]> wimlib.net Git - wimlib/blobdiff - src/lzms-common.c
LZMS: optimize lzms_x86_filter()
[wimlib] / src / lzms-common.c
index 41383f4c3f553286cbcf6213bab527fb6fc0bf20..ee479903f56a6cbcc56e2cff4ca2e6cc466577eb 100644 (file)
@@ -1,8 +1,5 @@
 /*
- * lzms-common.c
- *
- * Code shared between the compressor and decompressor for the LZMS compression
- * format.
+ * lzms-common.c - Common code for LZMS compression and decompression
  */
 
 /*
@@ -147,103 +144,6 @@ lzms_init_slots(void)
        pthread_once(&once, lzms_compute_slots);
 }
 
-static s32
-lzms_maybe_do_x86_translation(u8 data[restrict], s32 i, s32 num_op_bytes,
-                             s32 * restrict closest_target_usage_p,
-                             s32 last_target_usages[restrict],
-                             s32 max_trans_offset, bool undo)
-{
-       u16 pos;
-
-       if (undo) {
-               if (i - *closest_target_usage_p <= max_trans_offset) {
-                       LZMS_DEBUG("Undid x86 translation at position %d "
-                                  "(opcode 0x%02x)", i, data[i]);
-                       void *p32 = &data[i + num_op_bytes];
-                       u32 n = get_unaligned_u32_le(p32);
-                       put_unaligned_u32_le(n - i, p32);
-               }
-               pos = i + get_unaligned_u16_le(&data[i + num_op_bytes]);
-       } else {
-               pos = i + get_unaligned_u16_le(&data[i + num_op_bytes]);
-
-               if (i - *closest_target_usage_p <= max_trans_offset) {
-                       LZMS_DEBUG("Did x86 translation at position %d "
-                                  "(opcode 0x%02x)", i, data[i]);
-                       void *p32 = &data[i + num_op_bytes];
-                       u32 n = get_unaligned_u32_le(p32);
-                       put_unaligned_u32_le(n + i, p32);
-               }
-       }
-
-       i += num_op_bytes + sizeof(le32) - 1;
-
-       if (i - last_target_usages[pos] <= LZMS_X86_MAX_GOOD_TARGET_OFFSET)
-               *closest_target_usage_p = i;
-
-       last_target_usages[pos] = i;
-
-       return i + 1;
-}
-
-static inline s32
-lzms_may_x86_translate(const u8 p[restrict], s32 *restrict max_offset_ret)
-{
-       /* Switch on first byte of the opcode, assuming it is really an x86
-        * instruction.  */
-       *max_offset_ret = LZMS_X86_MAX_TRANSLATION_OFFSET;
-       switch (p[0]) {
-       case 0x48:
-               if (p[1] == 0x8b) {
-                       if (p[2] == 0x5 || p[2] == 0xd) {
-                               /* Load relative (x86_64)  */
-                               return 3;
-                       }
-               } else if (p[1] == 0x8d) {
-                       if ((p[2] & 0x7) == 0x5) {
-                               /* Load effective address relative (x86_64)  */
-                               return 3;
-                       }
-               }
-               break;
-
-       case 0x4c:
-               if (p[1] == 0x8d) {
-                       if ((p[2] & 0x7) == 0x5) {
-                               /* Load effective address relative (x86_64)  */
-                               return 3;
-                       }
-               }
-               break;
-
-       case 0xe8:
-               /* Call relative  */
-               *max_offset_ret = LZMS_X86_MAX_TRANSLATION_OFFSET / 2;
-               return 1;
-
-       case 0xe9:
-               /* Jump relative  */
-               *max_offset_ret = 0;
-               return 5;
-
-       case 0xf0:
-               if (p[1] == 0x83 && p[2] == 0x05) {
-                       /* Lock add relative  */
