]> wimlib.net Git - wimlib/blobdiff - src/lzms-compress.c
lzms-compress.c: Remove unused function
[wimlib] / src / lzms-compress.c
index e5abf24aa6294aec736284ea8ea1036fbe4cdf4b..da1904fc9f66cf8927db8a08cc31176a7e9c4c51 100644 (file)
 /*
  * lzms-compress.c
  *
- * A compressor for the LZMS compression format.
+ * A compressor that produces output compatible with the LZMS compression format.
  */
 
 /*
- * Copyright (C) 2013 Eric Biggers
+ * Copyright (C) 2013, 2014 Eric Biggers
  *
- * This file is part of wimlib, a library for working with WIM files.
+ * This file is free software; you can redistribute it and/or modify it under
+ * the terms of the GNU Lesser General Public License as published by the Free
+ * Software Foundation; either version 3 of the License, or (at your option) any
+ * later version.
  *
- * wimlib is free software; you can redistribute it and/or modify it under the
- * terms of the GNU General Public License as published by the Free
- * Software Foundation; either version 3 of the License, or (at your option)
- * any later version.
- *
- * wimlib is distributed in the hope that it will be useful, but WITHOUT ANY
- * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
- * A PARTICULAR PURPOSE. See the GNU General Public License for more
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+ * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
  * details.
  *
- * You should have received a copy of the GNU General Public License
- * along with wimlib; if not, see http://www.gnu.org/licenses/.
+ * You should have received a copy of the GNU Lesser General Public License
+ * along with this file; if not, see http://www.gnu.org/licenses/.
  */
 
-/* This a compressor for the LZMS compression format.  More details about this
- * format can be found in lzms-decompress.c.  */
-
 #ifdef HAVE_CONFIG_H
 #  include "config.h"
 #endif
 
-#include "wimlib.h"
-#include "wimlib/assert.h"
-#include "wimlib/compressor_ops.h"
 #include "wimlib/compress_common.h"
+#include "wimlib/compressor_ops.h"
+#include "wimlib/endianness.h"
 #include "wimlib/error.h"
+#include "wimlib/lz_mf.h"
+#include "wimlib/lz_repsearch.h"
 #include "wimlib/lzms.h"
 #include "wimlib/util.h"
 
 #include <string.h>
+#include <limits.h>
+#include <pthread.h>
+
+/* Stucture used for writing raw bits as a series of 16-bit little endian coding
+ * units.  This starts at the *end* of the compressed data buffer and proceeds
+ * backwards.  */
+struct lzms_output_bitstream {
+
+       /* Bits that haven't yet been written to the output buffer.  */
+       u64 bitbuf;
+
+       /* Number of bits currently held in @bitbuf.  */
+       unsigned bitcount;
+
+       /* Pointer to one past the next position in the compressed data buffer
+        * at which to output a 16-bit coding unit.  */
+       le16 *next;
+
+       /* Pointer to the beginning of the output buffer.  (The "end" when
+        * writing backwards!)  */
+       le16 *begin;
+};
+
+/* Stucture used for range encoding (raw version).  This starts at the
+ * *beginning* of the compressed data buffer and proceeds forward.  */
+struct lzms_range_encoder_raw {
+
+       /* A 33-bit variable that holds the low boundary of the current range.
+        * The 33rd bit is needed to catch carries.  */
+       u64 low;
+
+       /* Size of the current range.  */
+       u32 range;
+
+       /* Next 16-bit coding unit to output.  */
+       u16 cache;
+
+       /* Number of 16-bit coding units whose output has been delayed due to
+        * possible carrying.  The first such coding unit is @cache; all
+        * subsequent such coding units are 0xffff.  */
+       u32 cache_size;
+
+       /* Pointer to the beginning of the output buffer.  */
+       le16 *begin;
+
+       /* Pointer to the position in the output buffer at which the next coding
+        * unit must be written.  */
+       le16 *next;
+
+       /* Pointer just past the end of the output buffer.  */
+       le16 *end;
+};
+
+/* Structure used for range encoding.  This wraps around `struct
+ * lzms_range_encoder_raw' to use and maintain probability entries.  */
+struct lzms_range_encoder {
+
+       /* Pointer to the raw range encoder, which has no persistent knowledge
+        * of probabilities.  Multiple lzms_range_encoder's share the same
+        * lzms_range_encoder_raw.  */
+       struct lzms_range_encoder_raw *rc;
+
+       /* Bits recently encoded by this range encoder.  This is used as an
+        * index into @prob_entries.  */
+       u32 state;
+
+       /* Bitmask for @state to prevent its value from exceeding the number of
+        * probability entries.  */
+       u32 mask;
+
+       /* Probability entries being used for this range encoder.  */
+       struct lzms_probability_entry prob_entries[LZMS_MAX_NUM_STATES];
+};
+
+/* Structure used for Huffman encoding.  */
+struct lzms_huffman_encoder {
+
+       /* Bitstream to write Huffman-encoded symbols and verbatim bits to.
+        * Multiple lzms_huffman_encoder's share the same lzms_output_bitstream.
+        */
+       struct lzms_output_bitstream *os;
 
+       /* Number of symbols that have been written using this code far.  Reset
+        * to 0 whenever the code is rebuilt.  */
+       u32 num_syms_written;
+
+       /* When @num_syms_written reaches this number, the Huffman code must be
+        * rebuilt.  */
+       u32 rebuild_freq;
+
+       /* Number of symbols in the represented Huffman code.  */
+       unsigned num_syms;
+
+       /* Running totals of symbol frequencies.  These are diluted slightly
+        * whenever the code is rebuilt.  */
+       u32 sym_freqs[LZMS_MAX_NUM_SYMS];
+
+       /* The length, in bits, of each symbol in the Huffman code.  */
+       u8 lens[LZMS_MAX_NUM_SYMS];
+
+       /* The codeword of each symbol in the Huffman code.  */
+       u32 codewords[LZMS_MAX_NUM_SYMS];
+};
+
+/* Internal compression parameters  */
+struct lzms_compressor_params {
+       u32 min_match_length;
+       u32 nice_match_length;
+       u32 max_search_depth;
+       u32 optim_array_length;
+};
+
+/* State of the LZMS compressor  */
 struct lzms_compressor {
-       u8 *window;
-       u32 window_size;
-       u32 max_block_size;
 
