]> wimlib.net Git - wimlib/blobdiff - src/lzms-compress.c
Update LZMS compressor - can now output literals
[wimlib] / src / lzms-compress.c
index 3c34b52c807f32ac61006bf35464569f58c80e86..2a44e479a2da88136b149f8b8791c539ae1721eb 100644 (file)
@@ -1,7 +1,5 @@
 /*
  * lzms-compress.c
- *
- * A compressor for the LZMS compression format.
  */
 
 /*
  */
 
 /* This a compressor for the LZMS compression format.  More details about this
- * format can be found in lzms-decompress.c.  */
+ * format can be found in lzms-decompress.c.
+ *
+ * This is currently an unsophisticated implementation that is fast but does not
+ * attain the best compression ratios allowed by the format.
+ */
 
 #ifdef HAVE_CONFIG_H
 #  include "config.h"
@@ -32,6 +34,7 @@
 
 #include "wimlib.h"
 #include "wimlib/assert.h"
+#include "wimlib/compiler.h"
 #include "wimlib/compressor_ops.h"
 #include "wimlib/compress_common.h"
 #include "wimlib/endianness.h"
 
 #include <string.h>
 
+/* Stucture used for writing raw bits to the end of the LZMS-compressed data as
+ * a series of 16-bit little endian coding units.  */
+struct lzms_output_bitstream {
+       /* Buffer variable containing zero or more bits that have been logically
+        * written to the bitstream but not yet written to memory.  This must be
+        * at least as large as the coding unit size.  */
+       u16 bitbuf;
+
+       /* Number of bits in @bitbuf that are valid.  */
+       unsigned num_free_bits;
+
+       /* Pointer to one past the next position in the compressed data buffer
+        * at which to output a 16-bit coding unit.  */
+       le16 *out;
+
+       /* Maximum number of 16-bit coding units that can still be output to
+        * the compressed data buffer.  */
+       size_t num_le16_remaining;
+
+       /* Set to %true if not all coding units could be output due to
+        * insufficient space.  */
+       bool overrun;
+};
+
+/* Stucture used for range encoding (raw version).  */
+struct lzms_range_encoder_raw {
+
+       /* A 33-bit variable that holds the low boundary of the current range.
+        * The 33rd bit is needed to catch carries.  */
+       u64 low;
+
+       /* Size of the current range.  */
+       u32 range;
+
+       /* Next 16-bit coding unit to output.  */
+       u16 cache;
+
+       /* Number of 16-bit coding units whose output has been delayed due to
+        * possible carrying.  The first such coding unit is @cache; all
+        * subsequent such coding units are 0xffff.  */
+       u32 cache_size;
+
+       /* Pointer to the next position in the compressed data buffer at which
+        * to output a 16-bit coding unit.  */
+       le16 *out;
+
+       /* Maximum number of 16-bit coding units that can still be output to
+        * the compressed data buffer.  */
+       size_t num_le16_remaining;
+
+       /* %true when the very first coding unit has not yet been output.  */
+       bool first;
+
+       /* Set to %true if not all coding units could be output due to
+        * insufficient space.  */
+       bool overrun;
+};
+
+/* Structure used for range encoding.  This wraps around `struct
+ * lzms_range_encoder_raw' to use and maintain probability entries.  */
+struct lzms_range_encoder {
+       /* Pointer to the raw range encoder, which has no persistent knowledge
+        * of probabilities.  Multiple lzms_range_encoder's share the same
+        * lzms_range_encoder_raw.  */
+       struct lzms_range_encoder_raw *rc;
+
+       /* Bits recently encoded by this range encoder.  This are used as in
+        * index into @prob_entries.  */
+       u32 state;
+
+       /* Bitmask for @state to prevent its value from exceeding the number of
+        * probability entries.  */
+       u32 mask;
+
+       /* Probability entries being used for this range encoder.  */
+       struct lzms_probability_entry prob_entries[LZMS_MAX_NUM_STATES];
+};
+
+/* Structure used for Huffman encoding, optionally encoding larger "values" as a
+ * Huffman symbol specifying a slot and a slot-dependent number of extra bits.
+ * */
+struct lzms_huffman_encoder {
+
+       /* Bitstream to write Huffman-encoded symbols and verbatim bits to.
+        * Multiple lzms_huffman_encoder's share the same lzms_output_bitstream.
+        */
+       struct lzms_output_bitstream *os;
+
+       /* Pointer to the slot base table to use.  */
+       const u32 *slot_base_tab;
+
+       /* Number of symbols that have been written using this code far.  Reset
+        * to 0 whenever the code is rebuilt.  */
+       u32 num_syms_written;
+
+       /* When @num_syms_written reaches this number, the Huffman code must be
+        * rebuilt.  */
+       u32 rebuild_freq;
+
+       /* Number of symbols in the represented Huffman code.  */
+       unsigned num_syms;
+
+       /* Running totals of symbol frequencies.  These are diluted slightly
+        * whenever the code is rebuilt.  */
+       u32 sym_freqs[LZMS_MAX_NUM_SYMS];
+
+       /* The length, in bits, of each symbol in the Huffman code.  */
+       u8 lens[LZMS_MAX_NUM_SYMS];
+
+       /* The codeword of each symbol in the Huffman code.  */
+       u16 codewords[LZMS_MAX_NUM_SYMS];
+};
+
+/* State of the LZMS compressor.  */
 struct lzms_compressor {
+       /* Pointer to a buffer holding the preprocessed data to compress.  */
        u8 *window;
+
+       /* Current position in @buffer.  */
+       u32 cur_window_pos;
+
+       /* Size of the data in @buffer.  */
        u32 window_size;
+
+       /* Maximum block size this compressor instantiation allows.  This is the
+        * allocated size of @window.  */
        u32 max_block_size;
-       s32 *last_target_usages;
+
+       /* Raw range encoder which outputs to the beginning of the compressed
+        * data buffer, proceeding forwards.  */
+       struct lzms_range_encoder_raw rc;
+
+       /* Bitstream which outputs to the end of the compressed data buffer,
+        * proceeding backwards.  */
+       struct lzms_output_bitstream os;
+
+       /* Range encoders.  */
+       struct lzms_range_encoder main_range_encoder;
+       struct lzms_range_encoder match_range_encoder;
+       struct lzms_range_encoder lz_match_range_encoder;
+       struct lzms_range_encoder lz_repeat_match_range_encoders[LZMS_NUM_RECENT_OFFSETS - 1];
+       struct lzms_range_encoder delta_match_range_encoder;
+       struct lzms_range_encoder delta_repeat_match_range_encoders[LZMS_NUM_RECENT_OFFSETS - 1];
+
+       /* Huffman encoders.  */
+       struct lzms_huffman_encoder literal_encoder;
+       struct lzms_huffman_encoder lz_offset_encoder;
+       struct lzms_huffman_encoder length_encoder;
+       struct lzms_huffman_encoder delta_power_encoder;
+       struct lzms_huffman_encoder delta_offset_encoder;
+
+       /* LRU (least-recently-used) queue of LZ match offsets.  */
+       u64 recent_lz_offsets[LZMS_NUM_RECENT_OFFSETS + 1];
+
+       /* LRU (least-recently-used) queue of delta match powers.  */
+       u32 recent_delta_powers[LZMS_NUM_RECENT_OFFSETS + 1];
+
+       /* LRU (least-recently-used) queue of delta match offsets.  */
+       u32 recent_delta_offsets[LZMS_NUM_RECENT_OFFSETS + 1];
+
+       /* These variables are used to delay updates to the LRU queues by one
+        * decoded item.  */
+       u32 prev_lz_offset;
+       u32 prev_delta_power;
+       u32 prev_delta_offset;
+       u32 upcoming_lz_offset;
+       u32 upcoming_delta_power;
+       u32 upcoming_delta_offset;
+
+       /* Used for preprocessing.  */
+       s32 last_target_usages[65536];
 };
 
