]> wimlib.net Git - wimlib/blobdiff - src/lzx-compress.c
A few minor compressor cleanups
[wimlib] / src / lzx-compress.c
index 9a654b2d796586d1177adf234ff04b785e0d268f..a972cc35bf3c24722372db9538c3b9a72f21f1c8 100644 (file)
@@ -1,13 +1,11 @@
 /*
  * lzx-compress.c
  *
- * LZX compression routines, originally based on code written by Matthew T.
- * Russotto (liblzxcomp), but heavily modified.
+ * A compressor that produces output compatible with the LZX compression format.
  */
 
 /*
- * Copyright (C) 2002 Matthew T. Russotto
- * Copyright (C) 2012, 2013 Eric Biggers
+ * Copyright (C) 2012, 2013, 2014 Eric Biggers
  *
  * This file is part of wimlib, a library for working with WIM files.
  *
 
 
 /*
- * This file provides lzx_compress(), a function to compress an in-memory buffer
- * of data using LZX compression, as used in the WIM file format.
- *
- * Please see the comments in lzx-decompress.c for more information about this
- * compression format.
- *
- * One thing to keep in mind is that there is no sliding window, since the
- * window is always the entirety of a WIM chunk, which is at most WIM_CHUNK_SIZE
- * ( = 32768) bytes.
- *
- * The basic compression algorithm used here should be familiar if you are
- * familiar with Huffman trees and with other LZ77 and Huffman-based formats
- * such as DEFLATE.  Otherwise it can be quite tricky to understand.  Basically
- * it is the following:
- *
- * - Preprocess the input data (LZX-specific)
- * - Go through the input data and determine matches.  This part is based on
- *       code from zlib, and a hash table of 3-character strings is used to
- *       accelerate the process of finding matches.
- * - Build the Huffman trees based on the frequencies of symbols determined
- *       while recording matches.
- * - Output the block header, including the Huffman trees; then output the
- *       compressed stream of matches and literal characters.
- *
- * It is possible for a WIM chunk to include multiple LZX blocks, since for some
- * input data this will produce a better compression ratio (especially since
- * each block can include new Huffman codes).  However, producing multiple LZX
- * blocks from one input chunk is not yet implemented.
+ * This file contains a compressor for the LZX ("Lempel-Ziv eXtended")
+ * compression format, as used in the WIM (Windows IMaging) file format.
+ *
+ * Two different parsing algorithms are implemented: "near-optimal" and "lazy".
+ * "Near-optimal" is significantly slower than "lazy", but results in a better
+ * compression ratio.  The "near-optimal" algorithm is used at the default
+ * compression level.
+ *
+ * This file may need some slight modifications to be used outside of the WIM
+ * format.  In particular, in other situations the LZX block header might be
+ * slightly different, and a sliding window rather than a fixed-size window
+ * might be required.
+ *
+ * Note: LZX is a compression format derived from DEFLATE, the format used by
+ * zlib and gzip.  Both LZX and DEFLATE use LZ77 matching and Huffman coding.
+ * Certain details are quite similar, such as the method for storing Huffman
+ * codes.  However, the main differences are:
+ *
+ * - LZX preprocesses the data to attempt to make x86 machine code slightly more
+ *   compressible before attempting to compress it further.
+ *
+ * - LZX uses a "main" alphabet which combines literals and matches, with the
+ *   match symbols containing a "length header" (giving all or part of the match
+ *   length) and an "offset slot" (giving, roughly speaking, the order of
+ *   magnitude of the match offset).
+ *
+ * - LZX does not have static Huffman blocks (that is, the kind with preset
+ *   Huffman codes); however it does have two types of dynamic Huffman blocks
+ *   ("verbatim" and "aligned").
+ *
+ * - LZX has a minimum match length of 2 rather than 3.  Length 2 matches can be
+ *   useful, but generally only if the parser is smart about choosing them.
+ *
+ * - In LZX, offset slots 0 through 2 actually represent entries in an LRU queue
+ *   of match offsets.  This is very useful for certain types of files, such as
+ *   binary files that have repeating records.
  */
 
-#include "lzx.h"
-#include "compress.h"
-#include <stdlib.h>
+#ifdef HAVE_CONFIG_H
+#  include "config.h"
+#endif
+
+#include "wimlib/compress_common.h"
+#include "wimlib/compressor_ops.h"
+#include "wimlib/endianness.h"
+#include "wimlib/error.h"
+#include "wimlib/lz_mf.h"
+#include "wimlib/lz_repsearch.h"
+#include "wimlib/lzx.h"
+#include "wimlib/util.h"
+
 #include <string.h>
+#include <limits.h>
+
+#define LZX_OPTIM_ARRAY_LENGTH 4096
+
+#define LZX_DIV_BLOCK_SIZE     32768
+
+#define LZX_CACHE_PER_POS      8
+
+#define LZX_MAX_MATCHES_PER_POS        (LZX_MAX_MATCH_LEN - LZX_MIN_MATCH_LEN + 1)
+
+#define LZX_CACHE_LEN (LZX_DIV_BLOCK_SIZE * (LZX_CACHE_PER_POS + 1))
 
+struct lzx_compressor;
 
-/* Structure to contain the Huffman codes for the main, length, and aligned
- * offset trees. */
+/* Codewords for the LZX Huffman codes.  */
+struct lzx_codewords {
+       u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u32 len[LZX_LENCODE_NUM_SYMBOLS];
+       u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+};
+
+/* Codeword lengths (in bits) for the LZX Huffman codes.
+ * A zero length means the corresponding codeword has zero frequency.  */
+struct lzx_lens {
+       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u8 len[LZX_LENCODE_NUM_SYMBOLS];
+       u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+};
+
+/* Estimated cost, in bits, to output each symbol in the LZX Huffman codes.  */
+struct lzx_costs {
+       u8 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u8 len[LZX_LENCODE_NUM_SYMBOLS];
+       u8 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+};
+
+/* Codewords and lengths for the LZX Huffman codes.  */
 struct lzx_codes {
-       u16 main_codewords[LZX_MAINTREE_NUM_SYMBOLS];
-       u8  main_lens[LZX_MAINTREE_NUM_SYMBOLS];
+       struct lzx_codewords codewords;
+       struct lzx_lens lens;
+};
+
+/* Symbol frequency counters for the LZX Huffman codes.  */
+struct lzx_freqs {
+       u32 main[LZX_MAINCODE_MAX_NUM_SYMBOLS];
+       u32 len[LZX_LENCODE_NUM_SYMBOLS];
+       u32 aligned[LZX_ALIGNEDCODE_NUM_SYMBOLS];
+};
 
-       u16 len_codewords[LZX_LENTREE_NUM_SYMBOLS];
-       u8  len_lens[LZX_LENTREE_NUM_SYMBOLS];
+/* Intermediate LZX match/literal format  */
+struct lzx_item {
 
-       u16 aligned_codewords[LZX_ALIGNEDTREE_NUM_SYMBOLS];
-       u8  aligned_lens[LZX_ALIGNEDTREE_NUM_SYMBOLS];
+       /* Bits 0  -  9: Main symbol
+        * Bits 10 - 17: Length symbol
+        * Bits 18 - 22: Number of extra offset bits
+        * Bits 23+    : Extra offset bits  */
+       u64 data;
 };
 
-struct lzx_freq_tables {
-       freq_t main_freq_table[LZX_MAINTREE_NUM_SYMBOLS];
-       freq_t len_freq_table[LZX_LENTREE_NUM_SYMBOLS];
-       freq_t aligned_freq_table[LZX_ALIGNEDTREE_NUM_SYMBOLS];
+/* Internal compression parameters  */
+struct lzx_compressor_params {
+       u32 (*choose_items_for_block)(struct lzx_compressor *, u32, u32);
+       u32 num_optim_passes;
+       enum lz_mf_algo mf_algo;
+       u32 min_match_length;
+       u32 nice_match_length;
+       u32 max_search_depth;
 };
 
-/* Returns the LZX position slot that corresponds to a given formatted offset.
- *
- * Logically, this returns the smallest i such that
- * formatted_offset >= lzx_position_base[i].
+/*
+ * Match chooser position data:
  *
- * The actual implementation below takes advantage of the regularity of the
- * numbers in the lzx_position_base array to calculate the slot directly from
- * the formatted offset without actually looking at the array.
+ * An array of these structures is used during the near-optimal match-choosing
+ * algorithm.  They correspond to consecutive positions in the window and are
+ * used to keep track of the cost to reach each position, and the match/literal
+ * choices that need to be chosen to reach that position.
  */
-static inline unsigned
-lzx_get_position_slot(unsigned formatted_offset)
-{
-#if 0
-       /*
-        * Slots 36-49 (formatted_offset >= 262144) can be found by
-        * (formatted_offset/131072) + 34 == (formatted_offset >> 17) + 34;
-        * however, this check for formatted_offset >= 262144 is commented out
-        * because WIM chunks cannot be that large.
+struct lzx_mc_pos_data {
+
+       /* The cost, in bits, of the lowest-cost path that has been found to
+        * reach this position.  This can change as progressively lower cost
+        * paths are found to reach this position.  */
+       u32 cost;
+#define MC_INFINITE_COST UINT32_MAX
+
+       /* The match or literal that was taken to reach this position.  This can
+        * change as progressively lower cost paths are found to reach this
+        * position.
+        *
+        * This variable is divided into two bitfields.
+        *
+        * Literals:
+        *      Low bits are 1, high bits are the literal.
+        *
+        * Explicit offset matches:
+        *      Low bits are the match length, high bits are the offset plus 2.
+        *
+        * Repeat offset matches:
+        *      Low bits are the match length, high bits are the queue index.
         */
-       if (formatted_offset >= 262144) {
-               return (formatted_offset >> 17) + 34;
-       } else
-#endif
-       {
-               /* Note: this part here only works if:
-                *
-                *    2 <= formatted_offset < 655360
-                *
-                * It is < 655360 because the frequency of the position bases
-                * increases starting at the 655360 entry, and it is >= 2
-                * because the below calculation fails if the most significant
-                * bit is lower than the 2's place. */
-               wimlib_assert(formatted_offset >= 2 && formatted_offset < 655360);
-               unsigned mssb_idx = bsr32(formatted_offset);
-               return (mssb_idx << 1) |
-                       ((formatted_offset >> (mssb_idx - 1)) & 1);
+       u32 mc_item_data;
+#define MC_OFFSET_SHIFT 9
+#define MC_LEN_MASK ((1 << MC_OFFSET_SHIFT) - 1)
+
+       /* The state of the LZX recent match offsets queue at this position.
+        * This is filled in lazily, only after the minimum-cost path to this
+        * position is found.
+        *
+        * Note: the way we handle this adaptive state in the "minimum-cost"
+        * parse is actually only an approximation.  It's possible for the
+        * globally optimal, minimum cost path to contain a prefix, ending at a
+        * position, where that path prefix is *not* the minimum cost path to
+        * that position.  This can happen if such a path prefix results in a
+        * different adaptive state which results in lower costs later.  We do
+        * not solve this problem; we only consider the lowest cost to reach
+        * each position, which seems to be an acceptable approximation.  */
+       struct lzx_lru_queue queue _aligned_attribute(16);
+
+} _aligned_attribute(16);
+
+/* State of the LZX compressor  */
+struct lzx_compressor {
+
+       /* Internal compression parameters  */
+       struct lzx_compressor_params params;
+
+       /* The preprocessed buffer of data being compressed  */
+       u8 *cur_window;
+
+       /* Number of bytes of data to be compressed, which is the number of
+        * bytes of data in @cur_window that are actually valid.  */
+       u32 cur_window_size;
+
+       /* log2 order of the LZX window size for LZ match offset encoding
+        * purposes.  Will be >= LZX_MIN_WINDOW_ORDER and <=
+        * LZX_MAX_WINDOW_ORDER.
+        *
+        * Note: 1 << @window_order is normally equal to @max_window_size,
+        * a.k.a. the allocated size of @cur_window, but it will be greater than
+        * @max_window_size in the event that the compressor was created with a
+        * non-power-of-2 block size.  (See lzx_get_window_order().)  */
+       unsigned window_order;
+
+       /* Number of symbols in the main alphabet.  This depends on
+        * @window_order, since @window_order determines the maximum possible
+        * offset.  It does not, however, depend on the *actual* size of the
+        * current data buffer being processed, which might be less than 1 <<
+        * @window_order.  */
+       unsigned num_main_syms;
+
+       /* Lempel-Ziv match-finder  */
+       struct lz_mf *mf;
+
+       /* Match-finder wrapper functions and data for near-optimal parsing.
+        *
+        * When doing more than one match-choosing pass over the data, matches
+        * found by the match-finder are cached to achieve a slight speedup when
+        * the same matches are needed on subsequent passes.  This is suboptimal
+        * because different matches may be preferred with different cost
+        * models, but it is a very worthwhile speedup.  */
+       unsigned (*get_matches_func)(struct lzx_compressor *, const struct lz_match **);
+       void (*skip_bytes_func)(struct lzx_compressor *, unsigned n);
+       u32 match_window_pos;
+       u32 match_window_end;
+       struct lz_match *cached_matches;
+       struct lz_match *cache_ptr;
+       struct lz_match *cache_limit;
+
+       /* Position data for near-optimal parsing.  */
+       struct lzx_mc_pos_data optimum[LZX_OPTIM_ARRAY_LENGTH + LZX_MAX_MATCH_LEN];
+
+       /* The cost model currently being used for near-optimal parsing.  */
+       struct lzx_costs costs;
+
+       /* The current match offset LRU queue.  */
+       struct lzx_lru_queue queue;
+
+       /* Frequency counters for the current block.  */
+       struct lzx_freqs freqs;
+
+       /* The Huffman codes for the current and previous blocks.  */
+       struct lzx_codes codes[2];
+
+       /* Which 'struct lzx_codes' is being used for the current block.  The
+        * other was used for the previous block (if this isn't the first
+        * block).  */
+       unsigned int codes_index;
+
+       /* Dummy lengths that are always 0.  */
+       struct lzx_lens zero_lens;
+
+       /* Matches/literals that were chosen for the current block.  */
+       struct lzx_item chosen_items[LZX_DIV_BLOCK_SIZE];
+
+       /* Table mapping match offset => offset slot for small offsets  */
+#define LZX_NUM_FAST_OFFSETS 32768
+       u8 offset_slot_fast[LZX_NUM_FAST_OFFSETS];
+};
+
+/*
+ * Structure to keep track of the current state of sending bits to the
+ * compressed output buffer.
+ *
+ * The LZX bitstream is encoded as a sequence of 16-bit coding units.
+ */
+struct lzx_output_bitstream {
+
+       /* Bits that haven't yet been written to the output buffer.  */
+       u32 bitbuf;
+
+       /* Number of bits currently held in @bitbuf.  */
+       u32 bitcount;
+
+       /* Pointer to the start of the output buffer.  */
+       le16 *start;
+
+       /* Pointer to the position in the output buffer at which the next coding
+        * unit should be written.  */
+       le16 *next;
+
+       /* Pointer past the end of the output buffer.  */
+       le16 *end;
+};
+
+/*
+ * Initialize the output bitstream.
+ *
+ * @os
+ *     The output bitstream structure to initialize.
+ * @buffer
+ *     The buffer being written to.
+ * @size
+ *     Size of @buffer, in bytes.
+ */
+static void
+lzx_init_output(struct lzx_output_bitstream *os, void *buffer, u32 size)
+{
+       os->bitbuf = 0;
+       os->bitcount = 0;
+       os->start = buffer;
+       os->next = os->start;
+       os->end = os->start + size / sizeof(le16);
+}
+
+/*
+ * Write some bits to the output bitstream.
+ *
+ * The bits are given by the low-order @num_bits bits of @bits.  Higher-order
+ * bits in @bits cannot be set.  At most 17 bits can be written at once.
+ *
+ * @max_num_bits is a compile-time constant that specifies the maximum number of
+ * bits that can ever be written at the call site.  Currently, it is used to
+ * optimize away the conditional code for writing a second 16-bit coding unit
+ * when writing fewer than 17 bits.
+ *
+ * If the output buffer space is exhausted, then the bits will be ignored, and
+ * lzx_flush_output() will return 0 when it gets called.
+ */
+static inline void
+lzx_write_varbits(struct lzx_output_bitstream *os,
+                 const u32 bits, const unsigned int num_bits,
+                 const unsigned int max_num_bits)
+{
+       /* This code is optimized for LZX, which never needs to write more than
+        * 17 bits at once.  */
+       LZX_ASSERT(num_bits <= 17);
+       LZX_ASSERT(num_bits <= max_num_bits);
+       LZX_ASSERT(os->bitcount <= 15);
+
+       /* Add the bits to the bit buffer variable.  @bitcount will be at most
+        * 15, so there will be just enough space for the maximum possible
+        * @num_bits of 17.  */
+       os->bitcount += num_bits;
+       os->bitbuf = (os->bitbuf << num_bits) | bits;
+
+       /* Check whether any coding units need to be written.  */
+       if (os->bitcount >= 16) {
+
+               os->bitcount -= 16;
+
+               /* Write a coding unit, unless it would overflow the buffer.  */
+               if (os->next != os->end)
+                       *os->next++ = cpu_to_le16(os->bitbuf >> os->bitcount);
+
+               /* If writing 17 bits, a second coding unit might need to be
+                * written.  But because 'max_num_bits' is a compile-time
+                * constant, the compiler will optimize away this code at most
+                * call sites.  */
+               if (max_num_bits == 17 && os->bitcount == 16) {
+                       if (os->next != os->end)
+                               *os->next++ = cpu_to_le16(os->bitbuf);
+                       os->bitcount = 0;
+               }
        }
 }
 
