]> wimlib.net Git - wimlib/blobdiff - src/dentry.c
Implement multi-threaded compression
[wimlib] / src / dentry.c
index 4dd26ee0352ab8f71194ed2c46975fdf6e10aa2b..559d7e8ba71c5fca359c750a5cf94f86a0db3fb7 100644 (file)
  */
 
 /*
- *
- * Copyright (C) 2010 Carl Thijssen
  * Copyright (C) 2012 Eric Biggers
  *
  * This file is part of wimlib, a library for working with WIM files.
  *
  * wimlib is free software; you can redistribute it and/or modify it under the
- * terms of the GNU Lesser General Public License as published by the Free
- * Software Foundation; either version 2.1 of the License, or (at your option)
- * any later version.
+ * terms of the GNU General Public License as published by the Free Software
+ * Foundation; either version 3 of the License, or (at your option) any later
+ * version.
  *
  * wimlib is distributed in the hope that it will be useful, but WITHOUT ANY
  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
- * A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
- * details.
+ * A PARTICULAR PURPOSE. See the GNU General Public License for more details.
  *
- * You should have received a copy of the GNU Lesser General Public License
- * along with wimlib; if not, see http://www.gnu.org/licenses/.
+ * You should have received a copy of the GNU General Public License along with
+ * wimlib; if not, see http://www.gnu.org/licenses/.
  */
 
-#include "wimlib_internal.h"
+#include <errno.h>
+#include <sys/stat.h>
+#include <time.h>
+#include <unistd.h>
+
 #include "dentry.h"
 #include "io.h"
-#include "timestamp.h"
 #include "lookup_table.h"
 #include "sha1.h"
-#include <unistd.h>
-#include <sys/stat.h>
+#include "timestamp.h"
+#include "wimlib_internal.h"
 
 
-/* Transfers file attributes from a `stat' buffer to a struct dentry. */
-void stbuf_to_dentry(const struct stat *stbuf, struct dentry *dentry)
+/* Calculates the unaligned length, in bytes, of an on-disk WIM dentry that has
+ * a file name and short name that take the specified numbers of bytes.  This
+ * excludes any alternate data stream entries that may follow the dentry. */
+static u64 __dentry_correct_length_unaligned(u16 file_name_len,
+                                            u16 short_name_len)
 {
-       if (S_ISDIR(stbuf->st_mode))
-               dentry->attributes = WIM_FILE_ATTRIBUTE_DIRECTORY;
-       else
-               dentry->attributes = WIM_FILE_ATTRIBUTE_NORMAL;
+       u64 length = WIM_DENTRY_DISK_SIZE;
+       if (file_name_len)
+               length += file_name_len + 2;
+       if (short_name_len)
+               length += short_name_len + 2;
+       return length;
 }
 
-/* Transfers file attributes from a struct dentry to a `stat' buffer. */
-void dentry_to_stbuf(const struct dentry *dentry, struct stat *stbuf, 
-                    const struct lookup_table *table)
+/* Calculates the unaligned length, in bytes, of an on-disk WIM dentry, based on
+ * the file name length and short name length.  Note that dentry->length is
+ * ignored; also, this excludes any alternate data stream entries that may
+ * follow the dentry. */
+static u64 dentry_correct_length_unaligned(const struct dentry *dentry)
 {
-       struct lookup_table_entry *lte;
+       return __dentry_correct_length_unaligned(dentry->file_name_len,
+                                                dentry->short_name_len);
+}
 