+struct lzms_match {
+       u32 length;
+       u32 offset;
+};
+
+/* Initialize the output bitstream @os to write forwards to the specified
+ * compressed data buffer @out that is @out_limit 16-bit integers long.  */
+static void
+lzms_output_bitstream_init(struct lzms_output_bitstream *os,
+                          le16 *out, size_t out_limit)
+{
+       os->bitbuf = 0;
+       os->num_free_bits = 16;
+       os->out = out + out_limit;
+       os->num_le16_remaining = out_limit;
+       os->overrun = false;
+}
+
+/* Write @num_bits bits, contained in the low @num_bits bits of @bits (ordered
+ * from high-order to low-order), to the output bitstream @os.  */
+static void
+lzms_output_bitstream_put_bits(struct lzms_output_bitstream *os,
+                              u32 bits, unsigned num_bits)
+{
+       bits &= (1U << num_bits) - 1;
+
+       while (num_bits > os->num_free_bits) {
+
+               if (unlikely(os->num_le16_remaining == 0)) {
+                       os->overrun = true;
+                       return;
+               }
+
+               unsigned num_fill_bits = os->num_free_bits;
+
+               os->bitbuf <<= num_fill_bits;
+               os->bitbuf |= bits >> (num_bits - num_fill_bits);
+
+               *--os->out = cpu_to_le16(os->bitbuf);
+               --os->num_le16_remaining;
+
+               os->num_free_bits = 16;
+               num_bits -= num_fill_bits;
+               bits &= (1U << num_bits) - 1;
+       }
+       os->bitbuf <<= num_bits;
+       os->bitbuf |= bits;
+       os->num_free_bits -= num_bits;
+}
+
+/* Flush the output bitstream, ensuring that all bits written to it have been
+ * written to memory.  Returns %true if all bits were output successfully, or
+ * %false if an overrun occurred.  */
+static bool
+lzms_output_bitstream_flush(struct lzms_output_bitstream *os)
+{
+       if (os->num_free_bits != 16)
+               lzms_output_bitstream_put_bits(os, 0, os->num_free_bits + 1);
+       return !os->overrun;
+}
+
+/* Initialize the range encoder @rc to write forwards to the specified
+ * compressed data buffer @out that is @out_limit 16-bit integers long.  */
+static void
+lzms_range_encoder_raw_init(struct lzms_range_encoder_raw *rc,
+                           le16 *out, size_t out_limit)
+{
+       rc->low = 0;
+       rc->range = 0xffffffff;
+       rc->cache = 0;
+       rc->cache_size = 1;
+       rc->out = out;
+       rc->num_le16_remaining = out_limit;
+       rc->first = true;
+       rc->overrun = false;
+}
+
+/*
+ * Attempt to flush bits from the range encoder.
+ *
+ * Note: this is based on the public domain code for LZMA written by Igor
+ * Pavlov.  The only differences in this function are that in LZMS the bits must
+ * be output in 16-bit coding units instead of 8-bit coding units, and that in
+ * LZMS the first coding unit is not ignored by the decompressor, so the encoder
+ * cannot output a dummy value to that position.
+ *
+ * The basic idea is that we're writing bits from @rc->low to the output.
+ * However, due to carrying, the writing of coding units with value 0xffff, as
+ * well as one prior coding unit, must be delayed until it is determined whether
+ * a carry is needed.
+ */
+static void
+lzms_range_encoder_raw_shift_low(struct lzms_range_encoder_raw *rc)
+{
+       LZMS_DEBUG("low=%"PRIx64", cache=%"PRIx64", cache_size=%u",
+                  rc->low, rc->cache, rc->cache_size);
+       if ((u32)(rc->low) < 0xffff0000 ||
+           (u32)(rc->low >> 32) != 0)
+       {
+               /* Carry not needed (rc->low < 0xffff0000), or carry occurred
+                * ((rc->low >> 32) != 0, a.k.a. the carry bit is 1).  */
+               do {
+                       if (!rc->first) {
+                               if (rc->num_le16_remaining == 0) {
+                                       rc->overrun = true;
+                                       return;
+                               }
+                               *rc->out++ = cpu_to_le16(rc->cache +
+                                                        (u16)(rc->low >> 32));