-       s32 *last_target_usages;
+       /* Internal compression parameters  */
+       struct lzms_compressor_params params;
+
+       /* Data currently being compressed  */
+       u8 *cur_window;
+       u32 cur_window_size;
+
+       /* Lempel-Ziv match-finder  */
+       struct lz_mf *mf;
+
+       /* Temporary space to store found matches  */
+       struct lz_match *matches;
+
+       /* Per-position data for near-optimal parsing  */
+       struct lzms_mc_pos_data *optimum;
+       struct lzms_mc_pos_data *optimum_end;
+
+       /* Raw range encoder which outputs to the beginning of the compressed
+        * data buffer, proceeding forwards  */
+       struct lzms_range_encoder_raw rc;
+
+       /* Bitstream which outputs to the end of the compressed data buffer,
+        * proceeding backwards  */
+       struct lzms_output_bitstream os;
+
+       /* Range encoders  */
+       struct lzms_range_encoder main_range_encoder;
+       struct lzms_range_encoder match_range_encoder;
+       struct lzms_range_encoder lz_match_range_encoder;
+       struct lzms_range_encoder lz_repeat_match_range_encoders[LZMS_NUM_RECENT_OFFSETS - 1];
+       struct lzms_range_encoder delta_match_range_encoder;
+       struct lzms_range_encoder delta_repeat_match_range_encoders[LZMS_NUM_RECENT_OFFSETS - 1];
+
+       /* Huffman encoders  */
+       struct lzms_huffman_encoder literal_encoder;
+       struct lzms_huffman_encoder lz_offset_encoder;
+       struct lzms_huffman_encoder length_encoder;
+       struct lzms_huffman_encoder delta_power_encoder;
+       struct lzms_huffman_encoder delta_offset_encoder;
+
+       /* Used for preprocessing  */
+       s32 last_target_usages[65536];
+
+#define LZMS_NUM_FAST_LENGTHS 256
+       /* Table: length => length slot for small lengths  */
+       u8 length_slot_fast[LZMS_NUM_FAST_LENGTHS];
+
+       /* Table: length => current cost for small match lengths  */
+       u32 length_cost_fast[LZMS_NUM_FAST_LENGTHS];
+
+#define LZMS_NUM_FAST_OFFSETS 32768
+       /* Table: offset => offset slot for small offsets  */
+       u8 offset_slot_fast[LZMS_NUM_FAST_OFFSETS];
+};
+
+/*
+ * Match chooser position data:
+ *
+ * An array of these structures is used during the near-optimal match-choosing
+ * algorithm.  They correspond to consecutive positions in the window and are
+ * used to keep track of the cost to reach each position, and the match/literal
+ * choices that need to be chosen to reach that position.
+ */
+struct lzms_mc_pos_data {
+
+       /* The cost, in bits, of the lowest-cost path that has been found to
+        * reach this position.  This can change as progressively lower cost
+        * paths are found to reach this position.  */
+       u32 cost;
+#define MC_INFINITE_COST UINT32_MAX
+
+       /* The match or literal that was taken to reach this position.  This can
+        * change as progressively lower cost paths are found to reach this
+        * position.
+        *
+        * This variable is divided into two bitfields.
+        *
+        * Literals:
+        *      Low bits are 1, high bits are the literal.
+        *
+        * Explicit offset matches:
+        *      Low bits are the match length, high bits are the offset plus 2.
+        *
+        * Repeat offset matches:
+        *      Low bits are the match length, high bits are the queue index.
+        */
+       u64 mc_item_data;
+#define MC_OFFSET_SHIFT 32
+#define MC_LEN_MASK (((u64)1 << MC_OFFSET_SHIFT) - 1)
+
+       /* The LZMS adaptive state that exists at this position.  This is filled
+        * in lazily, only after the minimum-cost path to this position is
+        * found.
+        *
+        * Note: the way we handle this adaptive state in the "minimum-cost"
+        * parse is actually only an approximation.  It's possible for the
+        * globally optimal, minimum cost path to contain a prefix, ending at a
+        * position, where that path prefix is *not* the minimum cost path to
+        * that position.  This can happen if such a path prefix results in a
+        * different adaptive state which results in lower costs later.  We do
+        * not solve this problem; we only consider the lowest cost to reach
+        * each position, which seems to be an acceptable approximation.
+        *
+        * Note: this adaptive state also does not include the probability
+        * entries or current Huffman codewords.  Those aren't maintained
+        * per-position and are only updated occassionally.  */
+       struct lzms_adaptive_state {
+               struct lzms_lz_lru_queues lru;
+               u8 main_state;
+               u8 match_state;
+               u8 lz_match_state;
+               u8 lz_repeat_match_state[LZMS_NUM_RECENT_OFFSETS - 1];
+       } state;
 };
 
 static void
-lzms_preprocess_data(u8 *data, s32 size, s32 *last_target_usages)
+lzms_init_fast_slots(struct lzms_compressor *c)
 {
-       for (s32 i = 0; i < size - 11; i++) {
+       /* Create table mapping small lengths to length slots.  */
+       for (unsigned slot = 0, i = 0; i < LZMS_NUM_FAST_LENGTHS; i++) {
+               while (i >= lzms_length_slot_base[slot + 1])
+                       slot++;
+               c->length_slot_fast[i] = slot;
+       }
+
+       /* Create table mapping small offsets to offset slots.  */
+       for (unsigned slot = 0, i = 0; i < LZMS_NUM_FAST_OFFSETS; i++) {
+               while (i >= lzms_offset_slot_base[slot + 1])
+                       slot++;
+               c->offset_slot_fast[i] = slot;
        }
 }
 
-static size_t
-lzms_compress(const void *uncompressed_data, size_t uncompressed_size,
-             void *compressed_data, size_t compressed_size_avail, void *_ctx)
+static inline unsigned
+lzms_get_length_slot_fast(const struct lzms_compressor *c, u32 length)
 {
-       struct lzms_compressor *ctx = _ctx;
+       if (likely(length < LZMS_NUM_FAST_LENGTHS))
+               return c->length_slot_fast[length];
+       else
+               return lzms_get_length_slot(length);
+}
 
-       if (uncompressed_size > ctx->max_block_size) {
-               LZMS_DEBUG("Can't compress %su bytes: LZMS context "
-                          "only supports %u bytes",
-                          uncompressed_size, ctx->max_block_size);
-               return 0;
+static inline unsigned
+lzms_get_offset_slot_fast(const struct lzms_compressor *c, u32 offset)
+{
+       if (offset < LZMS_NUM_FAST_OFFSETS)
+               return c->offset_slot_fast[offset];
+       else
+               return lzms_get_offset_slot(offset);
+}
+
+/* Initialize the output bitstream @os to write backwards to the specified
+ * compressed data buffer @out that is @out_limit 16-bit integers long.  */
+static void
+lzms_output_bitstream_init(struct lzms_output_bitstream *os,
+                          le16 *out, size_t out_limit)
+{
+       os->bitbuf = 0;
+       os->bitcount = 0;
+       os->next = out + out_limit;
+       os->begin = out;
+}
+
+/*
+ * Write some bits, contained in the low @num_bits bits of @bits (ordered from
+ * high-order to low-order), to the output bitstream @os.
+ *
+ * @max_num_bits is a compile-time constant that specifies the maximum number of
+ * bits that can ever be written at this call site.
+ */
+static inline void
+lzms_output_bitstream_put_varbits(struct lzms_output_bitstream *os,
+                                 u32 bits, unsigned num_bits,
+                                 unsigned max_num_bits)
+{
+       LZMS_ASSERT(num_bits <= 48);
+
+       /* Add the bits to the bit buffer variable.  */
+       os->bitcount += num_bits;
+       os->bitbuf = (os->bitbuf << num_bits) | bits;
+
+       /* Check whether any coding units need to be written.  */
+       while (os->bitcount >= 16) {
+
+               os->bitcount -= 16;
+
+               /* Write a coding unit, unless it would underflow the buffer. */
+               if (os->next != os->begin)
+                       *--os->next = cpu_to_le16(os->bitbuf >> os->bitcount);
+
+               /* Optimization for call sites that never write more than 16
+                * bits at once.  */
+               if (max_num_bits <= 16)
+                       break;
        }
+}
 
-       memcpy(ctx->window, uncompressed_data, uncompressed_size);
-       ctx->window_size = uncompressed_size;
+/* Flush the output bitstream, ensuring that all bits written to it have been
+ * written to memory.  Returns %true if all bits have been output successfully,
+ * or %false if an overrun occurred.  */
+static bool
+lzms_output_bitstream_flush(struct lzms_output_bitstream *os)
+{
+       if (os->next == os->begin)
+               return false;
 
-       lzms_preprocess_data(ctx->window, ctx->window_size,
-                            ctx->last_target_usages);
+       if (os->bitcount != 0)
+               *--os->next = cpu_to_le16(os->bitbuf << (16 - os->bitcount));
 
