input_idx_t orig_maincnt = mainsym_ctrs[j][
-                                                               main_syms[i + window_lens[j]]]++;
-                               entropy_ctrs[j] -= entropy_val(orig_maincnt);
-                               entropy_ctrs[j] += entropy_val(orig_maincnt + 1);
-
-                               input_idx_t orig_lencnt =
-                                       lensym_ctrs[j][len_syms[i + window_lens[j]]]++;
-                               if (len_syms[i + window_lens[j]] != LZX_LENCODE_NUM_SYMBOLS) {
-                                       entropy_ctrs[j] -= entropy_val(orig_lencnt);
-                                       entropy_ctrs[j] += entropy_val(orig_lencnt + 1);
-                               }
+                       prev_len = cur_len;
+                       prev_offset_data = cur_offset_data;
+                       prev_score = cur_score;
 
-                               input_idx_t orig_alignedcnt =
-                                       alignedsym_ctrs[j][aligned_syms[i + window_lens[j]]]++;
-                               if (aligned_syms[i + window_lens[j]] != LZX_ALIGNEDCODE_NUM_SYMBOLS) {
-                                       entropy_ctrs[j] -= entropy_val(orig_alignedcnt);
-                                       entropy_ctrs[j] += entropy_val(orig_alignedcnt + 1);
-                               }
+                       if (prev_len >= c->params.nice_match_length) {
+                               skip_len = prev_len - 1;
+                               goto output_prev_match;
                        }
+                       continue;
                }
-       }
-
-#if 0
-       /* If no cost was computed for the first block (due to it being shorter
-        * than all the windows), merge it with the second block. */
-       for (input_idx_t i = n; i != 0; i = back_ptrs[i])
-               if (back_ptrs[i] != 0 && shortest_paths[back_ptrs[i]] == ~0U)
-                       back_ptrs[i] = 0;
-#endif
-
-       /* Calculate number of blocks */
-       input_idx_t num_blocks = 0;
-       for (input_idx_t i = n; i != 0; i = back_ptrs[i])
-               num_blocks++;
-
-       while (num_blocks > max_num_blocks) {
-               LZX_DEBUG("Joining blocks to bring total under max_num_blucks=%u",
-                         max_num_blocks);
-               back_ptrs[n] = back_ptrs[back_ptrs[n]];
-               num_blocks--;
-       }
-
-       LZX_ASSERT(num_blocks != 0);
-
-       /* fill in the 'struct lzx_block_spec' for each block */
-       for (input_idx_t i = n, j = num_blocks - 1; i != 0; i = back_ptrs[i], j--) {
-
-               block_specs[j].chosen_matches_start_pos = back_ptrs[i];
-               block_specs[j].num_chosen_matches = i - back_ptrs[i];
-               block_specs[j].window_pos = orig_input_indices[back_ptrs[i]];
-               block_specs[j].block_size = orig_input_indices[i] -
-                                           orig_input_indices[back_ptrs[i]];
-               /*block_specs[j].est_csize = (shortest_paths[i] -*/
-                                          /*shortest_paths[back_ptrs[i]]) / 8;*/
 
-               LZX_DEBUG("block match_indices [%u, %u) est_csize %u bits\n",
-                         back_ptrs[i], i,
-                         shortest_paths[i] - shortest_paths[back_ptrs[i]]);
+               /* Current match is not better than the previous match, so
+                * output the previous match.  */
 
-               struct lzx_freqs freqs = {};
+               skip_len = prev_len - 2;
 
-               for (input_idx_t k = back_ptrs[i]; k < i; k++) {
-                       freqs.main[main_syms[k]]++;
-                       if (len_syms[k] != LZX_LENCODE_NUM_SYMBOLS)
-                               freqs.len[len_syms[k]]++;
-                       if (aligned_syms[k] != LZX_LENCODE_NUM_SYMBOLS)
-                               freqs.aligned[aligned_syms[k]]++;
+       output_prev_match:
+               if (prev_offset_data < LZX_NUM_RECENT_OFFSETS) {
+                       lzx_declare_repeat_offset_match(c, prev_len,
+                                                       prev_offset_data,
+                                                       &next_chosen_item);
+                       swap(c->queue.R[0], c->queue.R[prev_offset_data]);
+               } else {
+                       lzx_declare_explicit_offset_match(c, prev_len,
+                                                         prev_offset_data - LZX_OFFSET_OFFSET,
+                                                         &next_chosen_item);
+                       c->queue.R[2] = c->queue.R[1];
+                       c->queue.R[1] = c->queue.R[0];
+                       c->queue.R[0] = prev_offset_data - LZX_OFFSET_OFFSET;
                }
-               lzx_make_huffman_codes(&freqs, &block_specs[j].codes);
-
-               block_specs[j].block_type = lzx_choose_verbatim_or_aligned(&freqs,
-                                                                          &block_specs[j].codes);
+               lz_mf_skip_positions(mf, skip_len);
+               window_ptr += skip_len;
+               prev_len = 0;
        }
-       *num_blocks_ret = num_blocks;
-}
 