+                               --rc->num_le16_remaining;
+                       } else {
+                               rc->first = false;
+                       }
+
+                       rc->cache = 0xffff;
+               } while (--rc->cache_size != 0);
+
+               rc->cache = (rc->low >> 16) & 0xffff;
+       }
+       ++rc->cache_size;
+       rc->low = (rc->low & 0xffff) << 16;
+}
+
+static void
+lzms_range_encoder_raw_normalize(struct lzms_range_encoder_raw *rc)
+{
+       if (rc->range <= 0xffff) {
+               rc->range <<= 16;
+               lzms_range_encoder_raw_shift_low(rc);
+       }
+}
+
+static bool
+lzms_range_encoder_raw_flush(struct lzms_range_encoder_raw *rc)
+{
+       for (unsigned i = 0; i < 4; i++)
+               lzms_range_encoder_raw_shift_low(rc);
+       return !rc->overrun;
+}
+
+/* Encode the next bit using the range encoder (raw version).
+ *
+ * @prob is the chance out of LZMS_PROBABILITY_MAX that the next bit is 0.  */
+static void
+lzms_range_encoder_raw_encode_bit(struct lzms_range_encoder_raw *rc, int bit,
+                                 u32 prob)
+{
+       lzms_range_encoder_raw_normalize(rc);
+
+       u32 bound = (rc->range >> LZMS_PROBABILITY_BITS) * prob;
+       if (bit == 0) {
+               rc->range = bound;
+       } else {
+               rc->low += bound;
+               rc->range -= bound;
+       }
+}
+
+/* Encode a bit using the specified range encoder. This wraps around
+ * lzms_range_encoder_raw_encode_bit() to handle using and updating the
+ * appropriate probability table.  */
+static void
+lzms_range_encode_bit(struct lzms_range_encoder *enc, int bit)
+{
+       struct lzms_probability_entry *prob_entry;
+       u32 prob;
+
+       /* Load the probability entry corresponding to the current state.  */
+       prob_entry = &enc->prob_entries[enc->state];
+
+       /* Treat the number of zero bits in the most recently encoded
+        * LZMS_PROBABILITY_MAX bits with this probability entry as the chance,
+        * out of LZMS_PROBABILITY_MAX, that the next bit will be a 0.  However,
+        * don't allow 0% or 100% probabilities.  */
+       prob = prob_entry->num_recent_zero_bits;
+       if (prob == 0)
+               prob = 1;
+       else if (prob == LZMS_PROBABILITY_MAX)
+               prob = LZMS_PROBABILITY_MAX - 1;
+
+       /* Encode the next bit.  */
+       lzms_range_encoder_raw_encode_bit(enc->rc, bit, prob);
+
+       /* Update the state based on the newly encoded bit.  */
+       enc->state = ((enc->state << 1) | bit) & enc->mask;
+
+       /* Update the recent bits, including the cached count of 0's.  */
+       BUILD_BUG_ON(LZMS_PROBABILITY_MAX > sizeof(prob_entry->recent_bits) * 8);
+       if (bit == 0) {
+               if (prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1))) {
+                       /* Replacing 1 bit with 0 bit; increment the zero count.
+                        */
+                       prob_entry->num_recent_zero_bits++;
+               }
+       } else {
+               if (!(prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1)))) {
+                       /* Replacing 0 bit with 1 bit; decrement the zero count.
+                        */
+                       prob_entry->num_recent_zero_bits--;
+               }
+       }
+       prob_entry->recent_bits = (prob_entry->recent_bits << 1) | bit;
+}
+
+/* Encode a symbol using the specified Huffman encoder.  */
+static void
+lzms_huffman_encode_symbol(struct lzms_huffman_encoder *enc, u32 sym)
+{
+       LZMS_ASSERT(sym < enc->num_syms);
+       if (enc->num_syms_written == enc->rebuild_freq) {
+               /* Adaptive code needs to be rebuilt.  */
+               LZMS_DEBUG("Rebuilding code (num_syms=%u)", enc->num_syms);
+               make_canonical_huffman_code(enc->num_syms,
+                                           LZMS_MAX_CODEWORD_LEN,
+                                           enc->sym_freqs,
+                                           enc->lens,