-       return 0;
+       return true;
+}
+
+/* Initialize the range encoder @rc to write forwards to the specified
+ * compressed data buffer @out that is @out_limit 16-bit integers long.  */
+static void
+lzms_range_encoder_raw_init(struct lzms_range_encoder_raw *rc,
+                           le16 *out, size_t out_limit)
+{
+       rc->low = 0;
+       rc->range = 0xffffffff;
+       rc->cache = 0;
+       rc->cache_size = 1;
+       rc->begin = out;
+       rc->next = out - 1;
+       rc->end = out + out_limit;
+}
+
+/*
+ * Attempt to flush bits from the range encoder.
+ *
+ * Note: this is based on the public domain code for LZMA written by Igor
+ * Pavlov.  The only differences in this function are that in LZMS the bits must
+ * be output in 16-bit coding units instead of 8-bit coding units, and that in
+ * LZMS the first coding unit is not ignored by the decompressor, so the encoder
+ * cannot output a dummy value to that position.
+ *
+ * The basic idea is that we're writing bits from @rc->low to the output.
+ * However, due to carrying, the writing of coding units with value 0xffff, as
+ * well as one prior coding unit, must be delayed until it is determined whether
+ * a carry is needed.
+ */
+static void
+lzms_range_encoder_raw_shift_low(struct lzms_range_encoder_raw *rc)
+{
+       if ((u32)(rc->low) < 0xffff0000 ||
+           (u32)(rc->low >> 32) != 0)
+       {
+               /* Carry not needed (rc->low < 0xffff0000), or carry occurred
+                * ((rc->low >> 32) != 0, a.k.a. the carry bit is 1).  */
+               do {
+                       if (likely(rc->next >= rc->begin)) {
+                               if (rc->next != rc->end)
+                                       *rc->next++ = cpu_to_le16(rc->cache +
+                                                                 (u16)(rc->low >> 32));
+                       } else {
+                               rc->next++;
+                       }
+                       rc->cache = 0xffff;
+               } while (--rc->cache_size != 0);
+
+               rc->cache = (rc->low >> 16) & 0xffff;
+       }
+       ++rc->cache_size;
+       rc->low = (rc->low & 0xffff) << 16;
 }
 
 static void
-lzms_free_compressor(void *_ctx)
+lzms_range_encoder_raw_normalize(struct lzms_range_encoder_raw *rc)
 {
-       struct lzms_compressor *ctx = _ctx;
+       if (rc->range <= 0xffff) {
+               rc->range <<= 16;
+               lzms_range_encoder_raw_shift_low(rc);
+       }
+}
+
+static bool
+lzms_range_encoder_raw_flush(struct lzms_range_encoder_raw *rc)
+{
+       for (unsigned i = 0; i < 4; i++)
+               lzms_range_encoder_raw_shift_low(rc);
+       return rc->next != rc->end;
+}
 
-       if (ctx) {
-               FREE(ctx->window);
-               FREE(ctx->last_target_usages);
-               FREE(ctx);
+/* Encode the next bit using the range encoder (raw version).
+ *
+ * @prob is the chance out of LZMS_PROBABILITY_MAX that the next bit is 0.  */
+static inline void
+lzms_range_encoder_raw_encode_bit(struct lzms_range_encoder_raw *rc,
+                                 int bit, u32 prob)
+{
+       lzms_range_encoder_raw_normalize(rc);
+
+       u32 bound = (rc->range >> LZMS_PROBABILITY_BITS) * prob;
+       if (bit == 0) {
+               rc->range = bound;
+       } else {
+               rc->low += bound;
+               rc->range -= bound;
        }
 }
 