-static u32
-lzx_record_literal(u8 literal, void *__main_freq_tab)
+/* Use when @num_bits is a compile-time constant.  Otherwise use
+ * lzx_write_varbits().  */
+static inline void
+lzx_write_bits(struct lzx_output_bitstream *os,
+              const u32 bits, const unsigned int num_bits)
 {
-       freq_t *main_freq_tab = __main_freq_tab;
-       main_freq_tab[literal]++;
-       return literal;
+       lzx_write_varbits(os, bits, num_bits, num_bits);
 }
 
-/* Constructs a match from an offset and a length, and updates the LRU queue and
- * the frequency of symbols in the main, length, and aligned offset alphabets.
- * The return value is a 32-bit number that provides the match in an
- * intermediate representation documented below. */
+/*
+ * Flush the last coding unit to the output buffer if needed.  Return the total
+ * number of bytes written to the output buffer, or 0 if an overflow occurred.
+ */
 static u32
-lzx_record_match(unsigned match_offset, unsigned match_len,
-                void *__freq_tabs, void *__queue)
-{
-       struct lzx_freq_tables *freq_tabs = __freq_tabs;
-       struct lru_queue *queue = __queue;
-       unsigned position_slot;
-       unsigned position_footer = 0;
-       u32 match;
-       u32 len_header;
-       u32 len_pos_header;
-       unsigned len_footer;
-       unsigned adjusted_match_len;
-
-       wimlib_assert(match_len >= LZX_MIN_MATCH && match_len <= LZX_MAX_MATCH);
-       wimlib_assert(match_offset != 0);
-
-       /* If possible, encode this offset as a repeated offset. */
-       if (match_offset == queue->R0) {
-               position_slot = 0;
-       } else if (match_offset == queue->R1) {
-               swap(queue->R0, queue->R1);
-               position_slot = 1;
-       } else if (match_offset == queue->R2) {
-               swap(queue->R0, queue->R2);
-               position_slot = 2;
+lzx_flush_output(struct lzx_output_bitstream *os)
+{
+       if (os->next == os->end)
+               return 0;
+
+       if (os->bitcount != 0)
+               *os->next++ = cpu_to_le16(os->bitbuf << (16 - os->bitcount));
+
+       return (const u8 *)os->next - (const u8 *)os->start;
+}
+
+/* Build the main, length, and aligned offset Huffman codes used in LZX.
+ *
+ * This takes as input the frequency tables for each code and produces as output
+ * a set of tables that map symbols to codewords and codeword lengths.  */
+static void
+lzx_make_huffman_codes(const struct lzx_freqs *freqs, struct lzx_codes *codes,
+                      unsigned num_main_syms)
+{
+       make_canonical_huffman_code(num_main_syms,
+                                   LZX_MAX_MAIN_CODEWORD_LEN,
+                                   freqs->main,
+                                   codes->lens.main,
+                                   codes->codewords.main);
+
+       make_canonical_huffman_code(LZX_LENCODE_NUM_SYMBOLS,
+                                   LZX_MAX_LEN_CODEWORD_LEN,
+                                   freqs->len,
+                                   codes->lens.len,
+                                   codes->codewords.len);
+
+       make_canonical_huffman_code(LZX_ALIGNEDCODE_NUM_SYMBOLS,
+                                   LZX_MAX_ALIGNED_CODEWORD_LEN,
+                                   freqs->aligned,
+                                   codes->lens.aligned,
+                                   codes->codewords.aligned);
+}
+
+static unsigned
+lzx_compute_precode_items(const u8 lens[restrict],
+                         const u8 prev_lens[restrict],
+                         const unsigned num_lens,
+                         u32 precode_freqs[restrict],
+                         unsigned precode_items[restrict])
+{
+       unsigned *itemptr;
+       unsigned run_start;
+       unsigned run_end;
+       unsigned extra_bits;
+       int delta;
+       u8 len;
+
+       itemptr = precode_items;
+       run_start = 0;
+       do {
+               /* Find the next run of codeword lengths.  */
+
+               /* len = the length being repeated  */
+               len = lens[run_start];
+
+               run_end = run_start + 1;
+
+               /* Fast case for a single length.  */
+               if (likely(run_end == num_lens || len != lens[run_end])) {
+                       delta = prev_lens[run_start] - len;
+                       if (delta < 0)
+                               delta += 17;
+                       precode_freqs[delta]++;
+                       *itemptr++ = delta;
+                       run_start++;
+                       continue;
+               }
+
+               /* Extend the run.  */
+               do {
+                       run_end++;
+               } while (run_end != num_lens && len == lens[run_end]);
+
+               if (len == 0) {
+                       /* Run of zeroes.  */
+
+                       /* Symbol 18: RLE 20 to 51 zeroes at a time.  */
+                       while ((run_end - run_start) >= 20) {
+                               extra_bits = min((run_end - run_start) - 20, 0x1f);
+                               precode_freqs[18]++;
+                               *itemptr++ = 18 | (extra_bits << 5);
+                               run_start += 20 + extra_bits;
+                       }
+
+                       /* Symbol 17: RLE 4 to 19 zeroes at a time.  */
+                       if ((run_end - run_start) >= 4) {
+                               extra_bits = min((run_end - run_start) - 4, 0xf);
+                               precode_freqs[17]++;
+                               *itemptr++ = 17 | (extra_bits << 5);
+                               run_start += 4 + extra_bits;
+                       }
+               } else {
+
+                       /* A run of nonzero lengths. */
+
+                       /* Symbol 19: RLE 4 to 5 of any length at a time.  */
+                       while ((run_end - run_start) >= 4) {
+                               extra_bits = (run_end - run_start) > 4;
+                               delta = prev_lens[run_start] - len;
+                               if (delta < 0)
+                                       delta += 17;
+                               precode_freqs[19]++;
+                               precode_freqs[delta]++;
+                               *itemptr++ = 19 | (extra_bits << 5) | (delta << 6);
+                               run_start += 4 + extra_bits;
+                       }
+               }
+
+               /* Output any remaining lengths without RLE.  */
+               while (run_start != run_end) {
+                       delta = prev_lens[run_start] - len;
+                       if (delta < 0)
+                               delta += 17;
+                       precode_freqs[delta]++;
+                       *itemptr++ = delta;
+                       run_start++;
+               }
+       } while (run_start != num_lens);
+
+       return itemptr - precode_items;
+}
+
+/*
+ * Output a Huffman code in the compressed form used in LZX.
+ *
+ * The Huffman code is represented in the output as a logical series of codeword
+ * lengths from which the Huffman code, which must be in canonical form, can be
+ * reconstructed.
+ *
+ * The codeword lengths are themselves compressed using a separate Huffman code,
+ * the "precode", which contains a symbol for each possible codeword length in
+ * the larger code as well as several special symbols to represent repeated
+ * codeword lengths (a form of run-length encoding).  The precode is itself
+ * constructed in canonical form, and its codeword lengths are represented
+ * literally in 20 4-bit fields that immediately precede the compressed codeword
+ * lengths of the larger code.
+ *
+ * Furthermore, the codeword lengths of the larger code are actually represented
+ * as deltas from the codeword lengths of the corresponding code in the previous
+ * block.
+ *
+ * @os:
+ *     Bitstream to which to write the compressed Huffman code.
+ * @lens:
+ *     The codeword lengths, indexed by symbol, in the Huffman code.
+ * @prev_lens:
+ *     The codeword lengths, indexed by symbol, in the corresponding Huffman
+ *     code in the previous block, or all zeroes if this is the first block.
+ * @num_lens:
+ *     The number of symbols in the Huffman code.
+ */
+static void
+lzx_write_compressed_code(struct lzx_output_bitstream *os,
+                         const u8 lens[restrict],
+                         const u8 prev_lens[restrict],
+                         unsigned num_lens)
+{
+       u32 precode_freqs[LZX_PRECODE_NUM_SYMBOLS];
+       u8 precode_lens[LZX_PRECODE_NUM_SYMBOLS];
+       u32 precode_codewords[LZX_PRECODE_NUM_SYMBOLS];
+       unsigned precode_items[num_lens];
+       unsigned num_precode_items;
+       unsigned precode_item;
+       unsigned precode_sym;
+       unsigned i;
+
+       for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
+               precode_freqs[i] = 0;
+
+       /* Compute the "items" (RLE / literal tokens and extra bits) with which
+        * the codeword lengths in the larger code will be output.  */
+       num_precode_items = lzx_compute_precode_items(lens,
+                                                     prev_lens,
+                                                     num_lens,
+                                                     precode_freqs,
+                                                     precode_items);
+
+       /* Build the precode.  */
+       make_canonical_huffman_code(LZX_PRECODE_NUM_SYMBOLS,
+                                   LZX_MAX_PRE_CODEWORD_LEN,
+                                   precode_freqs, precode_lens,
+                                   precode_codewords);
+
+       /* Output the lengths of the codewords in the precode.  */
+       for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
+               lzx_write_bits(os, precode_lens[i], LZX_PRECODE_ELEMENT_SIZE);
+
+       /* Output the encoded lengths of the codewords in the larger code.  */
+       for (i = 0; i < num_precode_items; i++) {
+               precode_item = precode_items[i];
+               precode_sym = precode_item & 0x1F;
+               lzx_write_varbits(os, precode_codewords[precode_sym],
+                                 precode_lens[precode_sym],
+                                 LZX_MAX_PRE_CODEWORD_LEN);
+               if (precode_sym >= 17) {
+                       if (precode_sym == 17) {
+                               lzx_write_bits(os, precode_item >> 5, 4);
+                       } else if (precode_sym == 18) {
+                               lzx_write_bits(os, precode_item >> 5, 5);
+                       } else {
+                               lzx_write_bits(os, (precode_item >> 5) & 1, 1);
+                               precode_sym = precode_item >> 6;
+                               lzx_write_varbits(os, precode_codewords[precode_sym],
+                                                 precode_lens[precode_sym],
+                                                 LZX_MAX_PRE_CODEWORD_LEN);
+                       }
+               }
+       }
+}
+
+/* Output a match or literal.  */
+static inline void
+lzx_write_item(struct lzx_output_bitstream *os, struct lzx_item item,
+              unsigned ones_if_aligned, const struct lzx_codes *codes)
+{
+       u64 data = item.data;
+       unsigned main_symbol;
+       unsigned len_symbol;
+       unsigned num_extra_bits;
+       u32 extra_bits;
+
+       main_symbol = data & 0x3FF;
+
+       lzx_write_varbits(os, codes->codewords.main[main_symbol],
+                         codes->lens.main[main_symbol],
+                         LZX_MAX_MAIN_CODEWORD_LEN);
+
+       if (main_symbol < LZX_NUM_CHARS)  /* Literal?  */
+               return;
+
+       len_symbol = (data >> 10) & 0xFF;
+
+       if (len_symbol != LZX_LENCODE_NUM_SYMBOLS) {
+               lzx_write_varbits(os, codes->codewords.len[len_symbol],
+                                 codes->lens.len[len_symbol],
+                                 LZX_MAX_LEN_CODEWORD_LEN);
+       }
+
+       num_extra_bits = (data >> 18) & 0x1F;
+       if (num_extra_bits == 0)  /* Small offset or repeat offset match?  */
+               return;
+
+       extra_bits = data >> 23;
+
+       /*if (block_type == LZX_BLOCKTYPE_ALIGNED && num_extra_bits >= 3) {*/
+       if ((num_extra_bits & ones_if_aligned) >= 3) {
+
+               /* Aligned offset blocks: The low 3 bits of the extra offset
+                * bits are Huffman-encoded using the aligned offset code.  The
+                * remaining bits are output literally.  */
+
+               lzx_write_varbits(os, extra_bits >> 3, num_extra_bits - 3, 14);
+
+               lzx_write_varbits(os, codes->codewords.aligned[extra_bits & 7],
+                                 codes->lens.aligned[extra_bits & 7],
+                                 LZX_MAX_ALIGNED_CODEWORD_LEN);
        } else {
-               /* Not a repeated offset. */
-
-               /* offsets of 0, 1, and 2 are reserved for the repeated offset
-                * codes, so non-repeated offsets must be encoded as 3+.  The
-                * minimum offset is 1, so encode the offsets offset by 2. */
-               unsigned formatted_offset = match_offset + LZX_MIN_MATCH;
-
-               queue->R2 = queue->R1;
-               queue->R1 = queue->R0;
-               queue->R0 = match_offset;
-
-               /* The (now-formatted) offset will actually be encoded as a
-                * small position slot number that maps to a certain hard-coded
-                * offset (position base), followed by a number of extra bits---
-                * the position footer--- that are added to the position base to
-                * get the original formatted offset. */
-
-               position_slot = lzx_get_position_slot(formatted_offset);
-               position_footer = formatted_offset &
-                                 ((1 << lzx_get_num_extra_bits(position_slot)) - 1);
+               /* Verbatim blocks, or fewer than 3 extra bits:  All extra
+                * offset bits are output literally.  */
+               lzx_write_varbits(os, extra_bits, num_extra_bits, 17);
        }
+}
 
