]> wimlib.net Git - wimlib/blobdiff - src/lzms-decompress.c
Adjust naming of (de)compression files
[wimlib] / src / lzms-decompress.c
diff --git a/src/lzms-decompress.c b/src/lzms-decompress.c
deleted file mode 100644 (file)
index b56c4ff..0000000
+++ /dev/null
@@ -1,981 +0,0 @@
-/*
- * lzms-decompress.c
- */
-
-/*
- * Copyright (C) 2013, 2014 Eric Biggers
- *
- * This file is free software; you can redistribute it and/or modify it under
- * the terms of the GNU Lesser General Public License as published by the Free
- * Software Foundation; either version 3 of the License, or (at your option) any
- * later version.
- *
- * This file is distributed in the hope that it will be useful, but WITHOUT
- * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
- * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
- * details.
- *
- * You should have received a copy of the GNU Lesser General Public License
- * along with this file; if not, see http://www.gnu.org/licenses/.
- */
-
-/*
- * This is a decompressor for the LZMS compression format used by Microsoft.
- * This format is not documented, but it is one of the formats supported by the
- * compression API available in Windows 8, and as of Windows 8 it is one of the
- * formats that can be used in WIM files.
- *
- * This decompressor only implements "raw" decompression, which decompresses a
- * single LZMS-compressed block.  This behavior is the same as that of
- * Decompress() in the Windows 8 compression API when using a compression handle
- * created with CreateDecompressor() with the Algorithm parameter specified as
- * COMPRESS_ALGORITHM_LZMS | COMPRESS_RAW.  Presumably, non-raw LZMS data is a
- * container format from which the locations and sizes (both compressed and
- * uncompressed) of the constituent blocks can be determined.
- *
- * An LZMS-compressed block must be read in 16-bit little endian units from both
- * directions.  One logical bitstream starts at the front of the block and
- * proceeds forwards.  Another logical bitstream starts at the end of the block
- * and proceeds backwards.  Bits read from the forwards bitstream constitute
- * binary range-encoded data, whereas bits read from the backwards bitstream
- * constitute Huffman-encoded symbols or verbatim bits.  For both bitstreams,
- * the ordering of the bits within the 16-bit coding units is such that the
- * first bit is the high-order bit and the last bit is the low-order bit.
- *
- * From these two logical bitstreams, an LZMS decompressor can reconstitute the
- * series of items that make up the LZMS data representation.  Each such item
- * may be a literal byte or a match.  Matches may be either traditional LZ77
- * matches or "delta" matches, either of which can have its offset encoded
- * explicitly or encoded via a reference to a recently used (repeat) offset.
- *
- * A traditional LZ match consists of a length and offset; it asserts that the
- * sequence of bytes beginning at the current position and extending for the
- * length is exactly equal to the equal-length sequence of bytes at the offset
- * back in the data buffer.  On the other hand, a delta match consists of a
- * length, raw offset, and power.  It asserts that the sequence of bytes
- * beginning at the current position and extending for the length is equal to
- * the bytewise sum of the two equal-length sequences of bytes (2**power) and
- * (raw_offset * 2**power) bytes before the current position, minus bytewise the
- * sequence of bytes beginning at (2**power + raw_offset * 2**power) bytes
- * before the current position.  Although not generally as useful as traditional
- * LZ matches, delta matches can be helpful on some types of data.  Both LZ and
- * delta matches may overlap with the current position; in fact, the minimum
- * offset is 1, regardless of match length.
- *
- * For LZ matches, up to 3 repeat offsets are allowed, similar to some other
- * LZ-based formats such as LZX and LZMA.  They must updated in an LRU fashion,
- * except for a quirk: inserting anything to the front of the queue must be
- * delayed by one LZMS item.  The reason for this is presumably that there is
- * almost no reason to code the same match offset twice in a row, since you
- * might as well have coded a longer match at that offset.  For this same
- * reason, it also is a requirement that when an offset in the queue is used,
- * that offset is removed from the queue immediately (and made pending for
- * front-insertion after the following decoded item), and everything to the
- * right is shifted left one queue slot.  This creates a need for an "overflow"
- * fourth entry in the queue, even though it is only possible to decode
- * references to the first 3 entries at any given time.  The queue must be
- * initialized to the offsets {1, 2, 3, 4}.
- *
- * Repeat delta matches are handled similarly, but for them there are two queues
- * updated in lock-step: one for powers and one for raw offsets.  The power
- * queue must be initialized to {0, 0, 0, 0}, and the raw offset queue must be
- * initialized to {1, 2, 3, 4}.
- *
- * Bits from the binary range decoder must be used to disambiguate item types.
- * The range decoder must hold two state variables: the range, which must
- * initially be set to 0xffffffff, and the current code, which must initially be
- * set to the first 32 bits read from the forwards bitstream.  The range must be
- * maintained above 0xffff; when it falls below 0xffff, both the range and code
- * must be left-shifted by 16 bits and the low 16 bits of the code must be
- * filled in with the next 16 bits from the forwards bitstream.
- *
- * To decode each bit, the binary range decoder requires a probability that is
- * logically a real number between 0 and 1.  Multiplying this probability by the
- * current range and taking the floor gives the bound between the 0-bit region of
- * the range and the 1-bit region of the range.  However, in LZMS, probabilities
- * are restricted to values of n/64 where n is an integer is between 1 and 63
- * inclusively, so the implementation may use integer operations instead.