+/* Encode a bit using the specified range encoder. This wraps around
+ * lzms_range_encoder_raw_encode_bit() to handle using and updating the
+ * appropriate state and probability entry.  */
+static void
+lzms_range_encode_bit(struct lzms_range_encoder *enc, int bit)
+{
+       struct lzms_probability_entry *prob_entry;
+       u32 prob;
+
+       /* Load the probability entry corresponding to the current state.  */
+       prob_entry = &enc->prob_entries[enc->state];
+
+       /* Update the state based on the next bit.  */
+       enc->state = ((enc->state << 1) | bit) & enc->mask;
+
+       /* Get the probability that the bit is 0.  */
+       prob = lzms_get_probability(prob_entry);
+
+       /* Update the probability entry.  */
+       lzms_update_probability_entry(prob_entry, bit);
+
+       /* Encode the bit.  */
+       lzms_range_encoder_raw_encode_bit(enc->rc, bit, prob);
+}
+
+/* Called when an adaptive Huffman code needs to be rebuilt.  */
+static void
+lzms_rebuild_huffman_code(struct lzms_huffman_encoder *enc)
+{
+       make_canonical_huffman_code(enc->num_syms,
+                                   LZMS_MAX_CODEWORD_LEN,
+                                   enc->sym_freqs,
+                                   enc->lens,
+                                   enc->codewords);
+
+       /* Dilute the frequencies.  */
+       for (unsigned i = 0; i < enc->num_syms; i++) {
+               enc->sym_freqs[i] >>= 1;
+               enc->sym_freqs[i] += 1;
+       }
+       enc->num_syms_written = 0;
+}
+
+/* Encode a symbol using the specified Huffman encoder.  */
+static inline void
+lzms_huffman_encode_symbol(struct lzms_huffman_encoder *enc, unsigned sym)
+{
+       lzms_output_bitstream_put_varbits(enc->os,
+                                         enc->codewords[sym],
+                                         enc->lens[sym],
+                                         LZMS_MAX_CODEWORD_LEN);
+       ++enc->sym_freqs[sym];
+       if (++enc->num_syms_written == enc->rebuild_freq)
+               lzms_rebuild_huffman_code(enc);
+}
+
+static void
+lzms_update_fast_length_costs(struct lzms_compressor *c);
+
+/* Encode a match length.  */
+static void
+lzms_encode_length(struct lzms_compressor *c, u32 length)
+{
+       unsigned slot;
+       unsigned num_extra_bits;
+       u32 extra_bits;
+
+       slot = lzms_get_length_slot_fast(c, length);
+
+       extra_bits = length - lzms_length_slot_base[slot];
+       num_extra_bits = lzms_extra_length_bits[slot];
+
+       lzms_huffman_encode_symbol(&c->length_encoder, slot);
+       if (c->length_encoder.num_syms_written == 0)
+               lzms_update_fast_length_costs(c);
+
+       lzms_output_bitstream_put_varbits(c->length_encoder.os,
+                                         extra_bits, num_extra_bits, 30);
+}
+
+/* Encode an LZ match offset.  */
+static void
+lzms_encode_lz_offset(struct lzms_compressor *c, u32 offset)
+{
+       unsigned slot;
+       unsigned num_extra_bits;
+       u32 extra_bits;
+
+       slot = lzms_get_offset_slot_fast(c, offset);
+
+       extra_bits = offset - lzms_offset_slot_base[slot];
+       num_extra_bits = lzms_extra_offset_bits[slot];
+
+       lzms_huffman_encode_symbol(&c->lz_offset_encoder, slot);
+       lzms_output_bitstream_put_varbits(c->lz_offset_encoder.os,
+                                         extra_bits, num_extra_bits, 30);
+}
+
+/* Encode a literal byte.  */
+static void
+lzms_encode_literal(struct lzms_compressor *c, unsigned literal)
+{
+       /* Main bit: 0 = a literal, not a match.  */
+       lzms_range_encode_bit(&c->main_range_encoder, 0);
+
+       /* Encode the literal using the current literal Huffman code.  */
+       lzms_huffman_encode_symbol(&c->literal_encoder, literal);
+}
+
+/* Encode an LZ repeat offset match.  */
+static void
+lzms_encode_lz_repeat_offset_match(struct lzms_compressor *c,
+                                  u32 length, unsigned rep_index)
+{
+       unsigned i;
+
+       /* Main bit: 1 = a match, not a literal.  */
+       lzms_range_encode_bit(&c->main_range_encoder, 1);
+
+       /* Match bit: 0 = an LZ match, not a delta match.  */
+       lzms_range_encode_bit(&c->match_range_encoder, 0);
+
+       /* LZ match bit: 1 = repeat offset, not an explicit offset.  */
+       lzms_range_encode_bit(&c->lz_match_range_encoder, 1);
+
+       /* Encode the repeat offset index.  A 1 bit is encoded for each index
+        * passed up.  This sequence of 1 bits is terminated by a 0 bit, or
+        * automatically when (LZMS_NUM_RECENT_OFFSETS - 1) 1 bits have been
+        * encoded.  */
+       for (i = 0; i < rep_index; i++)
+               lzms_range_encode_bit(&c->lz_repeat_match_range_encoders[i], 1);
+
+       if (i < LZMS_NUM_RECENT_OFFSETS - 1)
+               lzms_range_encode_bit(&c->lz_repeat_match_range_encoders[i], 0);
+
+       /* Encode the match length.  */
+       lzms_encode_length(c, length);
+}
+
+/* Encode an LZ explicit offset match.  */
+static void
+lzms_encode_lz_explicit_offset_match(struct lzms_compressor *c,
+                                    u32 length, u32 offset)
+{
+       /* Main bit: 1 = a match, not a literal.  */
+       lzms_range_encode_bit(&c->main_range_encoder, 1);
+
+       /* Match bit: 0 = an LZ match, not a delta match.  */
+       lzms_range_encode_bit(&c->match_range_encoder, 0);
+
+       /* LZ match bit: 0 = explicit offset, not a repeat offset.  */
+       lzms_range_encode_bit(&c->lz_match_range_encoder, 0);
+
+       /* Encode the match offset.  */
+       lzms_encode_lz_offset(c, offset);
+
+       /* Encode the match length.  */
+       lzms_encode_length(c, length);
+}
+
+static void
+lzms_encode_item(struct lzms_compressor *c, u64 mc_item_data)
+{
+       u32 len = mc_item_data & MC_LEN_MASK;
+       u32 offset_data = mc_item_data >> MC_OFFSET_SHIFT;
+
+       if (len == 1)
+               lzms_encode_literal(c, offset_data);
+       else if (offset_data < LZMS_NUM_RECENT_OFFSETS)
+               lzms_encode_lz_repeat_offset_match(c, len, offset_data);
+       else
+               lzms_encode_lz_explicit_offset_match(c, len, offset_data - LZMS_OFFSET_OFFSET);
+}
+
+/* Encode a list of matches and literals chosen by the parsing algorithm.  */
+static void
+lzms_encode_item_list(struct lzms_compressor *c,
+                     struct lzms_mc_pos_data *cur_optimum_ptr)
+{
+       struct lzms_mc_pos_data *end_optimum_ptr;
+       u64 saved_item;
+       u64 item;
+
+       /* The list is currently in reverse order (last item to first item).
+        * Reverse it.  */
+       end_optimum_ptr = cur_optimum_ptr;
+       saved_item = cur_optimum_ptr->mc_item_data;
+       do {
+               item = saved_item;
+               cur_optimum_ptr -= item & MC_LEN_MASK;
+               saved_item = cur_optimum_ptr->mc_item_data;
+               cur_optimum_ptr->mc_item_data = item;
+       } while (cur_optimum_ptr != c->optimum);
+
+       /* Walk the list of items from beginning to end, encoding each item.  */
+       do {
+               lzms_encode_item(c, cur_optimum_ptr->mc_item_data);
+               cur_optimum_ptr += (cur_optimum_ptr->mc_item_data) & MC_LEN_MASK;
+       } while (cur_optimum_ptr != end_optimum_ptr);
+}
+
+/* Each bit costs 1 << LZMS_COST_SHIFT units.  */
+#define LZMS_COST_SHIFT 6
+
+/*#define LZMS_RC_COSTS_USE_FLOATING_POINT*/
+
+static u32
+lzms_rc_costs[LZMS_PROBABILITY_MAX + 1];
+
+#ifdef LZMS_RC_COSTS_USE_FLOATING_POINT
+#  include <math.h>
+#endif
+
+static void
+lzms_do_init_rc_costs(void)
+{
+       /* Fill in a table that maps range coding probabilities needed to code a
+        * bit X (0 or 1) to the number of bits (scaled by a constant factor, to
+        * handle fractional costs) needed to code that bit X.
+        *
+        * Consider the range of the range decoder.  To eliminate exactly half
+        * the range (logical probability of 0.5), we need exactly 1 bit.  For
+        * lower probabilities we need more bits and for higher probabilities we
+        * need fewer bits.  In general, a logical probability of N will
+        * eliminate the proportion 1 - N of the range; this information takes
+        * log2(1 / N) bits to encode.
+        *
+        * The below loop is simply calculating this number of bits for each
+        * possible probability allowed by the LZMS compression format, but
+        * without using real numbers.  To handle fractional probabilities, each
+        * cost is multiplied by (1 << LZMS_COST_SHIFT).  These techniques are
+        * based on those used by LZMA.
+        *
+        * Note that in LZMS, a probability x really means x / 64, and 0 / 64 is
+        * really interpreted as 1 / 64 and 64 / 64 is really interpreted as
+        * 63 / 64.
+        */
+       for (u32 i = 0; i <= LZMS_PROBABILITY_MAX; i++) {
+               u32 prob = i;
+
+               if (prob == 0)
+                       prob = 1;
+               else if (prob == LZMS_PROBABILITY_MAX)
+                       prob = LZMS_PROBABILITY_MAX - 1;
+
+       #ifdef LZMS_RC_COSTS_USE_FLOATING_POINT
+               lzms_rc_costs[i] = log2((double)LZMS_PROBABILITY_MAX / prob) *
+                                       (1 << LZMS_COST_SHIFT);
+       #else
+               u32 w = prob;
+               u32 bit_count = 0;
+               for (u32 j = 0; j < LZMS_COST_SHIFT; j++) {
+                       w *= w;
+                       bit_count <<= 1;
+                       while (w >= ((u32)1 << 16)) {
+                               w >>= 1;
+                               ++bit_count;
+                       }
+               }
+               lzms_rc_costs[i] = (LZMS_PROBABILITY_BITS << LZMS_COST_SHIFT) -
+                                  (15 + bit_count);
+       #endif
+       }
+}
+
+static void
+lzms_init_rc_costs(void)
+{
+       static pthread_once_t once = PTHREAD_ONCE_INIT;
+
+       pthread_once(&once, lzms_do_init_rc_costs);
+}
+
+/* Return the cost to range-encode the specified bit from the specified state.*/
+static inline u32
+lzms_rc_bit_cost(const struct lzms_range_encoder *enc, u8 cur_state, int bit)
+{
+       u32 prob_zero;
+       u32 prob_correct;
+
+       prob_zero = enc->prob_entries[cur_state].num_recent_zero_bits;
+
+       if (bit == 0)
+               prob_correct = prob_zero;
+       else
+               prob_correct = LZMS_PROBABILITY_MAX - prob_zero;
+
+       return lzms_rc_costs[prob_correct];
+}
+
+/* Return the cost to Huffman-encode the specified symbol.  */
+static inline u32
+lzms_huffman_symbol_cost(const struct lzms_huffman_encoder *enc, unsigned sym)
+{
+       return (u32)enc->lens[sym] << LZMS_COST_SHIFT;
+}
+
+/* Return the cost to encode the specified literal byte.  */
+static inline u32
+lzms_literal_cost(const struct lzms_compressor *c, unsigned literal,
+                 const struct lzms_adaptive_state *state)
+{
+       return lzms_rc_bit_cost(&c->main_range_encoder, state->main_state, 0) +
+              lzms_huffman_symbol_cost(&c->literal_encoder, literal);
+}
+
+/* Update the table that directly provides the costs for small lengths.  */
+static void
+lzms_update_fast_length_costs(struct lzms_compressor *c)
+{
+       u32 len;
+       int slot = -1;
+       u32 cost = 0;
+
+       for (len = 1; len < LZMS_NUM_FAST_LENGTHS; len++) {
+
+               while (len >= lzms_length_slot_base[slot + 1]) {
+                       slot++;
+                       cost = (u32)(c->length_encoder.lens[slot] +
+                                    lzms_extra_length_bits[slot]) << LZMS_COST_SHIFT;
+               }
+
+               c->length_cost_fast[len] = cost;
+       }
+}
+
+/* Return the cost to encode the specified match length, which must be less than
+ * LZMS_NUM_FAST_LENGTHS.  */
+static inline u32
+lzms_fast_length_cost(const struct lzms_compressor *c, u32 length)
+{
+       LZMS_ASSERT(length < LZMS_NUM_FAST_LENGTHS);
+       return c->length_cost_fast[length];
+}
+
+/* Return the cost to encode the specified LZ match offset.  */
+static inline u32
+lzms_lz_offset_cost(const struct lzms_compressor *c, u32 offset)
+{
+       unsigned slot = lzms_get_offset_slot_fast(c, offset);
+
+       return (u32)(c->lz_offset_encoder.lens[slot] +
+                    lzms_extra_offset_bits[slot]) << LZMS_COST_SHIFT;
+}
+
+/*
+ * Consider coding the match at repeat offset index @rep_idx.  Consider each
+ * length from the minimum (2) to the full match length (@rep_len).
+ */
+static inline void
+lzms_consider_lz_repeat_offset_match(const struct lzms_compressor *c,
+                                    struct lzms_mc_pos_data *cur_optimum_ptr,
+                                    u32 rep_len, unsigned rep_idx)
+{
+       u32 len;
+       u32 base_cost;
+       u32 cost;
+       unsigned i;
+
+       base_cost = cur_optimum_ptr->cost;
+
+       base_cost += lzms_rc_bit_cost(&c->main_range_encoder,
+                                     cur_optimum_ptr->state.main_state, 1);
+
+       base_cost += lzms_rc_bit_cost(&c->match_range_encoder,
+                                     cur_optimum_ptr->state.match_state, 0);
+
+       base_cost += lzms_rc_bit_cost(&c->lz_match_range_encoder,
+                                     cur_optimum_ptr->state.lz_match_state, 1);
+
+       for (i = 0; i < rep_idx; i++)
+               base_cost += lzms_rc_bit_cost(&c->lz_repeat_match_range_encoders[i],
+                                             cur_optimum_ptr->state.lz_repeat_match_state[i], 1);
+
+       if (i < LZMS_NUM_RECENT_OFFSETS - 1)
+               base_cost += lzms_rc_bit_cost(&c->lz_repeat_match_range_encoders[i],
+                                             cur_optimum_ptr->state.lz_repeat_match_state[i], 0);
+
+       len = 2;
+       do {