+       return next_chosen_item - c->chosen_items;
+}
 
-/* Initialize the suffix array match-finder for the specified input.  */
-static void
-lzx_lz_init_matchfinder(const u8 T[const restrict],
-                       const input_idx_t n,
-                       input_idx_t SA[const restrict],
-                       input_idx_t ISA[const restrict],
-                       input_idx_t LCP[const restrict],
-                       struct salink link[const restrict],
-                       const unsigned max_match_len)
+/* Given the frequencies of symbols in an LZX-compressed block and the
+ * corresponding Huffman codes, return LZX_BLOCKTYPE_ALIGNED or
+ * LZX_BLOCKTYPE_VERBATIM if an aligned offset or verbatim block, respectively,
+ * will take fewer bits to output.  */
+static int
+lzx_choose_verbatim_or_aligned(const struct lzx_freqs * freqs,
+                              const struct lzx_codes * codes)
 {
-       /* Compute SA (Suffix Array).  */
-
-       {
-               saidx_t sa[n];
-               /* ISA and link are used as temporary space.  */
-               BUILD_BUG_ON(LZX_MAX_WINDOW_SIZE * sizeof(ISA[0]) < 256 * sizeof(saidx_t));
-               BUILD_BUG_ON(LZX_MAX_WINDOW_SIZE * 2 * sizeof(link[0]) < 256 * 256 * sizeof(saidx_t));
-               divsufsort(T, sa, n, (saidx_t*)ISA, (saidx_t*)link);
-               for (input_idx_t i = 0; i < n; i++)
-                       SA[i] = sa[i];
-       }
-
-#ifdef ENABLE_LZX_DEBUG
+       u32 aligned_cost = 0;
+       u32 verbatim_cost = 0;
 
-       LZX_ASSERT(n > 0);
-
-       /* Verify suffix array.  */
-       {
-               bool found[n];
-               ZERO_ARRAY(found);
-               for (input_idx_t r = 0; r < n; r++) {
-                       input_idx_t i = SA[r];
-                       LZX_ASSERT(i < n);
-                       LZX_ASSERT(!found[i]);
-                       found[i] = true;
-               }
+       /* A verbatim block requires 3 bits in each place that an aligned symbol
+        * would be used in an aligned offset block.  */
+       for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+               verbatim_cost += 3 * freqs->aligned[i];
+               aligned_cost += codes->lens.aligned[i] * freqs->aligned[i];
        }
 
-       for (input_idx_t r = 0; r < n - 1; r++) {
-
-               input_idx_t i1 = SA[r];
-               input_idx_t i2 = SA[r + 1];
+       /* Account for output of the aligned offset code.  */
+       aligned_cost += LZX_ALIGNEDCODE_ELEMENT_SIZE * LZX_ALIGNEDCODE_NUM_SYMBOLS;
 
-               input_idx_t n1 = n - i1;
-               input_idx_t n2 = n - i2;
+       if (aligned_cost < verbatim_cost)
+               return LZX_BLOCKTYPE_ALIGNED;
+       else
+               return LZX_BLOCKTYPE_VERBATIM;
+}
 
-               LZX_ASSERT(memcmp(&T[i1], &T[i2], min(n1, n2)) <= 0);
+/* Near-optimal parsing  */
+static u32
+lzx_choose_near_optimal_items_for_block(struct lzx_compressor *c,
+                                       u32 block_start_pos, u32 block_size)
+{
+       u32 num_passes_remaining = c->params.num_optim_passes;
+       struct lzx_lru_queue orig_queue;
+       struct lzx_item *next_chosen_item;
+       struct lzx_item **next_chosen_item_ptr;
+
+       /* Choose appropriate match-finder wrapper functions.  */
+       if (num_passes_remaining > 1) {
+               if (block_size == c->cur_window_size)
+                       c->get_matches_func = lzx_get_matches_fillcache_singleblock;
+               else
+                       c->get_matches_func = lzx_get_matches_fillcache_multiblock;
+               c->skip_bytes_func = lzx_skip_bytes_fillcache;
+       } else {
+               if (block_size == c->cur_window_size)
+                       c->get_matches_func = lzx_get_matches_nocache_singleblock;
+               else
+                       c->get_matches_func = lzx_get_matches_nocache_multiblock;
+               c->skip_bytes_func = lzx_skip_bytes_nocache;
        }
-       LZX_DEBUG("Verified SA (len %u)", n);
-#endif /* ENABLE_LZX_DEBUG */
 
-       /* Compute ISA (Inverse Suffix Array)  */
-       for (input_idx_t r = 0; r < n; r++)
-               ISA[SA[r]] = r;
+       /* No matches will extend beyond the end of the block.  */
+       c->match_window_end = block_start_pos + block_size;
 
-       /* Compute LCP (longest common prefix) array.
+       /* The first optimization pass will use a default cost model.  Each
+        * additional optimization pass will use a cost model computed from the
+        * previous pass.
         *
-        * Algorithm adapted from Kasai et al. 2001: "Linear-Time
-        * Longest-Common-Prefix Computation in Suffix Arrays and Its
-        * Applications".  */
-       {
-               input_idx_t h = 0;
-               for (input_idx_t i = 0; i < n; i++) {
-                       input_idx_t r = ISA[i];
-                       if (r > 0) {
-                               input_idx_t j = SA[r - 1];
-
-                               input_idx_t lim = min(n - i, n - j);
-
-                               while (h < lim && T[i + h] == T[j + h])
-                                       h++;
-                               LCP[r] = h;
-                               if (h > 0)
-                                       h--;
-                       }
+        * To improve performance we only generate the array containing the
+        * matches and literals in intermediate form on the final pass.  For
+        * earlier passes, tallying symbol frequencies is sufficient.  */
+       lzx_set_default_costs(&c->costs, c->num_main_syms);
+
+       next_chosen_item_ptr = NULL;
+       orig_queue = c->queue;
+       do {
+               /* Reset the match-finder wrapper.  */
+               c->match_window_pos = block_start_pos;
+               c->cache_ptr = c->cached_matches;
+
+               if (num_passes_remaining == 1) {
+                       /* Last pass: actually generate the items.  */
+                       next_chosen_item = c->chosen_items;
+                       next_chosen_item_ptr = &next_chosen_item;
                }
-       }
 
-#ifdef ENABLE_LZX_DEBUG
-       /* Verify LCP array.  */
-       for (input_idx_t r = 0; r < n - 1; r++) {
-               LZX_ASSERT(ISA[SA[r]] == r);
-               LZX_ASSERT(ISA[SA[r + 1]] == r + 1);
+               /* Choose the items.  */
+               lzx_optim_pass(c, next_chosen_item_ptr);
 