- * Following calculation of the bound, if the current code is in the 0-bit
- * region, the new range becomes the current code and the decoded bit is 0;
- * otherwise, the bound must be subtracted from both the range and the code, and
- * the decoded bit is 1.  More information about range coding can be found at
- * https://en.wikipedia.org/wiki/Range_encoding.  Furthermore, note that the
- * LZMA format also uses range coding and has public domain code available for
- * it.
- *
- * The probability used to range-decode each bit must be taken from a table, of
- * which one instance must exist for each distinct context in which a
- * range-decoded bit is needed.  At each call of the range decoder, the
- * appropriate probability must be obtained by indexing the appropriate
- * probability table with the last 4 (in the context disambiguating literals
- * from matches), 5 (in the context disambiguating LZ matches from delta
- * matches), or 6 (in all other contexts) bits recently range-decoded in that
- * context, ordered such that the most recently decoded bit is the low-order bit
- * of the index.
- *
- * Furthermore, each probability entry itself is variable, as its value must be
- * maintained as n/64 where n is the number of 0 bits in the most recently
- * decoded 64 bits with that same entry.  This allows the compressed
- * representation to adapt to the input and use fewer bits to represent the most
- * likely data; note that LZMA uses a similar scheme.  Initially, the most
- * recently 64 decoded bits for each probability entry are assumed to be
- * 0x0000000055555555 (high order to low order); therefore, all probabilities
- * are initially 48/64.  During the course of decoding, each probability may be
- * updated to as low as 0/64 (as a result of reading many consecutive 1 bits
- * with that entry) or as high as 64/64 (as a result of reading many consecutive
- * 0 bits with that entry); however, probabilities of 0/64 and 64/64 cannot be
- * used as-is but rather must be adjusted to 1/64 and 63/64, respectively,
- * before being used for range decoding.
- *
- * Representations of the LZMS items themselves must be read from the backwards
- * bitstream.  For this, there are 5 different Huffman codes used:
- *
- *  - The literal code, used for decoding literal bytes.  Each of the 256
- *    symbols represents a literal byte.  This code must be rebuilt whenever
- *    1024 symbols have been decoded with it.
- *
- *  - The LZ offset code, used for decoding the offsets of standard LZ77
- *    matches.  Each symbol represents an offset slot, which corresponds to a
- *    base value and some number of extra bits which must be read and added to
- *    the base value to reconstitute the full offset.  The number of symbols in
- *    this code is the number of offset slots needed to represent all possible
- *    offsets in the uncompressed block.  This code must be rebuilt whenever
- *    1024 symbols have been decoded with it.
- *
- *  - The length code, used for decoding length symbols.  Each of the 54 symbols
- *    represents a length slot, which corresponds to a base value and some
- *    number of extra bits which must be read and added to the base value to
- *    reconstitute the full length.  This code must be rebuilt whenever 512
- *    symbols have been decoded with it.
- *
- *  - The delta offset code, used for decoding the offsets of delta matches.
- *    Each symbol corresponds to an offset slot, which corresponds to a base
- *    value and some number of extra bits which must be read and added to the
- *    base value to reconstitute the full offset.  The number of symbols in this
- *    code is equal to the number of symbols in the LZ offset code.  This code
- *    must be rebuilt whenever 1024 symbols have been decoded with it.
- *
- *  - The delta power code, used for decoding the powers of delta matches.  Each
- *    of the 8 symbols corresponds to a power.  This code must be rebuilt
- *    whenever 512 symbols have been decoded with it.
- *
- * Initially, each Huffman code must be built assuming that each symbol in that
- * code has frequency 1.  Following that, each code must be rebuilt each time a
- * certain number of symbols, as noted above, has been decoded with it.  The
- * symbol frequencies for a code must be halved after each rebuild of that code;
- * this makes the codes adapt to the more recent data.
- *
- * Like other compression formats such as XPRESS, LZX, and DEFLATE, the LZMS
- * format requires that all Huffman codes be constructed in canonical form.
- * This form requires that same-length codewords be lexicographically ordered
- * the same way as the corresponding symbols and that all shorter codewords
- * lexicographically precede longer codewords.  Such a code can be constructed
- * directly from codeword lengths.
- *
- * Even with the canonical code restriction, the same frequencies can be used to
- * construct multiple valid Huffman codes.  Therefore, the decompressor needs to
- * construct the right one.  Specifically, the LZMS format requires that the
- * Huffman code be constructed as if the well-known priority queue algorithm is
- * used and frequency ties are always broken in favor of leaf nodes.
- *
- * Codewords in LZMS are guaranteed to not exceed 15 bits.  The format otherwise
- * places no restrictions on codeword length.  Therefore, the Huffman code
- * construction algorithm that a correct LZMS decompressor uses need not
- * implement length-limited code construction.  But if it does (e.g. by virtue
- * of being shared among multiple compression algorithms), the details of how it
- * does so are unimportant, provided that the maximum codeword length parameter
- * is set to at least 15 bits.
- *
- * After all LZMS items have been decoded, the data must be postprocessed to
- * translate absolute address encoded in x86 instructions into their original
- * relative addresses.
- *
- * Details omitted above can be found in the code.  Note that in the absence of
- * an official specification there is no guarantee that this decompressor
- * handles all possible cases.
