]> wimlib.net Git - wimlib/blobdiff - src/lzx-compress.c
LZX, XPRESS: Use optimized write_bits() functions
[wimlib] / src / lzx-compress.c
index db0e7c10f0714b2272626a77abdd71bd97fb7b2c..0a4edb0ea0db393a34e3138054fd7d4d6ccee423 100644 (file)
 
 #include "wimlib/compressor_ops.h"
 #include "wimlib/compress_common.h"
+#include "wimlib/endianness.h"
 #include "wimlib/error.h"
 #include "wimlib/lz_mf.h"
 #include "wimlib/lzx.h"
@@ -439,10 +440,145 @@ struct lzx_mc_pos_data {
        };
 
        /* Adaptive state that exists after an approximate minimum-cost path to
-        * reach this position is taken.  */
+        * reach this position is taken.
+        *
+        * Note: we update this whenever we update the pending minimum-cost
+        * path.  This is in contrast to LZMA, which also has an optimal parser
+        * that maintains a repeat offset queue per position, but will only
+        * compute the queue once that position is actually reached in the
+        * parse, meaning that matches are being considered *starting* at that
+        * position.  However, the two methods seem to have approximately the
+        * same performance if appropriate optimizations are used.  Intuitively
+        * the LZMA method seems faster, but it actually suffers from 1-2 extra
+        * hard-to-predict branches at each position.  Probably it works better
+        * for LZMA than LZX because LZMA has a larger adaptive state than LZX,
+        * and the LZMA encoder considers more possibilities.  */
        struct lzx_lru_queue queue;
 };
 
+
+/*
+ * Structure to keep track of the current state of sending bits to the
+ * compressed output buffer.
+ *
+ * The LZX bitstream is encoded as a sequence of 16-bit coding units.
+ */
+struct lzx_output_bitstream {
+
+       /* Bits that haven't yet been written to the output buffer.  */
+       u32 bitbuf;
+
+       /* Number of bits currently held in @bitbuf.  */
+       u32 bitcount;
+
+       /* Pointer to the start of the output buffer.  */
+       le16 *start;
+
+       /* Pointer to the position in the output buffer at which the next coding
+        * unit should be written.  */
+       le16 *next;
+
+       /* Pointer past the end of the output buffer.  */
+       le16 *end;
+};
+
+/*
+ * Initialize the output bitstream.
+ *
+ * @os
+ *     The output bitstream structure to initialize.
+ * @buffer
+ *     The buffer being written to.
+ * @size
+ *     Size of @buffer, in bytes.
+ */
+static void
+lzx_init_output(struct lzx_output_bitstream *os, void *buffer, u32 size)
+{
+       os->bitbuf = 0;
+       os->bitcount = 0;
+       os->start = buffer;
+       os->next = os->start;
+       os->end = os->start + size / sizeof(le16);
+}
+
+/*
+ * Write some bits to the output bitstream.
+ *
+ * The bits are given by the low-order @num_bits bits of @bits.  Higher-order
+ * bits in @bits cannot be set.  At most 17 bits can be written at once.
+ *
+ * @max_bits is a compile-time constant that specifies the maximum number of
+ * bits that can ever be written at the call site.  Currently, it is used to
+ * optimize away the conditional code for writing a second 16-bit coding unit
+ * when writing fewer than 17 bits.
+ *
+ * If the output buffer space is exhausted, then the bits will be ignored, and
+ * lzx_flush_output() will return 0 when it gets called.
+ */
+static _always_inline_attribute void
+lzx_write_varbits(struct lzx_output_bitstream *os,
+                 const u32 bits, const unsigned int num_bits,
+                 const unsigned int max_num_bits)
+{
+       /* This code is optimized for LZX, which never needs to write more than
+        * 17 bits at once.  */
+       LZX_ASSERT(num_bits <= 17);
+       LZX_ASSERT(num_bits <= max_num_bits);
+       LZX_ASSERT(os->bitcount <= 15);
+
+       /* Add the bits to the bit buffer variable.  @bitcount will be at most
+        * 15, so there will be just enough space for the maximum possible
+        * @num_bits of 17.  */
+       os->bitcount += num_bits;
+       os->bitbuf = (os->bitbuf << num_bits) | bits;
+
+       /* Check whether any coding units need to be written.  */
+       if (os->bitcount >= 16) {
+
+               os->bitcount -= 16;
+
+               /* Write a coding unit, unless it would overflow the buffer.  */
+               if (os->next != os->end)
+                       *os->next++ = cpu_to_le16(os->bitbuf >> os->bitcount);
+
+               /* If writing 17 bits, a second coding unit might need to be
+                * written.  But because 'max_num_bits' is a compile-time
+                * constant, the compiler will optimize away this code at most
+                * call sites.  */
+               if (max_num_bits == 17 && os->bitcount == 16) {
+                       if (os->next != os->end)
+                               *os->next++ = cpu_to_le16(os->bitbuf);
+                       os->bitcount = 0;
+               }
+       }
+}
+
+/* Use when @num_bits is a compile-time constant.  Otherwise use
+ * lzx_write_varbits().  */
+static _always_inline_attribute void
+lzx_write_bits(struct lzx_output_bitstream *os,
+              const u32 bits, const unsigned int num_bits)
+{
+       lzx_write_varbits(os, bits, num_bits, num_bits);
+}
+
+/*
+ * Flush the last coding unit to the output buffer if needed.  Return the total
+ * number of bytes written to the output buffer, or 0 if an overflow occurred.
+ */
+static u32
+lzx_flush_output(struct lzx_output_bitstream *os)
+{
+       if (os->next == os->end)
+               return 0;
+
+       if (os->bitcount != 0)
+               *os->next++ = cpu_to_le16(os->bitbuf << (16 - os->bitcount));
+
+       return (const u8 *)os->next - (const u8 *)os->start;
+}
+
 /* Returns the LZX position slot that corresponds to a given match offset,
  * taking into account the recent offset queue and updating it if the offset is
  * found in it.  */
@@ -510,7 +646,7 @@ lzx_make_huffman_codes(const struct lzx_freqs *freqs,
 /*
  * Output a precomputed LZX match.
  *
- * @out:
+ * @os:
  *     The bitstream to which to write the match.
  * @block_type:
  *     The type of the LZX block (LZX_BLOCKTYPE_ALIGNED or
@@ -522,30 +658,23 @@ lzx_make_huffman_codes(const struct lzx_freqs *freqs,
  *     and aligned offset Huffman codes for the current LZX compressed block.
  */
 static void
-lzx_write_match(struct output_bitstream *out, int block_type,
+lzx_write_match(struct lzx_output_bitstream *os, int block_type,
                struct lzx_item match, const struct lzx_codes *codes)
 {
-       /* low 8 bits are the match length minus 2 */
        unsigned match_len_minus_2 = match.data & 0xff;
-       /* Next 17 bits are the position footer */
-       unsigned position_footer = (match.data >> 8) & 0x1ffff; /* 17 bits */
-       /* Next 6 bits are the position slot. */
-       unsigned position_slot = (match.data >> 25) & 0x3f;     /* 6 bits */
+       u32 position_footer = (match.data >> 8) & 0x1ffff;
+       unsigned position_slot = (match.data >> 25) & 0x3f;
        unsigned len_header;
        unsigned len_footer;
        unsigned main_symbol;
        unsigned num_extra_bits;
-       unsigned verbatim_bits;
-       unsigned aligned_bits;
 