-       if (dentry_is_directory(dentry))
-               stbuf->st_mode = S_IFDIR | 0755;
+/* Return the "correct" value to write in the length field of a WIM dentry,
+ * based on the file name length and short name length. */
+static u64 dentry_correct_length(const struct dentry *dentry)
+{
+       return (dentry_correct_length_unaligned(dentry) + 7) & ~7;
+}
+
+/* Return %true iff @dentry has the UTF-8 file name @name that has length
+ * @name_len bytes. */
+static bool dentry_has_name(const struct dentry *dentry, const char *name,
+                           size_t name_len)
+{
+       if (dentry->file_name_utf8_len != name_len)
+               return false;
+       return memcmp(dentry->file_name_utf8, name, name_len) == 0;
+}
+
+/* Return %true iff the alternate data stream entry @entry has the UTF-8 stream
+ * name @name that has length @name_len bytes. */
+static inline bool ads_entry_has_name(const struct ads_entry *entry,
+                                     const char *name, size_t name_len)
+{
+       if (entry->stream_name_utf8_len != name_len)
+               return false;
+       return memcmp(entry->stream_name_utf8, name, name_len) == 0;
+}
+
+/* Duplicates a UTF-8 name into UTF-8 and UTF-16 strings and returns the strings
+ * and their lengths in the pointer arguments */
+int get_names(char **name_utf16_ret, char **name_utf8_ret,
+             u16 *name_utf16_len_ret, u16 *name_utf8_len_ret,
+             const char *name)
+{
+       size_t utf8_len;
+       size_t utf16_len;
+       char *name_utf16, *name_utf8;
+
+       utf8_len = strlen(name);
+
+       name_utf16 = utf8_to_utf16(name, utf8_len, &utf16_len);
+
+       if (!name_utf16)
+               return WIMLIB_ERR_NOMEM;
+
+       name_utf8 = MALLOC(utf8_len + 1);
+       if (!name_utf8) {
+               FREE(name_utf8);
+               return WIMLIB_ERR_NOMEM;
+       }
+       memcpy(name_utf8, name, utf8_len + 1);
+       FREE(*name_utf8_ret);
+       FREE(*name_utf16_ret);
+       *name_utf8_ret      = name_utf8;
+       *name_utf16_ret     = name_utf16;
+       *name_utf8_len_ret  = utf8_len;
+       *name_utf16_len_ret = utf16_len;
+       return 0;
+}
+
+/* Changes the name of a dentry to @new_name.  Only changes the file_name and
+ * file_name_utf8 fields; does not change the short_name, short_name_utf8, or
+ * full_path_utf8 fields.  Also recalculates its length. */
+static int change_dentry_name(struct dentry *dentry, const char *new_name)
+{
+       int ret;
+
+       ret = get_names(&dentry->file_name, &dentry->file_name_utf8,
+                       &dentry->file_name_len, &dentry->file_name_utf8_len,
+                        new_name);
+       FREE(dentry->short_name);
+       dentry->short_name_len = 0;
+       if (ret == 0)
+               dentry->length = dentry_correct_length(dentry);
+       return ret;
+}
+
+/*
+ * Changes the name of an alternate data stream */
+static int change_ads_name(struct ads_entry *entry, const char *new_name)
+{
+       return get_names(&entry->stream_name, &entry->stream_name_utf8,
+                        &entry->stream_name_len,
+                        &entry->stream_name_utf8_len,
+                        new_name);
+}
+
+/* Returns the total length of a WIM alternate data stream entry on-disk,
+ * including the stream name, the null terminator, AND the padding after the
+ * entry to align the next one (or the next dentry) on an 8-byte boundary. */
+static u64 ads_entry_total_length(const struct ads_entry *entry)
+{
+       u64 len = WIM_ADS_ENTRY_DISK_SIZE;
+       if (entry->stream_name_len)
+               len += entry->stream_name_len + 2;
+       return (len + 7) & ~7;
+}
+
+
+static u64 __dentry_total_length(const struct dentry *dentry, u64 length)
+{
+       const struct inode *inode = dentry->d_inode;
+       for (u16 i = 0; i < inode->num_ads; i++)
+               length += ads_entry_total_length(&inode->ads_entries[i]);
+       return (length + 7) & ~7;
+}
+
+/* Calculate the aligned *total* length of an on-disk WIM dentry.  This includes
+ * all alternate data streams. */
+u64 dentry_correct_total_length(const struct dentry *dentry)
+{
+       return __dentry_total_length(dentry,
+                                    dentry_correct_length_unaligned(dentry));
+}
+
+/* Like dentry_correct_total_length(), but use the existing dentry->length field
+ * instead of calculating its "correct" value. */
+static u64 dentry_total_length(const struct dentry *dentry)
+{
+       return __dentry_total_length(dentry, dentry->length);
+}
+
+/* Transfers file attributes from a `stat' buffer to a WIM "inode". */
+void stbuf_to_inode(const struct stat *stbuf, struct inode *inode)
+{
+       if (S_ISLNK(stbuf->st_mode)) {
+               inode->attributes = FILE_ATTRIBUTE_REPARSE_POINT;
+               inode->reparse_tag = WIM_IO_REPARSE_TAG_SYMLINK;
+       } else if (S_ISDIR(stbuf->st_mode)) {
+               inode->attributes = FILE_ATTRIBUTE_DIRECTORY;
+       } else {
+               inode->attributes = FILE_ATTRIBUTE_NORMAL;
+       }
+       if (sizeof(ino_t) >= 8)
+               inode->ino = (u64)stbuf->st_ino;
        else
-               stbuf->st_mode = S_IFREG | 0644;
+               inode->ino = (u64)stbuf->st_ino |
+                                  ((u64)stbuf->st_dev << ((sizeof(ino_t) * 8) & 63));
+       /* Set timestamps */
+       inode->creation_time = timespec_to_wim_timestamp(&stbuf->st_mtim);
+       inode->last_write_time = timespec_to_wim_timestamp(&stbuf->st_mtim);
+       inode->last_access_time = timespec_to_wim_timestamp(&stbuf->st_atim);
+}
 