-       adjusted_match_len = match_len - LZX_MIN_MATCH;
+/*
+ * Write all matches and literal bytes (which were precomputed) in an LZX
+ * compressed block to the output bitstream in the final compressed
+ * representation.
+ *
+ * @os
+ *     The output bitstream.
+ * @block_type
+ *     The chosen type of the LZX compressed block (LZX_BLOCKTYPE_ALIGNED or
+ *     LZX_BLOCKTYPE_VERBATIM).
+ * @items
+ *     The array of matches/literals to output.
+ * @num_items
+ *     Number of matches/literals to output (length of @items).
+ * @codes
+ *     The main, length, and aligned offset Huffman codes for the current
+ *     LZX compressed block.
+ */
+static void
+lzx_write_items(struct lzx_output_bitstream *os, int block_type,
+               const struct lzx_item items[], u32 num_items,
+               const struct lzx_codes *codes)
+{
+       unsigned ones_if_aligned = 0U - (block_type == LZX_BLOCKTYPE_ALIGNED);
 
-       /* Pack the position slot, position footer, and match length into an
-        * intermediate representation.
-        *
-        * bits    description
-        * ----    -----------------------------------------------------------
-        *
-        * 31      1 if a match, 0 if a literal.
-        *
-        * 30-25   position slot.  This can be at most 50, so it will fit in 6
-        *         bits.
-        *
-        * 8-24    position footer.  This is the offset of the real formatted
-        *         offset from the position base.  This can be at most 17 bits
-        *         (since lzx_extra_bits[LZX_NUM_POSITION_SLOTS - 1] is 17).
+       for (u32 i = 0; i < num_items; i++)
+               lzx_write_item(os, items[i], ones_if_aligned, codes);
+}
+
+/* Write an LZX aligned offset or verbatim block to the output bitstream.  */
+static void
+lzx_write_compressed_block(int block_type,
+                          u32 block_size,
+                          unsigned window_order,
+                          unsigned num_main_syms,
+                          struct lzx_item * chosen_items,
+                          u32 num_chosen_items,
+                          const struct lzx_codes * codes,
+                          const struct lzx_lens * prev_lens,
+                          struct lzx_output_bitstream * os)
+{
+       LZX_ASSERT(block_type == LZX_BLOCKTYPE_ALIGNED ||
+                  block_type == LZX_BLOCKTYPE_VERBATIM);
+
+       /* The first three bits indicate the type of block and are one of the
+        * LZX_BLOCKTYPE_* constants.  */
+       lzx_write_bits(os, block_type, 3);
+
+       /* Output the block size.
         *
-        * 0-7     length of match, offset by 2.  This can be at most
-        *         (LZX_MAX_MATCH - 2) == 255, so it will fit in 8 bits.  */
-       match = 0x80000000 |
-               (position_slot << 25) |
-               (position_footer << 8) |
-               (adjusted_match_len);
-
-       /* The match length must be at least 2, so let the adjusted match length
-        * be the match length minus 2.
+        * The original LZX format seemed to always encode the block size in 3
+        * bytes.  However, the implementation in WIMGAPI, as used in WIM files,
+        * uses the first bit to indicate whether the block is the default size
+        * (32768) or a different size given explicitly by the next 16 bits.
         *
-        * If it is less than 7, the adjusted match length is encoded as a 3-bit
-        * number offset by 2.  Otherwise, the 3-bit length header is all 1's
-        * and the actual adjusted length is given as a symbol encoded with the
-        * length tree, offset by 7.
-        */
-       if (adjusted_match_len < LZX_NUM_PRIMARY_LENS) {
-               len_header = adjusted_match_len;
+        * By default, this compressor uses a window size of 32768 and therefore
+        * follows the WIMGAPI behavior.  However, this compressor also supports
+        * window sizes greater than 32768 bytes, which do not appear to be
+        * supported by WIMGAPI.  In such cases, we retain the default size bit
+        * to mean a size of 32768 bytes but output non-default block size in 24
+        * bits rather than 16.  The compatibility of this behavior is unknown
+        * because WIMs created with chunk size greater than 32768 can seemingly
+        * only be opened by wimlib anyway.  */
+       if (block_size == LZX_DEFAULT_BLOCK_SIZE) {
+               lzx_write_bits(os, 1, 1);
        } else {
-               len_header = LZX_NUM_PRIMARY_LENS;
-               len_footer = adjusted_match_len - LZX_NUM_PRIMARY_LENS;
-               freq_tabs->len_freq_table[len_footer]++;
+               lzx_write_bits(os, 0, 1);
+
+               if (window_order >= 16)
+                       lzx_write_bits(os, block_size >> 16, 8);
+
+               lzx_write_bits(os, block_size & 0xFFFF, 16);
+       }
+
+       /* If it's an aligned offset block, output the aligned offset code.  */
+       if (block_type == LZX_BLOCKTYPE_ALIGNED) {
+               for (int i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+                       lzx_write_bits(os, codes->lens.aligned[i],
+                                      LZX_ALIGNEDCODE_ELEMENT_SIZE);
+               }
        }
-       len_pos_header = (position_slot << 3) | len_header;
 
-       wimlib_assert(len_pos_header < LZX_MAINTREE_NUM_SYMBOLS - LZX_NUM_CHARS);
+       /* Output the main code (two parts).  */
+       lzx_write_compressed_code(os, codes->lens.main,
+                                 prev_lens->main,
+                                 LZX_NUM_CHARS);
+       lzx_write_compressed_code(os, codes->lens.main + LZX_NUM_CHARS,
+                                 prev_lens->main + LZX_NUM_CHARS,
+                                 num_main_syms - LZX_NUM_CHARS);
+
+       /* Output the length code.  */
+       lzx_write_compressed_code(os, codes->lens.len,
+                                 prev_lens->len,
+                                 LZX_LENCODE_NUM_SYMBOLS);
+
+       /* Output the compressed matches and literals.  */
+       lzx_write_items(os, block_type, chosen_items, num_chosen_items, codes);
+}
+
+/* Don't allow matches to span the end of an LZX block.  */
+static inline unsigned
+maybe_truncate_matches(struct lz_match matches[], unsigned num_matches,
+                      struct lzx_compressor *c)
+{
+       if (c->match_window_end < c->cur_window_size && num_matches != 0) {
+               u32 limit = c->match_window_end - c->match_window_pos;
+
+               if (limit >= LZX_MIN_MATCH_LEN) {
+
+                       unsigned i = num_matches - 1;
+                       do {
+                               if (matches[i].len >= limit) {
+                                       matches[i].len = limit;
+
+                                       /* Truncation might produce multiple
+                                        * matches with length 'limit'.  Keep at
+                                        * most 1.  */
+                                       num_matches = i + 1;
+                               }
+                       } while (i--);
+               } else {
+                       num_matches = 0;
+               }
+       }
+       return num_matches;
+}
+
+static unsigned
+lzx_get_matches_fillcache_singleblock(struct lzx_compressor *c,
+                                     const struct lz_match **matches_ret)
+{
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
+
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       if (likely(cache_ptr <= c->cache_limit)) {
+               num_matches = lz_mf_get_matches(c->mf, matches);
+               cache_ptr->len = num_matches;
+               c->cache_ptr = matches + num_matches;
+       } else {
+               num_matches = 0;
+       }
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
+}
+
+static unsigned
+lzx_get_matches_fillcache_multiblock(struct lzx_compressor *c,
+                                    const struct lz_match **matches_ret)
+{
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
+
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       if (likely(cache_ptr <= c->cache_limit)) {
+               num_matches = lz_mf_get_matches(c->mf, matches);
+               num_matches = maybe_truncate_matches(matches, num_matches, c);
+               cache_ptr->len = num_matches;
+               c->cache_ptr = matches + num_matches;
+       } else {
+               num_matches = 0;
+       }
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
+}
+
+static unsigned
+lzx_get_matches_usecache(struct lzx_compressor *c,
+                        const struct lz_match **matches_ret)
+{
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
+
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       if (cache_ptr <= c->cache_limit) {
+               num_matches = cache_ptr->len;
+               c->cache_ptr = matches + num_matches;
+       } else {
+               num_matches = 0;
+       }
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
+}
+
+static unsigned
+lzx_get_matches_usecache_nocheck(struct lzx_compressor *c,
+                                const struct lz_match **matches_ret)
+{
+       struct lz_match *cache_ptr;
+       struct lz_match *matches;
+       unsigned num_matches;
+
+       cache_ptr = c->cache_ptr;
+       matches = cache_ptr + 1;
+       num_matches = cache_ptr->len;
+       c->cache_ptr = matches + num_matches;
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
+}
+
+static unsigned
+lzx_get_matches_nocache_singleblock(struct lzx_compressor *c,
+                                   const struct lz_match **matches_ret)
+{
+       struct lz_match *matches;
+       unsigned num_matches;
 
-       freq_tabs->main_freq_table[len_pos_header + LZX_NUM_CHARS]++;
+       matches = c->cache_ptr;
+       num_matches = lz_mf_get_matches(c->mf, matches);
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
+}
 
-       /* Equivalent to:
-        * if (lzx_extra_bits[position_slot] >= 3) */
-       if (position_slot >= 8)
-               freq_tabs->aligned_freq_table[position_footer & 7]++;
+static unsigned
+lzx_get_matches_nocache_multiblock(struct lzx_compressor *c,
+                                  const struct lz_match **matches_ret)
+{
+       struct lz_match *matches;
+       unsigned num_matches;
 
-       return match;
+       matches = c->cache_ptr;
+       num_matches = lz_mf_get_matches(c->mf, matches);
+       num_matches = maybe_truncate_matches(matches, num_matches, c);
+       c->match_window_pos++;
+       *matches_ret = matches;
+       return num_matches;
 }
 