        /* If the match length is less than MIN_MATCH_LEN (= 2) +
-        * NUM_PRIMARY_LENS (= 7), the length header contains
-        * the match length minus MIN_MATCH_LEN, and there is no
-        * length footer.
+        * NUM_PRIMARY_LENS (= 7), the length header contains the match length
+        * minus MIN_MATCH_LEN, and there is no length footer.
         *
-        * Otherwise, the length header contains
-        * NUM_PRIMARY_LENS, and the length footer contains
-        * the match length minus NUM_PRIMARY_LENS minus
+        * Otherwise, the length header contains NUM_PRIMARY_LENS, and the
+        * length footer contains the match length minus NUM_PRIMARY_LENS minus
         * MIN_MATCH_LEN. */
        if (match_len_minus_2 < LZX_NUM_PRIMARY_LENS) {
                len_header = match_len_minus_2;
@@ -563,46 +692,49 @@ lzx_write_match(struct output_bitstream *out, int block_type,
        main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
 
        /* Output main symbol. */
-       bitstream_put_bits(out, codes->codewords.main[main_symbol],
-                          codes->lens.main[main_symbol]);
+       lzx_write_varbits(os, codes->codewords.main[main_symbol],
+                         codes->lens.main[main_symbol],
+                         LZX_MAX_MAIN_CODEWORD_LEN);
 
        /* If there is a length footer, output it using the
         * length Huffman code. */
-       if (len_header == LZX_NUM_PRIMARY_LENS)
-               bitstream_put_bits(out, codes->codewords.len[len_footer],
-                                  codes->lens.len[len_footer]);
+       if (len_header == LZX_NUM_PRIMARY_LENS) {
+               lzx_write_varbits(os, codes->codewords.len[len_footer],
+                                 codes->lens.len[len_footer],
+                                 LZX_MAX_LEN_CODEWORD_LEN);
+       }
+
+       /* Output the position footer.  */
 
        num_extra_bits = lzx_get_num_extra_bits(position_slot);
 
-       /* For aligned offset blocks with at least 3 extra bits, output the
-        * verbatim bits literally, then the aligned bits encoded using the
-        * aligned offset code.  Otherwise, only the verbatim bits need to be
-        * output. */
        if ((block_type == LZX_BLOCKTYPE_ALIGNED) && (num_extra_bits >= 3)) {
 
-               verbatim_bits = position_footer >> 3;
-               bitstream_put_bits(out, verbatim_bits,
-                                  num_extra_bits - 3);
+               /* Aligned offset blocks: The low 3 bits of the position footer
+                * are Huffman-encoded using the aligned offset code.  The
+                * remaining bits are output literally.  */
 
-               aligned_bits = (position_footer & 7);
-               bitstream_put_bits(out,
-                                  codes->codewords.aligned[aligned_bits],
-                                  codes->lens.aligned[aligned_bits]);
+               lzx_write_varbits(os,
+                                 position_footer >> 3, num_extra_bits - 3, 14);
+
+               lzx_write_varbits(os,
+                                 codes->codewords.aligned[position_footer & 7],
+                                 codes->lens.aligned[position_footer & 7],
+                                 LZX_MAX_ALIGNED_CODEWORD_LEN);
        } else {
-               /* verbatim bits is the same as the position
-                * footer, in this case. */
-               bitstream_put_bits(out, position_footer, num_extra_bits);
+               /* Verbatim blocks, or fewer than 3 extra bits:  All position
+                * footer bits are output literally.  */
+               lzx_write_varbits(os, position_footer, num_extra_bits, 17);
        }
 }
 