+               cost = base_cost + lzms_fast_length_cost(c, len);
+               if (cost < (cur_optimum_ptr + len)->cost) {
+                       (cur_optimum_ptr + len)->mc_item_data =
+                               ((u64)rep_idx << MC_OFFSET_SHIFT) | len;
+                       (cur_optimum_ptr + len)->cost = cost;
+               }
+       } while (++len <= rep_len);
+}
+
+/*
+ * Consider coding each match in @matches as an explicit offset match.
+ *
+ * @matches must be sorted by strictly increasing length and strictly increasing
+ * offset.  This is guaranteed by the match-finder.
+ *
+ * We consider each length from the minimum (2) to the longest
+ * (matches[num_matches - 1].len).  For each length, we consider only the
+ * smallest offset for which that length is available.  Although this is not
+ * guaranteed to be optimal due to the possibility of a larger offset costing
+ * less than a smaller offset to code, this is a very useful heuristic.
+ */
+static inline void
+lzms_consider_lz_explicit_offset_matches(const struct lzms_compressor *c,
+                                        struct lzms_mc_pos_data *cur_optimum_ptr,
+                                        const struct lz_match matches[],
+                                        u32 num_matches)
+{
+       u32 len;
+       u32 i;
+       u32 base_cost;
+       u32 position_cost;
+       u32 cost;
+
+       base_cost = cur_optimum_ptr->cost;
+
+       base_cost += lzms_rc_bit_cost(&c->main_range_encoder,
+                                     cur_optimum_ptr->state.main_state, 1);
+
+       base_cost += lzms_rc_bit_cost(&c->match_range_encoder,
+                                     cur_optimum_ptr->state.match_state, 0);
+
+       base_cost += lzms_rc_bit_cost(&c->lz_match_range_encoder,
+                                     cur_optimum_ptr->state.lz_match_state, 0);
+       len = 2;
+       i = 0;
+       do {
+               position_cost = base_cost + lzms_lz_offset_cost(c, matches[i].offset);
+               do {
+                       cost = position_cost + lzms_fast_length_cost(c, len);
+                       if (cost < (cur_optimum_ptr + len)->cost) {
+                               (cur_optimum_ptr + len)->mc_item_data =
+                                       ((u64)(matches[i].offset + LZMS_OFFSET_OFFSET)
+                                               << MC_OFFSET_SHIFT) | len;
+                               (cur_optimum_ptr + len)->cost = cost;
+                       }
+               } while (++len <= matches[i].len);
+       } while (++i != num_matches);
+}
+
+static void
+lzms_init_adaptive_state(struct lzms_adaptive_state *state)
+{
+       unsigned i;
+
+       lzms_init_lz_lru_queues(&state->lru);
+       state->main_state = 0;
+       state->match_state = 0;
+       state->lz_match_state = 0;
+       for (i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++)
+               state->lz_repeat_match_state[i] = 0;
+}
+
+static inline void
+lzms_update_main_state(struct lzms_adaptive_state *state, int is_match)
+{
+       state->main_state = ((state->main_state << 1) | is_match) % LZMS_NUM_MAIN_STATES;
+}
+
+static inline void
+lzms_update_match_state(struct lzms_adaptive_state *state, int is_delta)
+{
+       state->match_state = ((state->match_state << 1) | is_delta) % LZMS_NUM_MATCH_STATES;
+}
+
+static inline void
+lzms_update_lz_match_state(struct lzms_adaptive_state *state, int is_repeat_offset)
+{
+       state->lz_match_state = ((state->lz_match_state << 1) | is_repeat_offset) % LZMS_NUM_LZ_MATCH_STATES;
+}
+
+static inline void
+lzms_update_lz_repeat_match_state(struct lzms_adaptive_state *state, int rep_idx)
+{
+       int i;
+
+       for (i = 0; i < rep_idx; i++)
+               state->lz_repeat_match_state[i] =
+                       ((state->lz_repeat_match_state[i] << 1) | 1) %
+                               LZMS_NUM_LZ_REPEAT_MATCH_STATES;
+
+       if (i < LZMS_NUM_RECENT_OFFSETS - 1)
+               state->lz_repeat_match_state[i] =
+                       ((state->lz_repeat_match_state[i] << 1) | 0) %
+                               LZMS_NUM_LZ_REPEAT_MATCH_STATES;
+}
+
+/*
+ * The main near-optimal parsing routine.
+ *
+ * Briefly, the algorithm does an approximate minimum-cost path search to find a
+ * "near-optimal" sequence of matches and literals to output, based on the
+ * current cost model.  The algorithm steps forward, position by position (byte
+ * by byte), and updates the minimum cost path to reach each later position that
+ * can be reached using a match or literal from the current position.  This is
+ * essentially Dijkstra's algorithm in disguise: the graph nodes are positions,
+ * the graph edges are possible matches/literals to code, and the cost of each
+ * edge is the estimated number of bits that will be required to output the
+ * corresponding match or literal.  But one difference is that we actually
+ * compute the lowest-cost path in pieces, where each piece is terminated when
+ * there are no choices to be made.
+ *
+ * Notes:
+ *
+ * - This does not output any delta matches.
+ *
+ * - The costs of literals and matches are estimated using the range encoder
+ *   states and the semi-adaptive Huffman codes.  Except for range encoding
+ *   states, costs are assumed to be constant throughout a single run of the
+ *   parsing algorithm, which can parse up to @optim_array_length bytes of data.
+ *   This introduces a source of inaccuracy because the probabilities and
+ *   Huffman codes can change over this part of the data.
+ */
+static void
+lzms_near_optimal_parse(struct lzms_compressor *c)
+{
+       const u8 *window_ptr;
+       const u8 *window_end;
+       struct lzms_mc_pos_data *cur_optimum_ptr;
+       struct lzms_mc_pos_data *end_optimum_ptr;
+       u32 num_matches;
+       u32 longest_len;
+       u32 rep_max_len;
+       unsigned rep_max_idx;
+       unsigned literal;
+       unsigned i;
+       u32 cost;
+       u32 len;
+       u32 offset_data;
+
+       window_ptr = c->cur_window;
+       window_end = window_ptr + c->cur_window_size;
+
+       lzms_init_adaptive_state(&c->optimum[0].state);
+
+begin:
+       /* Start building a new list of items, which will correspond to the next
+        * piece of the overall minimum-cost path.  */
+
+       cur_optimum_ptr = c->optimum;
+       cur_optimum_ptr->cost = 0;
+       end_optimum_ptr = cur_optimum_ptr;
+
+       /* States should currently be consistent with the encoders.  */
+       LZMS_ASSERT(cur_optimum_ptr->state.main_state == c->main_range_encoder.state);
+       LZMS_ASSERT(cur_optimum_ptr->state.match_state == c->match_range_encoder.state);
+       LZMS_ASSERT(cur_optimum_ptr->state.lz_match_state == c->lz_match_range_encoder.state);
+       for (i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++)
+               LZMS_ASSERT(cur_optimum_ptr->state.lz_repeat_match_state[i] ==
+                           c->lz_repeat_match_range_encoders[i].state);
+
+       if (window_ptr == window_end)
+               return;
+
+       /* The following loop runs once for each per byte in the window, except
+        * in a couple shortcut cases.  */
+       for (;;) {
+
+               /* Find explicit offset matches with the current position.  */
+               num_matches = lz_mf_get_matches(c->mf, c->matches);
+
+               if (num_matches) {
+                       /*
+                        * Find the longest repeat offset match with the current
+                        * position.
+                        *
+                        * Heuristics:
+                        *
+                        * - Only search for repeat offset matches if the
+                        *   match-finder already found at least one match.
+                        *
+                        * - Only consider the longest repeat offset match.  It
+                        *   seems to be rare for the optimal parse to include a
+                        *   repeat offset match that doesn't have the longest
+                        *   length (allowing for the possibility that not all
+                        *   of that length is actually used).
+                        */
+                       if (likely(window_ptr - c->cur_window >= LZMS_MAX_INIT_RECENT_OFFSET)) {
+                               BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
+                               rep_max_len = lz_repsearch3(window_ptr,
+                                                           window_end - window_ptr,
+                                                           cur_optimum_ptr->state.lru.recent_offsets,
+                                                           &rep_max_idx);
+                       } else {
+                               rep_max_len = 0;
+                       }
+
+                       if (rep_max_len) {
+                               /* If there's a very long repeat offset match,
+                                * choose it immediately.  */
+                               if (rep_max_len >= c->params.nice_match_length) {
+
+                                       lz_mf_skip_positions(c->mf, rep_max_len - 1);
+                                       window_ptr += rep_max_len;
+
+                                       if (cur_optimum_ptr != c->optimum)
+                                               lzms_encode_item_list(c, cur_optimum_ptr);
+
+                                       lzms_encode_lz_repeat_offset_match(c, rep_max_len,
+                                                                          rep_max_idx);
+
+                                       c->optimum[0].state = cur_optimum_ptr->state;
+
+                                       lzms_update_main_state(&c->optimum[0].state, 1);
+                                       lzms_update_match_state(&c->optimum[0].state, 0);
+                                       lzms_update_lz_match_state(&c->optimum[0].state, 1);
+                                       lzms_update_lz_repeat_match_state(&c->optimum[0].state,
+                                                                         rep_max_idx);
+
+                                       c->optimum[0].state.lru.upcoming_offset =
+                                               c->optimum[0].state.lru.recent_offsets[rep_max_idx];
+
+                                       for (i = rep_max_idx; i < LZMS_NUM_RECENT_OFFSETS; i++)
+                                               c->optimum[0].state.lru.recent_offsets[i] =
+                                                       c->optimum[0].state.lru.recent_offsets[i + 1];
+
+                                       lzms_update_lz_lru_queue(&c->optimum[0].state.lru);
+                                       goto begin;
+                               }
+
+                               /* If reaching any positions for the first time,
+                                * initialize their costs to "infinity".  */
+                               while (end_optimum_ptr < cur_optimum_ptr + rep_max_len)
+                                       (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+
+                               /* Consider coding a repeat offset match.  */
+                               lzms_consider_lz_repeat_offset_match(c, cur_optimum_ptr,
+                                                                    rep_max_len, rep_max_idx);
+                       }
+
+                       longest_len = c->matches[num_matches - 1].len;
+
+                       /* If there's a very long explicit offset match, choose
+                        * it immediately.  */
+                       if (longest_len >= c->params.nice_match_length) {
+
+                               lz_mf_skip_positions(c->mf, longest_len - 1);
+                               window_ptr += longest_len;
+
+                               if (cur_optimum_ptr != c->optimum)
+                                       lzms_encode_item_list(c, cur_optimum_ptr);
+
+                               lzms_encode_lz_explicit_offset_match(c, longest_len,
+                                                                    c->matches[num_matches - 1].offset);
+
+                               c->optimum[0].state = cur_optimum_ptr->state;
+
+                               lzms_update_main_state(&c->optimum[0].state, 1);
+                               lzms_update_match_state(&c->optimum[0].state, 0);
+                               lzms_update_lz_match_state(&c->optimum[0].state, 0);
+
+                               c->optimum[0].state.lru.upcoming_offset =
+                                       c->matches[num_matches - 1].offset;
+
+                               lzms_update_lz_lru_queue(&c->optimum[0].state.lru);
+                               goto begin;
+                       }
+
+                       /* If reaching any positions for the first time,
+                        * initialize their costs to "infinity".  */
+                       while (end_optimum_ptr < cur_optimum_ptr + longest_len)
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+
+                       /* Consider coding an explicit offset match.  */
+                       lzms_consider_lz_explicit_offset_matches(c, cur_optimum_ptr,
+                                                                c->matches, num_matches);
+               } else {
+                       /* No matches found.  The only choice at this position
+                        * is to code a literal.  */
+
+                       if (end_optimum_ptr == cur_optimum_ptr)
+                               (++end_optimum_ptr)->cost = MC_INFINITE_COST;
+               }
+
+               /* Consider coding a literal.
+