 /*
- * Writes a compressed literal match to the output.
+ * Find matches at the next position in the window.
+ *
+ * This uses a wrapper function around the underlying match-finder.
  *
- * @out:         The output bitstream.
- * @block_type:  The type of the block (LZX_BLOCKTYPE_ALIGNED or LZX_BLOCKTYPE_VERBATIM)
- * @match:      The match, encoded as a 32-bit number.
- * @codes:     Pointer to a structure that contains the codewords for the
- *                     main, length, and aligned offset Huffman codes.
+ * Returns the number of matches found and sets *matches_ret to point to the
+ * matches array.  The matches will be sorted by strictly increasing length and
+ * offset.
  */
-static int
-lzx_write_match(struct output_bitstream *out, int block_type,
-               u32 match, const struct lzx_codes *codes)
-{
-       /* low 8 bits are the match length minus 2 */
-       unsigned match_len_minus_2 = match & 0xff;
-       /* Next 17 bits are the position footer */
-       unsigned position_footer = (match >> 8) & 0x1ffff;      /* 17 bits */
-       /* Next 6 bits are the position slot. */
-       unsigned position_slot = (match >> 25) & 0x3f;  /* 6 bits */
+static inline unsigned
+lzx_get_matches(struct lzx_compressor *c, const struct lz_match **matches_ret)
+{
+       return (*c->get_matches_func)(c, matches_ret);
+}
+
+static void
+lzx_skip_bytes_fillcache(struct lzx_compressor *c, unsigned n)
+{
+       struct lz_match *cache_ptr;
+
+       cache_ptr = c->cache_ptr;
+       c->match_window_pos += n;
+       lz_mf_skip_positions(c->mf, n);
+       if (cache_ptr <= c->cache_limit) {
+               do {
+                       cache_ptr->len = 0;
+                       cache_ptr += 1;
+               } while (--n && cache_ptr <= c->cache_limit);
+       }
+       c->cache_ptr = cache_ptr;
+}
+
+static void
+lzx_skip_bytes_usecache(struct lzx_compressor *c, unsigned n)
+{
+       struct lz_match *cache_ptr;
+
+       cache_ptr = c->cache_ptr;
+       c->match_window_pos += n;
+       if (cache_ptr <= c->cache_limit) {
+               do {
+                       cache_ptr += 1 + cache_ptr->len;
+               } while (--n && cache_ptr <= c->cache_limit);
+       }
+       c->cache_ptr = cache_ptr;
+}
+
+static void
+lzx_skip_bytes_usecache_nocheck(struct lzx_compressor *c, unsigned n)
+{
+       struct lz_match *cache_ptr;
+
+       cache_ptr = c->cache_ptr;
+       c->match_window_pos += n;
+       do {
+               cache_ptr += 1 + cache_ptr->len;
+       } while (--n);
+       c->cache_ptr = cache_ptr;
+}
+
+static void
+lzx_skip_bytes_nocache(struct lzx_compressor *c, unsigned n)
+{
+       c->match_window_pos += n;
+       lz_mf_skip_positions(c->mf, n);
+}
+
+/*
+ * Skip the specified number of positions in the window (don't search for
+ * matches at them).
+ *
+ * This uses a wrapper function around the underlying match-finder.
+ */
+static inline void
+lzx_skip_bytes(struct lzx_compressor *c, unsigned n)
+{
+       return (*c->skip_bytes_func)(c, n);
+}
+
+/* Tally, and optionally record, the specified literal byte.  */
+static inline void
+lzx_declare_literal(struct lzx_compressor *c, unsigned literal,
+                   struct lzx_item **next_chosen_item)
+{
+       unsigned main_symbol = literal;
+
+       c->freqs.main[main_symbol]++;
+
+       if (next_chosen_item) {
+               *(*next_chosen_item)++ = (struct lzx_item) {
+                       .data = main_symbol,
+               };
+       }
+}
+
+/* Tally, and optionally record, the specified repeat offset match.  */
+static inline void
+lzx_declare_repeat_offset_match(struct lzx_compressor *c,
+                               unsigned len, unsigned rep_index,
+                               struct lzx_item **next_chosen_item)
+{
        unsigned len_header;
-       unsigned len_footer;
-       unsigned len_pos_header;
        unsigned main_symbol;
+       unsigned len_symbol;
+
+       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+               len_header = len - LZX_MIN_MATCH_LEN;
+               len_symbol = LZX_LENCODE_NUM_SYMBOLS;
+       } else {
+               len_header = LZX_NUM_PRIMARY_LENS;
+               len_symbol = len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS;
+               c->freqs.len[len_symbol]++;
+       }
+
+       main_symbol = LZX_NUM_CHARS + ((rep_index << 3) | len_header);
+
+       c->freqs.main[main_symbol]++;
+
+       if (next_chosen_item) {
+               *(*next_chosen_item)++ = (struct lzx_item) {
+                       .data = (u64)main_symbol | ((u64)len_symbol << 10),
+               };
+       }
+}
+
+/* Tally, and optionally record, the specified explicit offset match.  */
+static inline void
+lzx_declare_explicit_offset_match(struct lzx_compressor *c, unsigned len, u32 offset,
+                                 struct lzx_item **next_chosen_item)
+{
+       unsigned len_header;
+       unsigned main_symbol;
+       unsigned len_symbol;
+       unsigned offset_slot;
        unsigned num_extra_bits;
-       unsigned verbatim_bits;
-       unsigned aligned_bits;
-       int ret;
-
-       /* If the match length is less than MIN_MATCH (= 2) +
-        * NUM_PRIMARY_LENS (= 7), the length header contains
-        * the match length minus MIN_MATCH, and there is no
-        * length footer.
-        *
-        * Otherwise, the length header contains
-        * NUM_PRIMARY_LENS, and the length footer contains
-        * the match length minus NUM_PRIMARY_LENS minus
-        * MIN_MATCH. */
-       if (match_len_minus_2 < LZX_NUM_PRIMARY_LENS) {
-               len_header = match_len_minus_2;
-               /* No length footer-- mark it with a special
-                * value. */
-               len_footer = (unsigned)(-1);
+       u32 extra_bits;
+
+       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+               len_header = len - LZX_MIN_MATCH_LEN;
+               len_symbol = LZX_LENCODE_NUM_SYMBOLS;
        } else {
                len_header = LZX_NUM_PRIMARY_LENS;
-               len_footer = match_len_minus_2 - LZX_NUM_PRIMARY_LENS;
+               len_symbol = len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS;
+               c->freqs.len[len_symbol]++;
        }
 
-       /* Combine the position slot with the length header into
-        * a single symbol that will be encoded with the main
-        * tree. */
-       len_pos_header = (position_slot << 3) | len_header;
-
-       /* The actual main symbol is offset by LZX_NUM_CHARS because
-        * values under LZX_NUM_CHARS are used to indicate a literal
-        * byte rather than a match. */
-       main_symbol = len_pos_header + LZX_NUM_CHARS;
-
-       /* Output main symbol. */
-       ret = bitstream_put_bits(out, codes->main_codewords[main_symbol],
-                                codes->main_lens[main_symbol]);
-       if (ret != 0)
-               return ret;
-
-       /* If there is a length footer, output it using the
-        * length Huffman code. */
-       if (len_footer != (unsigned)(-1)) {
-               ret = bitstream_put_bits(out, codes->len_codewords[len_footer],
-                                        codes->len_lens[len_footer]);
-               if (ret != 0)
-                       return ret;
+       offset_slot = lzx_get_offset_slot_raw(offset + LZX_OFFSET_OFFSET);
+
+       main_symbol = LZX_NUM_CHARS + ((offset_slot << 3) | len_header);
+
+       c->freqs.main[main_symbol]++;
+
+       if (offset_slot >= 8)
+               c->freqs.aligned[(offset + LZX_OFFSET_OFFSET) & 7]++;
+
+       if (next_chosen_item) {
+
+               num_extra_bits = lzx_extra_offset_bits[offset_slot];
+
+               extra_bits = (offset + LZX_OFFSET_OFFSET) -
+                            lzx_offset_slot_base[offset_slot];
+
+               *(*next_chosen_item)++ = (struct lzx_item) {
+                       .data = (u64)main_symbol |
+                               ((u64)len_symbol << 10) |
+                               ((u64)num_extra_bits << 18) |
+                               ((u64)extra_bits << 23),
+               };
        }
+}
+
+/* Tally, and optionally record, the specified match or literal.  */
+static inline void
+lzx_declare_item(struct lzx_compressor *c, u32 mc_item_data,
+                struct lzx_item **next_chosen_item)
+{
+       u32 len = mc_item_data & MC_LEN_MASK;
+       u32 offset_data = mc_item_data >> MC_OFFSET_SHIFT;
+
+       if (len == 1)
+               lzx_declare_literal(c, offset_data, next_chosen_item);
+       else if (offset_data < LZX_NUM_RECENT_OFFSETS)
+               lzx_declare_repeat_offset_match(c, len, offset_data,
+                                               next_chosen_item);
+       else
+               lzx_declare_explicit_offset_match(c, len,
+                                                 offset_data - LZX_OFFSET_OFFSET,
+                                                 next_chosen_item);
+}
+
+static inline void
+lzx_record_item_list(struct lzx_compressor *c,
+                    struct lzx_mc_pos_data *cur_optimum_ptr,
+                    struct lzx_item **next_chosen_item)
+{
+       struct lzx_mc_pos_data *end_optimum_ptr;
+       u32 saved_item;
+       u32 item;
+
+       /* The list is currently in reverse order (last item to first item).
+        * Reverse it.  */
+       end_optimum_ptr = cur_optimum_ptr;
+       saved_item = cur_optimum_ptr->mc_item_data;
+       do {
+               item = saved_item;
+               cur_optimum_ptr -= item & MC_LEN_MASK;
+               saved_item = cur_optimum_ptr->mc_item_data;
+               cur_optimum_ptr->mc_item_data = item;
+       } while (cur_optimum_ptr != c->optimum);
+
+       /* Walk the list of items from beginning to end, tallying and recording
+        * each item.  */
+       do {
+               lzx_declare_item(c, cur_optimum_ptr->mc_item_data, next_chosen_item);
+               cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK;
+       } while (cur_optimum_ptr != end_optimum_ptr);
+}
+
+static inline void
+lzx_tally_item_list(struct lzx_compressor *c, struct lzx_mc_pos_data *cur_optimum_ptr)
+{
+       /* Since we're just tallying the items, we don't need to reverse the
+        * list.  Processing the items in reverse order is fine.  */
+       do {
+               lzx_declare_item(c, cur_optimum_ptr->mc_item_data, NULL);
+               cur_optimum_ptr -= (cur_optimum_ptr->mc_item_data & MC_LEN_MASK);
+       } while (cur_optimum_ptr != c->optimum);
+}
+
+/* Tally, and optionally (if next_chosen_item != NULL) record, in order, all
+ * items in the current list of items found by the match-chooser.  */
+static void
+lzx_declare_item_list(struct lzx_compressor *c, struct lzx_mc_pos_data *cur_optimum_ptr,
+                     struct lzx_item **next_chosen_item)
+{
+       if (next_chosen_item)
+               lzx_record_item_list(c, cur_optimum_ptr, next_chosen_item);
+       else
+               lzx_tally_item_list(c, cur_optimum_ptr);
+}
+
+/* Set the cost model @c->costs from the Huffman codeword lengths specified in
+ * @lens.
+ *
+ * The cost model and codeword lengths are almost the same thing, but the
+ * Huffman codewords with length 0 correspond to symbols with zero frequency
+ * that still need to be assigned actual costs.  The specific values assigned
+ * are arbitrary, but they should be fairly high (near the maximum codeword
+ * length) to take into account the fact that uses of these symbols are expected
+ * to be rare.  */
+static void
+lzx_set_costs(struct lzx_compressor *c, const struct lzx_lens * lens)
+{
+       unsigned i;
 
-       wimlib_assert(position_slot < LZX_NUM_POSITION_SLOTS);
+       /* Main code  */
+       for (i = 0; i < c->num_main_syms; i++)
+               c->costs.main[i] = lens->main[i] ? lens->main[i] : 15;
 
-       num_extra_bits = lzx_get_num_extra_bits(position_slot);
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               c->costs.len[i] = lens->len[i] ? lens->len[i] : 15;
 
-       /* For aligned offset blocks with at least 3 extra bits, output the
-        * verbatim bits literally, then the aligned bits encoded using the
-        * aligned offset tree.  Otherwise, only the verbatim bits need to be
-        * output. */
-       if ((block_type == LZX_BLOCKTYPE_ALIGNED) && (num_extra_bits >= 3)) {
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               c->costs.aligned[i] = lens->aligned[i] ? lens->aligned[i] : 7;
+}
+
+/* Set default LZX Huffman symbol costs to bootstrap the iterative optimization
+ * algorithm.  */
+static void
+lzx_set_default_costs(struct lzx_costs * costs, unsigned num_main_syms)
+{
+       unsigned i;
+
+       /* Main code (part 1): Literal symbols  */
+       for (i = 0; i < LZX_NUM_CHARS; i++)
+               costs->main[i] = 8;
 
-               verbatim_bits = position_footer >> 3;
-               ret = bitstream_put_bits(out, verbatim_bits,
-                                        num_extra_bits - 3);
-               if (ret != 0)
-                       return ret;
+       /* Main code (part 2): Match header symbols  */
+       for (; i < num_main_syms; i++)
+               costs->main[i] = 10;
 
-               aligned_bits = (position_footer & 7);
-               ret = bitstream_put_bits(out,
-                                        codes->aligned_codewords[aligned_bits],
-                                        codes->aligned_lens[aligned_bits]);
-               if (ret != 0)
-                       return ret;
+       /* Length code  */
+       for (i = 0; i < LZX_LENCODE_NUM_SYMBOLS; i++)
+               costs->len[i] = 8;
+
+       /* Aligned offset code  */
+       for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
+               costs->aligned[i] = 3;
+}
+
+/* Return the cost, in bits, to output a literal byte using the specified cost
+ * model.  */
+static inline u32
+lzx_literal_cost(unsigned literal, const struct lzx_costs * costs)
+{
+       return costs->main[literal];
+}
+
+/* Return the cost, in bits, to output a match of the specified length and
+ * offset slot using the specified cost model.  Does not take into account
+ * extra offset bits.  */
+static inline u32
+lzx_match_cost_raw(unsigned len, unsigned offset_slot,
+                  const struct lzx_costs *costs)
+{
+       u32 cost;
+       unsigned len_header;
+       unsigned main_symbol;
+
+       if (len - LZX_MIN_MATCH_LEN < LZX_NUM_PRIMARY_LENS) {
+               len_header = len - LZX_MIN_MATCH_LEN;
+               cost = 0;
        } else {
-               /* verbatim bits is the same as the position
-                * footer, in this case. */
-               ret = bitstream_put_bits(out, position_footer, num_extra_bits);
-               if (ret != 0)
-                       return ret;
+               len_header = LZX_NUM_PRIMARY_LENS;
+
+               /* Account for length symbol.  */
+               cost = costs->len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
        }
-       return 0;
+
+       /* Account for main symbol.  */
+       main_symbol = LZX_NUM_CHARS + ((offset_slot << 3) | len_header);
+       cost += costs->main[main_symbol];
+
+       return cost;
+}
+
+/* Equivalent to lzx_match_cost_raw(), but assumes the length is small enough
+ * that it doesn't require a length symbol.  */
+static inline u32
+lzx_match_cost_raw_smalllen(unsigned len, unsigned offset_slot,
+                           const struct lzx_costs *costs)
+{
+       LZX_ASSERT(len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS);
+       return costs->main[LZX_NUM_CHARS +
+                          ((offset_slot << 3) | (len - LZX_MIN_MATCH_LEN))];
 }
 