-               input_idx_t i1 = SA[r];
-               input_idx_t i2 = SA[r + 1];
-               input_idx_t lcp = LCP[r + 1];
+               if (num_passes_remaining > 1) {
+                       /* This isn't the last pass.  */
 
-               input_idx_t n1 = n - i1;
-               input_idx_t n2 = n - i2;
+                       /* Make the Huffman codes from the symbol frequencies.  */
+                       lzx_make_huffman_codes(&c->freqs, &c->codes[c->codes_index],
+                                              c->num_main_syms);
 
-               LZX_ASSERT(lcp <= min(n1, n2));
+                       /* Update symbol costs.  */
+                       lzx_set_costs(c, &c->codes[c->codes_index].lens);
 
-               LZX_ASSERT(memcmp(&T[i1], &T[i2], lcp) == 0);
-               if (lcp < min(n1, n2))
-                       LZX_ASSERT(T[i1 + lcp] != T[i2 + lcp]);
-       }
-#endif /* ENABLE_LZX_DEBUG */
+                       /* Reset symbol frequencies.  */
+                       memset(&c->freqs, 0, sizeof(c->freqs));
 
-       /* Compute salink.next and salink.lcpnext.
-        *
-        * Algorithm adapted from Crochemore et al. 2009:
-        * "LPF computation revisited".
-        *
-        * Note: we cap lcpnext to the maximum match length so that the
-        * match-finder need not worry about it later.  */
-       link[n - 1].next = (input_idx_t)~0U;
-       link[n - 1].prev = (input_idx_t)~0U;
-       link[n - 1].lcpnext = 0;
-       link[n - 1].lcpprev = 0;
-       for (input_idx_t r = n - 2; r != (input_idx_t)~0U; r--) {
-               input_idx_t t = r + 1;
-               input_idx_t l = LCP[t];
-               while (t != (input_idx_t)~0 && SA[t] > SA[r]) {
-                       l = min(l, link[t].lcpnext);
-                       t = link[t].next;
-               }
-               link[r].next = t;
-               link[r].lcpnext = min(l, max_match_len);
-               LZX_ASSERT(t == (input_idx_t)~0 || l <= n - SA[t]);
-               LZX_ASSERT(l <= n - SA[r]);
-               LZX_ASSERT(memcmp(&T[SA[r]], &T[SA[t]], l) == 0);
-       }
+                       /* Reset the match offset LRU queue to what it was at
+                        * the beginning of the block.  */
+                       c->queue = orig_queue;
 
-       /* Compute salink.prev and salink.lcpprev.
-        *
-        * Algorithm adapted from Crochemore et al. 2009:
-        * "LPF computation revisited".
-        *
-        * Note: we cap lcpprev to the maximum match length so that the
-        * match-finder need not worry about it later.  */
-       link[0].prev = (input_idx_t)~0;
-       link[0].next = (input_idx_t)~0;
-       link[0].lcpprev = 0;
-       link[0].lcpnext = 0;
-       for (input_idx_t r = 1; r < n; r++) {
-               input_idx_t t = r - 1;
-               input_idx_t l = LCP[r];
-               while (t != (input_idx_t)~0 && SA[t] > SA[r]) {
-                       l = min(l, link[t].lcpprev);
-                       t = link[t].prev;
+                       /* Choose appopriate match-finder wrapper functions.  */
+                       if (c->cache_ptr <= c->cache_limit) {
+                               c->get_matches_func = lzx_get_matches_usecache_nocheck;
+                               c->skip_bytes_func = lzx_skip_bytes_usecache_nocheck;
+                       } else {
+                               c->get_matches_func = lzx_get_matches_usecache;
+                               c->skip_bytes_func = lzx_skip_bytes_usecache;
+                       }
                }
-               link[r].prev = t;
-               link[r].lcpprev = min(l, max_match_len);
-               LZX_ASSERT(t == (input_idx_t)~0 || l <= n - SA[t]);
-               LZX_ASSERT(l <= n - SA[r]);
-               LZX_ASSERT(memcmp(&T[SA[r]], &T[SA[t]], l) == 0);
-       }
-}
+       } while (--num_passes_remaining);
 
-/* Prepare the input window into one or more LZX blocks ready to be output.  */
-static void
-lzx_prepare_blocks(struct lzx_compressor * ctx)
-{
-       /* Initialize the match-finder.  */
-       lzx_lz_init_matchfinder(ctx->window, ctx->window_size,
-                               ctx->SA, ctx->ISA, ctx->LCP, ctx->salink,
-                               LZX_MAX_MATCH_LEN);
-       ctx->cached_matches_pos = 0;
-       ctx->matches_cached = false;
-       ctx->match_window_pos = 0;
-
-       /* Set up a default cost model.  */
-       lzx_set_default_costs(&ctx->costs);
-
-       /* Initially assume that the entire input will be one LZX block.  */
-       ctx->block_specs[0].block_type = LZX_BLOCKTYPE_ALIGNED;
-       ctx->block_specs[0].window_pos = 0;
-       ctx->block_specs[0].block_size = ctx->window_size;
-       ctx->num_blocks = 1;
-
-       /* Perform near-optimal LZ parsing.  */
-       lzx_optimize_blocks(ctx);
-
-       /* Possibly divide up the LZX block.  */
-       const unsigned max_num_blocks = 1U << ctx->params.alg_params.slow.num_split_passes;
-       if (max_num_blocks > 1) {
-               const double epsilon = 0.2;
-               const unsigned min_block_len = 500;
-
-               lzx_block_split((const u32*)ctx->chosen_matches,
-                               ctx->block_specs[0].num_chosen_matches,
-                               epsilon, max_num_blocks, min_block_len,
-                               ctx->block_specs, &ctx->num_blocks);
-       }
+       /* Return the number of items chosen.  */
+       return next_chosen_item - c->chosen_items;
 }
 