- */
-
-#ifdef HAVE_CONFIG_H
-#  include "config.h"
-#endif
-
-#include "wimlib/compress_common.h"
-#include "wimlib/decompressor_ops.h"
-#include "wimlib/decompress_common.h"
-#include "wimlib/error.h"
-#include "wimlib/lzms.h"
-#include "wimlib/util.h"
-
-/* The TABLEBITS values can be changed; they only affect decoding speed.  */
-#define LZMS_LITERAL_TABLEBITS         10
-#define LZMS_LENGTH_TABLEBITS          10
-#define LZMS_LZ_OFFSET_TABLEBITS       10
-#define LZMS_DELTA_OFFSET_TABLEBITS    10
-#define LZMS_DELTA_POWER_TABLEBITS     8
-
-struct lzms_range_decoder {
-
-       /* The relevant part of the current range.  Although the logical range
-        * for range decoding is a very large integer, only a small portion
-        * matters at any given time, and it can be normalized (shifted left)
-        * whenever it gets too small.  */
-       u32 range;
-
-       /* The current position in the range encoded by the portion of the input
-        * read so far.  */
-       u32 code;
-
-       /* Pointer to the next little-endian 16-bit integer in the compressed
-        * input data (reading forwards).  */
-       const le16 *next;
-
-       /* Pointer to the end of the compressed input data.  */
-       const le16 *end;
-};
-
-typedef u64 bitbuf_t;
-
-struct lzms_input_bitstream {
-
-       /* Holding variable for bits that have been read from the compressed
-        * data.  The bit ordering is high to low.  */
-       bitbuf_t bitbuf;
-
-       /* Number of bits currently held in @bitbuf.  */
-       unsigned bitsleft;
-
-       /* Pointer to the one past the next little-endian 16-bit integer in the
-        * compressed input data (reading backwards).  */
-       const le16 *next;
-
-       /* Pointer to the beginning of the compressed input data.  */
-       const le16 *begin;
-};
-
-/* Bookkeeping information for an adaptive Huffman code  */
-struct lzms_huffman_rebuild_info {
-       unsigned num_syms_until_rebuild;
-       unsigned rebuild_freq;
-       u16 *decode_table;
-       unsigned table_bits;
-       u32 *freqs;
-       u32 *codewords;
-       u8 *lens;
-       unsigned num_syms;
-};
-
-struct lzms_decompressor {
-
-       /* 'last_target_usages' is in union with everything else because it is
-        * only used for postprocessing.  */
-       union {
-       struct {
-
-       struct lzms_range_decoder rd;
-       struct lzms_input_bitstream is;
-
-       /* Match offset LRU queues  */
-       u32 recent_lz_offsets[LZMS_NUM_RECENT_OFFSETS + 1];
-       u64 recent_delta_offsets[LZMS_NUM_RECENT_OFFSETS + 1];
-       u32 pending_lz_offset;
-       u64 pending_delta_offset;
-       const u8 *lz_offset_still_pending;
-       const u8 *delta_offset_still_pending;
-
-       /* States and probabilities for range decoding  */
-
-       u32 main_state;
-       struct lzms_probability_entry main_prob_entries[
-                       LZMS_NUM_MAIN_STATES];
-
-       u32 match_state;
-       struct lzms_probability_entry match_prob_entries[
-                       LZMS_NUM_MATCH_STATES];
-
-       u32 lz_match_state;
-       struct lzms_probability_entry lz_match_prob_entries[
-                       LZMS_NUM_LZ_MATCH_STATES];
-
-       u32 delta_match_state;
-       struct lzms_probability_entry delta_match_prob_entries[
-                       LZMS_NUM_DELTA_MATCH_STATES];
-
-       u32 lz_repeat_match_states[LZMS_NUM_RECENT_OFFSETS - 1];
-       struct lzms_probability_entry lz_repeat_match_prob_entries[
-                       LZMS_NUM_RECENT_OFFSETS - 1][LZMS_NUM_LZ_REPEAT_MATCH_STATES];
-
-       u32 delta_repeat_match_states[LZMS_NUM_RECENT_OFFSETS - 1];
-       struct lzms_probability_entry delta_repeat_match_prob_entries[
-                       LZMS_NUM_RECENT_OFFSETS - 1][LZMS_NUM_DELTA_REPEAT_MATCH_STATES];
-
-       /* Huffman decoding  */
-
-       u16 literal_decode_table[(1 << LZMS_LITERAL_TABLEBITS) +
-                                (2 * LZMS_NUM_LITERAL_SYMS)]
-               _aligned_attribute(DECODE_TABLE_ALIGNMENT);
-       u32 literal_freqs[LZMS_NUM_LITERAL_SYMS];
-       struct lzms_huffman_rebuild_info literal_rebuild_info;