+                                           enc->codewords);
+
+               /* Dilute the frequencies.  */
+               for (unsigned i = 0; i < enc->num_syms; i++) {
+                       enc->sym_freqs[i] >>= 1;
+                       enc->sym_freqs[i] += 1;
+               }
+               enc->num_syms_written = 0;
+       }
+       lzms_output_bitstream_put_bits(enc->os,
+                                      enc->codewords[sym],
+                                      enc->lens[sym]);
+       ++enc->num_syms_written;
+       ++enc->sym_freqs[sym];
+}
+
+/* Encode a number as a Huffman symbol specifying a slot, plus a number of
+ * slot-dependent extra bits.  */
+static void
+lzms_encode_value(struct lzms_huffman_encoder *enc, u32 value)
+{
+       unsigned slot;
+       unsigned num_extra_bits;
+       u32 extra_bits;
+
+       LZMS_ASSERT(enc->slot_base_tab != NULL);
+
+       slot = lzms_get_slot(value, enc->slot_base_tab, enc->num_syms);
+
+       /* Get the number of extra bits needed to represent the range of values
+        * that share the slot.  */
+       num_extra_bits = bsr32(enc->slot_base_tab[slot + 1] -
+                              enc->slot_base_tab[slot]);
+
+       /* Calculate the extra bits as the offset from the slot base.  */
+       extra_bits = value - enc->slot_base_tab[slot];
+
+       /* Output the slot (Huffman-encoded), then the extra bits (verbatim).
+        */
+       lzms_huffman_encode_symbol(enc, slot);
+       lzms_output_bitstream_put_bits(enc->os, extra_bits, num_extra_bits);
+}
+
+/* Encode a literal byte.  */
+static void
+lzms_encode_literal(struct lzms_compressor *ctx, u8 literal)
+{
+       LZMS_DEBUG("Position %u: Encoding literal 0x%02x ('%c')",
+                  ctx->cur_window_pos, literal, literal);
+
+       /* Main bit: 0 = a literal, not a match.  */
+       lzms_range_encode_bit(&ctx->main_range_encoder, 0);
+
+       /* Encode the literal using the current literal Huffman code.  */
+       lzms_huffman_encode_symbol(&ctx->literal_encoder, literal);
+}
+
+/* Encode a (length, offset) pair (LZ match).  */
+static void
+lzms_encode_lz_match(struct lzms_compressor *ctx, u32 length, u32 offset)
+{
+       int recent_offset_idx;
+
+       LZMS_DEBUG("Position %u: Encoding LZ match {length=%u, offset=%u}",
+                  ctx->cur_window_pos, length, offset);
+
+       /* Main bit: 1 = a match, not a literal.  */
+       lzms_range_encode_bit(&ctx->main_range_encoder, 1);
+
+       /* Match bit: 0 = a LZ match, not a delta match.  */
+       lzms_range_encode_bit(&ctx->match_range_encoder, 0);
+
+       /* Determine if the offset can be represented as a recent offset.  */
+       for (recent_offset_idx = 0;
+            recent_offset_idx < LZMS_NUM_RECENT_OFFSETS;
+            recent_offset_idx++)
+               if (offset == ctx->recent_lz_offsets[recent_offset_idx])
+                       break;
+
+       if (recent_offset_idx == LZMS_NUM_RECENT_OFFSETS) {
+               /* Explicit offset.  */
+
+               /* LZ match bit: 0 = explicit offset, not a repeat offset.  */
+               lzms_range_encode_bit(&ctx->lz_match_range_encoder, 0);
+
+               /* Encode the match offset.  */
+               lzms_encode_value(&ctx->lz_offset_encoder, offset);
+       } else {
+               int i;
+
+               /* Repeat offset.  */
+
+
+               /* LZ match bit: 0 = repeat offset, not an explicit offset.  */
+               lzms_range_encode_bit(&ctx->lz_match_range_encoder, 1);
+
+               /* Encode the recent offset index.  A 1 bit is encoded for each
+                * index passed up.  This sequence of 1 bits is terminated by a
+                * 0 bit, or automatically when (LZMS_NUM_RECENT_OFFSETS - 1) 1
+                * bits have been encoded.  */
+               for (i = 0; i < recent_offset_idx - 1; i++)
+                       lzms_range_encode_bit(&ctx->lz_repeat_match_range_encoders[i], 1);
+
+               if (i < LZMS_NUM_RECENT_OFFSETS - 1)