 /*
- * This is the fast version of lzx_prepare_blocks().  This version "quickly"
- * prepares a single compressed block containing the entire input.  See the
- * description of the "Fast algorithm" at the beginning of this file for more
- * information.
- *
- * Input ---  the preprocessed data:
+ * Choose the matches/literals with which to output the block of data beginning
+ * at '&c->cur_window[block_start_pos]' and extending for 'block_size' bytes.
  *
- *     ctx->window[]
- *     ctx->window_size
+ * The frequences of the Huffman symbols in the block will be tallied in
+ * 'c->freqs'.
  *
- * Working space:
- *     ctx->queue
+ * 'c->queue' must specify the state of the queue at the beginning of this block.
+ * This function will update it to the state of the queue at the end of this
+ * block.
  *
- * Output --- the block specification and the corresponding match/literal data:
- *
- *     ctx->block_specs[]
- *     ctx->num_blocks
- *     ctx->chosen_matches[]
+ * Returns the number of matches/literals that were chosen and written to
+ * 'c->chosen_items' in the 'struct lzx_item' intermediate representation.
  */
-static void
-lzx_prepare_block_fast(struct lzx_compressor * ctx)
-{
-       unsigned num_matches;
-       struct lzx_freqs freqs;
-       struct lzx_block_spec *spec;
-
-       /* Parameters to hash chain LZ match finder
-        * (lazy with 1 match lookahead)  */
-       static const struct lz_params lzx_lz_params = {
-               /* Although LZX_MIN_MATCH_LEN == 2, length 2 matches typically
-                * aren't worth choosing when using greedy or lazy parsing.  */
-               .min_match      = 3,
-               .max_match      = LZX_MAX_MATCH_LEN,
-               .good_match     = LZX_MAX_MATCH_LEN,
-               .nice_match     = LZX_MAX_MATCH_LEN,
-               .max_chain_len  = LZX_MAX_MATCH_LEN,
-               .max_lazy_match = LZX_MAX_MATCH_LEN,
-               .too_far        = 4096,
-       };
-
-       /* Initialize symbol frequencies and match offset LRU queue.  */
-       memset(&freqs, 0, sizeof(struct lzx_freqs));
-       lzx_lru_queue_init(&ctx->queue);
-
-       /* Determine series of matches/literals to output.  */
-       num_matches = lz_analyze_block(ctx->window,
-                                      ctx->window_size,
-                                      (u32*)ctx->chosen_matches,
-                                      lzx_record_match,
-                                      lzx_record_literal,
-                                      &freqs,
-                                      &ctx->queue,
-                                      &freqs,
-                                      &lzx_lz_params);
-
-
-       /* Set up block specification.  */
-       spec = &ctx->block_specs[0];
-       spec->block_type = LZX_BLOCKTYPE_ALIGNED;
-       spec->window_pos = 0;
-       spec->block_size = ctx->window_size;
-       spec->num_chosen_matches = num_matches;
-       spec->chosen_matches_start_pos = 0;
-       lzx_make_huffman_codes(&freqs, &spec->codes);
-       ctx->num_blocks = 1;
-}
-
-static void
-do_call_insn_translation(u32 *call_insn_target, int input_pos,
-                        s32 file_size)
+static u32
+lzx_choose_items_for_block(struct lzx_compressor *c,
+                          u32 block_start_pos, u32 block_size)
 {
-       s32 abs_offset;
-       s32 rel_offset;
-
-       rel_offset = le32_to_cpu(*call_insn_target);
-       if (rel_offset >= -input_pos && rel_offset < file_size) {
-               if (rel_offset < file_size - input_pos) {
-                       /* "good translation" */
-                       abs_offset = rel_offset + input_pos;
-               } else {
-                       /* "compensating translation" */
-                       abs_offset = rel_offset - file_size;
-               }
-               *call_insn_target = cpu_to_le32(abs_offset);
-       }
+       return (*c->params.choose_items_for_block)(c, block_start_pos, block_size);
 }
 
-/* This is the reverse of undo_call_insn_preprocessing() in lzx-decompress.c.
- * See the comment above that function for more information.  */
+/* Initialize c->offset_slot_fast.  */
 static void
-do_call_insn_preprocessing(u8 data[], int size)
+lzx_init_offset_slot_fast(struct lzx_compressor *c)
 {
-       for (int i = 0; i < size - 10; i++) {
-               if (data[i] == 0xe8) {
-                       do_call_insn_translation((u32*)&data[i + 1], i,
-                                                LZX_WIM_MAGIC_FILESIZE);
-                       i += 4;
-               }
-       }
-}
+       u8 slot = 0;
 
-/* API function documented in wimlib.h  */
-WIMLIBAPI unsigned
-wimlib_lzx_compress2(const void                        * const restrict uncompressed_data,
-                    unsigned                     const          uncompressed_len,
-                    void                       * const restrict compressed_data,
-                    struct wimlib_lzx_context  * const restrict lzx_ctx)
-{
-       struct lzx_compressor *ctx = (struct lzx_compressor*)lzx_ctx;
-       struct output_bitstream ostream;
-       unsigned compressed_len;
+       for (u32 offset = 0; offset < LZX_NUM_FAST_OFFSETS; offset++) {
 
-       if (uncompressed_len < 100) {
-               LZX_DEBUG("Too small to bother compressing.");
-               return 0;
-       }
+               while (offset + LZX_OFFSET_OFFSET >= lzx_offset_slot_base[slot + 1])
+                       slot++;
 
-       if (uncompressed_len > 32768) {
-               LZX_DEBUG("Only up to 32768 bytes of uncompressed data are supported.");
-               return 0;
+               c->offset_slot_fast[offset] = slot;
        }
+}
 