 /*
- * Writes all compressed literals in a block, both matches and literal bytes, to
- * the output bitstream.
- *
- * @out:         The output bitstream.
- * @block_type:  The type of the block (LZX_BLOCKTYPE_ALIGNED or LZX_BLOCKTYPE_VERBATIM)
- * @match_tab[]:   The array of matches that will be output.  It has length
- *                     of @num_compressed_literals.
- * @num_compressed_literals:  Number of compressed literals to be output.
- * @codes:     Pointer to a structure that contains the codewords for the
- *                     main, length, and aligned offset Huffman codes.
+ * Consider coding the match at repeat offset index @rep_idx.  Consider each
+ * length from the minimum (2) to the full match length (@rep_len).
  */
-static int
-lzx_write_compressed_literals(struct output_bitstream *ostream,
-                             int block_type,
-                             const u32 match_tab[],
-                             unsigned  num_compressed_literals,
-                             const struct lzx_codes *codes)
+static inline void
+lzx_consider_repeat_offset_match(struct lzx_compressor *c,
+                                struct lzx_mc_pos_data *cur_optimum_ptr,
+                                unsigned rep_len, unsigned rep_idx)
+{
+       u32 base_cost = cur_optimum_ptr->cost;
+       u32 cost;
+       unsigned len;
+
+#if 1   /* Optimized version */
+
+       if (rep_len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS) {
+               /* All lengths being considered are small.  */
+               len = 2;
+               do {
+                       cost = base_cost +
+                              lzx_match_cost_raw_smalllen(len, rep_idx, &c->costs);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (rep_idx << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len <= rep_len);
+       } else {
+               /* Some lengths being considered are small, and some are big.
+                * Start with the optimized loop for small lengths, then switch
+                * to the optimized loop for big lengths.  */
+               len = 2;
+               do {
+                       cost = base_cost +
+                              lzx_match_cost_raw_smalllen(len, rep_idx, &c->costs);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (rep_idx << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len < LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS);
+
+               /* The main symbol is now fixed.  */
+               base_cost += c->costs.main[LZX_NUM_CHARS +
+                                          ((rep_idx << 3) | LZX_NUM_PRIMARY_LENS)];
+               do {
+                       cost = base_cost +
+                              c->costs.len[len - LZX_MIN_MATCH_LEN -
+                                           LZX_NUM_PRIMARY_LENS];
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (rep_idx << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len <= rep_len);
+       }
+
+#else   /* Unoptimized version  */
+
+       len = 2;
+       do {
+               cost = base_cost +
+                      lzx_match_cost_raw(len, rep_idx, &c->costs);
+               if (cost < (cur_optimum_ptr + len)->cost) {
+                       (cur_optimum_ptr + len)->mc_item_data =
+                               (rep_idx << MC_OFFSET_SHIFT) | len;
+                       (cur_optimum_ptr + len)->cost = cost;
+               }
+       } while (++len <= rep_len);
+#endif
+}
+
+/*
+ * Consider coding each match in @matches as an explicit offset match.
+ *
+ * @matches must be sorted by strictly increasing length and strictly
+ * increasing offset.  This is guaranteed by the match-finder.
+ *
+ * We consider each length from the minimum (2) to the longest
+ * (matches[num_matches - 1].len).  For each length, we consider only
+ * the smallest offset for which that length is available.  Although
+ * this is not guaranteed to be optimal due to the possibility of a
+ * larger offset costing less than a smaller offset to code, this is a
+ * very useful heuristic.
+ */
+static inline void
+lzx_consider_explicit_offset_matches(struct lzx_compressor *c,
+                                    struct lzx_mc_pos_data *cur_optimum_ptr,
+                                    const struct lz_match matches[],
+                                    unsigned num_matches)
 {
+       LZX_ASSERT(num_matches > 0);
+
        unsigned i;
-       u32 match;
-       int ret;
-
-       for (i = 0; i < num_compressed_literals; i++) {
-               match = match_tab[i];
-
-               /* High bit of the match indicates whether the match is an
-                * actual match (1) or a literal uncompressed byte (0) */
-               if (match & 0x80000000) {
-                       /* match */
-                       ret = lzx_write_match(ostream, block_type, match,
-                                             codes);
-                       if (ret != 0)
-                               return ret;
+       unsigned len;
+       unsigned offset_slot;
+       u32 position_cost;
+       u32 cost;
+       u32 offset_data;
+
+
+#if 1  /* Optimized version */
+
+       if (matches[num_matches - 1].offset < LZX_NUM_FAST_OFFSETS) {
+
+               /*
+                * Offset is small; the offset slot can be looked up directly in
+                * c->offset_slot_fast.
+                *
+                * Additional optimizations:
+                *
+                * - Since the offset is small, it falls in the exponential part
+                *   of the offset slot bases and the number of extra offset
+                *   bits can be calculated directly as (offset_slot >> 1) - 1.
+                *
+                * - Just consider the number of extra offset bits; don't
+                *   account for the aligned offset code.  Usually this has
+                *   almost no effect on the compression ratio.
+                *
+                * - Start out in a loop optimized for small lengths.  When the
+                *   length becomes high enough that a length symbol will be
+                *   needed, jump into a loop optimized for big lengths.
+                */
+
+               LZX_ASSERT(offset_slot <= 37); /* for extra bits formula  */
+
+               len = 2;
+               i = 0;
+               do {
+                       offset_slot = c->offset_slot_fast[matches[i].offset];
+                       position_cost = cur_optimum_ptr->cost +
+                                       ((offset_slot >> 1) - 1);
+                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+                       do {
+                               if (len >= LZX_MIN_MATCH_LEN + LZX_NUM_PRIMARY_LENS)
+                                       goto biglen;
+                               cost = position_cost +
+                                      lzx_match_cost_raw_smalllen(len, offset_slot,
+                                                                  &c->costs);
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
+
+               return;
+
+               do {
+                       offset_slot = c->offset_slot_fast[matches[i].offset];
+       biglen:
+                       position_cost = cur_optimum_ptr->cost +
+                                       ((offset_slot >> 1) - 1) +
+                                       c->costs.main[LZX_NUM_CHARS +
+                                                     ((offset_slot << 3) |
+                                                      LZX_NUM_PRIMARY_LENS)];
+                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+                       do {
+                               cost = position_cost +
+                                      c->costs.len[len - LZX_MIN_MATCH_LEN -
+                                                   LZX_NUM_PRIMARY_LENS];
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
+       } else {
+               len = 2;
+               i = 0;
+               do {
+                       offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+                       offset_slot = lzx_get_offset_slot_raw(offset_data);
+                       position_cost = cur_optimum_ptr->cost +
+                                       lzx_extra_offset_bits[offset_slot];
+                       do {
+                               cost = position_cost +
+                                      lzx_match_cost_raw(len, offset_slot, &c->costs);
+                               if (cost < (cur_optimum_ptr + len)->cost) {
+                                       (cur_optimum_ptr + len)->cost = cost;
+                                       (cur_optimum_ptr + len)->mc_item_data =
+                                               (offset_data << MC_OFFSET_SHIFT) | len;
+                               }
+                       } while (++len <= matches[i].len);
+               } while (++i != num_matches);
+       }
+
+#else  /* Unoptimized version */
+
+       unsigned num_extra_bits;
+
+       len = 2;
+       i = 0;
+       do {
+               offset_data = matches[i].offset + LZX_OFFSET_OFFSET;
+               position_cost = cur_optimum_ptr->cost;
+               offset_slot = lzx_get_offset_slot_raw(offset_data);
+               num_extra_bits = lzx_extra_offset_bits[offset_slot];
+               if (num_extra_bits >= 3) {
+                       position_cost += num_extra_bits - 3;
+                       position_cost += c->costs.aligned[offset_data & 7];
                } else {
-                       /* literal byte */
-                       wimlib_assert(match < LZX_NUM_CHARS);
-                       ret = bitstream_put_bits(ostream,
-                                                codes->main_codewords[match],
-                                                codes->main_lens[match]);
-                       if (ret != 0)
-                               return ret;
+                       position_cost += num_extra_bits;
                }
-       }
-       return 0;
+               do {
+                       cost = position_cost +
+                              lzx_match_cost_raw(len, offset_slot, &c->costs);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->cost = cost;
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       (offset_data << MC_OFFSET_SHIFT) | len;
+                       }
+               } while (++len <= matches[i].len);
+       } while (++i != num_matches);
+#endif
 }
 
 /*
- * Writes a compressed Huffman tree to the output, preceded by the pretree for
- * it.
- *
- * The Huffman tree is represented in the output as a series of path lengths
- * from which the canonical Huffman code can be reconstructed.  The path lengths
- * themselves are compressed using a separate Huffman code, the pretree, which
- * consists of LZX_PRETREE_NUM_SYMBOLS (= 20) symbols that cover all possible code
- * lengths, plus extra codes for repeated lengths.  The path lengths of the
- * pretree precede the path lengths of the larger code and are uncompressed,
- * consisting of 20 entries of 4 bits each.
- *
- * @out:       The bitstream for the compressed output.
- * @lens:      The code lengths for the Huffman tree, indexed by symbol.
- * @num_symbols:       The number of symbols in the code.
+ * Search for repeat offset matches with the current position.
  */
-static int
-lzx_write_compressed_tree(struct output_bitstream *out,
-                         const u8 lens[], unsigned num_symbols)
-{
-       /* Frequencies of the length symbols, including the RLE symbols (NOT the
-        * actual lengths themselves). */
-       freq_t pretree_freqs[LZX_PRETREE_NUM_SYMBOLS];
-       u8 pretree_lens[LZX_PRETREE_NUM_SYMBOLS];
-       u16 pretree_codewords[LZX_PRETREE_NUM_SYMBOLS];
-       u8 output_syms[num_symbols * 2];
-       unsigned output_syms_idx;
-       unsigned cur_run_len;
-       unsigned i;
-       unsigned len_in_run;
-       unsigned additional_bits;
-       char delta;
-       u8 pretree_sym;
-
-       ZERO_ARRAY(pretree_freqs);
-
-       /* Since the code word lengths use a form of RLE encoding, the goal here
-        * is to find each run of identical lengths when going through them in
-        * symbol order (including runs of length 1).  For each run, as many
-        * lengths are encoded using RLE as possible, and the rest are output
-        * literally.
-        *
-        * output_syms[] will be filled in with the length symbols that will be
-        * output, including RLE codes, not yet encoded using the pre-tree.
+static inline unsigned
+lzx_repsearch(const u8 * const strptr, const u32 bytes_remaining,
+             const struct lzx_lru_queue *queue, unsigned *rep_max_idx_ret)
+{
+       BUILD_BUG_ON(LZX_NUM_RECENT_OFFSETS != 3);
+       return lz_repsearch3(strptr, min(bytes_remaining, LZX_MAX_MATCH_LEN),
+                            queue->R, rep_max_idx_ret);
+}
+
+/*
+ * The main near-optimal parsing routine.
+ *
+ * Briefly, the algorithm does an approximate minimum-cost path search to find a
+ * "near-optimal" sequence of matches and literals to output, based on the
+ * current cost model.  The algorithm steps forward, position by position (byte
+ * by byte), and updates the minimum cost path to reach each later position that
+ * can be reached using a match or literal from the current position.  This is
+ * essentially Dijkstra's algorithm in disguise: the graph nodes are positions,
+ * the graph edges are possible matches/literals to code, and the cost of each
+ * edge is the estimated number of bits that will be required to output the
+ * corresponding match or literal.  But one difference is that we actually
+ * compute the lowest-cost path in pieces, where each piece is terminated when
+ * there are no choices to be made.
+ *
+ * This function will run this algorithm on the portion of the window from
+ * &c->cur_window[c->match_window_pos] to &c->cur_window[c->match_window_end].
+ *
+ * On entry, c->queue must be the current state of the match offset LRU queue,
+ * and c->costs must be the current cost model to use for Huffman symbols.
+ *
+ * On exit, c->queue will be the state that the LRU queue would be in if the
+ * chosen items were to be coded.
+ *
+ * If next_chosen_item != NULL, then all items chosen will be recorded (saved in
+ * the chosen_items array).  Otherwise, all items chosen will only be tallied
+ * (symbol frequencies tallied in c->freqs).
+ */
+static void
+lzx_optim_pass(struct lzx_compressor *c, struct lzx_item **next_chosen_item)
+{
+       const u8 *block_end;
+       struct lzx_lru_queue *begin_queue;
+       const u8 *window_ptr;
+       struct lzx_mc_pos_data *cur_optimum_ptr;
+       struct lzx_mc_pos_data *end_optimum_ptr;
+       const struct lz_match *matches;
+       unsigned num_matches;
+       unsigned longest_len;
+       unsigned rep_max_len;
+       unsigned rep_max_idx;
+       unsigned literal;
+       unsigned len;
+       u32 cost;
+       u32 offset_data;
+
+       block_end = &c->cur_window[c->match_window_end];
+       begin_queue = &c->queue;
+begin:
+       /* Start building a new list of items, which will correspond to the next
+        * piece of the overall minimum-cost path.
         *
-        * cur_run_len keeps track of how many code word lengths are in the
-        * current run of identical lengths.
-        */
-       output_syms_idx = 0;
-       cur_run_len = 1;
-       for (i = 1; i <= num_symbols; i++) {
+        * *begin_queue is the current state of the match offset LRU queue.  */
 