+                       lzms_range_encode_bit(&ctx->lz_repeat_match_range_encoders[i], 0);
+
+               /* Initial update of the LZ match offset LRU queue.  */
+               for (i = recent_offset_idx; i < LZMS_NUM_RECENT_OFFSETS; i++)
+                       ctx->recent_lz_offsets[i] = ctx->recent_lz_offsets[i + 1];
+       }
+
+       /* Encode the match length.  */
+       lzms_encode_value(&ctx->length_encoder, length);
+
+       /* Save the match offset for later insertion at the front of the LZ
+        * match offset LRU queue.  */
+       ctx->upcoming_lz_offset = offset;
+}
+
+static struct lzms_match
+lzms_get_best_match(struct lzms_compressor *ctx)
+{
+       struct lzms_match match;
+
+       /* TODO */
+
+       match.length = 0;
+
+       return match;
+}
+
+static void
+lzms_init_range_encoder(struct lzms_range_encoder *enc,
+                       struct lzms_range_encoder_raw *rc, u32 num_states)
+{
+       enc->rc = rc;
+       enc->state = 0;
+       enc->mask = num_states - 1;
+       for (u32 i = 0; i < num_states; i++) {
+               enc->prob_entries[i].num_recent_zero_bits = LZMS_INITIAL_PROBABILITY;
+               enc->prob_entries[i].recent_bits = LZMS_INITIAL_RECENT_BITS;
+       }
+}
+
+static void
+lzms_init_huffman_encoder(struct lzms_huffman_encoder *enc,
+                         struct lzms_output_bitstream *os,
+                         const u32 *slot_base_tab,
+                         unsigned num_syms,
+                         unsigned rebuild_freq)
+{
+       enc->os = os;
+       enc->slot_base_tab = slot_base_tab;
+       enc->num_syms_written = rebuild_freq;
+       enc->rebuild_freq = rebuild_freq;
+       enc->num_syms = num_syms;
+       for (unsigned i = 0; i < num_syms; i++)
+               enc->sym_freqs[i] = 1;
+}
+
+/* Initialize the LZMS compressor.  */
+static void
+lzms_init_compressor(struct lzms_compressor *ctx, const u8 *udata, u32 ulen,
+                    le16 *cdata, u32 clen16)
+{
+       unsigned num_position_slots;
+
+       /* Copy the uncompressed data into the @ctx->window buffer.  */
+       memcpy(ctx->window, udata, ulen);
+       ctx->cur_window_pos = 0;
+       ctx->window_size = ulen;
+
+       /* Initialize the raw range encoder (writing forwards).  */
+       lzms_range_encoder_raw_init(&ctx->rc, cdata, clen16);
+
+       /* Initialize the output bitstream for Huffman symbols and verbatim bits
+        * (writing backwards).  */
+       lzms_output_bitstream_init(&ctx->os, cdata, clen16);
+
+       /* Initialize position and length slot bases if not done already.  */
+       lzms_init_slot_bases();
+
+       /* Calculate the number of position slots needed for this compressed
+        * block.  */
+       num_position_slots = lzms_get_position_slot(ulen - 1) + 1;
+
+       LZMS_DEBUG("Using %u position slots", num_position_slots);
+
+       /* Initialize Huffman encoders for each alphabet used in the compressed
+        * representation.  */
+       lzms_init_huffman_encoder(&ctx->literal_encoder, &ctx->os,
+                                 NULL, LZMS_NUM_LITERAL_SYMS,
+                                 LZMS_LITERAL_CODE_REBUILD_FREQ);
+
+       lzms_init_huffman_encoder(&ctx->lz_offset_encoder, &ctx->os,
+                                 lzms_position_slot_base, num_position_slots,
+                                 LZMS_LZ_OFFSET_CODE_REBUILD_FREQ);
+
+       lzms_init_huffman_encoder(&ctx->length_encoder, &ctx->os,
+                                 lzms_length_slot_base, LZMS_NUM_LEN_SYMS,
+                                 LZMS_LENGTH_CODE_REBUILD_FREQ);
+
+       lzms_init_huffman_encoder(&ctx->delta_offset_encoder, &ctx->os,
+                                 lzms_position_slot_base, num_position_slots,
+                                 LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ);
+
+       lzms_init_huffman_encoder(&ctx->delta_power_encoder, &ctx->os,
+                                 NULL, LZMS_NUM_DELTA_POWER_SYMS,
+                                 LZMS_DELTA_POWER_CODE_REBUILD_FREQ);
+