-       wimlib_assert(lzx_ctx != NULL);
+/* Set internal compression parameters for the specified compression level and
+ * maximum window size.  */
+static void
+lzx_build_params(unsigned int compression_level, u32 max_window_size,
+                struct lzx_compressor_params *lzx_params)
+{
+       if (compression_level < 25) {
 
-       LZX_DEBUG("Attempting to compress %u bytes...", uncompressed_len);
+               /* Fast compression: Use lazy parsing.  */
 
-       /* The input data must be preprocessed.  To avoid changing the original
-        * input, copy it to a temporary buffer.  */
-       memcpy(ctx->window, uncompressed_data, uncompressed_len);
-       ctx->window_size = uncompressed_len;
+               lzx_params->choose_items_for_block = lzx_choose_lazy_items_for_block;
+               lzx_params->num_optim_passes = 1;
 
-       /* This line is unnecessary; it just avoids inconsequential accesses of
-        * uninitialized memory that would show up in memory-checking tools such
-        * as valgrind.  */
-       memset(&ctx->window[ctx->window_size], 0, 12);
+               /* When lazy parsing, the hash chain match-finding algorithm is
+                * fastest unless the window is too large.
+                *
+                * TODO: something like hash arrays would actually be better
+                * than binary trees on large windows.  */
+               if (max_window_size <= 262144)
+                       lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
+               else
+                       lzx_params->mf_algo = LZ_MF_BINARY_TREES;
 
-       LZX_DEBUG("Preprocessing data...");
+               /* When lazy parsing, don't bother with length 2 matches.  */
+               lzx_params->min_match_length = 3;
 
-       /* Before doing any actual compression, do the call instruction (0xe8
-        * byte) translation on the uncompressed data.  */
-       do_call_insn_preprocessing(ctx->window, ctx->window_size);
+               /* Scale nice_match_length and max_search_depth with the
+                * compression level.  */
+               lzx_params->nice_match_length = 25 + compression_level * 2;
+               lzx_params->max_search_depth = 25 + compression_level;
+       } else {
 
-       LZX_DEBUG("Preparing blocks...");
+               /* Normal / high compression: Use near-optimal parsing.  */
 
-       /* Prepare the compressed data.  */
-       if (ctx->params.algorithm == WIMLIB_LZX_ALGORITHM_FAST)
-               lzx_prepare_block_fast(ctx);
-       else
-               lzx_prepare_blocks(ctx);
+               lzx_params->choose_items_for_block = lzx_choose_near_optimal_items_for_block;
 
-       LZX_DEBUG("Writing compressed blocks...");
+               /* Set a number of optimization passes appropriate for the
+                * compression level.  */
 
-       /* Generate the compressed data.  */
-       init_output_bitstream(&ostream, compressed_data, ctx->window_size - 1);
-       lzx_write_all_blocks(ctx, &ostream);
+               lzx_params->num_optim_passes = 1;
 
-       LZX_DEBUG("Flushing bitstream...");
-       if (flush_output_bitstream(&ostream)) {
-               /* If the bitstream cannot be flushed, then the output space was
-                * exhausted.  */
-               LZX_DEBUG("Data did not compress to less than original length!");
-               return 0;
-       }
+               if (compression_level >= 40)
+                       lzx_params->num_optim_passes++;
 
-       /* Compute the length of the compressed data.  */
-       compressed_len = ostream.bit_output - (u8*)compressed_data;
-
-       LZX_DEBUG("Done: compressed %u => %u bytes.",
-                 uncompressed_len, compressed_len);
-
-       /* Verify that we really get the same thing back when decompressing.
-        * TODO: Disable this check by default on the slow algorithm.  */
-       if (ctx->params.algorithm == WIMLIB_LZX_ALGORITHM_SLOW
-       #if defined(ENABLE_LZX_DEBUG) || defined(ENABLE_VERIFY_COMPRESSION)
-           || 1
-       #endif
-           )
-       {
-               u8 buf[uncompressed_len];
-               int ret;
-
-               ret = wimlib_lzx_decompress(compressed_data, compressed_len,
-                                           buf, uncompressed_len);
-               if (ret) {
-                       ERROR("Failed to decompress data we "
-                             "compressed using LZX algorithm");
-                       wimlib_assert(0);
-                       return 0;
+               /* Use more optimization passes for higher compression levels.
+                * But the more passes there are, the less they help --- so
+                * don't add them linearly.  */
+               if (compression_level >= 70) {
+                       lzx_params->num_optim_passes++;
+                       if (compression_level >= 100)
+                               lzx_params->num_optim_passes++;
+                       if (compression_level >= 150)
+                               lzx_params->num_optim_passes++;
+                       if (compression_level >= 200)
+                               lzx_params->num_optim_passes++;
+                       if (compression_level >= 300)
+                               lzx_params->num_optim_passes++;
                }
 
-               if (memcmp(uncompressed_data, buf, uncompressed_len)) {
-                       ERROR("Data we compressed using LZX algorithm "
-                             "didn't decompress to original");
-                       wimlib_assert(0);
-                       return 0;
-               }
+               /* When doing near-optimal parsing, the hash chain match-finding
+                * algorithm is good if the window size is small and we're only
+                * doing one optimization pass.  Otherwise, the binary tree
+                * algorithm is the way to go.  */
+               if (max_window_size <= 32768 && lzx_params->num_optim_passes == 1)
+                       lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
+               else
+                       lzx_params->mf_algo = LZ_MF_BINARY_TREES;
+
+               /* When doing near-optimal parsing, allow length 2 matches if
+                * the compression level is sufficiently high.  */
+               if (compression_level >= 45)
+                       lzx_params->min_match_length = 2;
+               else
+                       lzx_params->min_match_length = 3;
+
+               /* Scale nice_match_length and max_search_depth with the
+                * compression level.  */
+               lzx_params->nice_match_length = min(((u64)compression_level * 32) / 50,
+                                                   LZX_MAX_MATCH_LEN);
+               lzx_params->max_search_depth = min(((u64)compression_level * 50) / 50,
+                                                  LZX_MAX_MATCH_LEN);
        }
-       return compressed_len;
 }
 