-
-       u16 length_decode_table[(1 << LZMS_LENGTH_TABLEBITS) +
-                               (2 * LZMS_NUM_LENGTH_SYMS)]
-               _aligned_attribute(DECODE_TABLE_ALIGNMENT);
-       u32 length_freqs[LZMS_NUM_LENGTH_SYMS];
-       struct lzms_huffman_rebuild_info length_rebuild_info;
-
-       u16 lz_offset_decode_table[(1 << LZMS_LZ_OFFSET_TABLEBITS) +
-                                  ( 2 * LZMS_MAX_NUM_OFFSET_SYMS)]
-               _aligned_attribute(DECODE_TABLE_ALIGNMENT);
-       u32 lz_offset_freqs[LZMS_MAX_NUM_OFFSET_SYMS];
-       struct lzms_huffman_rebuild_info lz_offset_rebuild_info;
-
-       u16 delta_offset_decode_table[(1 << LZMS_DELTA_OFFSET_TABLEBITS) +
-                                     (2 * LZMS_MAX_NUM_OFFSET_SYMS)]
-               _aligned_attribute(DECODE_TABLE_ALIGNMENT);
-       u32 delta_offset_freqs[LZMS_MAX_NUM_OFFSET_SYMS];
-       struct lzms_huffman_rebuild_info delta_offset_rebuild_info;
-
-       u16 delta_power_decode_table[(1 << LZMS_DELTA_POWER_TABLEBITS) +
-                                    (2 * LZMS_NUM_DELTA_POWER_SYMS)]
-               _aligned_attribute(DECODE_TABLE_ALIGNMENT);
-       u32 delta_power_freqs[LZMS_NUM_DELTA_POWER_SYMS];
-       struct lzms_huffman_rebuild_info delta_power_rebuild_info;
-
-       u32 codewords[LZMS_MAX_NUM_SYMS];
-       u8 lens[LZMS_MAX_NUM_SYMS];
-
-       }; // struct
-
-       s32 last_target_usages[65536];
-
-       }; // union
-};
-
-/* Initialize the input bitstream @is to read backwards from the compressed data
- * buffer @in that is @count 16-bit integers long.  */
-static void
-lzms_input_bitstream_init(struct lzms_input_bitstream *is,
-                         const le16 *in, size_t count)
-{
-       is->bitbuf = 0;
-       is->bitsleft = 0;
-       is->next = in + count;
-       is->begin = in;
-}
-
-/* Ensure that at least @num_bits bits are in the bitbuffer variable.
- * @num_bits cannot be more than 32.  */
-static inline void
-lzms_ensure_bits(struct lzms_input_bitstream *is, unsigned num_bits)
-{
-       if (is->bitsleft >= num_bits)
-               return;
-
-       if (likely(is->next != is->begin))
-               is->bitbuf |= (bitbuf_t)le16_to_cpu(*--is->next)
-                               << (sizeof(is->bitbuf) * 8 - is->bitsleft - 16);
-       is->bitsleft += 16;
-
-       if (likely(is->next != is->begin))
-               is->bitbuf |= (bitbuf_t)le16_to_cpu(*--is->next)
-                               << (sizeof(is->bitbuf) * 8 - is->bitsleft - 16);
-       is->bitsleft += 16;
-}
-
-/* Get @num_bits bits from the bitbuffer variable.  */
-static inline bitbuf_t
-lzms_peek_bits(struct lzms_input_bitstream *is, unsigned num_bits)
-{
-       if (unlikely(num_bits == 0))
-               return 0;
-       return is->bitbuf >> (sizeof(is->bitbuf) * 8 - num_bits);
-}
-
-/* Remove @num_bits bits from the bitbuffer variable.  */
-static inline void
-lzms_remove_bits(struct lzms_input_bitstream *is, unsigned num_bits)
-{
-       is->bitbuf <<= num_bits;
-       is->bitsleft -= num_bits;
-}
-
-/* Remove and return @num_bits bits from the bitbuffer variable.  */
-static inline bitbuf_t
-lzms_pop_bits(struct lzms_input_bitstream *is, unsigned num_bits)
-{
-       bitbuf_t bits = lzms_peek_bits(is, num_bits);
-       lzms_remove_bits(is, num_bits);
-       return bits;
-}
-
-/* Read @num_bits bits from the input bitstream.  */
-static inline bitbuf_t
-lzms_read_bits(struct lzms_input_bitstream *is, unsigned num_bits)
-{
-       lzms_ensure_bits(is, num_bits);
-       return lzms_pop_bits(is, num_bits);
-}
-
-/* Initialize the range decoder @rd to read forwards from the compressed data
- * buffer @in that is @count 16-bit integers long.  */
-static void
-lzms_range_decoder_init(struct lzms_range_decoder *rd,
-                       const le16 *in, size_t count)
-{
-       rd->range = 0xffffffff;
-       rd->code = ((u32)le16_to_cpu(in[0]) << 16) | le16_to_cpu(in[1]);
-       rd->next = in + 2;
-       rd->end = in + count;
-}
-
-/* Decode and return the next bit from the range decoder.
- *
- * @prob is the chance out of LZMS_PROBABILITY_MAX that the next bit is 0.