-       if (table)
-               lte = lookup_resource(table, dentry->hash);
+#ifdef WITH_FUSE
+/* Transfers file attributes from a struct inode to a `stat' buffer.
+ *
+ * The lookup table entry tells us which stream in the inode we are statting.
+ * For a named data stream, everything returned is the same as the unnamed data
+ * stream except possibly the size and block count. */
+int inode_to_stbuf(const struct inode *inode, struct lookup_table_entry *lte,
+                  struct stat *stbuf)
+{
+       if (inode_is_symlink(inode))
+               stbuf->st_mode = S_IFLNK | 0777;
+       else if (inode_is_directory(inode))
+               stbuf->st_mode = S_IFDIR | 0755;
        else
-               lte = NULL;
+               stbuf->st_mode = S_IFREG | 0755;
+
+       stbuf->st_ino   = (ino_t)inode->ino;
+       stbuf->st_nlink = inode->link_count;
+       stbuf->st_uid   = getuid();
+       stbuf->st_gid   = getgid();
 
        if (lte) {
-               stbuf->st_nlink = lte->refcnt;
-               stbuf->st_size = lte->resource_entry.original_size;
+               if (lte->resource_location == RESOURCE_IN_STAGING_FILE) {
+                       wimlib_assert(lte->staging_file_name);
+                       struct stat native_stat;
+                       if (stat(lte->staging_file_name, &native_stat) != 0) {
+                               DEBUG("Failed to stat `%s': %m",
+                                     lte->staging_file_name);
+                               return -errno;
+                       }
+                       stbuf->st_size = native_stat.st_size;
+               } else {
+                       stbuf->st_size = wim_resource_size(lte);
+               }
        } else {
-               stbuf->st_nlink = 1;
                stbuf->st_size = 0;
        }
-       stbuf->st_uid     = getuid();
-       stbuf->st_gid     = getgid();
-       stbuf->st_atime   = ms_timestamp_to_unix(dentry->last_access_time);
-       stbuf->st_mtime   = ms_timestamp_to_unix(dentry->last_write_time);
-       stbuf->st_ctime   = ms_timestamp_to_unix(dentry->creation_time);
+
+       stbuf->st_atime   = wim_timestamp_to_unix(inode->last_access_time);
+       stbuf->st_mtime   = wim_timestamp_to_unix(inode->last_write_time);
+       stbuf->st_ctime   = wim_timestamp_to_unix(inode->creation_time);
        stbuf->st_blocks  = (stbuf->st_size + 511) / 512;
+       return 0;
+}
+#endif
+
+int for_dentry_in_rbtree(struct rb_node *root,
+                        int (*visitor)(struct dentry *, void *),
+                        void *arg)
+{
+       int ret;
+       struct rb_node *node = root;
+       LIST_HEAD(stack);
+       while (true) {
+               if (node) {
+                       list_add(&rbnode_dentry(node)->tmp_list, &stack);
+                       node = node->rb_left;
+               } else {
+                       struct list_head *next;
+                       struct dentry *dentry;
+
+                       next = stack.next;
+                       if (next == &stack)
+                               return 0;
+                       dentry = container_of(next, struct dentry, tmp_list);
+                       list_del(next);
+                       ret = visitor(dentry, arg);
+                       if (ret != 0)
+                               return ret;
+                       node = dentry->rb_node.rb_right;
+               }
+       }
 }
 
-/* Makes all timestamp fields for the dentry be the current time. */
-void dentry_update_all_timestamps(struct dentry *dentry)
+static int for_dentry_tree_in_rbtree_depth(struct rb_node *node,
+                                          int (*visitor)(struct dentry*, void*),
+                                          void *arg)
 {
-       u64 now = get_timestamp();
-       dentry->creation_time       = now;
-       dentry->last_access_time    = now;
-       dentry->last_write_time     = now;
+       int ret;
+       if (node) {
+               ret = for_dentry_tree_in_rbtree_depth(node->rb_left,
+                                                     visitor, arg);
+               if (ret != 0)
+                       return ret;
+               ret = for_dentry_tree_in_rbtree_depth(node->rb_right,
+                                                     visitor, arg);
+               if (ret != 0)
+                       return ret;
+               ret = for_dentry_in_tree_depth(rbnode_dentry(node), visitor, arg);
+               if (ret != 0)
+                       return ret;
+       }
+       return 0;
+}
+
+/*#define RECURSIVE_FOR_DENTRY_IN_TREE*/
+
+#ifdef RECURSIVE_FOR_DENTRY_IN_TREE
+static int for_dentry_tree_in_rbtree(struct rb_node *node,
+                                    int (*visitor)(struct dentry*, void*),
+                                    void *arg)
+{
+       int ret;
+       if (node) {
+               ret = for_dentry_tree_in_rbtree(node->rb_left, visitor, arg);
+               if (ret != 0)
+                       return ret;
+               ret = for_dentry_in_tree(rbnode_dentry(node), visitor, arg);
+               if (ret != 0)
+                       return ret;
+               ret = for_dentry_tree_in_rbtree(node->rb_right, visitor, arg);
+               if (ret != 0)
+                       return ret;
+       }
+       return 0;
 }
+#endif
 