-               if (i != num_symbols && lens[i] == lens[i - 1]) {
-                       /* Still in a run--- keep going. */
-                       cur_run_len++;
-                       continue;
+       window_ptr = &c->cur_window[c->match_window_pos];
+
+       if (window_ptr == block_end) {
+               c->queue = *begin_queue;
+               return;
+       }
+
+       cur_optimum_ptr = c->optimum;
+       cur_optimum_ptr->cost = 0;
+       cur_optimum_ptr->queue = *begin_queue;
+
+       end_optimum_ptr = cur_optimum_ptr;
+
+       /* The following loop runs once for each per byte in the window, except
+        * in a couple shortcut cases.  */
+       for (;;) {
+
+               /* Find explicit offset matches with the current position.  */
+               num_matches = lzx_get_matches(c, &matches);
+
+               if (num_matches) {
+                       /*
+                        * Find the longest repeat offset match with the current
+                        * position.
+                        *
+                        * Heuristics:
+                        *
+                        * - Only search for repeat offset matches if the
+                        *   match-finder already found at least one match.
+                        *
+                        * - Only consider the longest repeat offset match.  It
+                        *   seems to be rare for the optimal parse to include a
+                        *   repeat offset match that doesn't have the longest
+                        *   length (allowing for the possibility that not all
+                        *   of that length is actually used).
+                        */
+                       rep_max_len = lzx_repsearch(window_ptr,
+                                                   block_end - window_ptr,
+                                                   &cur_optimum_ptr->queue,
+                                                   &rep_max_idx);
+
+                       if (rep_max_len) {
+                               /* If there's a very long repeat offset match,
+                                * choose it immediately.  */
+                               if (rep_max_len >= c->params.nice_match_length) {
+
+                                       swap(cur_optimum_ptr->queue.R[0],
+                                            cur_optimum_ptr->queue.R[rep_max_idx]);
+                                       begin_queue = &cur_optimum_ptr->queue;
+
+                                       cur_optimum_ptr += rep_max_len;
+                                       cur_optimum_ptr->mc_item_data =
+                                               (rep_max_idx << MC_OFFSET_SHIFT) |
+                                               rep_max_len;
+
+                                       lzx_skip_bytes(c, rep_max_len - 1);
+                                       break;
+                               }
+
+                               /* If reaching any positions for the first time,
+                                * initialize their costs to "infinity".  */
+                               while (end_optimum_ptr < cur_optimum_ptr + rep_max_len)
+                                       (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+
+                               /* Consider coding a repeat offset match.  */
+                               lzx_consider_repeat_offset_match(c,
+                                                                cur_optimum_ptr,
+                                                                rep_max_len,
+                                                                rep_max_idx);
+                       }
+
+                       longest_len = matches[num_matches - 1].len;
+
+                       /* If there's a very long explicit offset match, choose
+                        * it immediately.  */
+                       if (longest_len >= c->params.nice_match_length) {
+
+                               cur_optimum_ptr->queue.R[2] =
+                                       cur_optimum_ptr->queue.R[1];
+                               cur_optimum_ptr->queue.R[1] =
+                                       cur_optimum_ptr->queue.R[0];
+                               cur_optimum_ptr->queue.R[0] =
+                                       matches[num_matches - 1].offset;
+                               begin_queue = &cur_optimum_ptr->queue;
+
+                               offset_data = matches[num_matches - 1].offset +
+                                             LZX_OFFSET_OFFSET;
+                               cur_optimum_ptr += longest_len;
+                               cur_optimum_ptr->mc_item_data =
+                                       (offset_data << MC_OFFSET_SHIFT) |
+                                       longest_len;
+
+                               lzx_skip_bytes(c, longest_len - 1);
+                               break;
+                       }
+
+                       /* If reaching any positions for the first time,
+                        * initialize their costs to "infinity".  */
+                       while (end_optimum_ptr < cur_optimum_ptr + longest_len)
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+
+                       /* Consider coding an explicit offset match.  */
+                       lzx_consider_explicit_offset_matches(c, cur_optimum_ptr,
+                                                            matches, num_matches);
+               } else {
+                       /* No matches found.  The only choice at this position
+                        * is to code a literal.  */
+
+                       if (end_optimum_ptr == cur_optimum_ptr) {
+                       #if 1
+                               /* Optimization for single literals.  */
+                               if (likely(cur_optimum_ptr == c->optimum)) {
+                                       lzx_declare_literal(c, *window_ptr++,
+                                                           next_chosen_item);
+                                       if (window_ptr == block_end) {
+                                               c->queue = cur_optimum_ptr->queue;
+                                               return;
+                                       }
+                                       continue;
+                               }
+                       #endif
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+                       }
                }
 
-               /* Run ended! Check if it is a run of zeroes or a run of
-                * nonzeroes. */
+               /* Consider coding a literal.
 
-               /* The symbol that was repeated in the run--- not to be confused
-                * with the length *of* the run (cur_run_len) */
-               len_in_run = lens[i - 1];
+                * To avoid an extra unpredictable brench, actually checking the
+                * preferability of coding a literal is integrated into the
+                * queue update code below.  */
+               literal = *window_ptr++;
+               cost = cur_optimum_ptr->cost + lzx_literal_cost(literal, &c->costs);
 
-               if (len_in_run == 0) {
-                       /* A run of 0's.  Encode it in as few length
-                        * codes as we can. */
+               /* Advance to the next position.  */
+               cur_optimum_ptr++;
 
-                       /* The magic length 18 indicates a run of 20 + n zeroes,
-                        * where n is an uncompressed literal 5-bit integer that
-                        * follows the magic length. */
-                       while (cur_run_len >= 20) {
+               /* The lowest-cost path to the current position is now known.
+                * Finalize the recent offsets queue that results from taking
+                * this lowest-cost path.  */
 
-                               additional_bits = min(cur_run_len - 20, 0x1f);
-                               pretree_freqs[18]++;
-                               output_syms[output_syms_idx++] = 18;
-                               output_syms[output_syms_idx++] = additional_bits;
-                               cur_run_len -= 20 + additional_bits;
+               if (cost < cur_optimum_ptr->cost) {
+                       /* Literal: queue remains unchanged.  */
+                       cur_optimum_ptr->cost = cost;
+                       cur_optimum_ptr->mc_item_data = (literal << MC_OFFSET_SHIFT) | 1;
+                       cur_optimum_ptr->queue = (cur_optimum_ptr - 1)->queue;
+               } else {
+                       /* Match: queue update is needed.  */
+                       len = cur_optimum_ptr->mc_item_data & MC_LEN_MASK;
+                       offset_data = cur_optimum_ptr->mc_item_data >> MC_OFFSET_SHIFT;
+                       if (offset_data >= LZX_NUM_RECENT_OFFSETS) {
+                               /* Explicit offset match: offset is inserted at front  */
+                               cur_optimum_ptr->queue.R[0] = offset_data - LZX_OFFSET_OFFSET;
+                               cur_optimum_ptr->queue.R[1] = (cur_optimum_ptr - len)->queue.R[0];
+                               cur_optimum_ptr->queue.R[2] = (cur_optimum_ptr - len)->queue.R[1];
+                       } else {
+                               /* Repeat offset match: offset is swapped to front  */
+                               cur_optimum_ptr->queue = (cur_optimum_ptr - len)->queue;
+                               swap(cur_optimum_ptr->queue.R[0],
+                                    cur_optimum_ptr->queue.R[offset_data]);
                        }
+               }
+
+               /*
+                * This loop will terminate when either of the following
+                * conditions is true:
+                *
+                * (1) cur_optimum_ptr == end_optimum_ptr
+                *
+                *      There are no paths that extend beyond the current
+                *      position.  In this case, any path to a later position
+                *      must pass through the current position, so we can go
+                *      ahead and choose the list of items that led to this
+                *      position.
+                *
+                * (2) cur_optimum_ptr == &c->optimum[LZX_OPTIM_ARRAY_LENGTH]
+                *
+                *      This bounds the number of times the algorithm can step
+                *      forward before it is guaranteed to start choosing items.
+                *      This limits the memory usage.  But
+                *      LZX_OPTIM_ARRAY_LENGTH is high enough that on most
+                *      inputs this limit is never reached.
+                *
+                * Note: no check for end-of-block is needed because
+                * end-of-block will trigger condition (1).
+                */
+               if (cur_optimum_ptr == end_optimum_ptr ||
+                   cur_optimum_ptr == &c->optimum[LZX_OPTIM_ARRAY_LENGTH])
+               {
+                       begin_queue = &cur_optimum_ptr->queue;
+                       break;
+               }
+       }
+
+       /* Choose the current list of items that constitute the minimum-cost
+        * path to the current position.  */
+       lzx_declare_item_list(c, cur_optimum_ptr, next_chosen_item);
+       goto begin;
+}
+
+/* Fast heuristic scoring for lazy parsing: how "good" is this match?  */
+static inline unsigned
+lzx_explicit_offset_match_score(unsigned len, u32 adjusted_offset)
+{
+       unsigned score = len;
+
+       if (adjusted_offset < 2048)
+               score++;
+
+       if (adjusted_offset < 1024)
+               score++;
+
+       return score;
+}
+
+static inline unsigned
+lzx_repeat_offset_match_score(unsigned len, unsigned slot)
+{
+       return len + 3;
+}
 
-                       /* The magic length 17 indicates a run of 4 + n zeroes,
-                        * where n is an uncompressed literal 4-bit integer that
-                        * follows the magic length. */
-                       while (cur_run_len >= 4) {
-                               additional_bits = min(cur_run_len - 4, 0xf);
-                               pretree_freqs[17]++;
-                               output_syms[output_syms_idx++] = 17;
-                               output_syms[output_syms_idx++] = additional_bits;
-                               cur_run_len -= 4 + additional_bits;
+/* Lazy parsing  */
+static u32
+lzx_choose_lazy_items_for_block(struct lzx_compressor *c,
+                               u32 block_start_pos, u32 block_size)
+{
+       const u8 *window_ptr;
+       const u8 *block_end;
+       struct lz_mf *mf;
+       struct lz_match *matches;
+       unsigned num_matches;
+       unsigned cur_len;
+       u32 cur_offset_data;
+       unsigned cur_score;
+       unsigned rep_max_len;
+       unsigned rep_max_idx;
+       unsigned rep_score;
+       unsigned prev_len;
+       unsigned prev_score;
+       u32 prev_offset_data;
+       unsigned skip_len;
+       struct lzx_item *next_chosen_item;
+
+       window_ptr = &c->cur_window[block_start_pos];
+       block_end = window_ptr + block_size;
+       matches = c->cached_matches;
+       mf = c->mf;
+       next_chosen_item = c->chosen_items;
+
+       prev_len = 0;
+       prev_offset_data = 0;
+       prev_score = 0;
+
+       while (window_ptr != block_end) {
+
+               /* Find explicit offset matches with the current position.  */
+               num_matches = lz_mf_get_matches(mf, matches);
+               window_ptr++;
+
+               if (num_matches == 0 ||
+                   (matches[num_matches - 1].len == 3 &&
+                    matches[num_matches - 1].offset >= 8192 - LZX_OFFSET_OFFSET &&
+                    matches[num_matches - 1].offset != c->queue.R[0] &&
+                    matches[num_matches - 1].offset != c->queue.R[1] &&
+                    matches[num_matches - 1].offset != c->queue.R[2]))
+               {
+                       /* No match found, or the only match found was a distant
+                        * length 3 match.  Output the previous match if there
+                        * is one; otherwise output a literal.  */
+
+               no_match_found:
+
+                       if (prev_len) {
+                               skip_len = prev_len - 2;
+                               goto output_prev_match;
+                       } else {
+                               lzx_declare_literal(c, *(window_ptr - 1),
+                                                   &next_chosen_item);
+                               continue;
                        }
+               }
 
+               /* Find the longest repeat offset match with the current
+                * position.  */
+               if (likely(block_end - (window_ptr - 1) >= 2)) {
+                       rep_max_len = lzx_repsearch((window_ptr - 1),
+                                                   block_end - (window_ptr - 1),
+                                                   &c->queue, &rep_max_idx);
                } else {
+                       rep_max_len = 0;
+               }
 
-                       /* A run of nonzero lengths. */
+               cur_len = matches[num_matches - 1].len;
+               cur_offset_data = matches[num_matches - 1].offset + LZX_OFFSET_OFFSET;
+               cur_score = lzx_explicit_offset_match_score(cur_len, cur_offset_data);
+
+               /* Select the better of the explicit and repeat offset matches.  */
+               if (rep_max_len >= 3 &&
+                   (rep_score = lzx_repeat_offset_match_score(rep_max_len,
+                                                              rep_max_idx)) >= cur_score)
+               {
+                       cur_len = rep_max_len;
+                       cur_offset_data = rep_max_idx;
+                       cur_score = rep_score;
+               }
+
+               if (unlikely(cur_len > block_end - (window_ptr - 1))) {
+                       /* Nearing end of block.  */
+                       cur_len = block_end - (window_ptr - 1);
+                       if (cur_len < 3)
+                               goto no_match_found;
+               }
 
-                       /* The magic length 19 indicates a run of 4 + n
-                        * nonzeroes, where n is a literal bit that follows the
-                        * magic length, and where the value of the lengths in
-                        * the run is given by an extra length symbol, encoded
-                        * with the pretree, that follows the literal bit.
+               if (prev_len == 0 || cur_score > prev_score) {
+                       /* No previous match, or the current match is better
+                        * than the previous match.
                         *
-                        * The extra length symbol is encoded as a difference
-                        * from the length of the codeword for the first symbol
-                        * in the run in the previous tree.
-                        * */
-                       while (cur_run_len >= 4) {
-                               additional_bits = (cur_run_len > 4);
-                               delta = -(char)len_in_run;
-                               if (delta < 0)
-                                       delta += 17;
-                               pretree_freqs[19]++;
-                               pretree_freqs[(unsigned char)delta]++;
-                               output_syms[output_syms_idx++] = 19;
-                               output_syms[output_syms_idx++] = additional_bits;
-                               output_syms[output_syms_idx++] = delta;
-                               cur_run_len -= 4 + additional_bits;
+                        * If there's a previous match, then output a literal in
+                        * its place.
+                        *
+                        * In both cases, if the current match is very long,
+                        * then output it immediately.  Otherwise, attempt a
+                        * lazy match by waiting to see if there's a better
+                        * match at the next position.  */
+
+                       if (prev_len)
+                               lzx_declare_literal(c, *(window_ptr - 2), &next_chosen_item);
+
+                       prev_len = cur_len;
+                       prev_offset_data = cur_offset_data;
+                       prev_score = cur_score;
+
+                       if (prev_len >= c->params.nice_match_length) {
+                               skip_len = prev_len - 1;
+                               goto output_prev_match;
                        }
+                       continue;
                }
 