-                       return 3;
-               }
-               break;
-
-       case 0xff:
-               if (p[1] == 0x15) {
-                       /* Call indirect  */
-                       return 2;
-               }
-               break;
-       }
-       *max_offset_ret = 0;
-       return 1;
-}
-
 /*
  * Translate relative addresses embedded in x86 instructions into absolute
  * addresses (@undo == %false), or undo this translation (@undo == %true).
@@ -260,58 +160,186 @@ lzms_x86_filter(u8 data[restrict], s32 size,
         * Note: this filter runs unconditionally and uses a custom algorithm to
         * detect data regions that probably contain x86 code.
         *
-        * 'closest_target_usage' tracks the most recent position that has a
-        * good chance of being an x86 instruction.  When the filter detects a
+        * 'last_x86_pos' tracks the most recent position that has a good chance
+        * of being the start of an x86 instruction.  When the filter detects a
         * likely x86 instruction, it updates this variable and considers the
-        * next 1023 bytes of data as valid for x86 translations.
+        * next LZMS_X86_MAX_TRANSLATION_OFFSET bytes of data as valid for x86
+        * translations.
         *
         * If part of the data does not, in fact, contain x86 machine code, then
-        * 'closest_target_usage' will, very likely, eventually fall more than
-        * 1023 bytes behind the current position.  This results in x86
-        * translations being disabled until the next likely x86 instruction is
-        * detected.
-        *
-        * Translations on relative call (e8 opcode) instructions are slightly
-        * more restricted.  They require that the most recent likely x86
-        * instruction was in the last 511 bytes, rather than the last 1023
-        * bytes.
+        * 'last_x86_pos' will, very likely, eventually fall more than
+        * LZMS_X86_MAX_TRANSLATION_OFFSET bytes behind the current position.
+        * This results in x86 translations being disabled until the next likely
+        * x86 instruction is detected.
         *
         * To identify "likely x86 instructions", the algorithm attempts to
         * track the position of the most recent potential relative-addressing
         * instruction that referenced each possible memory address.  If it
-        * finds two references to the same memory address within a 65535 byte
-        * window, the second reference is flagged as a likely x86 instruction.
-        * Since the instructions considered for translation necessarily use
-        * relative addressing, the algorithm does a tentative translation into
-        * absolute addresses.  In addition, so that memory addresses can be
-        * looked up in an array of reasonable size (in this code,
-        * 'last_target_usages'), only the low-order 2 bytes of each address are
-        * considered significant.
+        * finds two references to the same memory address within an
+        * LZMS_X86_ID_WINDOW_SIZE-byte sized window, then the second reference
+        * is flagged as a likely x86 instruction.  Since the instructions
+        * considered for translation necessarily use relative addressing, the
+        * algorithm does a tentative translation into absolute addresses.  In
+        * addition, so that memory addresses can be looked up in an array of
+        * reasonable size (in this code, 'last_target_usages'), only the
+        * low-order 2 bytes of each address are considered significant.
         */
 