- */
-static inline int
-lzms_range_decoder_decode_bit(struct lzms_range_decoder *rd, u32 prob)
-{
-       u32 bound;
-
-       /* Normalize if needed.  */
-       if (rd->range <= 0xffff) {
-               rd->range <<= 16;
-               rd->code <<= 16;
-               if (likely(rd->next != rd->end))
-                       rd->code |= le16_to_cpu(*rd->next++);
-       }
-
-       /* Based on the probability, calculate the bound between the 0-bit
-        * region and the 1-bit region of the range.  */
-       bound = (rd->range >> LZMS_PROBABILITY_BITS) * prob;
-
-       if (rd->code < bound) {
-               /* Current code is in the 0-bit region of the range.  */
-               rd->range = bound;
-               return 0;
-       } else {
-               /* Current code is in the 1-bit region of the range.  */
-               rd->range -= bound;
-               rd->code -= bound;
-               return 1;
-       }
-}
-
-/* Decode and return the next bit from the range decoder.  This wraps around
- * lzms_range_decoder_decode_bit() to handle using and updating the appropriate
- * state and probability entry.  */
-static inline int
-lzms_range_decode_bit(struct lzms_range_decoder *rd,
-                     u32 *state_p, u32 num_states,
-                     struct lzms_probability_entry prob_entries[])
-{
-       struct lzms_probability_entry *prob_entry;
-       u32 prob;
-       int bit;
-
-       /* Load the probability entry corresponding to the current state.  */
-       prob_entry = &prob_entries[*state_p];
-
-       /* Get the probability that the next bit is 0.  */
-       prob = lzms_get_probability(prob_entry);
-
-       /* Decode the next bit.  */
-       bit = lzms_range_decoder_decode_bit(rd, prob);
-
-       /* Update the state and probability entry based on the decoded bit.  */
-       *state_p = ((*state_p << 1) | bit) & (num_states - 1);
-       lzms_update_probability_entry(prob_entry, bit);
-
-       /* Return the decoded bit.  */
-       return bit;
-}
-
-static int
-lzms_decode_main_bit(struct lzms_decompressor *d)
-{
-       return lzms_range_decode_bit(&d->rd, &d->main_state,
-                                    LZMS_NUM_MAIN_STATES,
-                                    d->main_prob_entries);
-}
-
-static int
-lzms_decode_match_bit(struct lzms_decompressor *d)
-{
-       return lzms_range_decode_bit(&d->rd, &d->match_state,
-                                    LZMS_NUM_MATCH_STATES,
-                                    d->match_prob_entries);
-}
-
-static int
-lzms_decode_lz_match_bit(struct lzms_decompressor *d)
-{
-       return lzms_range_decode_bit(&d->rd, &d->lz_match_state,
-                                    LZMS_NUM_LZ_MATCH_STATES,
-                                    d->lz_match_prob_entries);
-}
-
-static int
-lzms_decode_delta_match_bit(struct lzms_decompressor *d)
-{
-       return lzms_range_decode_bit(&d->rd, &d->delta_match_state,
-                                    LZMS_NUM_DELTA_MATCH_STATES,
-                                    d->delta_match_prob_entries);
-}
-
-static noinline int
-lzms_decode_lz_repeat_match_bit(struct lzms_decompressor *d, int idx)
-{
-       return lzms_range_decode_bit(&d->rd, &d->lz_repeat_match_states[idx],
-                                    LZMS_NUM_LZ_REPEAT_MATCH_STATES,
-                                    d->lz_repeat_match_prob_entries[idx]);
-}
-
-static noinline int
-lzms_decode_delta_repeat_match_bit(struct lzms_decompressor *d, int idx)
-{
-       return lzms_range_decode_bit(&d->rd, &d->delta_repeat_match_states[idx],
-                                    LZMS_NUM_DELTA_REPEAT_MATCH_STATES,
-                                    d->delta_repeat_match_prob_entries[idx]);
-}
-
-static void
-lzms_init_huffman_rebuild_info(struct lzms_huffman_rebuild_info *info,
-                              unsigned rebuild_freq,
-                              u16 *decode_table, unsigned table_bits,
-                              u32 *freqs, u32 *codewords, u8 *lens,
-                              unsigned num_syms)
-{
-       info->num_syms_until_rebuild = 1;
-       info->rebuild_freq = rebuild_freq;
-       info->decode_table = decode_table;
-       info->table_bits = table_bits;
-       info->freqs = freqs;
-       info->codewords = codewords;
-       info->lens = lens;
-       info->num_syms = num_syms;
-       lzms_init_symbol_frequencies(freqs, num_syms);
-}
-
-static noinline void
-lzms_rebuild_huffman_code(struct lzms_huffman_rebuild_info *info)
-{
-       make_canonical_huffman_code(info->num_syms, LZMS_MAX_CODEWORD_LEN,
-                                   info->freqs, info->lens, info->codewords);
-       make_huffman_decode_table(info->decode_table, info->num_syms,
-                                 info->table_bits, info->lens,
-                                 LZMS_MAX_CODEWORD_LEN);
-       for (unsigned i = 0; i < info->num_syms; i++)
-               info->freqs[i] = (info->freqs[i] >> 1) + 1;
-       info->num_syms_until_rebuild = info->rebuild_freq;
-}
-
-static inline unsigned
-lzms_decode_huffman_symbol(struct lzms_input_bitstream *is,
-                          u16 decode_table[], unsigned table_bits,
-                          struct lzms_huffman_rebuild_info *rebuild_info)
-{
-       unsigned key_bits;
-       unsigned entry;
-       unsigned sym;
-
-       if (unlikely(--rebuild_info->num_syms_until_rebuild == 0))
-               lzms_rebuild_huffman_code(rebuild_info);
-
-       lzms_ensure_bits(is, LZMS_MAX_CODEWORD_LEN);
-
-       /* Index the decode table by the next table_bits bits of the input.  */
-       key_bits = lzms_peek_bits(is, table_bits);
-       entry = decode_table[key_bits];
-       if (likely(entry < 0xC000)) {
-               /* Fast case: The decode table directly provided the symbol and
-                * codeword length.  The low 11 bits are the symbol, and the
-                * high 5 bits are the codeword length.  */
-               lzms_remove_bits(is, entry >> 11);
-               sym = entry & 0x7FF;
-       } else {
-               /* Slow case: The codeword for the symbol is longer than
-                * table_bits, so the symbol does not have an entry directly in
-                * the first (1 << table_bits) entries of the decode table.