-/* 
- * Calls a function on all directory entries in a directory tree.  It is called
- * on a parent before its children.
+/*
+ * Calls a function on all directory entries in a WIM dentry tree.  Logically,
+ * this is a pre-order traversal (the function is called on a parent dentry
+ * before its children), but sibling dentries will be visited in order as well.
+ *
+ * In reality, the data structures are more complicated than the above might
+ * suggest because there is a separate red-black tree for each dentry that
+ * contains its direct children.
  */
-int for_dentry_in_tree(struct dentry *root, 
+int for_dentry_in_tree(struct dentry *root,
                       int (*visitor)(struct dentry*, void*), void *arg)
 {
+#ifdef RECURSIVE_FOR_DENTRY_IN_TREE
+       int ret = visitor(root, arg);
+       if (ret != 0)
+               return ret;
+       return for_dentry_tree_in_rbtree(root->d_inode->children.rb_node, visitor, arg);
+#else
        int ret;
-       struct dentry *child;
+       struct list_head main_stack;
+       struct list_head sibling_stack;
+       struct list_head *sibling_stack_bottom;
+       struct dentry *main_dentry;
+       struct rb_node *node;
+       struct list_head *next_sibling;
+       struct dentry *dentry;
 
        ret = visitor(root, arg);
-
        if (ret != 0)
                return ret;
 
-       child = root->children;
+       main_dentry = root;
+       sibling_stack_bottom = &sibling_stack;
+       INIT_LIST_HEAD(&main_stack);
+       INIT_LIST_HEAD(&sibling_stack);
 
-       if (!child)
-               return 0;
+       list_add(&root->tmp_list, &main_stack);
+       node = root->d_inode->children.rb_node;
 
-       do {
-               ret = for_dentry_in_tree(child, visitor, arg);
-               if (ret != 0)
-                       return ret;
-               child = child->next;
-       } while (child != root->children);
-       return 0;
+       while (1) {
+               // Prepare for non-recursive in-order traversal of the red-black
+               // tree of this dentry's children
+
+               while (node) {
+                       // Push this node to the sibling stack and examine the
+                       // left neighbor, if any
+                       list_add(&rbnode_dentry(node)->tmp_list, &sibling_stack);
+                       node = node->rb_left;
+               }
+
+               next_sibling = sibling_stack.next;
+               if (next_sibling == sibling_stack_bottom) {
+                       // Done with all siblings.  Pop the main dentry to move
+                       // back up one level.
+                       main_dentry = container_of(main_stack.next,
+                                                  struct dentry,
+                                                  tmp_list);
+                       list_del(&main_dentry->tmp_list);
+
+                       if (main_dentry == root)
+                               goto out;
+
+                       // Restore sibling stack bottom from the previous level
+                       sibling_stack_bottom = (void*)main_dentry->parent;
+
+                       // Restore the just-popped main dentry's parent
+                       main_dentry->parent = container_of(main_stack.next,
+                                                          struct dentry,
+                                                          tmp_list);
+
+                       // The next sibling to traverse in the previous level,
+                       // in the in-order traversal of the red-black tree, is
+                       // the one to the right.
+                       node = main_dentry->rb_node.rb_right;
+               } else {
+                       // The sibling stack is not empty, so there are more to
+                       // go!
+
+                       // Pop a sibling from the stack.
+                       list_del(next_sibling);
+                       dentry = container_of(next_sibling, struct dentry, tmp_list);
+
+                       // Visit the sibling.
+                       ret = visitor(dentry, arg);
+                       if (ret != 0) {
+                               // Failed.  Restore parent pointers for the
+                               // dentries in the main stack
+                               list_for_each_entry(dentry, &main_stack, tmp_list) {
+                                       dentry->parent = container_of(dentry->tmp_list.next,
+                                                                     struct dentry,
+                                                                     tmp_list);
+                               }
+                               goto out;
+                       }
+
+                       // We'd like to recursively visit the dentry tree rooted
+                       // at this sibling.  To do this, add it to the main
+                       // stack, save the bottom of this level's sibling stack
+                       // in the dentry->parent field, re-set the bottom of the
+                       // sibling stack to be its current height, and set
+                       // main_dentry to the sibling so it becomes the parent
+                       // dentry in the next iteration through the outer loop.
+                       if (inode_has_children(dentry->d_inode)) {
+                               list_add(&dentry->tmp_list, &main_stack);
+                               dentry->parent = (void*)sibling_stack_bottom;
+                               sibling_stack_bottom = sibling_stack.next;
+
+                               main_dentry = dentry;
+                               node = main_dentry->d_inode->children.rb_node;
+                       } else {
+                               node = dentry->rb_node.rb_right;
+                       }
+               }
+       }
+out:
+       root->parent = root;
+       return ret;
+#endif
 }
 
-/* 
+/*
  * Like for_dentry_in_tree(), but the visitor function is always called on a
  * dentry's children before on itself.
  */
-int for_dentry_in_tree_depth(struct dentry *root, 
+int for_dentry_in_tree_depth(struct dentry *root,
                             int (*visitor)(struct dentry*, void*), void *arg)
 {
+#if 1
        int ret;
-       struct dentry *child;
-       struct dentry *next;
+       ret = for_dentry_tree_in_rbtree_depth(root->d_inode->children.rb_node,
+                                             visitor, arg);
+       if (ret != 0)
+               return ret;
+       return visitor(root, arg);
 