 /* Output an LZX literal (encoded with the main Huffman code).  */
 static void
-lzx_write_literal(struct output_bitstream *out, u8 literal,
+lzx_write_literal(struct lzx_output_bitstream *os, unsigned literal,
                  const struct lzx_codes *codes)
 {
-       bitstream_put_bits(out,
-                          codes->codewords.main[literal],
-                          codes->lens.main[literal]);
+       lzx_write_varbits(os, codes->codewords.main[literal],
+                         codes->lens.main[literal], LZX_MAX_MAIN_CODEWORD_LEN);
 }
 
 static unsigned
@@ -762,7 +894,7 @@ lzx_build_precode(const u8 lens[restrict],
  * as deltas from the codeword lengths of the corresponding code in the previous
  * block.
  *
- * @out:
+ * @os:
  *     Bitstream to which to write the compressed Huffman code.
  * @lens:
  *     The codeword lengths, indexed by symbol, in the Huffman code.
@@ -773,7 +905,7 @@ lzx_build_precode(const u8 lens[restrict],
  *     The number of symbols in the Huffman code.
  */
 static void
-lzx_write_compressed_code(struct output_bitstream *out,
+lzx_write_compressed_code(struct lzx_output_bitstream *os,
                          const u8 lens[restrict],
                          const u8 prev_lens[restrict],
                          unsigned num_syms)
@@ -798,28 +930,28 @@ lzx_write_compressed_code(struct output_bitstream *out,
 
        /* Write the lengths of the precode codes to the output. */
        for (i = 0; i < LZX_PRECODE_NUM_SYMBOLS; i++)
-               bitstream_put_bits(out, precode_lens[i],
-                                  LZX_PRECODE_ELEMENT_SIZE);
+               lzx_write_bits(os, precode_lens[i], LZX_PRECODE_ELEMENT_SIZE);
 
        /* Write the length symbols, encoded with the precode, to the output. */
 
        for (i = 0; i < num_output_syms; ) {
                precode_sym = output_syms[i++];
 
-               bitstream_put_bits(out, precode_codewords[precode_sym],
-                                  precode_lens[precode_sym]);
+               lzx_write_varbits(os, precode_codewords[precode_sym],
+                                 precode_lens[precode_sym],
+                                 LZX_MAX_PRE_CODEWORD_LEN);
                switch (precode_sym) {
                case 17:
-                       bitstream_put_bits(out, output_syms[i++], 4);
+                       lzx_write_bits(os, output_syms[i++], 4);
                        break;
                case 18:
-                       bitstream_put_bits(out, output_syms[i++], 5);
+                       lzx_write_bits(os, output_syms[i++], 5);
                        break;
                case 19:
-                       bitstream_put_bits(out, output_syms[i++], 1);
-                       bitstream_put_bits(out,
-                                          precode_codewords[output_syms[i]],
-                                          precode_lens[output_syms[i]]);
+                       lzx_write_bits(os, output_syms[i++], 1);
+                       lzx_write_varbits(os, precode_codewords[output_syms[i]],
+                                         precode_lens[output_syms[i]],
+                                         LZX_MAX_PRE_CODEWORD_LEN);
                        i++;
                        break;
                default:
@@ -833,7 +965,7 @@ lzx_write_compressed_code(struct output_bitstream *out,
  * compressed block to the output bitstream in the final compressed
  * representation.
  *
- * @ostream
+ * @os
  *     The output bitstream.
  * @block_type
  *     The chosen type of the LZX compressed block (LZX_BLOCKTYPE_ALIGNED or
@@ -847,7 +979,7 @@ lzx_write_compressed_code(struct output_bitstream *out,
  *     LZX compressed block.
  */
 static void
-lzx_write_items(struct output_bitstream *ostream, int block_type,
+lzx_write_items(struct lzx_output_bitstream *os, int block_type,
                const struct lzx_item items[], u32 num_items,
                const struct lzx_codes *codes)
 {
@@ -856,32 +988,30 @@ lzx_write_items(struct output_bitstream *ostream, int block_type,
                 * indicates whether the item is an actual LZ-style match (1) or
                 * a literal byte (0).  */
                if (items[i].data & 0x80000000)
-                       lzx_write_match(ostream, block_type, items[i], codes);
+                       lzx_write_match(os, block_type, items[i], codes);
                else
-                       lzx_write_literal(ostream, items[i].data, codes);
+                       lzx_write_literal(os, items[i].data, codes);
        }
 }
 
 /* Write an LZX aligned offset or verbatim block to the output.  */
 static void
 lzx_write_compressed_block(int block_type,
-                          unsigned block_size,
-                          unsigned max_window_size,
+                          u32 block_size,
+                          u32 max_window_size,
                           unsigned num_main_syms,
                           struct lzx_item * chosen_items,
-                          unsigned num_chosen_items,
+                          u32 num_chosen_items,
                           const struct lzx_codes * codes,
                           const struct lzx_codes * prev_codes,
-                          struct output_bitstream * ostream)
+                          struct lzx_output_bitstream * os)
 {
-       unsigned i;
-
        LZX_ASSERT(block_type == LZX_BLOCKTYPE_ALIGNED ||
                   block_type == LZX_BLOCKTYPE_VERBATIM);
 
        /* The first three bits indicate the type of block and are one of the
         * LZX_BLOCKTYPE_* constants.  */
-       bitstream_put_bits(ostream, block_type, 3);
+       lzx_write_bits(os, block_type, 3);
 