+                * To avoid an extra unpredictable brench, actually checking the
+                * preferability of coding a literal is integrated into the
+                * adaptive state update code below.  */
+               literal = *window_ptr++;
+               cost = cur_optimum_ptr->cost +
+                      lzms_literal_cost(c, literal, &cur_optimum_ptr->state);
+
+               /* Advance to the next position.  */
+               cur_optimum_ptr++;
+
+               /* The lowest-cost path to the current position is now known.
+                * Finalize the adaptive state that results from taking this
+                * lowest-cost path.  */
+
+               if (cost < cur_optimum_ptr->cost) {
+                       /* Literal  */
+                       cur_optimum_ptr->cost = cost;
+                       cur_optimum_ptr->mc_item_data = ((u64)literal << MC_OFFSET_SHIFT) | 1;
+
+                       cur_optimum_ptr->state = (cur_optimum_ptr - 1)->state;
+
+                       lzms_update_main_state(&cur_optimum_ptr->state, 0);
+
+                       cur_optimum_ptr->state.lru.upcoming_offset = 0;
+               } else {
+                       /* LZ match  */
+                       len = cur_optimum_ptr->mc_item_data & MC_LEN_MASK;
+                       offset_data = cur_optimum_ptr->mc_item_data >> MC_OFFSET_SHIFT;
+
+                       cur_optimum_ptr->state = (cur_optimum_ptr - len)->state;
+
+                       lzms_update_main_state(&cur_optimum_ptr->state, 1);
+                       lzms_update_match_state(&cur_optimum_ptr->state, 0);
+
+                       if (offset_data >= LZMS_NUM_RECENT_OFFSETS) {
+
+                               /* Explicit offset LZ match  */
+
+                               lzms_update_lz_match_state(&cur_optimum_ptr->state, 0);
+
+                               cur_optimum_ptr->state.lru.upcoming_offset =
+                                       offset_data - LZMS_OFFSET_OFFSET;
+                       } else {
+                               /* Repeat offset LZ match  */
+
+                               lzms_update_lz_match_state(&cur_optimum_ptr->state, 1);
+                               lzms_update_lz_repeat_match_state(&cur_optimum_ptr->state,
+                                                                 offset_data);
+
+                               cur_optimum_ptr->state.lru.upcoming_offset =
+                                       cur_optimum_ptr->state.lru.recent_offsets[offset_data];
+
+                               for (i = offset_data; i < LZMS_NUM_RECENT_OFFSETS; i++)
+                                       cur_optimum_ptr->state.lru.recent_offsets[i] =
+                                               cur_optimum_ptr->state.lru.recent_offsets[i + 1];
+                       }
+               }
+
+               lzms_update_lz_lru_queue(&cur_optimum_ptr->state.lru);
+
+               /*
+                * This loop will terminate when either of the following
+                * conditions is true:
+                *
+                * (1) cur_optimum_ptr == end_optimum_ptr
+                *
+                *      There are no paths that extend beyond the current
+                *      position.  In this case, any path to a later position
+                *      must pass through the current position, so we can go
+                *      ahead and choose the list of items that led to this
+                *      position.
+                *
+                * (2) cur_optimum_ptr == c->optimum_end
+                *
+                *      This bounds the number of times the algorithm can step
+                *      forward before it is guaranteed to start choosing items.
+                *      This limits the memory usage.  It also guarantees that
+                *      the parser will not go too long without updating the
+                *      probability tables.
+                *
+                * Note: no check for end-of-window is needed because
+                * end-of-window will trigger condition (1).
+                */
+               if (cur_optimum_ptr == end_optimum_ptr ||
+                   cur_optimum_ptr == c->optimum_end)
+               {
+                       c->optimum[0].state = cur_optimum_ptr->state;
+                       break;
+               }
+       }
+
+       /* Output the current list of items that constitute the minimum-cost
+        * path to the current position.  */
+       lzms_encode_item_list(c, cur_optimum_ptr);
+       goto begin;
+}
+
+static void
+lzms_init_range_encoder(struct lzms_range_encoder *enc,
+                       struct lzms_range_encoder_raw *rc, u32 num_states)
+{
+       enc->rc = rc;
+       enc->state = 0;
+       LZMS_ASSERT(is_power_of_2(num_states));
+       enc->mask = num_states - 1;
+       for (u32 i = 0; i < num_states; i++) {
+               enc->prob_entries[i].num_recent_zero_bits = LZMS_INITIAL_PROBABILITY;
+               enc->prob_entries[i].recent_bits = LZMS_INITIAL_RECENT_BITS;
+       }
+}
+
+static void
+lzms_init_huffman_encoder(struct lzms_huffman_encoder *enc,
+                         struct lzms_output_bitstream *os,
+                         unsigned num_syms,
+                         unsigned rebuild_freq)
+{
+       enc->os = os;
+       enc->num_syms_written = 0;
+       enc->rebuild_freq = rebuild_freq;
+       enc->num_syms = num_syms;
+       for (unsigned i = 0; i < num_syms; i++)
+               enc->sym_freqs[i] = 1;
+
+       make_canonical_huffman_code(enc->num_syms,
+                                   LZMS_MAX_CODEWORD_LEN,
+                                   enc->sym_freqs,
+                                   enc->lens,
+                                   enc->codewords);
+}
+
+/* Prepare the LZMS compressor for compressing a block of data.  */
+static void
+lzms_prepare_compressor(struct lzms_compressor *c, const u8 *udata, u32 ulen,
+                       le16 *cdata, u32 clen16)
+{
+       unsigned num_offset_slots;
+
+       /* Copy the uncompressed data into the @c->cur_window buffer.  */
+       memcpy(c->cur_window, udata, ulen);
+       c->cur_window_size = ulen;
+
+       /* Initialize the raw range encoder (writing forwards).  */
+       lzms_range_encoder_raw_init(&c->rc, cdata, clen16);
+
+       /* Initialize the output bitstream for Huffman symbols and verbatim bits
+        * (writing backwards).  */
+       lzms_output_bitstream_init(&c->os, cdata, clen16);
+
+       /* Calculate the number of offset slots required.  */
+       num_offset_slots = lzms_get_offset_slot(ulen - 1) + 1;
+
+       /* Initialize a Huffman encoder for each alphabet.  */
+       lzms_init_huffman_encoder(&c->literal_encoder, &c->os,
+                                 LZMS_NUM_LITERAL_SYMS,
+                                 LZMS_LITERAL_CODE_REBUILD_FREQ);
+
+       lzms_init_huffman_encoder(&c->lz_offset_encoder, &c->os,
+                                 num_offset_slots,
+                                 LZMS_LZ_OFFSET_CODE_REBUILD_FREQ);
+
+       lzms_init_huffman_encoder(&c->length_encoder, &c->os,
+                                 LZMS_NUM_LEN_SYMS,
+                                 LZMS_LENGTH_CODE_REBUILD_FREQ);
+
+       lzms_init_huffman_encoder(&c->delta_offset_encoder, &c->os,
+                                 num_offset_slots,
+                                 LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ);
+
+       lzms_init_huffman_encoder(&c->delta_power_encoder, &c->os,
+                                 LZMS_NUM_DELTA_POWER_SYMS,
+                                 LZMS_DELTA_POWER_CODE_REBUILD_FREQ);
+
+       /* Initialize range encoders, all of which wrap around the same
+        * lzms_range_encoder_raw.  */
+       lzms_init_range_encoder(&c->main_range_encoder,
+                               &c->rc, LZMS_NUM_MAIN_STATES);
+
+       lzms_init_range_encoder(&c->match_range_encoder,
+                               &c->rc, LZMS_NUM_MATCH_STATES);
+
+       lzms_init_range_encoder(&c->lz_match_range_encoder,
+                               &c->rc, LZMS_NUM_LZ_MATCH_STATES);
+
+       for (unsigned i = 0; i < ARRAY_LEN(c->lz_repeat_match_range_encoders); i++)
+               lzms_init_range_encoder(&c->lz_repeat_match_range_encoders[i],
+                                       &c->rc, LZMS_NUM_LZ_REPEAT_MATCH_STATES);
+
+       lzms_init_range_encoder(&c->delta_match_range_encoder,
+                               &c->rc, LZMS_NUM_DELTA_MATCH_STATES);
+
+       for (unsigned i = 0; i < ARRAY_LEN(c->delta_repeat_match_range_encoders); i++)
+               lzms_init_range_encoder(&c->delta_repeat_match_range_encoders[i],
+                                       &c->rc, LZMS_NUM_DELTA_REPEAT_MATCH_STATES);
+
+       /* Set initial length costs for lengths < LZMS_NUM_FAST_LENGTHS.  */
+       lzms_update_fast_length_costs(c);
+}
+
+/* Flush the output streams, prepare the final compressed data, and return its
+ * size in bytes.
+ *
+ * A return value of 0 indicates that the data could not be compressed to fit in
+ * the available space.  */
+static size_t
+lzms_finalize(struct lzms_compressor *c, u8 *cdata, size_t csize_avail)
+{
+       size_t num_forwards_bytes;
+       size_t num_backwards_bytes;
+
+       /* Flush both the forwards and backwards streams, and make sure they
+        * didn't cross each other and start overwriting each other's data.  */
+       if (!lzms_output_bitstream_flush(&c->os))
+               return 0;
+
+       if (!lzms_range_encoder_raw_flush(&c->rc))
+               return 0;
+
+       if (c->rc.next > c->os.next)
+               return 0;
+
+       /* Now the compressed buffer contains the data output by the forwards
+        * bitstream, then empty space, then data output by the backwards
+        * bitstream.  Move the data output by the backwards bitstream to be
+        * adjacent to the data output by the forward bitstream, and calculate
+        * the compressed size that this results in.  */
+       num_forwards_bytes = (u8*)c->rc.next - (u8*)cdata;
+       num_backwards_bytes = ((u8*)cdata + csize_avail) - (u8*)c->os.next;
+
+       memmove(cdata + num_forwards_bytes, c->os.next, num_backwards_bytes);
+
+       return num_forwards_bytes + num_backwards_bytes;
+}
+
+/* Set internal compression parameters for the specified compression level and
+ * maximum window size.  */
+static void
+lzms_build_params(unsigned int compression_level,
+                 struct lzms_compressor_params *params)
+{
+       /* Allow length 2 matches if the compression level is sufficiently high.
+        */
+       if (compression_level >= 45)
+               params->min_match_length = 2;
+       else
+               params->min_match_length = 3;
+
+       /* Scale nice_match_length and max_search_depth with the compression
+        * level.  But to allow an optimization on length cost calculations,
+        * don't allow nice_match_length to exceed LZMS_NUM_FAST_LENGTH.  */
+       params->nice_match_length = ((u64)compression_level * 32) / 50;
+       if (params->nice_match_length < params->min_match_length)
+               params->nice_match_length = params->min_match_length;
+       if (params->nice_match_length > LZMS_NUM_FAST_LENGTHS)
+               params->nice_match_length = LZMS_NUM_FAST_LENGTHS;
+       params->max_search_depth = compression_level;
+
+       params->optim_array_length = 1024;
+}
+
+/* Given the internal compression parameters and maximum window size, build the
+ * Lempel-Ziv match-finder parameters.  */
+static void
+lzms_build_mf_params(const struct lzms_compressor_params *lzms_params,
+                    u32 max_window_size, struct lz_mf_params *mf_params)
+{
+       memset(mf_params, 0, sizeof(*mf_params));
+
+       /* Choose an appropriate match-finding algorithm.  */
+       if (max_window_size <= 2097152)
+               mf_params->algorithm = LZ_MF_BINARY_TREES;
+       else if (max_window_size <= 33554432)
+               mf_params->algorithm = LZ_MF_LCP_INTERVAL_TREE;
+       else
+               mf_params->algorithm = LZ_MF_LINKED_SUFFIX_ARRAY;
+
+       mf_params->max_window_size = max_window_size;
+       mf_params->min_match_len = lzms_params->min_match_length;
+       mf_params->max_search_depth = lzms_params->max_search_depth;
+       mf_params->nice_match_len = lzms_params->nice_match_length;
+}
+
+static void
+lzms_free_compressor(void *_c);
+
+static u64
+lzms_get_needed_memory(size_t max_block_size, unsigned int compression_level)
+{
+       struct lzms_compressor_params params;
+       struct lz_mf_params mf_params;
+       u64 size = 0;
+
+       if (max_block_size >= INT32_MAX)
+               return 0;
+
+       lzms_build_params(compression_level, &params);
+       lzms_build_mf_params(&params, max_block_size, &mf_params);
+
+       size += sizeof(struct lzms_compressor);
+
+       /* cur_window */
+       size += max_block_size;
+
+       /* mf */
+       size += lz_mf_get_needed_memory(mf_params.algorithm, max_block_size);
+
+       /* matches */
+       size += min(params.max_search_depth, params.nice_match_length) *
+               sizeof(struct lz_match);
+
+       /* optimum */
+       size += (params.optim_array_length + params.nice_match_length) *
+               sizeof(struct lzms_mc_pos_data);
+
+       return size;
+}
+
 static int
-lzms_create_compressor(size_t max_block_size,
-                      const struct wimlib_compressor_params_header *params,
+lzms_create_compressor(size_t max_block_size, unsigned int compression_level,
                       void **ctx_ret)
 {
-       struct lzms_compressor *ctx;
+       struct lzms_compressor *c;
+       struct lzms_compressor_params params;
+       struct lz_mf_params mf_params;
 