-static bool
-lzx_params_compatible(const struct wimlib_lzx_params *oldparams,
-                     const struct wimlib_lzx_params *newparams)
+/* Given the internal compression parameters and maximum window size, build the
+ * Lempel-Ziv match-finder parameters.  */
+static void
+lzx_build_mf_params(const struct lzx_compressor_params *lzx_params,
+                   u32 max_window_size, struct lz_mf_params *mf_params)
 {
-       return 0 == memcmp(oldparams, newparams, sizeof(struct wimlib_lzx_params));
+       memset(mf_params, 0, sizeof(*mf_params));
+
+       mf_params->algorithm = lzx_params->mf_algo;
+       mf_params->max_window_size = max_window_size;
+       mf_params->min_match_len = lzx_params->min_match_length;
+       mf_params->max_match_len = LZX_MAX_MATCH_LEN;
+       mf_params->max_search_depth = lzx_params->max_search_depth;
+       mf_params->nice_match_len = lzx_params->nice_match_length;
 }
 
-static struct wimlib_lzx_params lzx_user_default_params;
-static struct wimlib_lzx_params *lzx_user_default_params_ptr;
+static void
+lzx_free_compressor(void *_c);
 
-static bool
-lzx_params_valid(const struct wimlib_lzx_params *params)
+static u64
+lzx_get_needed_memory(size_t max_block_size, unsigned int compression_level)
 {
-       /* Validate parameters.  */
-       if (params->size_of_this != sizeof(struct wimlib_lzx_params)) {
-               LZX_DEBUG("Invalid parameter structure size!");
-               return false;
-       }
+       struct lzx_compressor_params params;
+       u64 size = 0;
+       unsigned window_order;
+       u32 max_window_size;
 
-       if (params->algorithm != WIMLIB_LZX_ALGORITHM_SLOW &&
-           params->algorithm != WIMLIB_LZX_ALGORITHM_FAST)
-       {
-               LZX_DEBUG("Invalid algorithm.");
-               return false;
-       }
+       window_order = lzx_get_window_order(max_block_size);
+       if (window_order == 0)
+               return 0;
+       max_window_size = max_block_size;
 
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
-               if (params->alg_params.slow.num_optim_passes < 1)
-               {
-                       LZX_DEBUG("Invalid number of optimization passes!");
-                       return false;
-               }
+       lzx_build_params(compression_level, max_window_size, &params);
 
-               if (params->alg_params.slow.main_nostat_cost < 1 ||
-                   params->alg_params.slow.main_nostat_cost > 16)
-               {
-                       LZX_DEBUG("Invalid main_nostat_cost!");
-                       return false;
-               }
+       size += sizeof(struct lzx_compressor);
 
-               if (params->alg_params.slow.len_nostat_cost < 1 ||
-                   params->alg_params.slow.len_nostat_cost > 16)
-               {
-                       LZX_DEBUG("Invalid len_nostat_cost!");
-                       return false;
-               }
+       /* cur_window */
+       size += max_window_size;
 
-               if (params->alg_params.slow.aligned_nostat_cost < 1 ||
-                   params->alg_params.slow.aligned_nostat_cost > 8)
-               {
-                       LZX_DEBUG("Invalid aligned_nostat_cost!");
-                       return false;
-               }
+       /* mf */
+       size += lz_mf_get_needed_memory(params.mf_algo, max_window_size);
 
-               if (params->alg_params.slow.num_split_passes > 31) {
-                       LZX_DEBUG("Invalid num_split_passes!");
-                       return false;
-               }
-       }
-       return true;
+       /* cached_matches */
+       if (params.num_optim_passes > 1)
+               size += LZX_CACHE_LEN * sizeof(struct lz_match);
+       else
+               size += LZX_MAX_MATCHES_PER_POS * sizeof(struct lz_match);
+       return size;
 }
 
-WIMLIBAPI int
-wimlib_lzx_set_default_params(const struct wimlib_lzx_params * params)
+static int
+lzx_create_compressor(size_t max_block_size, unsigned int compression_level,
+                     void **c_ret)
 {
-       if (params) {
-               if (!lzx_params_valid(params))
-                       return WIMLIB_ERR_INVALID_PARAM;
-               lzx_user_default_params = *params;
-               lzx_user_default_params_ptr = &lzx_user_default_params;
+       struct lzx_compressor *c;
+       struct lzx_compressor_params params;
+       struct lz_mf_params mf_params;
+       unsigned window_order;
+       u32 max_window_size;
+
+       window_order = lzx_get_window_order(max_block_size);
+       if (window_order == 0)
+               return WIMLIB_ERR_INVALID_PARAM;
+       max_window_size = max_block_size;
+
+       lzx_build_params(compression_level, max_window_size, &params);
+       lzx_build_mf_params(&params, max_window_size, &mf_params);
+       if (!lz_mf_params_valid(&mf_params))
+               return WIMLIB_ERR_INVALID_PARAM;
+
+       c = CALLOC(1, sizeof(struct lzx_compressor));
+       if (!c)
+               goto oom;
+
+       c->params = params;
+       c->num_main_syms = lzx_get_num_main_syms(window_order);
+       c->window_order = window_order;
+
+       /* The window is allocated as 16-byte aligned to speed up memcpy() and
+        * enable lzx_e8_filter() optimization on x86_64.  */
+       c->cur_window = ALIGNED_MALLOC(max_window_size, 16);
+       if (!c->cur_window)
+               goto oom;
+
+       c->mf = lz_mf_alloc(&mf_params);
+       if (!c->mf)
+               goto oom;
+
+       if (params.num_optim_passes > 1) {
+               c->cached_matches = MALLOC(LZX_CACHE_LEN *
+                                          sizeof(struct lz_match));
+               if (!c->cached_matches)
+                       goto oom;
+               c->cache_limit = c->cached_matches + LZX_CACHE_LEN -
+                                (LZX_MAX_MATCHES_PER_POS + 1);
        } else {
-               lzx_user_default_params_ptr = NULL;
+               c->cached_matches = MALLOC(LZX_MAX_MATCHES_PER_POS *
+                                          sizeof(struct lz_match));
+               if (!c->cached_matches)
+                       goto oom;
        }
-       return 0;
-}
 