+       /* Initialize range encoders, all of which wrap around the same
+        * lzms_range_encoder_raw.  */
+       lzms_init_range_encoder(&ctx->main_range_encoder,
+                               &ctx->rc, LZMS_NUM_MAIN_STATES);
+
+       lzms_init_range_encoder(&ctx->match_range_encoder,
+                               &ctx->rc, LZMS_NUM_MATCH_STATES);
+
+       lzms_init_range_encoder(&ctx->lz_match_range_encoder,
+                               &ctx->rc, LZMS_NUM_LZ_MATCH_STATES);
+
+       for (size_t i = 0; i < ARRAY_LEN(ctx->lz_repeat_match_range_encoders); i++)
+               lzms_init_range_encoder(&ctx->lz_repeat_match_range_encoders[i],
+                                       &ctx->rc, LZMS_NUM_LZ_REPEAT_MATCH_STATES);
+
+       lzms_init_range_encoder(&ctx->delta_match_range_encoder,
+                               &ctx->rc, LZMS_NUM_DELTA_MATCH_STATES);
+
+       for (size_t i = 0; i < ARRAY_LEN(ctx->delta_repeat_match_range_encoders); i++)
+               lzms_init_range_encoder(&ctx->delta_repeat_match_range_encoders[i],
+                                       &ctx->rc, LZMS_NUM_DELTA_REPEAT_MATCH_STATES);
+
+       /* Initialize the LRU queue for recent match offsets.  */
+       for (size_t i = 0; i < LZMS_NUM_RECENT_OFFSETS + 1; i++)
+               ctx->recent_lz_offsets[i] = i + 1;
+
+       for (size_t i = 0; i < LZMS_NUM_RECENT_OFFSETS + 1; i++) {
+               ctx->recent_delta_powers[i] = 0;
+               ctx->recent_delta_offsets[i] = i + 1;
+       }
+       ctx->prev_lz_offset = 0;
+       ctx->prev_delta_offset = 0;
+       ctx->prev_delta_power = 0;
+       ctx->upcoming_lz_offset = 0;
+       ctx->upcoming_delta_offset = 0;
+       ctx->upcoming_delta_power = 0;
+}
+
+/* Flush the output streams, prepare the final compressed data, and return its
+ * size in bytes.
+ *
+ * A return value of 0 indicates that the data could not be compressed to fit in
+ * the available space.  */
+static size_t
+lzms_finalize(struct lzms_compressor *ctx, u8 *cdata, size_t csize_avail)
+{
+       size_t num_forwards_bytes;
+       size_t num_backwards_bytes;
+       size_t compressed_size;
+
+       /* Flush both the forwards and backwards streams, and make sure they
+        * didn't cross each other and start overwriting each other's data.  */
+       if (!lzms_output_bitstream_flush(&ctx->os)) {
+               LZMS_DEBUG("Backwards bitstream overrun.");
+               return 0;
+       }
+
+       if (!lzms_range_encoder_raw_flush(&ctx->rc)) {
+               LZMS_DEBUG("Forwards bitstream overrun.");
+               return 0;
+       }
+
+       if (ctx->rc.out > ctx->os.out) {
+               LZMS_DEBUG("Two bitstreams crossed.");
+               return 0;
+       }
+
+       /* Now the compressed buffer contains the data output by the forwards
+        * bitstream, then empty space, then data output by the backwards
+        * bitstream.  Move the data output by the forwards bitstream to be
+        * adjacent to the data output by the backwards bitstream, and calculate
+        * the compressed size that this results in.  */
+       num_forwards_bytes = (u8*)ctx->rc.out - (u8*)cdata;
+       num_backwards_bytes = ((u8*)cdata + csize_avail) - (u8*)ctx->os.out;
+
+       memmove(cdata + num_forwards_bytes, ctx->os.out, num_backwards_bytes);
+
+       compressed_size = num_forwards_bytes + num_backwards_bytes;
+       LZMS_DEBUG("num_forwards_bytes=%zu, num_backwards_bytes=%zu, "
+                  "compressed_size=%zu",
+                  num_forwards_bytes, num_backwards_bytes, compressed_size);
+       LZMS_ASSERT(!(compressed_size & 1));
+       return compressed_size;
+}
+
 static size_t
 lzms_compress(const void *uncompressed_data, size_t uncompressed_size,
              void *compressed_data, size_t compressed_size_avail, void *_ctx)
 {
        struct lzms_compressor *ctx = _ctx;
+       struct lzms_match match;
+       size_t compressed_size;
+
+       LZMS_DEBUG("uncompressed_size=%zu, compressed_size_avail=%zu",
+                  uncompressed_size, compressed_size_avail);
 