-               /* Any remaining lengths in the run are outputted without RLE,
-                * as a difference from the length of that codeword in the
-                * previous tree. */
-               while (cur_run_len--) {
-                       delta = -(char)len_in_run;
-                       if (delta < 0)
-                               delta += 17;
+               /* Current match is not better than the previous match, so
+                * output the previous match.  */
+
+               skip_len = prev_len - 2;
 
-                       pretree_freqs[(unsigned char)delta]++;
-                       output_syms[output_syms_idx++] = delta;
+       output_prev_match:
+               if (prev_offset_data < LZX_NUM_RECENT_OFFSETS) {
+                       lzx_declare_repeat_offset_match(c, prev_len,
+                                                       prev_offset_data,
+                                                       &next_chosen_item);
+                       swap(c->queue.R[0], c->queue.R[prev_offset_data]);
+               } else {
+                       lzx_declare_explicit_offset_match(c, prev_len,
+                                                         prev_offset_data - LZX_OFFSET_OFFSET,
+                                                         &next_chosen_item);
+                       c->queue.R[2] = c->queue.R[1];
+                       c->queue.R[1] = c->queue.R[0];
+                       c->queue.R[0] = prev_offset_data - LZX_OFFSET_OFFSET;
                }
+               lz_mf_skip_positions(mf, skip_len);
+               window_ptr += skip_len;
+               prev_len = 0;
+       }
 
-               cur_run_len = 1;
+       return next_chosen_item - c->chosen_items;
+}
+
+/* Given the frequencies of symbols in an LZX-compressed block and the
+ * corresponding Huffman codes, return LZX_BLOCKTYPE_ALIGNED or
+ * LZX_BLOCKTYPE_VERBATIM if an aligned offset or verbatim block, respectively,
+ * will take fewer bits to output.  */
+static int
+lzx_choose_verbatim_or_aligned(const struct lzx_freqs * freqs,
+                              const struct lzx_codes * codes)
+{
+       u32 aligned_cost = 0;
+       u32 verbatim_cost = 0;
+
+       /* A verbatim block requires 3 bits in each place that an aligned symbol
+        * would be used in an aligned offset block.  */
+       for (unsigned i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+               verbatim_cost += 3 * freqs->aligned[i];
+               aligned_cost += codes->lens.aligned[i] * freqs->aligned[i];
        }
 
-       wimlib_assert(output_syms_idx < ARRAY_LEN(output_syms));
+       /* Account for output of the aligned offset code.  */
+       aligned_cost += LZX_ALIGNEDCODE_ELEMENT_SIZE * LZX_ALIGNEDCODE_NUM_SYMBOLS;
 
-       /* Build the pretree from the frequencies of the length symbols. */
+       if (aligned_cost < verbatim_cost)
+               return LZX_BLOCKTYPE_ALIGNED;
+       else
+               return LZX_BLOCKTYPE_VERBATIM;
+}
 
-       make_canonical_huffman_code(LZX_PRETREE_NUM_SYMBOLS,
-                                   LZX_MAX_CODEWORD_LEN,
-                                   pretree_freqs, pretree_lens,
-                                   pretree_codewords);
+/* Near-optimal parsing  */
+static u32
+lzx_choose_near_optimal_items_for_block(struct lzx_compressor *c,
+                                       u32 block_start_pos, u32 block_size)
+{
+       u32 num_passes_remaining = c->params.num_optim_passes;
+       struct lzx_lru_queue orig_queue;
+       struct lzx_item *next_chosen_item;
+       struct lzx_item **next_chosen_item_ptr;
+
+       /* Choose appropriate match-finder wrapper functions.  */
+       if (num_passes_remaining > 1) {
+               if (block_size == c->cur_window_size)
+                       c->get_matches_func = lzx_get_matches_fillcache_singleblock;
+               else
+                       c->get_matches_func = lzx_get_matches_fillcache_multiblock;
+               c->skip_bytes_func = lzx_skip_bytes_fillcache;
+       } else {
+               if (block_size == c->cur_window_size)
+                       c->get_matches_func = lzx_get_matches_nocache_singleblock;
+               else
+                       c->get_matches_func = lzx_get_matches_nocache_multiblock;
+               c->skip_bytes_func = lzx_skip_bytes_nocache;
+       }
 
-       /* Write the lengths of the pretree codes to the output. */
-       for (i = 0; i < LZX_PRETREE_NUM_SYMBOLS; i++)
-               bitstream_put_bits(out, pretree_lens[i],
-                                  LZX_PRETREE_ELEMENT_SIZE);
+       /* No matches will extend beyond the end of the block.  */
+       c->match_window_end = block_start_pos + block_size;
 
-       /* Write the length symbols, encoded with the pretree, to the output. */
+       /* The first optimization pass will use a default cost model.  Each
+        * additional optimization pass will use a cost model computed from the
+        * previous pass.
+        *
+        * To improve performance we only generate the array containing the
+        * matches and literals in intermediate form on the final pass.  For
+        * earlier passes, tallying symbol frequencies is sufficient.  */
+       lzx_set_default_costs(&c->costs, c->num_main_syms);
+
+       next_chosen_item_ptr = NULL;
+       orig_queue = c->queue;
+       do {
+               /* Reset the match-finder wrapper.  */
+               c->match_window_pos = block_start_pos;
+               c->cache_ptr = c->cached_matches;
+
+               if (num_passes_remaining == 1) {
+                       /* Last pass: actually generate the items.  */
+                       next_chosen_item = c->chosen_items;
+                       next_chosen_item_ptr = &next_chosen_item;
+               }
 
-       i = 0;
-       while (i < output_syms_idx) {
-               pretree_sym = output_syms[i++];
-
-               bitstream_put_bits(out, pretree_codewords[pretree_sym],
-                                  pretree_lens[pretree_sym]);
-               switch (pretree_sym) {
-               case 17:
-                       bitstream_put_bits(out, output_syms[i++], 4);
-                       break;
-               case 18:
-                       bitstream_put_bits(out, output_syms[i++], 5);
-                       break;
-               case 19:
-                       bitstream_put_bits(out, output_syms[i++], 1);
-                       bitstream_put_bits(out,
-                                          pretree_codewords[output_syms[i]],
-                                          pretree_lens[output_syms[i]]);
-                       i++;
-                       break;
-               default:
-                       break;
+               /* Choose the items.  */
+               lzx_optim_pass(c, next_chosen_item_ptr);
+
+               if (num_passes_remaining > 1) {
+                       /* This isn't the last pass.  */
+
+                       /* Make the Huffman codes from the symbol frequencies.  */
+                       lzx_make_huffman_codes(&c->freqs, &c->codes[c->codes_index],
+                                              c->num_main_syms);
+
+                       /* Update symbol costs.  */
+                       lzx_set_costs(c, &c->codes[c->codes_index].lens);
+
+                       /* Reset symbol frequencies.  */
+                       memset(&c->freqs, 0, sizeof(c->freqs));
+
+                       /* Reset the match offset LRU queue to what it was at
+                        * the beginning of the block.  */
+                       c->queue = orig_queue;
+
+                       /* Choose appopriate match-finder wrapper functions.  */
+                       if (c->cache_ptr <= c->cache_limit) {
+                               c->get_matches_func = lzx_get_matches_usecache_nocheck;
+                               c->skip_bytes_func = lzx_skip_bytes_usecache_nocheck;
+                       } else {
+                               c->get_matches_func = lzx_get_matches_usecache;
+                               c->skip_bytes_func = lzx_skip_bytes_usecache;
+                       }
                }
-       }
-       return 0;
+       } while (--num_passes_remaining);
+
+       /* Return the number of items chosen.  */
+       return next_chosen_item - c->chosen_items;
+}
+
+/*
+ * Choose the matches/literals with which to output the block of data beginning
+ * at '&c->cur_window[block_start_pos]' and extending for 'block_size' bytes.
+ *
+ * The frequences of the Huffman symbols in the block will be tallied in
+ * 'c->freqs'.
+ *
+ * 'c->queue' must specify the state of the queue at the beginning of this block.
+ * This function will update it to the state of the queue at the end of this
+ * block.
+ *
+ * Returns the number of matches/literals that were chosen and written to
+ * 'c->chosen_items' in the 'struct lzx_item' intermediate representation.
+ */
+static u32
+lzx_choose_items_for_block(struct lzx_compressor *c,
+                          u32 block_start_pos, u32 block_size)
+{
+       return (*c->params.choose_items_for_block)(c, block_start_pos, block_size);
 }
 
-/* Builds the canonical Huffman code for the main tree, the length tree, and the
- * aligned offset tree. */
-static void 
-lzx_make_huffman_codes(const struct lzx_freq_tables *freq_tabs,
-                      struct lzx_codes *codes)
+/* Initialize c->offset_slot_fast.  */
+static void
+lzx_init_offset_slot_fast(struct lzx_compressor *c)
 {
-       make_canonical_huffman_code(LZX_MAINTREE_NUM_SYMBOLS,
-                                       LZX_MAX_CODEWORD_LEN,
-                                       freq_tabs->main_freq_table,
-                                       codes->main_lens,
-                                       codes->main_codewords);
+       u8 slot = 0;
+
+       for (u32 offset = 0; offset < LZX_NUM_FAST_OFFSETS; offset++) {
 
-       make_canonical_huffman_code(LZX_LENTREE_NUM_SYMBOLS,
-                                       LZX_MAX_CODEWORD_LEN,
-                                       freq_tabs->len_freq_table,
-                                       codes->len_lens,
-                                       codes->len_codewords);
+               while (offset + LZX_OFFSET_OFFSET >= lzx_offset_slot_base[slot + 1])
+                       slot++;
 
-       make_canonical_huffman_code(LZX_ALIGNEDTREE_NUM_SYMBOLS, 8,
-                                       freq_tabs->aligned_freq_table,
-                                       codes->aligned_lens,
-                                       codes->aligned_codewords);
+               c->offset_slot_fast[offset] = slot;
+       }
 }
 
+/* Set internal compression parameters for the specified compression level and
+ * maximum window size.  */
 static void
-do_call_insn_translation(u32 *call_insn_target, int input_pos,
-                        int32_t file_size)
+lzx_build_params(unsigned int compression_level, u32 max_window_size,
+                struct lzx_compressor_params *lzx_params)
 {
-       int32_t abs_offset;
-       int32_t rel_offset;
+       if (compression_level < 25) {
 
-       rel_offset = le32_to_cpu(*call_insn_target);
-       if (rel_offset >= -input_pos && rel_offset < file_size) {
-               if (rel_offset < file_size - input_pos) {
-                       /* "good translation" */
-                       abs_offset = rel_offset + input_pos;
-               } else {
-                       /* "compensating translation" */
-                       abs_offset = rel_offset - file_size;
+               /* Fast compression: Use lazy parsing.  */
+
+               lzx_params->choose_items_for_block = lzx_choose_lazy_items_for_block;
+               lzx_params->num_optim_passes = 1;
+
+               /* When lazy parsing, the hash chain match-finding algorithm is
+                * fastest unless the window is too large.
+                *
+                * TODO: something like hash arrays would actually be better
+                * than binary trees on large windows.  */
+               if (max_window_size <= 262144)
+                       lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
+               else
+                       lzx_params->mf_algo = LZ_MF_BINARY_TREES;
+
+               /* When lazy parsing, don't bother with length 2 matches.  */
+               lzx_params->min_match_length = 3;
+
+               /* Scale nice_match_length and max_search_depth with the
+                * compression level.  */
+               lzx_params->nice_match_length = 25 + compression_level * 2;
+               lzx_params->max_search_depth = 25 + compression_level;
+       } else {
+
+               /* Normal / high compression: Use near-optimal parsing.  */
+
+               lzx_params->choose_items_for_block = lzx_choose_near_optimal_items_for_block;
+
+               /* Set a number of optimization passes appropriate for the
+                * compression level.  */
+
+               lzx_params->num_optim_passes = 1;
+
+               if (compression_level >= 40)
+                       lzx_params->num_optim_passes++;
+
+               /* Use more optimization passes for higher compression levels.
+                * But the more passes there are, the less they help --- so
+                * don't add them linearly.  */
+               if (compression_level >= 70) {
+                       lzx_params->num_optim_passes++;
+                       if (compression_level >= 100)
+                               lzx_params->num_optim_passes++;
+                       if (compression_level >= 150)
+                               lzx_params->num_optim_passes++;
+                       if (compression_level >= 200)
+                               lzx_params->num_optim_passes++;
+                       if (compression_level >= 300)
+                               lzx_params->num_optim_passes++;
                }
-               *call_insn_target = cpu_to_le32(abs_offset);
+
+               /* When doing near-optimal parsing, the hash chain match-finding
+                * algorithm is good if the window size is small and we're only
+                * doing one optimization pass.  Otherwise, the binary tree
+                * algorithm is the way to go.  */
+               if (max_window_size <= 32768 && lzx_params->num_optim_passes == 1)
+                       lzx_params->mf_algo = LZ_MF_HASH_CHAINS;
+               else
+                       lzx_params->mf_algo = LZ_MF_BINARY_TREES;
+
+               /* When doing near-optimal parsing, allow length 2 matches if
+                * the compression level is sufficiently high.  */
+               if (compression_level >= 45)
+                       lzx_params->min_match_length = 2;
+               else
+                       lzx_params->min_match_length = 3;
+
+               /* Scale nice_match_length and max_search_depth with the
+                * compression level.  */
+               lzx_params->nice_match_length = min(((u64)compression_level * 32) / 50,
+                                                   LZX_MAX_MATCH_LEN);
+               lzx_params->max_search_depth = min(((u64)compression_level * 50) / 50,
+                                                  LZX_MAX_MATCH_LEN);
        }
 }
 