-/* API function documented in wimlib.h  */
-WIMLIBAPI int
-wimlib_lzx_alloc_context(const struct wimlib_lzx_params *params,
-                        struct wimlib_lzx_context **ctx_pp)
-{
+       lzx_init_offset_slot_fast(c);
 
-       LZX_DEBUG("Allocating LZX context...");
-
-       struct lzx_compressor *ctx;
-
-       static const struct wimlib_lzx_params fast_default = {
-               .size_of_this = sizeof(struct wimlib_lzx_params),
-               .algorithm = WIMLIB_LZX_ALGORITHM_FAST,
-               .use_defaults = 0,
-               .alg_params = {
-                       .fast = {
-                       },
-               },
-       };
-       static const struct wimlib_lzx_params slow_default = {
-               .size_of_this = sizeof(struct wimlib_lzx_params),
-               .algorithm = WIMLIB_LZX_ALGORITHM_SLOW,
-               .use_defaults = 0,
-               .alg_params = {
-                       .slow = {
-                               .use_len2_matches = 1,
-                               .num_fast_bytes = 32,
-                               .num_optim_passes = 2,
-                               .num_split_passes = 0,
-                               .max_search_depth = 50,
-                               .max_matches_per_pos = 3,
-                               .main_nostat_cost = 15,
-                               .len_nostat_cost = 15,
-                               .aligned_nostat_cost = 7,
-                       },
-               },
-       };
-
-       if (params) {
-               if (!lzx_params_valid(params))
-                       return WIMLIB_ERR_INVALID_PARAM;
-       } else {
-               LZX_DEBUG("Using default algorithm and parameters.");
-               if (lzx_user_default_params_ptr)
-                       params = lzx_user_default_params_ptr;
-               else
-                       params = &slow_default;
-       }
+       *c_ret = c;
+       return 0;
 
-       if (params->use_defaults) {
-               if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW)
-                       params = &slow_default;
-               else
-                       params = &fast_default;
-       }
+oom:
+       lzx_free_compressor(c);
+       return WIMLIB_ERR_NOMEM;
+}
 
-       if (ctx_pp) {
-               ctx = *(struct lzx_compressor**)ctx_pp;
+static size_t
+lzx_compress(const void *uncompressed_data, size_t uncompressed_size,
+            void *compressed_data, size_t compressed_size_avail, void *_c)
+{
+       struct lzx_compressor *c = _c;
+       struct lzx_output_bitstream os;
+       u32 num_chosen_items;
+       const struct lzx_lens *prev_lens;
+       u32 block_start_pos;
+       u32 block_size;
+       int block_type;
 
-               if (ctx && lzx_params_compatible(&ctx->params, params))
-                       return 0;
-       } else {
-               LZX_DEBUG("Check parameters only.");
+       /* Don't bother compressing very small inputs.  */
+       if (uncompressed_size < 100)
                return 0;
-       }
 
-       LZX_DEBUG("Allocating memory.");
-
-       ctx = MALLOC(sizeof(struct lzx_compressor));
-       if (ctx == NULL)
-               goto err;
-
-       size_t block_specs_length;
-
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW)
-               block_specs_length = 1U << params->alg_params.slow.num_split_passes;
-       else
-               block_specs_length = 1U;
-       ctx->block_specs = MALLOC(block_specs_length * sizeof(ctx->block_specs[0]));
-       if (ctx->block_specs == NULL)
-               goto err_free_ctx;
-
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
-               ctx->SA = MALLOC(3U * LZX_MAX_WINDOW_SIZE * sizeof(ctx->SA[0]));
-               if (ctx->SA == NULL)
-                       goto err_free_block_specs;
-               ctx->ISA = ctx->SA + LZX_MAX_WINDOW_SIZE;
-               ctx->LCP = ctx->ISA + LZX_MAX_WINDOW_SIZE;
-               ctx->salink = MALLOC(LZX_MAX_WINDOW_SIZE * sizeof(ctx->salink[0]));
-               if (ctx->salink == NULL)
-                       goto err_free_SA;
-       } else {
-               ctx->SA = NULL;
-               ctx->ISA = NULL;
-               ctx->LCP = NULL;
-               ctx->salink = NULL;
-       }
+       /* The input data must be preprocessed.  To avoid changing the original
+        * input data, copy it to a temporary buffer.  */
+       memcpy(c->cur_window, uncompressed_data, uncompressed_size);
+       c->cur_window_size = uncompressed_size;
 
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
-               ctx->optimum = MALLOC((LZX_OPTIM_ARRAY_SIZE + LZX_MAX_MATCH_LEN) *
-                                      sizeof(ctx->optimum[0]));
-               if (ctx->optimum == NULL)
-                       goto err_free_salink;
-       } else {
-               ctx->optimum = NULL;
-       }
+       /* Preprocess the data.  */
+       lzx_do_e8_preprocessing(c->cur_window, c->cur_window_size);
 
-       if (params->algorithm == WIMLIB_LZX_ALGORITHM_SLOW) {
-               uint32_t cache_per_pos;
+       /* Load the window into the match-finder.  */
+       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
 