-                * Traverse the appropriate binary tree bit-by-bit in order to
-                * decode the symbol.  */
-               lzms_remove_bits(is, table_bits);
-               do {
-                       key_bits = (entry & 0x3FFF) + lzms_pop_bits(is, 1);
-               } while ((entry = decode_table[key_bits]) >= 0xC000);
-               sym = entry;
-       }
-
-       /* Tally and return the decoded symbol.  */
-       rebuild_info->freqs[sym]++;
-       return sym;
-}
-
-static unsigned
-lzms_decode_literal(struct lzms_decompressor *d)
-{
-       return lzms_decode_huffman_symbol(&d->is,
-                                         d->literal_decode_table,
-                                         LZMS_LITERAL_TABLEBITS,
-                                         &d->literal_rebuild_info);
-}
-
-static u32
-lzms_decode_length(struct lzms_decompressor *d)
-{
-       unsigned slot = lzms_decode_huffman_symbol(&d->is,
-                                                  d->length_decode_table,
-                                                  LZMS_LENGTH_TABLEBITS,
-                                                  &d->length_rebuild_info);
-       u32 length = lzms_length_slot_base[slot];
-       unsigned num_extra_bits = lzms_extra_length_bits[slot];
-       /* Usually most lengths are short and have no extra bits.  */
-       if (num_extra_bits)
-               length += lzms_read_bits(&d->is, num_extra_bits);
-       return length;
-}
-
-static u32
-lzms_decode_lz_offset(struct lzms_decompressor *d)
-{
-       unsigned slot = lzms_decode_huffman_symbol(&d->is,
-                                                  d->lz_offset_decode_table,
-                                                  LZMS_LZ_OFFSET_TABLEBITS,
-                                                  &d->lz_offset_rebuild_info);
-       return lzms_offset_slot_base[slot] +
-              lzms_read_bits(&d->is, lzms_extra_offset_bits[slot]);
-}
-
-static u32
-lzms_decode_delta_offset(struct lzms_decompressor *d)
-{
-       unsigned slot = lzms_decode_huffman_symbol(&d->is,
-                                                  d->delta_offset_decode_table,
-                                                  LZMS_DELTA_OFFSET_TABLEBITS,
-                                                  &d->delta_offset_rebuild_info);
-       return lzms_offset_slot_base[slot] +
-              lzms_read_bits(&d->is, lzms_extra_offset_bits[slot]);
-}
-
-static unsigned
-lzms_decode_delta_power(struct lzms_decompressor *d)
-{
-       return lzms_decode_huffman_symbol(&d->is,
-                                         d->delta_power_decode_table,
-                                         LZMS_DELTA_POWER_TABLEBITS,
-                                         &d->delta_power_rebuild_info);
-}
-
-/* Decode the series of literals and matches from the LZMS-compressed data.
- * Return 0 if successful or -1 if the compressed data is invalid.  */
-static int
-lzms_decode_items(struct lzms_decompressor * const restrict d,
-                 u8 * const restrict out, const size_t out_nbytes)
-{
-       u8 *out_next = out;
-       u8 * const out_end = out + out_nbytes;
-
-       while (out_next != out_end) {
-
-               if (!lzms_decode_main_bit(d)) {
-
-                       /* Literal  */
-                       *out_next++ = lzms_decode_literal(d);
-
-               } else if (!lzms_decode_match_bit(d)) {
-
-                       /* LZ match  */
-
-                       u32 offset;
-                       u32 length;
-
-                       if (d->pending_lz_offset != 0 &&
-                           out_next != d->lz_offset_still_pending)
-                       {
-                               BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
-                               d->recent_lz_offsets[3] = d->recent_lz_offsets[2];
-                               d->recent_lz_offsets[2] = d->recent_lz_offsets[1];
-                               d->recent_lz_offsets[1] = d->recent_lz_offsets[0];
-                               d->recent_lz_offsets[0] = d->pending_lz_offset;
-                               d->pending_lz_offset = 0;
-                       }
-
-                       if (!lzms_decode_lz_match_bit(d)) {
-                               /* Explicit offset  */
-                               offset = lzms_decode_lz_offset(d);
-                       } else {
-                               /* Repeat offset  */
-
-                               BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
-                               if (!lzms_decode_lz_repeat_match_bit(d, 0)) {
-                                       offset = d->recent_lz_offsets[0];
-                                       d->recent_lz_offsets[0] = d->recent_lz_offsets[1];
-                                       d->recent_lz_offsets[1] = d->recent_lz_offsets[2];
-                                       d->recent_lz_offsets[2] = d->recent_lz_offsets[3];
-                               } else if (!lzms_decode_lz_repeat_match_bit(d, 1)) {
-                                       offset = d->recent_lz_offsets[1];
-                                       d->recent_lz_offsets[1] = d->recent_lz_offsets[2];
-                                       d->recent_lz_offsets[2] = d->recent_lz_offsets[3];
-                               } else {
-                                       offset = d->recent_lz_offsets[2];
-                                       d->recent_lz_offsets[2] = d->recent_lz_offsets[3];
-                               }
-                       }
-
-                       if (d->pending_lz_offset != 0) {
-                               BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
-                               d->recent_lz_offsets[3] = d->recent_lz_offsets[2];