-/* This is the reverse of undo_call_insn_preprocessing() in lzx-decompress.c.
- * See the comment above that function for more information. */
+/* Given the internal compression parameters and maximum window size, build the
+ * Lempel-Ziv match-finder parameters.  */
 static void
-do_call_insn_preprocessing(u8 uncompressed_data[], int uncompressed_data_len)
-{
-       for (int i = 0; i < uncompressed_data_len - 10; i++) {
-               if (uncompressed_data[i] == 0xe8) {
-                       do_call_insn_translation((u32*)&uncompressed_data[i + 1],
-                                                i,
-                                                LZX_WIM_MAGIC_FILESIZE);
-                       i += 4;
-               }
-       }
+lzx_build_mf_params(const struct lzx_compressor_params *lzx_params,
+                   u32 max_window_size, struct lz_mf_params *mf_params)
+{
+       memset(mf_params, 0, sizeof(*mf_params));
+
+       mf_params->algorithm = lzx_params->mf_algo;
+       mf_params->max_window_size = max_window_size;
+       mf_params->min_match_len = lzx_params->min_match_length;
+       mf_params->max_match_len = LZX_MAX_MATCH_LEN;
+       mf_params->max_search_depth = lzx_params->max_search_depth;
+       mf_params->nice_match_len = lzx_params->nice_match_length;
 }
 
+static void
+lzx_free_compressor(void *_c);
 
-static const struct lz_params lzx_lz_params = {
+static u64
+lzx_get_needed_memory(size_t max_block_size, unsigned int compression_level)
+{
+       struct lzx_compressor_params params;
+       u64 size = 0;
+       unsigned window_order;
+       u32 max_window_size;
 
-        /* LZX_MIN_MATCH == 2, but 2-character matches are rarely useful; the
-         * minimum match for compression is set to 3 instead. */
-       .min_match      = 3,
+       window_order = lzx_get_window_order(max_block_size);
+       if (window_order == 0)
+               return 0;
+       max_window_size = max_block_size;
 
-       .max_match      = LZX_MAX_MATCH,
-       .good_match     = LZX_MAX_MATCH,
-       .nice_match     = LZX_MAX_MATCH,
-       .max_chain_len  = LZX_MAX_MATCH,
-       .max_lazy_match = LZX_MAX_MATCH,
-       .too_far        = 4096,
-};
+       lzx_build_params(compression_level, max_window_size, &params);
 
-/*
- * Performs LZX compression on a block of data.
- *
- * @__uncompressed_data:  Pointer to the data to be compressed.
- * @uncompressed_len:    Length, in bytes, of the data to be compressed.
- * @compressed_data:     Pointer to a location at least (@uncompressed_len - 1)
- *                             bytes long into which the compressed data may be
- *                             written.
- * @compressed_len_ret:          A pointer to an unsigned int into which the length of
- *                             the compressed data may be returned.
- *
- * Returns zero if compression was successfully performed.  In that case
- * @compressed_data and @compressed_len_ret will contain the compressed data and
- * its length.  A return value of nonzero means that compressing the data did
- * not reduce its size, and @compressed_data will not contain the full
- * compressed data.
- */
-int
-lzx_compress(const void *__uncompressed_data, unsigned uncompressed_len,
-            void *compressed_data, unsigned *compressed_len_ret)
-{
-       struct output_bitstream ostream;
-       u8 uncompressed_data[uncompressed_len + 8];
-       struct lzx_freq_tables freq_tabs;
-       struct lzx_codes codes;
-       u32 match_tab[uncompressed_len];
-       struct lru_queue queue;
-       unsigned num_matches;
-       unsigned compressed_len;
-       unsigned i;
-       int ret;
-       int block_type = LZX_BLOCKTYPE_ALIGNED;
+       size += sizeof(struct lzx_compressor);
 
-       if (uncompressed_len < 100)
-               return 1;
+       /* cur_window */
+       size += max_window_size;
 
-       memset(&freq_tabs, 0, sizeof(freq_tabs));
-       queue.R0 = 1;
-       queue.R1 = 1;
-       queue.R2 = 1;
+       /* mf */
+       size += lz_mf_get_needed_memory(params.mf_algo, max_window_size);
 
-       /* The input data must be preprocessed. To avoid changing the original
-        * input, copy it to a temporary buffer. */
-       memcpy(uncompressed_data, __uncompressed_data, uncompressed_len);
+       /* cached_matches */
+       if (params.num_optim_passes > 1)
+               size += LZX_CACHE_LEN * sizeof(struct lz_match);
+       else
+               size += LZX_MAX_MATCHES_PER_POS * sizeof(struct lz_match);
+       return size;
+}
 
-       /* Before doing any actual compression, do the call instruction (0xe8
-        * byte) translation on the uncompressed data. */
-       do_call_insn_preprocessing(uncompressed_data, uncompressed_len);
+static int
+lzx_create_compressor(size_t max_block_size, unsigned int compression_level,
+                     void **c_ret)
+{
+       struct lzx_compressor *c;
+       struct lzx_compressor_params params;
+       struct lz_mf_params mf_params;
+       unsigned window_order;
+       u32 max_window_size;
+
+       window_order = lzx_get_window_order(max_block_size);
+       if (window_order == 0)
+               return WIMLIB_ERR_INVALID_PARAM;
+       max_window_size = max_block_size;
+
+       lzx_build_params(compression_level, max_window_size, &params);
+       lzx_build_mf_params(&params, max_window_size, &mf_params);
+       if (!lz_mf_params_valid(&mf_params))
+               return WIMLIB_ERR_INVALID_PARAM;
+
+       c = CALLOC(1, sizeof(struct lzx_compressor));
+       if (!c)
+               goto oom;
+
+       c->params = params;
+       c->num_main_syms = lzx_get_num_main_syms(window_order);
+       c->window_order = window_order;
+
+       /* The window is allocated as 16-byte aligned to speed up memcpy() and
+        * enable lzx_e8_filter() optimization on x86_64.  */
+       c->cur_window = ALIGNED_MALLOC(max_window_size, 16);
+       if (!c->cur_window)
+               goto oom;
+
+       c->mf = lz_mf_alloc(&mf_params);
+       if (!c->mf)
+               goto oom;
+
+       if (params.num_optim_passes > 1) {
+               c->cached_matches = MALLOC(LZX_CACHE_LEN *
+                                          sizeof(struct lz_match));
+               if (!c->cached_matches)
+                       goto oom;
+               c->cache_limit = c->cached_matches + LZX_CACHE_LEN -
+                                (LZX_MAX_MATCHES_PER_POS + 1);
+       } else {
+               c->cached_matches = MALLOC(LZX_MAX_MATCHES_PER_POS *
+                                          sizeof(struct lz_match));
+               if (!c->cached_matches)
+                       goto oom;
+       }
 
-       /* Determine the sequence of matches and literals that will be output,
-        * and in the process, keep counts of the number of times each symbol
-        * will be output, so that the Huffman trees can be made. */
+       lzx_init_offset_slot_fast(c);
 
-       num_matches = lz_analyze_block(uncompressed_data, uncompressed_len,
-                                      match_tab, lzx_record_match,
-                                      lzx_record_literal, &freq_tabs,
-                                      &queue, freq_tabs.main_freq_table,
-                                      &lzx_lz_params);
+       *c_ret = c;
+       return 0;
 
-       lzx_make_huffman_codes(&freq_tabs, &codes);
+oom:
+       lzx_free_compressor(c);
+       return WIMLIB_ERR_NOMEM;
+}
 
-       /* Initialize the output bitstream. */
-       init_output_bitstream(&ostream, compressed_data, uncompressed_len - 1);
+static size_t
+lzx_compress(const void *uncompressed_data, size_t uncompressed_size,
+            void *compressed_data, size_t compressed_size_avail, void *_c)
+{
+       struct lzx_compressor *c = _c;
+       struct lzx_output_bitstream os;
+       u32 num_chosen_items;
+       const struct lzx_lens *prev_lens;
+       u32 block_start_pos;
+       u32 block_size;
+       int block_type;
 
-       /* The first three bits tell us what kind of block it is, and are one
-        * of the LZX_BLOCKTYPE_* values.  */
-       bitstream_put_bits(&ostream, block_type, 3);
+       /* Don't bother compressing very small inputs.  */
+       if (uncompressed_size < 100)
+               return 0;
 
-       /* The next bit indicates whether the block size is the default (32768),
-        * indicated by a 1 bit, or whether the block size is given by the next
-        * 16 bits, indicated by a 0 bit. */
-       if (uncompressed_len == 32768) {
-               bitstream_put_bits(&ostream, 1, 1);
-       } else {
-               bitstream_put_bits(&ostream, 0, 1);
-               bitstream_put_bits(&ostream, uncompressed_len, 16);
-       }
+       /* The input data must be preprocessed.  To avoid changing the original
+        * input data, copy it to a temporary buffer.  */
+       memcpy(c->cur_window, uncompressed_data, uncompressed_size);
+       c->cur_window_size = uncompressed_size;
 
-       /* Write out the aligned offset tree. Note that M$ lies and says that
-        * the aligned offset tree comes after the length tree, but that is
-        * wrong; it actually is before the main tree.  */
-       if (block_type == LZX_BLOCKTYPE_ALIGNED)
-               for (i = 0; i < LZX_ALIGNEDTREE_NUM_SYMBOLS; i++)
-                       bitstream_put_bits(&ostream, codes.aligned_lens[i],
-                                          LZX_ALIGNEDTREE_ELEMENT_SIZE);
-
-       /* Write the pre-tree and lengths for the first LZX_NUM_CHARS symbols in the
-        * main tree. */
-       ret = lzx_write_compressed_tree(&ostream, codes.main_lens,
-                                       LZX_NUM_CHARS);
-       if (ret != 0)
-               return ret;
-
-       /* Write the pre-tree and symbols for the rest of the main tree. */
-       ret = lzx_write_compressed_tree(&ostream, codes.main_lens +
-                                       LZX_NUM_CHARS,
-                                       LZX_MAINTREE_NUM_SYMBOLS -
-                                               LZX_NUM_CHARS);
-       if (ret != 0)
-               return ret;
-
-       /* Write the pre-tree and symbols for the length tree. */
-       ret = lzx_write_compressed_tree(&ostream, codes.len_lens,
-                                       LZX_LENTREE_NUM_SYMBOLS);
-       if (ret != 0)
-               return ret;
-
-       /* Write the compressed literals. */
-       ret = lzx_write_compressed_literals(&ostream, block_type,
-                                           match_tab, num_matches, &codes);
-       if (ret != 0)
-               return ret;
-
-       ret = flush_output_bitstream(&ostream);
-       if (ret != 0)
-               return ret;
-
-       compressed_len = ostream.bit_output - (u8*)compressed_data;
-
-       *compressed_len_ret = compressed_len;
-
-#ifdef ENABLE_VERIFY_COMPRESSION
-       /* Verify that we really get the same thing back when decompressing. */
-       u8 buf[uncompressed_len];
-       ret = lzx_decompress(compressed_data, compressed_len, buf,
-                            uncompressed_len);
-       if (ret != 0) {
-               ERROR("lzx_compress(): Failed to decompress data we compressed");
-               abort();
-       }
+       /* Preprocess the data.  */
+       lzx_do_e8_preprocessing(c->cur_window, c->cur_window_size);
 
-       for (i = 0; i < uncompressed_len; i++) {
-               if (buf[i] != *((u8*)__uncompressed_data + i)) {
-                       ERROR("lzx_compress(): Data we compressed didn't "
-                             "decompress to the original data (difference at "
-                             "byte %u of %u)", i + 1, uncompressed_len);
-                       abort();
-               }
+       /* Load the window into the match-finder.  */
+       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
+
+       /* Initialize the match offset LRU queue.  */
+       lzx_lru_queue_init(&c->queue);
+
+       /* Initialize the output bitstream.  */
+       lzx_init_output(&os, compressed_data, compressed_size_avail);
+
+       /* Compress the data block by block.
+        *
+        * TODO: The compression ratio could be slightly improved by performing
+        * data-dependent block splitting instead of using fixed-size blocks.
+        * Doing so well is a computationally hard problem, however.  */
+       block_start_pos = 0;
+       c->codes_index = 0;
+       prev_lens = &c->zero_lens;
+       do {
+               /* Compute the block size.  */
+               block_size = min(LZX_DIV_BLOCK_SIZE,
+                                uncompressed_size - block_start_pos);
+
+               /* Reset symbol frequencies.  */
+               memset(&c->freqs, 0, sizeof(c->freqs));
+
+               /* Prepare the matches/literals for the block.  */
+               num_chosen_items = lzx_choose_items_for_block(c,
+                                                             block_start_pos,
+                                                             block_size);
+
+               /* Make the Huffman codes from the symbol frequencies.  */
+               lzx_make_huffman_codes(&c->freqs, &c->codes[c->codes_index],
+                                      c->num_main_syms);
+
+               /* Choose the best block type.
+                *
+                * Note: we currently don't consider uncompressed blocks.  */
+               block_type = lzx_choose_verbatim_or_aligned(&c->freqs,
+                                                           &c->codes[c->codes_index]);
+
+               /* Write the compressed block to the output buffer.  */
+               lzx_write_compressed_block(block_type,
+                                          block_size,
+                                          c->window_order,
+                                          c->num_main_syms,
+                                          c->chosen_items,
+                                          num_chosen_items,
+                                          &c->codes[c->codes_index],
+                                          prev_lens,
+                                          &os);
+
+               /* The current codeword lengths become the previous lengths.  */
+               prev_lens = &c->codes[c->codes_index].lens;
+               c->codes_index ^= 1;
+
+               block_start_pos += block_size;
+
+       } while (block_start_pos != uncompressed_size);
+
+       return lzx_flush_output(&os);
+}
+
+static void
+lzx_free_compressor(void *_c)
+{
+       struct lzx_compressor *c = _c;
+
+       if (c) {
+               ALIGNED_FREE(c->cur_window);
+               lz_mf_free(c->mf);
+               FREE(c->cached_matches);
+               FREE(c);
        }
-#endif
-       return 0;
 }
+
+const struct compressor_ops lzx_compressor_ops = {
+       .get_needed_memory  = lzx_get_needed_memory,
+       .create_compressor  = lzx_create_compressor,
+       .compress           = lzx_compress,
+       .free_compressor    = lzx_free_compressor,
+};