-               cache_per_pos = params->alg_params.slow.max_matches_per_pos;
-               if (cache_per_pos > LZX_MAX_CACHE_PER_POS)
-                       cache_per_pos = LZX_MAX_CACHE_PER_POS;
+       /* Initialize the match offset LRU queue.  */
+       lzx_lru_queue_init(&c->queue);
 
-               ctx->cached_matches = MALLOC(LZX_MAX_WINDOW_SIZE * (cache_per_pos + 1) *
-                                            sizeof(ctx->cached_matches[0]));
-               if (ctx->cached_matches == NULL)
-                       goto err_free_optimum;
-       } else {
-               ctx->cached_matches = NULL;
-       }
+       /* Initialize the output bitstream.  */
+       lzx_init_output(&os, compressed_data, compressed_size_avail);
 
-       ctx->chosen_matches = MALLOC(LZX_MAX_WINDOW_SIZE *
-                                    sizeof(ctx->chosen_matches[0]));
-       if (ctx->chosen_matches == NULL)
-               goto err_free_cached_matches;
+       /* Compress the data block by block.
+        *
+        * TODO: The compression ratio could be slightly improved by performing
+        * data-dependent block splitting instead of using fixed-size blocks.
+        * Doing so well is a computationally hard problem, however.  */
+       block_start_pos = 0;
+       c->codes_index = 0;
+       prev_lens = &c->zero_lens;
+       do {
+               /* Compute the block size.  */
+               block_size = min(LZX_DIV_BLOCK_SIZE,
+                                uncompressed_size - block_start_pos);
 
-       memcpy(&ctx->params, params, sizeof(struct wimlib_lzx_params));
-       memset(&ctx->zero_codes, 0, sizeof(ctx->zero_codes));
+               /* Reset symbol frequencies.  */
+               memset(&c->freqs, 0, sizeof(c->freqs));
 
-       LZX_DEBUG("Successfully allocated new LZX context.");
+               /* Prepare the matches/literals for the block.  */
+               num_chosen_items = lzx_choose_items_for_block(c,
+                                                             block_start_pos,
+                                                             block_size);
 
-       wimlib_lzx_free_context(*ctx_pp);
-       *ctx_pp = (struct wimlib_lzx_context*)ctx;
-       return 0;
+               /* Make the Huffman codes from the symbol frequencies.  */
+               lzx_make_huffman_codes(&c->freqs, &c->codes[c->codes_index],
+                                      c->num_main_syms);
 
-err_free_cached_matches:
-       FREE(ctx->cached_matches);
-err_free_optimum:
-       FREE(ctx->optimum);
-err_free_salink:
-       FREE(ctx->salink);
-err_free_SA:
-       FREE(ctx->SA);
-err_free_block_specs:
-       FREE(ctx->block_specs);
-err_free_ctx:
-       FREE(ctx);
-err:
-       LZX_DEBUG("Ran out of memory.");
-       return WIMLIB_ERR_NOMEM;
+               /* Choose the best block type.
+                *
+                * Note: we currently don't consider uncompressed blocks.  */
+               block_type = lzx_choose_verbatim_or_aligned(&c->freqs,
+                                                           &c->codes[c->codes_index]);
+
+               /* Write the compressed block to the output buffer.  */
+               lzx_write_compressed_block(block_type,
+                                          block_size,
+                                          c->window_order,
+                                          c->num_main_syms,
+                                          c->chosen_items,
+                                          num_chosen_items,
+                                          &c->codes[c->codes_index],
+                                          prev_lens,
+                                          &os);
+
+               /* The current codeword lengths become the previous lengths.  */
+               prev_lens = &c->codes[c->codes_index].lens;
+               c->codes_index ^= 1;
+
+               block_start_pos += block_size;
+
+       } while (block_start_pos != uncompressed_size);
+
+       return lzx_flush_output(&os);
 }
 
-/* API function documented in wimlib.h  */
-WIMLIBAPI void
-wimlib_lzx_free_context(struct wimlib_lzx_context *_ctx)
+static void
+lzx_free_compressor(void *_c)
 {
-       struct lzx_compressor *ctx = (struct lzx_compressor*)_ctx;
-
-       if (ctx) {
-               FREE(ctx->cached_matches);
-               FREE(ctx->chosen_matches);
-               FREE(ctx->optimum);
-               FREE(ctx->SA);
-               FREE(ctx->salink);
-               FREE(ctx->block_specs);
-               FREE(ctx);
-       }
-}
+       struct lzx_compressor *c = _c;
 
-/* API function documented in wimlib.h  */
-WIMLIBAPI unsigned
-wimlib_lzx_compress(const void * const restrict uncompressed_data,
-                   unsigned     const          uncompressed_len,
-                   void       * const restrict compressed_data)
-{
-       int ret;
-       struct wimlib_lzx_context *ctx = NULL;
-       unsigned compressed_len;
-
-       ret = wimlib_lzx_alloc_context(NULL, &ctx);
-       if (ret) {
-               wimlib_assert(ret != WIMLIB_ERR_INVALID_PARAM);
-               WARNING("Couldn't allocate LZX compression context: %"TS"",
-                       wimlib_get_error_string(ret));
-               return 0;
+       if (c) {
+               ALIGNED_FREE(c->cur_window);
+               lz_mf_free(c->mf);
+               FREE(c->cached_matches);
+               FREE(c);
        }
-
-       compressed_len = wimlib_lzx_compress2(uncompressed_data,
-                                             uncompressed_len,
-                                             compressed_data,
-                                             ctx);
-
-       wimlib_lzx_free_context(ctx);
-
-       return compressed_len;
 }
+
+const struct compressor_ops lzx_compressor_ops = {
+       .get_needed_memory  = lzx_get_needed_memory,
+       .create_compressor  = lzx_create_compressor,
+       .compress           = lzx_compress,
+       .free_compressor    = lzx_free_compressor,
+};