-       if (max_block_size == 0 || max_block_size > 1U << 26) {
-               LZMS_DEBUG("Invalid max_block_size (%u)", max_block_size);
+       if (max_block_size >= INT32_MAX)
                return WIMLIB_ERR_INVALID_PARAM;
-       }
 
-       ctx = CALLOC(1, sizeof(struct lzms_compressor));
-       if (ctx == NULL)
+       lzms_build_params(compression_level, &params);
+       lzms_build_mf_params(&params, max_block_size, &mf_params);
+       if (!lz_mf_params_valid(&mf_params))
+               return WIMLIB_ERR_INVALID_PARAM;
+
+       c = CALLOC(1, sizeof(struct lzms_compressor));
+       if (!c)
+               goto oom;
+
+       c->params = params;
+
+       c->cur_window = MALLOC(max_block_size);
+       if (!c->cur_window)
+               goto oom;
+
+       c->mf = lz_mf_alloc(&mf_params);
+       if (!c->mf)
                goto oom;
 
-       ctx->window = MALLOC(max_block_size);
-       if (ctx->window == NULL)
+       c->matches = MALLOC(min(params.max_search_depth,
+                               params.nice_match_length) *
+                           sizeof(struct lz_match));
+       if (!c->matches)
                goto oom;
-       ctx->max_block_size = max_block_size;
 