        /* Output the block size.
         *
@@ -899,64 +1029,50 @@ lzx_write_compressed_block(int block_type,
         * because WIMs created with chunk size greater than 32768 can seemingly
         * only be opened by wimlib anyway.  */
        if (block_size == LZX_DEFAULT_BLOCK_SIZE) {
-               bitstream_put_bits(ostream, 1, 1);
+               lzx_write_bits(os, 1, 1);
        } else {
-               bitstream_put_bits(ostream, 0, 1);
+               lzx_write_bits(os, 0, 1);
 
                if (max_window_size >= 65536)
-                       bitstream_put_bits(ostream, block_size >> 16, 8);
+                       lzx_write_bits(os, block_size >> 16, 8);
 
-               bitstream_put_bits(ostream, block_size, 16);
+               lzx_write_bits(os, block_size & 0xFFFF, 16);
        }
 
-       /* Write out lengths of the main code. Note that the LZX specification
-        * incorrectly states that the aligned offset code comes after the
-        * length code, but in fact it is the very first code to be written
-        * (before the main code).  */
-       if (block_type == LZX_BLOCKTYPE_ALIGNED)
-               for (i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++)
-                       bitstream_put_bits(ostream, codes->lens.aligned[i],
-                                          LZX_ALIGNEDCODE_ELEMENT_SIZE);
-
-       /* Write the precode and lengths for the first LZX_NUM_CHARS symbols in
-        * the main code, which are the codewords for literal bytes.  */
-       lzx_write_compressed_code(ostream,
-                                 codes->lens.main,
+       /* Output the aligned offset code.  */
+       if (block_type == LZX_BLOCKTYPE_ALIGNED) {
+               for (int i = 0; i < LZX_ALIGNEDCODE_NUM_SYMBOLS; i++) {
+                       lzx_write_bits(os, codes->lens.aligned[i],
+                                      LZX_ALIGNEDCODE_ELEMENT_SIZE);
+               }
+       }
+
+       /* Output the main code (two parts).  */
+       lzx_write_compressed_code(os, codes->lens.main,
                                  prev_codes->lens.main,
                                  LZX_NUM_CHARS);
-
-       /* Write the precode and lengths for the rest of the main code, which
-        * are the codewords for match headers.  */
-       lzx_write_compressed_code(ostream,
-                                 codes->lens.main + LZX_NUM_CHARS,
+       lzx_write_compressed_code(os, codes->lens.main + LZX_NUM_CHARS,
                                  prev_codes->lens.main + LZX_NUM_CHARS,
                                  num_main_syms - LZX_NUM_CHARS);
 
-       /* Write the precode and lengths for the length code.  */
-       lzx_write_compressed_code(ostream,
-                                 codes->lens.len,
+       /* Output the length code.  */
+       lzx_write_compressed_code(os, codes->lens.len,
                                  prev_codes->lens.len,
                                  LZX_LENCODE_NUM_SYMBOLS);
 
-       /* Write the actual matches and literals.  */
-       lzx_write_items(ostream, block_type,
-                       chosen_items, num_chosen_items, codes);
+       /* Output the compressed matches and literals.  */
+       lzx_write_items(os, block_type, chosen_items, num_chosen_items, codes);
 }
 
 /* Write out the LZX blocks that were computed.  */
 static void
-lzx_write_all_blocks(struct lzx_compressor *c, struct output_bitstream *ostream)
+lzx_write_all_blocks(struct lzx_compressor *c, struct lzx_output_bitstream *os)
 {
 
        const struct lzx_codes *prev_codes = &c->zero_codes;
        for (unsigned i = 0; i < c->num_blocks; i++) {
                const struct lzx_block_spec *spec = &c->block_specs[i];
 
-               LZX_DEBUG("Writing block %u/%u (type=%d, size=%u, num_chosen_items=%u)...",
-                         i + 1, c->num_blocks,
-                         spec->block_type, spec->block_size,
-                         spec->num_chosen_items);
-
                lzx_write_compressed_block(spec->block_type,
                                           spec->block_size,
                                           c->max_window_size,
@@ -965,7 +1081,7 @@ lzx_write_all_blocks(struct lzx_compressor *c, struct output_bitstream *ostream)
                                           spec->num_chosen_items,
                                           &spec->codes,
                                           prev_codes,
-                                          ostream);
+                                          os);
 
                prev_codes = &spec->codes;
        }
@@ -989,7 +1105,7 @@ lzx_tally_match(unsigned match_len, u32 match_offset,
                struct lzx_freqs *freqs, struct lzx_lru_queue *queue)
 {
        unsigned position_slot;
-       unsigned position_footer;
+       u32 position_footer;
        u32 len_header;
        unsigned main_symbol;
        unsigned len_footer;
@@ -1001,7 +1117,7 @@ lzx_tally_match(unsigned match_len, u32 match_offset,
         * as part of the main symbol) and a position footer.  */
        position_slot = lzx_get_position_slot(match_offset, queue);
        position_footer = (match_offset + LZX_OFFSET_OFFSET) &
-                               ((1U << lzx_get_num_extra_bits(position_slot)) - 1);
+                               (((u32)1 << lzx_get_num_extra_bits(position_slot)) - 1);
 
        /* The match length shall be encoded as a length header (itself encoded
         * as part of the main symbol) and an optional length footer.  */
@@ -1059,46 +1175,27 @@ lzx_literal_cost(u8 c, const struct lzx_costs * costs)
        return costs->main[c];
 }
 