+       /* Make sure the uncompressed size is compatible with this compressor.
+        */
        if (uncompressed_size > ctx->max_block_size) {
-               LZMS_DEBUG("Can't compress %su bytes: LZMS context "
+               LZMS_DEBUG("Can't compress %zu bytes: LZMS context "
                           "only supports %u bytes",
                           uncompressed_size, ctx->max_block_size);
                return 0;
        }
 
-       memcpy(ctx->window, uncompressed_data, uncompressed_size);
-       ctx->window_size = uncompressed_size;
+       /* Don't bother compressing extremely small inputs.  */
+       if (uncompressed_size < 4)
+               return 0;
+
+       /* Cap the available compressed size to a 32-bit integer, and round it
+        * down to the nearest multiple of 2.  */
+       if (compressed_size_avail > UINT32_MAX)
+               compressed_size_avail = UINT32_MAX;
+       if (compressed_size_avail & 1)
+               compressed_size_avail--;
 
+       /* Initialize the compressor structures.  */
+       lzms_init_compressor(ctx, uncompressed_data, uncompressed_size,
+                            compressed_data, compressed_size_avail / 2);
+
+       /* Preprocess the uncompressed data.  */
        lzms_x86_filter(ctx->window, ctx->window_size,
                        ctx->last_target_usages, false);
 