-       child = root->children;
-       if (child) {
-               do {
-                       next = child->next;
-                       ret = for_dentry_in_tree_depth(child, visitor, arg);
-                       if (ret != 0)
+#else
+       int ret;
+       struct list_head main_stack;
+       struct list_head sibling_stack;
+       struct list_head *sibling_stack_bottom;
+       struct dentry *main_dentry;
+       struct rb_node *node;
+       struct list_head *next_sibling;
+       struct dentry *dentry;
+
+       main_dentry = root;
+       sibling_stack_bottom = &sibling_stack;
+       INIT_LIST_HEAD(&main_stack);
+       INIT_LIST_HEAD(&sibling_stack);
+
+       list_add(&main_dentry->tmp_list, &main_stack);
+
+       while (1) {
+               node = main_dentry->d_inode->children.rb_node;
+
+               while (1) {
+                       if (node->rb_left) {
+                               list_add(&rbnode_dentry(node)->tmp_list, &sibling_stack);
+                               node = node->rb_left;
+                               continue;
+                       }
+                       if (node->rb_right) {
+                               list_add(&rbnode_dentry(node)->tmp_list, &sibling_stack);
+                               node = node->rb_right;
+                               continue;
+                       }
+                       list_add(&rbnode_dentry(node)->tmp_list, &sibling_stack);
+               }
+
+       pop_sibling:
+               next_sibling = sibling_stack.next;
+               if (next_sibling == sibling_stack_bottom) {
+                       main_dentry = container_of(main_stack.next,
+                                                  struct dentry,
+                                                  tmp_list);
+                       list_del(&main_dentry->tmp_list);
+
+
+                       sibling_stack_bottom = (void*)main_dentry->parent;
+
+                       if (main_dentry == root) {
+                               main_dentry->parent = main_dentry;
+                               ret = visitor(dentry, arg);
                                return ret;
-                       child = next;
-               } while (child != root->children);
+                       } else {
+                               main_dentry->parent = container_of(main_stack.next,
+                                                                  struct dentry,
+                                                                  tmp_list);
+                       }
+
+                       ret = visitor(main_dentry, arg);
+
+                       if (ret != 0) {
+                               list_del(&root->tmp_list);
+                               list_for_each_entry(dentry, &main_stack, tmp_list) {
+                                       dentry->parent = container_of(dentry->tmp_list.next,
+                                                                     struct dentry,
+                                                                     tmp_list);
+                               }
+                               root->parent = root;
+                               return ret;
+                       }
+                       goto pop_sibling;
+               } else {
+
+                       list_del(next_sibling);
+                       dentry = container_of(next_sibling, struct dentry, tmp_list);
+
+
+                       list_add(&dentry->tmp_list, &main_stack);
+                       dentry->parent = (void*)sibling_stack_bottom;
+                       sibling_stack_bottom = sibling_stack.next;
+
+                       main_dentry = dentry;
+               }
        }
-       return visitor(root, arg);
+#endif
 }
 
-/* 
+/*
  * Calculate the full path of @dentry, based on its parent's full path and on
- * its UTF-8 file name. 
+ * its UTF-8 file name.
  */
 int calculate_dentry_full_path(struct dentry *dentry, void *ignore)
 {
-       int parent_len;
-       int len;
-       char *parent_full_path;
        char *full_path;
-
-       FREE(dentry->full_path_utf8);
-
+       u32 full_path_len;
        if (dentry_is_root(dentry)) {
-               dentry->full_path_utf8 = MALLOC(2);
-               if (!dentry->full_path_utf8) {
-                       ERROR("Out of memory!\n");
-                       return WIMLIB_ERR_NOMEM;
-               }
+               full_path = MALLOC(2);
+               if (!full_path)
+                       goto oom;
+               full_path[0] = '/';
+               full_path[1] = '\0';
+               full_path_len = 1;
+       } else {
+               char *parent_full_path;
+               u32 parent_full_path_len;
+               const struct dentry *parent = dentry->parent;
 
-               dentry->full_path_utf8[0] = '/';
-               dentry->full_path_utf8[1] = '\0';
-               dentry->full_path_utf8_len = 1;
-               return 0;
-       }
+               if (dentry_is_root(parent)) {
+                       parent_full_path = "";
+                       parent_full_path_len = 0;
+               } else {
+                       parent_full_path = parent->full_path_utf8;
+                       parent_full_path_len = parent->full_path_utf8_len;
+               }
 
-       if (dentry_is_root(dentry->parent)) {
-               parent_len = 0;
-               parent_full_path = "";
-       } else {
-               parent_len = dentry->parent->full_path_utf8_len;
-               parent_full_path = dentry->parent->full_path_utf8;
+               full_path_len = parent_full_path_len + 1 +
+                               dentry->file_name_utf8_len;
+               full_path = MALLOC(full_path_len + 1);
+               if (!full_path)
+                       goto oom;
+
+               memcpy(full_path, parent_full_path, parent_full_path_len);
+               full_path[parent_full_path_len] = '/';
+               memcpy(full_path + parent_full_path_len + 1,
+                      dentry->file_name_utf8,
+                      dentry->file_name_utf8_len);
+               full_path[full_path_len] = '\0';
        }
+       FREE(dentry->full_path_utf8);
+       dentry->full_path_utf8 = full_path;
+       dentry->full_path_utf8_len = full_path_len;
+       return 0;
+oom:
+       ERROR("Out of memory while calculating dentry full path");
+       return WIMLIB_ERR_NOMEM;
+}
 