-/* Given a (length, offset) pair that could be turned into a valid LZX match as
- * well as costs for the codewords in the main, length, and aligned Huffman
- * codes, return the approximate number of bits it will take to represent this
- * match in the compressed output.  Take into account the match offset LRU
- * queue and also updates it.  */
+/* Returns the cost, in bits, to output a repeat offset match of the specified
+ * length and position slot (repeat index) using the specified cost model.  */
 static u32
-lzx_match_cost(unsigned length, u32 offset, const struct lzx_costs *costs,
-              struct lzx_lru_queue *queue)
+lzx_repmatch_cost(u32 len, unsigned position_slot, const struct lzx_costs *costs)
 {
-       unsigned position_slot;
        unsigned len_header, main_symbol;
-       unsigned num_extra_bits;
        u32 cost = 0;
 
-       position_slot = lzx_get_position_slot(offset, queue);
-
-       len_header = min(length - LZX_MIN_MATCH_LEN, LZX_NUM_PRIMARY_LENS);
+       len_header = min(len - LZX_MIN_MATCH_LEN, LZX_NUM_PRIMARY_LENS);
        main_symbol = ((position_slot << 3) | len_header) + LZX_NUM_CHARS;
 
        /* Account for main symbol.  */
        cost += costs->main[main_symbol];
 
-       /* Account for extra position information.  */
-       num_extra_bits = lzx_get_num_extra_bits(position_slot);
-       if (num_extra_bits >= 3) {
-               cost += num_extra_bits - 3;
-               cost += costs->aligned[(offset + LZX_OFFSET_OFFSET) & 7];
-       } else {
-               cost += num_extra_bits;
-       }
-
        /* Account for extra length information.  */
        if (len_header == LZX_NUM_PRIMARY_LENS)
-               cost += costs->len[length - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
+               cost += costs->len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
 
        return cost;
-
 }
 
-
 /* Set the cost model @c->costs from the Huffman codeword lengths specified in
  * @lens.
  *
@@ -1449,19 +1546,20 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
        unsigned num_matches;
        const struct lz_match *matches;
        struct lz_match match;
-       unsigned longest_len;
-       unsigned longest_rep_len;
-       u32 longest_rep_offset;
+       u32 longest_len;
+       u32 longest_rep_len;
+       unsigned longest_rep_slot;
        unsigned cur_pos;
        unsigned end_pos;
+       struct lzx_mc_pos_data *optimum = c->optimum;
 
        if (c->optimum_cur_idx != c->optimum_end_idx) {
                /* Case 2: Return the next match/literal already found.  */
-               match.len = c->optimum[c->optimum_cur_idx].next.link -
+               match.len = optimum[c->optimum_cur_idx].next.link -
                                    c->optimum_cur_idx;
-               match.offset = c->optimum[c->optimum_cur_idx].next.match_offset;
+               match.offset = optimum[c->optimum_cur_idx].next.match_offset;
 
-               c->optimum_cur_idx = c->optimum[c->optimum_cur_idx].next.link;
+               c->optimum_cur_idx = optimum[c->optimum_cur_idx].next.link;
                return match;
        }
 
@@ -1470,8 +1568,8 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
        c->optimum_cur_idx = 0;
        c->optimum_end_idx = 0;
 
-       /* Search for matches at recent offsets.  Only keep the one with the
-        * longest match length.  */
+       /* Search for matches at repeat offsets.  As a heuristic, we only keep
+        * the one with the longest match length.  */
        longest_rep_len = LZX_MIN_MATCH_LEN - 1;
        if (c->match_window_pos >= 1) {
                unsigned limit = min(LZX_MAX_MATCH_LEN,
@@ -1485,24 +1583,24 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
                                len++;
                        if (len > longest_rep_len) {
                                longest_rep_len = len;
-                               longest_rep_offset = offset;
+                               longest_rep_slot = i;
                        }
                }
        }
 
-       /* If there's a long match with a recent offset, take it.  */
+       /* If there's a long match with a repeat offset, choose it immediately.  */
        if (longest_rep_len >= c->params.nice_match_length) {
                lzx_skip_bytes(c, longest_rep_len);
                return (struct lz_match) {
                        .len = longest_rep_len,
-                       .offset = longest_rep_offset,
+                       .offset = c->queue.R[longest_rep_slot],
                };
        }
 
-       /* Search other matches.  */
+       /* Find other matches.  */
        num_matches = lzx_get_matches(c, &matches);
 
-       /* If there's a long match, take it.  */
+       /* If there's a long match, choose it immediately.  */
        if (num_matches) {
                longest_len = matches[num_matches - 1].len;
                if (longest_len >= c->params.nice_match_length) {
@@ -1513,12 +1611,11 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
                longest_len = 1;
        }
 
-       /* Calculate the cost to reach the next position by coding a literal.
-        */
-       c->optimum[1].queue = c->queue;
-       c->optimum[1].cost = lzx_literal_cost(c->cur_window[c->match_window_pos - 1],
+       /* Calculate the cost to reach the next position by coding a literal.  */
+       optimum[1].queue = c->queue;
+       optimum[1].cost = lzx_literal_cost(c->cur_window[c->match_window_pos - 1],
                                              &c->costs);
-       c->optimum[1].prev.link = 0;
+       optimum[1].prev.link = 0;
 
        /* Calculate the cost to reach any position up to and including that
         * reached by the longest match.
@@ -1564,29 +1661,30 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
                        if (len_header == LZX_NUM_PRIMARY_LENS)
                                cost += c->costs.len[len - LZX_MIN_MATCH_LEN - LZX_NUM_PRIMARY_LENS];
 