-                               d->recent_lz_offsets[2] = d->recent_lz_offsets[1];
-                               d->recent_lz_offsets[1] = d->recent_lz_offsets[0];
-                               d->recent_lz_offsets[0] = d->pending_lz_offset;
-                       }
-                       d->pending_lz_offset = offset;
-
-                       length = lzms_decode_length(d);
-
-                       if (unlikely(length > out_end - out_next))
-                               return -1;
-                       if (unlikely(offset > out_next - out))
-                               return -1;
-
-                       lz_copy(out_next, length, offset, out_end, LZMS_MIN_MATCH_LEN);
-                       out_next += length;
-
-                       d->lz_offset_still_pending = out_next;
-               } else {
-                       /* Delta match  */
-
-                       u32 power;
-                       u32 raw_offset, offset1, offset2, offset;
-                       const u8 *matchptr1, *matchptr2, *matchptr;
-                       u32 length;
-
-                       if (d->pending_delta_offset != 0 &&
-                           out_next != d->delta_offset_still_pending)
-                       {
-                               BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
-                               d->recent_delta_offsets[3] = d->recent_delta_offsets[2];
-                               d->recent_delta_offsets[2] = d->recent_delta_offsets[1];
-                               d->recent_delta_offsets[1] = d->recent_delta_offsets[0];
-                               d->recent_delta_offsets[0] = d->pending_delta_offset;
-                               d->pending_delta_offset = 0;
-                       }
-
-                       if (!lzms_decode_delta_match_bit(d)) {
-                               /* Explicit offset  */
-                               power = lzms_decode_delta_power(d);
-                               raw_offset = lzms_decode_delta_offset(d);
-                       } else {
-                               /* Repeat offset  */
-                               u64 val;
-
-                               BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
-                               if (!lzms_decode_delta_repeat_match_bit(d, 0)) {
-                                       val = d->recent_delta_offsets[0];
-                                       d->recent_delta_offsets[0] = d->recent_delta_offsets[1];
-                                       d->recent_delta_offsets[1] = d->recent_delta_offsets[2];
-                                       d->recent_delta_offsets[2] = d->recent_delta_offsets[3];
-                               } else if (!lzms_decode_delta_repeat_match_bit(d, 1)) {
-                                       val = d->recent_delta_offsets[1];
-                                       d->recent_delta_offsets[1] = d->recent_delta_offsets[2];
-                                       d->recent_delta_offsets[2] = d->recent_delta_offsets[3];
-                               } else {
-                                       val = d->recent_delta_offsets[2];
-                                       d->recent_delta_offsets[2] = d->recent_delta_offsets[3];
-                               }
-                               power = val >> 32;
-                               raw_offset = (u32)val;
-                       }
-
-                       if (d->pending_delta_offset != 0) {
-                               BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
-                               d->recent_delta_offsets[3] = d->recent_delta_offsets[2];
-                               d->recent_delta_offsets[2] = d->recent_delta_offsets[1];
-                               d->recent_delta_offsets[1] = d->recent_delta_offsets[0];
-                               d->recent_delta_offsets[0] = d->pending_delta_offset;
-                               d->pending_delta_offset = 0;
-                       }
-                       d->pending_delta_offset = raw_offset | ((u64)power << 32);
-
-                       length = lzms_decode_length(d);
-
-                       offset1 = (u32)1 << power;
-                       offset2 = raw_offset << power;
-                       offset = offset1 + offset2;
-
-                       /* raw_offset<<power overflowed?  */
-                       if (unlikely((offset2 >> power) != raw_offset))
-                               return -1;
-
-                       /* offset1+offset2 overflowed?  */
-                       if (unlikely(offset < offset2))
-                               return -1;
-
-                       if (unlikely(length > out_end - out_next))
-                               return -1;
-
-                       if (unlikely(offset > out_next - out))
-                               return -1;
-
-                       matchptr1 = out_next - offset1;
-                       matchptr2 = out_next - offset2;
-                       matchptr = out_next - offset;
-
-                       do {
-                               *out_next++ = *matchptr1++ + *matchptr2++ - *matchptr++;
-                       } while (--length);
-
-                       d->delta_offset_still_pending = out_next;
-               }
-       }
-       return 0;
-}
-
-static void
-lzms_init_decompressor(struct lzms_decompressor *d, const void *in,
-                      size_t in_nbytes, unsigned num_offset_slots)
-{
-       /* Match offset LRU queues  */
-       for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS + 1; i++) {
-               d->recent_lz_offsets[i] = i + 1;
-               d->recent_delta_offsets[i] = i + 1;
-       }
-       d->pending_lz_offset = 0;
-       d->pending_delta_offset = 0;