-       return 0;
+       /* Determine and output a literal/match sequence that decompresses to
+        * the preprocessed data.  */
+       while (ctx->cur_window_pos != ctx->window_size) {
+               match = lzms_get_best_match(ctx);
+               if (match.length == 0) {
+                       /* Literal  */
+                       lzms_encode_literal(ctx, ctx->window[ctx->cur_window_pos]);
+                       ctx->cur_window_pos++;
+               } else {
+                       /* LZ match  */
+                       lzms_encode_lz_match(ctx, match.length, match.offset);
+                       ctx->cur_window_pos += match.length;
+               }
+       }
+
+       /* Get and return the compressed data size.  */
+       compressed_size = lzms_finalize(ctx, compressed_data,
+                                       compressed_size_avail);
+
+       if (compressed_size == 0) {
+               LZMS_DEBUG("Data did not compress to requested size or less.");
+               return 0;
+       }
+
+       LZMS_DEBUG("Compressed %zu => %zu bytes",
+                  uncompressed_size, compressed_size);
+
+#if defined(ENABLE_VERIFY_COMPRESSION) || defined(ENABLE_LZMS_DEBUG)
+       /* Verify that we really get the same thing back when decompressing.  */
+       {
+               struct wimlib_decompressor *decompressor;
+
+               LZMS_DEBUG("Verifying LZMS compression.");
+
+               if (0 == wimlib_create_decompressor(WIMLIB_COMPRESSION_TYPE_LZMS,
+                                                   ctx->max_block_size,
+                                                   NULL,
+                                                   &decompressor))
+               {
+                       int ret;
+                       ret = wimlib_decompress(compressed_data,
+                                               compressed_size,
+                                               ctx->window,
+                                               uncompressed_size,
+                                               decompressor);
+                       wimlib_free_decompressor(decompressor);
+
+                       if (ret) {
+                               ERROR("Failed to decompress data we "
+                                     "compressed using LZMN algorithm");
+                               wimlib_assert(0);
+                               return 0;
+                       }
+                       if (memcmp(uncompressed_data, ctx->window,
+                                  uncompressed_size))
+                       {
+                               ERROR("Data we compressed using LZMN algorithm "
+                                     "didn't decompress to original");
+                               wimlib_assert(0);
+                               return 0;
+                       }
+               } else {
+                       WARNING("Failed to create decompressor for "
+                               "data verification!");
+               }
+       }
+#endif /* ENABLE_LZMS_DEBUG || ENABLE_VERIFY_COMPRESSION  */
+
+       return compressed_size;
 }
 
 static void
@@ -77,7 +845,6 @@ lzms_free_compressor(void *_ctx)
 
        if (ctx) {
                FREE(ctx->window);
-               FREE(ctx->last_target_usages);
                FREE(ctx);
        }
 }
@@ -89,7 +856,7 @@ lzms_create_compressor(size_t max_block_size,
 {
        struct lzms_compressor *ctx;
 
-       if (max_block_size == 0 || max_block_size > 1U << 26) {
+       if (max_block_size == 0 || max_block_size >= INT32_MAX) {
                LZMS_DEBUG("Invalid max_block_size (%u)", max_block_size);
                return WIMLIB_ERR_INVALID_PARAM;
        }
@@ -103,10 +870,6 @@ lzms_create_compressor(size_t max_block_size,
                goto oom;
        ctx->max_block_size = max_block_size;
 
-       ctx->last_target_usages = MALLOC(65536 * sizeof(ctx->last_target_usages[0]));
-       if (ctx->last_target_usages == NULL)
-               goto oom;
-
        *ctx_ret = ctx;
        return 0;