-                       c->optimum[len].queue = queue;
-                       c->optimum[len].prev.link = 0;
-                       c->optimum[len].prev.match_offset = offset;
-                       c->optimum[len].cost = cost;
+                       optimum[len].queue = queue;
+                       optimum[len].prev.link = 0;
+                       optimum[len].prev.match_offset = offset;
+                       optimum[len].cost = cost;
                } while (++len <= matches[i].len);
        }
        end_pos = longest_len;
 
        if (longest_rep_len >= LZX_MIN_MATCH_LEN) {
-               struct lzx_lru_queue queue;
                u32 cost;
 
                while (end_pos < longest_rep_len)
-                       c->optimum[++end_pos].cost = MC_INFINITE_COST;
+                       optimum[++end_pos].cost = MC_INFINITE_COST;
 
-               queue = c->queue;
-               cost = lzx_match_cost(longest_rep_len, longest_rep_offset,
-                                     &c->costs, &queue);
-               if (cost <= c->optimum[longest_rep_len].cost) {
-                       c->optimum[longest_rep_len].queue = queue;
-                       c->optimum[longest_rep_len].prev.link = 0;
-                       c->optimum[longest_rep_len].prev.match_offset = longest_rep_offset;
-                       c->optimum[longest_rep_len].cost = cost;
+               cost = lzx_repmatch_cost(longest_rep_len, longest_rep_slot,
+                                        &c->costs);
+               if (cost <= optimum[longest_rep_len].cost) {
+                       optimum[longest_rep_len].queue = c->queue;
+                       swap(optimum[longest_rep_len].queue.R[0],
+                            optimum[longest_rep_len].queue.R[longest_rep_slot]);
+                       optimum[longest_rep_len].prev.link = 0;
+                       optimum[longest_rep_len].prev.match_offset =
+                               optimum[longest_rep_len].queue.R[0];
+                       optimum[longest_rep_len].cost = cost;
                }
        }
 
@@ -1594,17 +1692,16 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
         * position.  The algorithm may find multiple paths to reach each
         * position; only the lowest-cost path is saved.
         *
-        * The progress of the parse is tracked in the @c->optimum array, which
-        * for each position contains the minimum cost to reach that position,
-        * the index of the start of the match/literal taken to reach that
-        * position through the minimum-cost path, the offset of the match taken
-        * (not relevant for literals), and the adaptive state that will exist
-        * at that position after the minimum-cost path is taken.  The @cur_pos
+        * The progress of the parse is tracked in the @optimum array, which for
+        * each position contains the minimum cost to reach that position, the
+        * index of the start of the match/literal taken to reach that position
+        * through the minimum-cost path, the offset of the match taken (not
+        * relevant for literals), and the adaptive state that will exist at
+        * that position after the minimum-cost path is taken.  The @cur_pos
         * variable stores the position at which the algorithm is currently
         * considering coding choices, and the @end_pos variable stores the
         * greatest position at which the costs of coding choices have been
-        * saved.  (Actually, the algorithm guarantees that all positions up to
-        * and including @end_pos are reachable by at least one path.)
+        * saved.
         *
         * The loop terminates when any one of the following conditions occurs:
         *
@@ -1620,7 +1717,7 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
         *    match/literal list.
         *
         * 3. Failing either of the above in a degenerate case, the loop
-        *    terminates when space in the @c->optimum array is exhausted.
+        *    terminates when space in the @optimum array is exhausted.
         *    This terminates the algorithm and forces it to start returning
         *    matches/literals even though they may not be globally optimal.
         *
@@ -1642,12 +1739,13 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
                if (cur_pos == end_pos || cur_pos == LZX_OPTIM_ARRAY_LENGTH)
                        return lzx_match_chooser_reverse_list(c, cur_pos);
 
-               /* Search for matches at recent offsets.  */
+               /* Search for matches at repeat offsets.  Again, as a heuristic
+                * we only keep the longest one.  */
                longest_rep_len = LZX_MIN_MATCH_LEN - 1;
                unsigned limit = min(LZX_MAX_MATCH_LEN,
                                     c->match_window_end - c->match_window_pos);
                for (int i = 0; i < LZX_NUM_RECENT_OFFSETS; i++) {
-                       u32 offset = c->optimum[cur_pos].queue.R[i];
+                       u32 offset = optimum[cur_pos].queue.R[i];
                        const u8 *strptr = &c->cur_window[c->match_window_pos];
                        const u8 *matchptr = strptr - offset;
                        unsigned len = 0;
@@ -1655,11 +1753,11 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
                                len++;
                        if (len > longest_rep_len) {
                                longest_rep_len = len;
-                               longest_rep_offset = offset;
+                               longest_rep_slot = i;
                        }
                }
 
-               /* If we found a long match at a recent offset, choose it
+               /* If we found a long match at a repeat offset, choose it
                 * immediately.  */
                if (longest_rep_len >= c->params.nice_match_length) {
                        /* Build the list of matches to return and get
@@ -1667,8 +1765,9 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
                        match = lzx_match_chooser_reverse_list(c, cur_pos);
 
                        /* Append the long match to the end of the list.  */
-                       c->optimum[cur_pos].next.match_offset = longest_rep_offset;
-                       c->optimum[cur_pos].next.link = cur_pos + longest_rep_len;
+                       optimum[cur_pos].next.match_offset =
+                               optimum[cur_pos].queue.R[longest_rep_slot];
+                       optimum[cur_pos].next.link = cur_pos + longest_rep_len;
                        c->optimum_end_idx = cur_pos + longest_rep_len;
 