-       len = parent_len + 1 + dentry->file_name_utf8_len;
-       full_path = MALLOC(len + 1);
-       if (!full_path) {
-               ERROR("Out of memory!\n");
-               return WIMLIB_ERR_NOMEM;
-       }
+static int increment_subdir_offset(struct dentry *dentry, void *subdir_offset_p)
+{
+       *(u64*)subdir_offset_p += dentry_correct_total_length(dentry);
+       return 0;
+}
 
-       memcpy(full_path, parent_full_path, parent_len);
-       full_path[parent_len] = '/';
-       memcpy(full_path + parent_len + 1, dentry->file_name_utf8, 
-                               dentry->file_name_utf8_len);
-       full_path[len] = '\0';
-       dentry->full_path_utf8 = full_path;
-       dentry->full_path_utf8_len = len;
+static int call_calculate_subdir_offsets(struct dentry *dentry,
+                                        void *subdir_offset_p)
+{
+       calculate_subdir_offsets(dentry, subdir_offset_p);
        return 0;
 }
 
-/* 
- * Recursively calculates the subdir offsets for a directory tree. 
+/*
+ * Recursively calculates the subdir offsets for a directory tree.
  *
  * @dentry:  The root of the directory tree.
  * @subdir_offset_p:  The current subdirectory offset; i.e., the subdirectory
- *     offset for @dentry. 
+ *                   offset for @dentry.
  */
 void calculate_subdir_offsets(struct dentry *dentry, u64 *subdir_offset_p)
 {
-       struct dentry *child;
+       struct rb_node *node;
 
-       child = dentry->children;
        dentry->subdir_offset = *subdir_offset_p;
-       if (child) {
-
+       node = dentry->d_inode->children.rb_node;
+       if (node) {
                /* Advance the subdir offset by the amount of space the children
                 * of this dentry take up. */
-               do {
-                       *subdir_offset_p += child->length;
-                       child = child->next;
-               } while (child != dentry->children);
+               for_dentry_in_rbtree(node, increment_subdir_offset, subdir_offset_p);
 
                /* End-of-directory dentry on disk. */
                *subdir_offset_p += 8;
 
                /* Recursively call calculate_subdir_offsets() on all the
                 * children. */
-               do {
-                       calculate_subdir_offsets(child, subdir_offset_p);
-                       child = child->next;
-               } while (child != dentry->children);
+               for_dentry_in_rbtree(node, call_calculate_subdir_offsets, subdir_offset_p);
        } else {
                /* On disk, childless directories have a valid subdir_offset
                 * that points to an 8-byte end-of-directory dentry.  Regular
-                * files have a subdir_offset of 0. */
+                * files or reparse points have a subdir_offset of 0. */
                if (dentry_is_directory(dentry))
                        *subdir_offset_p += 8;
                else
@@ -235,46 +642,74 @@ void calculate_subdir_offsets(struct dentry *dentry, u64 *subdir_offset_p)
        }
 }
 
-
-/* Returns the child of @dentry that has the file name @name.  
- * Returns NULL if no child has the name. */
-struct dentry *get_dentry_child_with_name(const struct dentry *dentry, 
-                                                       const char *name)
+static int compare_names(const char *name_1, u16 len_1,
+                        const char *name_2, u16 len_2)
 {
-       struct dentry *child;
-       size_t name_len;
-       
-       child = dentry->children;
-       if (child) {
-               name_len = strlen(name);
-               do {
-                       if (dentry_has_name(child, name, name_len))
-                               return child;
-                       child = child->next;
-               } while (child != dentry->children);
+       int result = strncasecmp(name_1, name_2, min(len_1, len_2));
+       if (result) {
+               return result;
+       } else {
+               return (int)len_1 - (int)len_2;
        }
+}
+
+static int dentry_compare_names(const struct dentry *d1, const struct dentry *d2)
+{
+       return compare_names(d1->file_name_utf8, d1->file_name_utf8_len,
+                            d2->file_name_utf8, d2->file_name_utf8_len);
+}
+
+
+static struct dentry *
+get_rbtree_child_with_name(const struct rb_node *node,
+                          const char *name, size_t name_len)
+{
+       do {
+               struct dentry *child = rbnode_dentry(node);
+               int result = compare_names(name, name_len,
+                                          child->file_name_utf8,
+                                          child->file_name_utf8_len);
+               if (result < 0)
+                       node = node->rb_left;
+               else if (result > 0)
+                       node = node->rb_right;
+               else
+                       return child;
+       } while (node);
        return NULL;
 }
 