-
-       /* Range decoding  */
-
-       lzms_range_decoder_init(&d->rd, in, in_nbytes / sizeof(le16));
-
-       d->main_state = 0;
-       lzms_init_probability_entries(d->main_prob_entries, LZMS_NUM_MAIN_STATES);
-
-       d->match_state = 0;
-       lzms_init_probability_entries(d->match_prob_entries, LZMS_NUM_MATCH_STATES);
-
-       d->lz_match_state = 0;
-       lzms_init_probability_entries(d->lz_match_prob_entries, LZMS_NUM_LZ_MATCH_STATES);
-
-       d->delta_match_state = 0;
-       lzms_init_probability_entries(d->delta_match_prob_entries, LZMS_NUM_DELTA_MATCH_STATES);
-
-       for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++) {
-               d->lz_repeat_match_states[i] = 0;
-               lzms_init_probability_entries(d->lz_repeat_match_prob_entries[i],
-                                             LZMS_NUM_LZ_REPEAT_MATCH_STATES);
-
-               d->delta_repeat_match_states[i] = 0;
-               lzms_init_probability_entries(d->delta_repeat_match_prob_entries[i],
-                                             LZMS_NUM_DELTA_REPEAT_MATCH_STATES);
-       }
-
-       /* Huffman decoding  */
-
-       lzms_input_bitstream_init(&d->is, in, in_nbytes / sizeof(le16));
-
-       lzms_init_huffman_rebuild_info(&d->literal_rebuild_info,
-                                      LZMS_LITERAL_CODE_REBUILD_FREQ,
-                                      d->literal_decode_table,
-                                      LZMS_LITERAL_TABLEBITS,
-                                      d->literal_freqs,
-                                      d->codewords,
-                                      d->lens,
-                                      LZMS_NUM_LITERAL_SYMS);
-
-       lzms_init_huffman_rebuild_info(&d->length_rebuild_info,
-                                      LZMS_LENGTH_CODE_REBUILD_FREQ,
-                                      d->length_decode_table,
-                                      LZMS_LENGTH_TABLEBITS,
-                                      d->length_freqs,
-                                      d->codewords,
-                                      d->lens,
-                                      LZMS_NUM_LENGTH_SYMS);
-
-       lzms_init_huffman_rebuild_info(&d->lz_offset_rebuild_info,
-                                      LZMS_LZ_OFFSET_CODE_REBUILD_FREQ,
-                                      d->lz_offset_decode_table,
-                                      LZMS_LZ_OFFSET_TABLEBITS,
-                                      d->lz_offset_freqs,
-                                      d->codewords,
-                                      d->lens,
-                                      num_offset_slots);
-
-       lzms_init_huffman_rebuild_info(&d->delta_offset_rebuild_info,
-                                      LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ,
-                                      d->delta_offset_decode_table,
-                                      LZMS_DELTA_OFFSET_TABLEBITS,
-                                      d->delta_offset_freqs,
-                                      d->codewords,
-                                      d->lens,
-                                      num_offset_slots);
-
-       lzms_init_huffman_rebuild_info(&d->delta_power_rebuild_info,
-                                      LZMS_DELTA_POWER_CODE_REBUILD_FREQ,
-                                      d->delta_power_decode_table,
-                                      LZMS_DELTA_POWER_TABLEBITS,
-                                      d->delta_power_freqs,
-                                      d->codewords,
-                                      d->lens,
-                                      LZMS_NUM_DELTA_POWER_SYMS);
-}
-
-static int
-lzms_create_decompressor(size_t max_bufsize, void **d_ret)
-{
-       struct lzms_decompressor *d;
-
-       if (max_bufsize > LZMS_MAX_BUFFER_SIZE)
-               return WIMLIB_ERR_INVALID_PARAM;
-
-       d = ALIGNED_MALLOC(sizeof(struct lzms_decompressor),
-                          DECODE_TABLE_ALIGNMENT);
-       if (!d)
-               return WIMLIB_ERR_NOMEM;
-
-       *d_ret = d;
-       return 0;
-}
-
-/* Decompress @in_nbytes bytes of LZMS-compressed data at @in and write the
- * uncompressed data, which had original size @out_nbytes, to @out.  Return 0 if
- * successful or -1 if the compressed data is invalid.  */
-static int
-lzms_decompress(const void *in, size_t in_nbytes, void *out, size_t out_nbytes,
-               void *_d)
-{
-       struct lzms_decompressor *d = _d;
-
-       /*
-        * Requirements on the compressed data:
-        *
-        * 1. LZMS-compressed data is a series of 16-bit integers, so the
-        *    compressed data buffer cannot take up an odd number of bytes.
-        * 2. To prevent poor performance on some architectures, we require that
-        *    the compressed data buffer is 2-byte aligned.
-        * 3. There must be at least 4 bytes of compressed data, since otherwise
-        *    we cannot even initialize the range decoder.
-        */
-       if ((in_nbytes & 1) || ((uintptr_t)in & 1) || (in_nbytes < 4))
-               return -1;
-
-       lzms_init_decompressor(d, in, in_nbytes,
-                              lzms_get_num_offset_slots(out_nbytes));
-
-       if (lzms_decode_items(d, out, out_nbytes))
-               return -1;
-
-       lzms_x86_filter(out, out_nbytes, d->last_target_usages, true);
-       return 0;
-}
-
-static void
-lzms_free_decompressor(void *_d)
-{
-       struct lzms_decompressor *d = _d;
-
-       ALIGNED_FREE(d);
-}
-
-const struct decompressor_ops lzms_decompressor_ops = {
-       .create_decompressor  = lzms_create_decompressor,
-       .decompress           = lzms_decompress,
-       .free_decompressor    = lzms_free_decompressor,
-};