                        /* Skip over the remaining bytes of the long match.  */
@@ -1678,10 +1777,10 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
                        return match;
                }
 
-               /* Search other matches.  */
+               /* Find other matches.  */
                num_matches = lzx_get_matches(c, &matches);
 
-               /* If there's a long match, take it.  */
+               /* If there's a long match, choose it immediately.  */
                if (num_matches) {
                        longest_len = matches[num_matches - 1].len;
                        if (longest_len >= c->params.nice_match_length) {
@@ -1690,9 +1789,9 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
                                match = lzx_match_chooser_reverse_list(c, cur_pos);
 
                                /* Append the long match to the end of the list.  */
-                               c->optimum[cur_pos].next.match_offset =
+                               optimum[cur_pos].next.match_offset =
                                        matches[num_matches - 1].offset;
-                               c->optimum[cur_pos].next.link = cur_pos + longest_len;
+                               optimum[cur_pos].next.link = cur_pos + longest_len;
                                c->optimum_end_idx = cur_pos + longest_len;
 
                                /* Skip over the remaining bytes of the long match.  */
@@ -1705,17 +1804,19 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
                        longest_len = 1;
                }
 
+               /* If we are reaching any positions for the first time, we need
+                * to initialize their costs to infinity.  */
                while (end_pos < cur_pos + longest_len)
-                       c->optimum[++end_pos].cost = MC_INFINITE_COST;
+                       optimum[++end_pos].cost = MC_INFINITE_COST;
 
                /* Consider coding a literal.  */
-               cost = c->optimum[cur_pos].cost +
+               cost = optimum[cur_pos].cost +
                        lzx_literal_cost(c->cur_window[c->match_window_pos - 1],
                                         &c->costs);
-               if (cost < c->optimum[cur_pos + 1].cost) {
-                       c->optimum[cur_pos + 1].queue = c->optimum[cur_pos].queue;
-                       c->optimum[cur_pos + 1].cost = cost;
-                       c->optimum[cur_pos + 1].prev.link = cur_pos;
+               if (cost < optimum[cur_pos + 1].cost) {
+                       optimum[cur_pos + 1].queue = optimum[cur_pos].queue;
+                       optimum[cur_pos + 1].cost = cost;
+                       optimum[cur_pos + 1].prev.link = cur_pos;
                }
 
                /* Consider coding a match.
@@ -1728,16 +1829,25 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
                 * length.  */
                for (unsigned i = 0, len = 2; i < num_matches; i++) {
                        u32 offset;
-                       struct lzx_lru_queue queue;
                        u32 position_cost;
                        unsigned position_slot;
                        unsigned num_extra_bits;
 
                        offset = matches[i].offset;
-                       queue = c->optimum[cur_pos].queue;
-                       position_cost = c->optimum[cur_pos].cost;
+                       position_cost = optimum[cur_pos].cost;
+
+                       /* Yet another optimization: instead of calling
+                        * lzx_get_position_slot(), hand-inline the search of
+                        * the repeat offset queue.  Then we can omit the
+                        * extra_bits calculation for repeat offset matches, and
+                        * also only compute the updated queue if we actually do
+                        * find a new lowest cost path.  */
+                       for (position_slot = 0; position_slot < LZX_NUM_RECENT_OFFSETS; position_slot++)
+                               if (offset == optimum[cur_pos].queue.R[position_slot])
+                                       goto have_position_cost;
+
+                       position_slot = lzx_get_position_slot_raw(offset + LZX_OFFSET_OFFSET);
 
-                       position_slot = lzx_get_position_slot(offset, &queue);
                        num_extra_bits = lzx_get_num_extra_bits(position_slot);
                        if (num_extra_bits >= 3) {
                                position_cost += num_extra_bits - 3;
@@ -1747,6 +1857,8 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
                                position_cost += num_extra_bits;
                        }
 
+               have_position_cost:
+
                        do {
                                unsigned len_header;
                                unsigned main_symbol;
@@ -1764,34 +1876,65 @@ lzx_choose_near_optimal_item(struct lzx_compressor *c)
                                                        LZX_MIN_MATCH_LEN -
                                                        LZX_NUM_PRIMARY_LENS];
                                }
-                               if (cost < c->optimum[cur_pos + len].cost) {
-                                       c->optimum[cur_pos + len].queue = queue;
-                                       c->optimum[cur_pos + len].prev.link = cur_pos;
-                                       c->optimum[cur_pos + len].prev.match_offset = offset;
-                                       c->optimum[cur_pos + len].cost = cost;
+                               if (cost < optimum[cur_pos + len].cost) {
+                                       if (position_slot < LZX_NUM_RECENT_OFFSETS) {
+                                               optimum[cur_pos + len].queue = optimum[cur_pos].queue;
+                                               swap(optimum[cur_pos + len].queue.R[0],
+                                                    optimum[cur_pos + len].queue.R[position_slot]);
+                                       } else {
+                                               optimum[cur_pos + len].queue.R[0] = offset;
+                                               optimum[cur_pos + len].queue.R[1] = optimum[cur_pos].queue.R[0];
+                                               optimum[cur_pos + len].queue.R[2] = optimum[cur_pos].queue.R[1];
+                                       }
+                                       optimum[cur_pos + len].prev.link = cur_pos;
+                                       optimum[cur_pos + len].prev.match_offset = offset;
+                                       optimum[cur_pos + len].cost = cost;
                                }
                        } while (++len <= matches[i].len);
                }
 