-       ctx->last_target_usages = MALLOC(65536 * sizeof(ctx->last_target_usages[0]));
-       if (ctx->last_target_usages == NULL)
+       c->optimum = MALLOC((params.optim_array_length +
+                            params.nice_match_length) *
+                           sizeof(struct lzms_mc_pos_data));
+       if (!c->optimum)
                goto oom;
+       c->optimum_end = &c->optimum[params.optim_array_length];
+
+       lzms_init_slots();
+
+       lzms_init_rc_costs();
+
+       lzms_init_fast_slots(c);
 
-       *ctx_ret = ctx;
+       *ctx_ret = c;
        return 0;
 
 oom:
-       lzms_free_compressor(ctx);
+       lzms_free_compressor(c);
        return WIMLIB_ERR_NOMEM;
 }
 
+static size_t
+lzms_compress(const void *uncompressed_data, size_t uncompressed_size,
+             void *compressed_data, size_t compressed_size_avail, void *_c)
+{
+       struct lzms_compressor *c = _c;
+
+       /* Don't bother compressing extremely small inputs.  */
+       if (uncompressed_size < 4)
+               return 0;
+
+       /* Cap the available compressed size to a 32-bit integer and round it
+        * down to the nearest multiple of 2.  */
+       if (compressed_size_avail > UINT32_MAX)
+               compressed_size_avail = UINT32_MAX;
+       if (compressed_size_avail & 1)
+               compressed_size_avail--;
+
+       /* Initialize the compressor structures.  */
+       lzms_prepare_compressor(c, uncompressed_data, uncompressed_size,
+                               compressed_data, compressed_size_avail / 2);
+
+       /* Preprocess the uncompressed data.  */
+       lzms_x86_filter(c->cur_window, c->cur_window_size,
+                       c->last_target_usages, false);
+
+       /* Load the window into the match-finder.  */
+       lz_mf_load_window(c->mf, c->cur_window, c->cur_window_size);
+
+       /* Compute and encode a literal/match sequence that decompresses to the
+        * preprocessed data.  */
+       lzms_near_optimal_parse(c);
+
+       /* Return the compressed data size or 0.  */
+       return lzms_finalize(c, compressed_data, compressed_size_avail);
+}
+
+static void
+lzms_free_compressor(void *_c)
+{
+       struct lzms_compressor *c = _c;
+
+       if (c) {
+               FREE(c->cur_window);
+               lz_mf_free(c->mf);
+               FREE(c->matches);
+               FREE(c->optimum);
+               FREE(c);
+       }
+}
+
 const struct compressor_ops lzms_compressor_ops = {
+       .get_needed_memory  = lzms_get_needed_memory,
        .create_compressor  = lzms_create_compressor,
        .compress           = lzms_compress,
        .free_compressor    = lzms_free_compressor,