-/* Retrieves the dentry that has the UTF-8 @path relative to the dentry
- * @cur_dir.  Returns NULL if no dentry having the path is found. */
-static struct dentry *get_dentry_relative_path(struct dentry *cur_dir, const char *path)
+/* Returns the child of @dentry that has the file name @name.
+ * Returns NULL if no child has the name. */
+struct dentry *get_dentry_child_with_name(const struct dentry *dentry,
+                                         const char *name)
 {
-       struct dentry *child;
-       size_t base_len;
-       const char *new_path;
+       struct rb_node *node = dentry->d_inode->children.rb_node;
+       if (node)
+               return get_rbtree_child_with_name(node, name, strlen(name));
+       else
+               return NULL;
+}
 
+/* Retrieves the dentry that has the UTF-8 @path relative to the dentry
+ * @cur_dentry.  Returns NULL if no dentry having the path is found. */
+static struct dentry *get_dentry_relative_path(struct dentry *cur_dentry,
+                                              const char *path)
+{
        if (*path == '\0')
-               return cur_dir;
+               return cur_dentry;
+
+       struct rb_node *node = cur_dentry->d_inode->children.rb_node;
+       if (node) {
+               struct dentry *child;
+               size_t base_len;
+               const char *new_path;
 
-       child = cur_dir->children;
-       if (child) {
                new_path = path_next_part(path, &base_len);
-               do {
-                       if (dentry_has_name(child, path, base_len))
-                               return get_dentry_relative_path(child, new_path);
-                       child = child->next;
-               } while (child != cur_dir->children);
+
+               child = get_rbtree_child_with_name(node, path, base_len);
+               if (child)
+                       return get_dentry_relative_path(child, new_path);
        }
        return NULL;
 }
@@ -289,7 +724,18 @@ struct dentry *get_dentry(WIMStruct *w, const char *path)
        return get_dentry_relative_path(root, path);
 }
 
-/* Returns the parent directory for the @path. */
+struct inode *wim_pathname_to_inode(WIMStruct *w, const char *path)
+{
+       struct dentry *dentry;
+       dentry = get_dentry(w, path);
+       if (dentry)
+               return dentry->d_inode;
+       else
+               return NULL;
+}
+
+/* Returns the dentry that corresponds to the parent directory of @path, or NULL
+ * if the dentry is not found. */
 struct dentry *get_parent_dentry(WIMStruct *w, const char *path)
 {
        size_t path_len = strlen(path);
@@ -310,30 +756,71 @@ int print_dentry_full_path(struct dentry *dentry, void *ignore)
        return 0;
 }
 