+               /* Consider coding a repeat offset match.
+                *
+                * As a heuristic, we only consider the longest length of the
+                * longest repeat offset match.  This does not, however,
+                * necessarily mean that we will never consider any other repeat
+                * offsets, because above we detect repeat offset matches that
+                * were found by the regular match-finder.  Therefore, this
+                * special handling of the longest repeat-offset match is only
+                * helpful for coding a repeat offset match that was *not* found
+                * by the match-finder, e.g. due to being obscured by a less
+                * distant match that is at least as long.
+                *
+                * Note: an alternative, used in LZMA, is to consider every
+                * length of every repeat offset match.  This is a more thorough
+                * search, and it makes it unnecessary to detect repeat offset
+                * matches that were found by the regular match-finder.  But by
+                * my tests, for LZX the LZMA method slows down the compressor
+                * by ~10% and doesn't actually help the compression ratio too
+                * much.
+                *
+                * Also tested a compromise approach: consider every 3rd length
+                * of the longest repeat offset match.  Still didn't seem quite
+                * worth it, though.
+                */
                if (longest_rep_len >= LZX_MIN_MATCH_LEN) {
-                       struct lzx_lru_queue queue;
 
                        while (end_pos < cur_pos + longest_rep_len)
-                               c->optimum[++end_pos].cost = MC_INFINITE_COST;
-
-                       queue = c->optimum[cur_pos].queue;
-
-                       cost = c->optimum[cur_pos].cost +
-                               lzx_match_cost(longest_rep_len, longest_rep_offset,
-                                              &c->costs, &queue);
-                       if (cost <= c->optimum[cur_pos + longest_rep_len].cost) {
-                               c->optimum[cur_pos + longest_rep_len].queue =
-                                       queue;
-                               c->optimum[cur_pos + longest_rep_len].prev.link =
+                               optimum[++end_pos].cost = MC_INFINITE_COST;
+
+                       cost = optimum[cur_pos].cost +
+                               lzx_repmatch_cost(longest_rep_len, longest_rep_slot,
+                                                 &c->costs);
+                       if (cost <= optimum[cur_pos + longest_rep_len].cost) {
+                               optimum[cur_pos + longest_rep_len].queue =
+                                       optimum[cur_pos].queue;
+                               swap(optimum[cur_pos + longest_rep_len].queue.R[0],
+                                    optimum[cur_pos + longest_rep_len].queue.R[longest_rep_slot]);
+                               optimum[cur_pos + longest_rep_len].prev.link =
                                        cur_pos;
-                               c->optimum[cur_pos + longest_rep_len].prev.match_offset =
-                                       longest_rep_offset;
-                               c->optimum[cur_pos + longest_rep_len].cost =
+                               optimum[cur_pos + longest_rep_len].prev.match_offset =
+                                       optimum[cur_pos + longest_rep_len].queue.R[0];
+                               optimum[cur_pos + longest_rep_len].cost =
                                        cost;
                        }
                }
@@ -1925,7 +2068,7 @@ lzx_choose_items_for_block(struct lzx_compressor *c, struct lzx_block_spec *spec
        struct lz_match lz_match;
        struct lzx_item lzx_item;
 
-       LZX_ASSERT(num_passes >= 1);
+       LZX_ASSERT(num_passes_remaining >= 1);
        LZX_ASSERT(lz_mf_get_position(c->mf) == spec->window_pos);
 
        c->match_window_end = spec->window_pos + spec->block_size;
@@ -2219,44 +2362,28 @@ lzx_compress(const void *uncompressed_data, size_t uncompressed_size,
             void *compressed_data, size_t compressed_size_avail, void *_c)
 {
        struct lzx_compressor *c = _c;
-       struct output_bitstream ostream;
-       size_t compressed_size;
+       struct lzx_output_bitstream os;
 
-       if (uncompressed_size < 100) {
-               LZX_DEBUG("Too small to bother compressing.");
+       /* Don't bother compressing very small inputs.  */
+       if (uncompressed_size < 100)
                return 0;
-       }
-
-       LZX_DEBUG("Attempting to compress %zu bytes...",
-                 uncompressed_size);
 
        /* The input data must be preprocessed.  To avoid changing the original
         * input, copy it to a temporary buffer.  */
        memcpy(c->cur_window, uncompressed_data, uncompressed_size);
        c->cur_window_size = uncompressed_size;
 
-       /* Before doing any actual compression, do the call instruction (0xe8
-        * byte) translation on the uncompressed data.  */
+       /* Preprocess the data.  */
        lzx_do_e8_preprocessing(c->cur_window, c->cur_window_size);
 
        /* Prepare the compressed data.  */
        lzx_prepare_blocks(c);
 
-       /* Generate the compressed data.  */
-       init_output_bitstream(&ostream, compressed_data, compressed_size_avail);
-       lzx_write_all_blocks(c, &ostream);
-
-       compressed_size = flush_output_bitstream(&ostream);
-       if (compressed_size == (u32)~0UL) {
-               LZX_DEBUG("Data did not compress to %zu bytes or less!",
-                         compressed_size_avail);
-               return 0;
-       }
-
-       LZX_DEBUG("Done: compressed %zu => %zu bytes.",
-                 uncompressed_size, compressed_size);
-
-       return compressed_size;
+       /* Generate the compressed data and return its size, or 0 if an overflow
+        * occurred.  */
+       lzx_init_output(&os, compressed_data, compressed_size_avail);
+       lzx_write_all_blocks(c, &os);
+       return lzx_flush_output(&os);
 }
 
 static void