-       s32 closest_target_usage = -LZMS_X86_MAX_TRANSLATION_OFFSET - 1;
+       s32 i;
+       s32 tail_idx;
+       u8 saved_byte;
+       s32 last_x86_pos;
+
+       if (size <= 17)
+               return;
 
-       for (s32 i = 0; i < 65536; i++)
-               last_target_usages[i] = -LZMS_X86_MAX_GOOD_TARGET_OFFSET - 1;
+       for (i = 0; i < 65536; i++)
+               last_target_usages[i] = -(s32)LZMS_X86_ID_WINDOW_SIZE - 1;
 
-       for (s32 i = 1; i < size - 16; ) {
+       /*
+        * Optimization: only check for end-of-buffer when we already have a
+        * byte that is a potential opcode for x86 translation.  To do this,
+        * overwrite one of the bytes near the end of the buffer, and restore it
+        * later.  The correctness of this optimization relies on two
+        * characteristics of compressed format:
+        *
+        *  1. No translation can follow an opcode beginning in the last 16
+        *     bytes.
+        *  2. A translation following an opcode starting at the last possible
+        *     position (17 bytes from the end) never extends more than 7 bytes.
+        *     Consequently, we can overwrite any of the bytes starting at
+        *     data[(size - 16) + 7] and have no effect on the result, as long
+        *     as we restore those bytes later.
+        */
+       tail_idx = size - 16;
+       saved_byte = data[tail_idx + 8];
+       data[tail_idx + 8] = 0xE8;
+       last_x86_pos = -LZMS_X86_MAX_TRANSLATION_OFFSET - 1;
+
+       /* Note: the very first byte must be ignored completely!  */
+       i = 0;
+       for (;;) {
                s32 max_trans_offset;
-               s32 n;
+               s32 opcode_nbytes;
+               u16 target16;
+
+               /*
+                * The following table is used to accelerate the common case
+                * where the byte has nothing to do with x86 translation and
+                * must simply be skipped.  This is the fastest (at least on
+                * x86_64) of the implementations I tested.  The other
+                * implementations I tested were:
+                *      - Jump table with 256 entries
+                *      - Switch statement with default
+                */
+               static const u8 is_potential_opcode[256] = {
+                       [0x48] = 1, [0x4C] = 1, [0xE8] = 1,
+                       [0xE9] = 1, [0xF0] = 1, [0xFF] = 1,
+               };
+
+               for (;;) {
+                       if (is_potential_opcode[data[++i]])
+                               break;
+                       if (is_potential_opcode[data[++i]])
+                               break;
+                       if (is_potential_opcode[data[++i]])
+                               break;
+                       if (is_potential_opcode[data[++i]])
+                               break;
+               }
+
+               if (i >= tail_idx)
+                       break;
+
+               max_trans_offset = LZMS_X86_MAX_TRANSLATION_OFFSET;
+               switch (data[i]) {
+               case 0x48:
+                       if (data[i + 1] == 0x8B) {
+                               if (data[i + 2] == 0x5 || data[i + 2] == 0xD) {
+                                       /* Load relative (x86_64)  */
+                                       opcode_nbytes = 3;
+                                       goto have_opcode;
+                               }
+                       } else if (data[i + 1] == 0x8D) {
+                               if ((data[i + 2] & 0x7) == 0x5) {
+                                       /* Load effective address relative (x86_64)  */
+                                       opcode_nbytes = 3;
+                                       goto have_opcode;
+                               }
+                       }
+                       break;
+               case 0x4C:
+                       if (data[i + 1] == 0x8D) {
+                               if ((data[i + 2] & 0x7) == 0x5) {
+                                       /* Load effective address relative (x86_64)  */
+                                       opcode_nbytes = 3;
+                                       goto have_opcode;
+                               }
+                       }
+                       break;
+               case 0xE8:
+                       /* Call relative.  Note: 'max_trans_offset' must be
+                        * halved for this instruction.  This means that we must
+                        * be more confident that we are in a region of x86
+                        * machine code before we will do a translation for this
+                        * particular instruction.  */
+                       opcode_nbytes = 1;
+                       max_trans_offset /= 2;
+                       goto have_opcode;
+               case 0xE9:
+                       /* Jump relative  */
+                       i += 4;
+                       break;
+               case 0xF0:
+                       if (data[i + 1] == 0x83 && data[i + 2] == 0x05) {
+                               /* Lock add relative  */
+                               opcode_nbytes = 3;
+                               goto have_opcode;
+                       }
+                       break;
+               case 0xFF:
+                       if (data[i + 1] == 0x15) {
+                               /* Call indirect  */
+                               opcode_nbytes = 2;
+                               goto have_opcode;
+                       }
+                       break;
+               }
 
-               n = lzms_may_x86_translate(data + i, &max_trans_offset);
+               continue;
 
-               if (max_trans_offset) {
-                       /* Recognized opcode.  */
-                       i = lzms_maybe_do_x86_translation(data, i, n,
-                                                         &closest_target_usage,
-                                                         last_target_usages,
-                                                         max_trans_offset,
-                                                         undo);
+       have_opcode:
+               if (undo) {
+                       if (i - last_x86_pos <= max_trans_offset) {
+                               LZMS_DEBUG("Undid x86 translation at position %d "
+                                          "(opcode 0x%02x)", i, data[i]);
+                               void *p32 = &data[i + opcode_nbytes];
+                               u32 n = get_unaligned_u32_le(p32);
+                               put_unaligned_u32_le(n - i, p32);
+                       }
+                       target16 = i + get_unaligned_u16_le(&data[i + opcode_nbytes]);
                } else {
-                       /* Not a recognized opcode.  */
-                       i += n;
+                       target16 = i + get_unaligned_u16_le(&data[i + opcode_nbytes]);
+                       if (i - last_x86_pos <= max_trans_offset) {
+                               LZMS_DEBUG("Did x86 translation at position %d "
+                                          "(opcode 0x%02x)", i, data[i]);
+                               void *p32 = &data[i + opcode_nbytes];
+                               u32 n = get_unaligned_u32_le(p32);
+                               put_unaligned_u32_le(n + i, p32);
+                       }
                }
+
+               i += opcode_nbytes + sizeof(le32) - 1;
+
+               if (i - last_target_usages[target16] <= LZMS_X86_ID_WINDOW_SIZE)
+                       last_x86_pos = i;
+
+               last_target_usages[target16] = i;
+
+               continue;
        }
+
+       data[tail_idx + 8] = saved_byte;
 }
 
 void