-/* Prints a directory entry.  @lookup_table is a pointer to the lookup table, or
- * NULL if the resource entry for the dentry is not to be printed. */
+/* We want to be able to show the names of the file attribute flags that are
+ * set. */
+struct file_attr_flag {
+       u32 flag;
+       const char *name;
+};
+struct file_attr_flag file_attr_flags[] = {
+       {FILE_ATTRIBUTE_READONLY,           "READONLY"},
+       {FILE_ATTRIBUTE_HIDDEN,             "HIDDEN"},
+       {FILE_ATTRIBUTE_SYSTEM,             "SYSTEM"},
+       {FILE_ATTRIBUTE_DIRECTORY,          "DIRECTORY"},
+       {FILE_ATTRIBUTE_ARCHIVE,            "ARCHIVE"},
+       {FILE_ATTRIBUTE_DEVICE,             "DEVICE"},
+       {FILE_ATTRIBUTE_NORMAL,             "NORMAL"},
+       {FILE_ATTRIBUTE_TEMPORARY,          "TEMPORARY"},
+       {FILE_ATTRIBUTE_SPARSE_FILE,        "SPARSE_FILE"},
+       {FILE_ATTRIBUTE_REPARSE_POINT,      "REPARSE_POINT"},
+       {FILE_ATTRIBUTE_COMPRESSED,         "COMPRESSED"},
+       {FILE_ATTRIBUTE_OFFLINE,            "OFFLINE"},
+       {FILE_ATTRIBUTE_NOT_CONTENT_INDEXED,"NOT_CONTENT_INDEXED"},
+       {FILE_ATTRIBUTE_ENCRYPTED,          "ENCRYPTED"},
+       {FILE_ATTRIBUTE_VIRTUAL,            "VIRTUAL"},
+};
+
+/* Prints a directory entry.  @lookup_table is a pointer to the lookup table, if
+ * available.  If the dentry is unresolved and the lookup table is NULL, the
+ * lookup table entries will not be printed.  Otherwise, they will be. */
 int print_dentry(struct dentry *dentry, void *lookup_table)
 {
+       const u8 *hash;
        struct lookup_table_entry *lte;
+       const struct inode *inode = dentry->d_inode;
+       time_t time;
+       char *p;
+
        printf("[DENTRY]\n");
        printf("Length            = %"PRIu64"\n", dentry->length);
-       printf("Attributes        = 0x%x\n", dentry->attributes);
-#ifdef ENABLE_SECURITY_DATA
-       printf("Security ID       = %d\n", dentry->security_id);
-#endif
+       printf("Attributes        = 0x%x\n", inode->attributes);
+       for (unsigned i = 0; i < ARRAY_LEN(file_attr_flags); i++)
+               if (file_attr_flags[i].flag & inode->attributes)
+                       printf("    FILE_ATTRIBUTE_%s is set\n",
+                               file_attr_flags[i].name);
+       printf("Security ID       = %d\n", inode->security_id);
        printf("Subdir offset     = %"PRIu64"\n", dentry->subdir_offset);
-       /*printf("Unused1           = %"PRIu64"\n", dentry->unused1);*/
-       /*printf("Unused2           = %"PRIu64"\n", dentry->unused2);*/
-       printf("Creation Time     = %"PRIu64"\n", dentry->creation_time);
-       printf("Last Access Time  = %"PRIu64"\n", dentry->last_access_time);
-       printf("Last Write Time   = %"PRIu64"\n", dentry->last_write_time);
-       printf("Creation Time     = 0x%"PRIx64"\n", dentry->creation_time);
-       printf("Hash              = "); 
-       print_hash(dentry->hash); 
-       putchar('\n');
-       /*printf("Reparse Tag       = %u\n", dentry->reparse_tag);*/
-       printf("Hard Link Group   = %"PRIu64"\n", dentry->hard_link);
-       /*printf("Number of Streams = %hu\n", dentry->streams);*/
+
+       /* Translate the timestamps into something readable */
+       time = wim_timestamp_to_unix(inode->creation_time);
+       p = asctime(gmtime(&time));
+       *(strrchr(p, '\n')) = '\0';
+       printf("Creation Time     = %s UTC\n", p);
+
+       time = wim_timestamp_to_unix(inode->last_access_time);
+       p = asctime(gmtime(&time));
+       *(strrchr(p, '\n')) = '\0';
+       printf("Last Access Time  = %s UTC\n", p);
+
+       time = wim_timestamp_to_unix(inode->last_write_time);
+       p = asctime(gmtime(&time));
+       *(strrchr(p, '\n')) = '\0';
+       printf("Last Write Time   = %s UTC\n", p);
+
+       printf("Reparse Tag       = 0x%"PRIx32"\n", inode->reparse_tag);
+       printf("Hard Link Group   = 0x%"PRIx64"\n", inode->ino);
+       printf("Hard Link Group Size = %"PRIu32"\n", inode->link_count);
+       printf("Number of Alternate Data Streams = %hu\n", inode->num_ads);
        printf("Filename          = \"");
        print_string(dentry->file_name, dentry->file_name_len);
        puts("\"");
@@ -345,107 +832,246 @@ int print_dentry(struct dentry *dentry, void *lookup_table)
        puts("\"");
        printf("Short Name Length = %hu\n", dentry->short_name_len);
        printf("Full Path (UTF-8) = \"%s\"\n", dentry->full_path_utf8);
-       if (lookup_table) {
-               lte = lookup_resource(lookup_table, dentry->hash);
-               if (lte)
-                       print_lookup_table_entry(lte, NULL);
-               else
-                       putchar('\n');
+       lte = inode_stream_lte(dentry->d_inode, 0, lookup_table);
+       if (lte) {
+               print_lookup_table_entry(lte);
        } else {
-               putchar('\n');
+               hash = inode_stream_hash(inode, 0);
+               if (hash) {
+                       printf("Hash              = 0x");
+                       print_hash(hash);
+                       putchar('\n');
+                       putchar('\n');
+               }
+       }
+       for (u16 i = 0; i < inode->num_ads; i++) {
+               printf("[Alternate Stream Entry %u]\n", i);
+               printf("Name = \"%s\"\n", inode->ads_entries[i].stream_name_utf8);
+               printf("Name Length (UTF-16) = %u\n",
+                       inode->ads_entries[i].stream_name_len);
+               hash = inode_stream_hash(inode, i + 1);
+               if (hash) {
+                       printf("Hash              = 0x");
+                       print_hash(hash);
+                       putchar('\n');
+               }
+               print_lookup_table_entry(inode_stream_lte(inode, i + 1,
+                                                         lookup_table));
        }
        return 0;
 }
 
-static inline void dentry_common_init(struct dentry *dentry)
+/* Initializations done on every `struct dentry'. */
+static void dentry_common_init(struct dentry *dentry)
 {
        memset(dentry, 0, sizeof(struct dentry));
        dentry->refcnt = 1;
-#ifdef ENABLE_SECURITY_DATA
-       dentry->security_id = -1;
-#endif
 }
 
-/* 
+static struct inode *new_timeless_inode()
+{
+       struct inode *inode = CALLOC(1, sizeof(struct inode));
+       if (inode) {
+               inode->security_id = -1;
+               inode->link_count = 1;
+       #ifdef WITH_FUSE
+               inode->next_stream_id = 1;
+               if (pthread_mutex_init(&inode->i_mutex, NULL) != 0) {
+                       ERROR_WITH_ERRNO("Error initializing mutex");
+                       FREE(inode);
+                       return NULL;
+               }
+       #endif
+               INIT_LIST_HEAD(&inode->dentry_list);
+       }
+       return inode;
+}
+
+static struct inode *new_inode()
+{
+       struct inode *inode = new_timeless_inode();
+       if (inode) {
+               u64 now = get_wim_timestamp();
+               inode->creation_time = now;
+               inode->last_access_time = now;
+               inode->last_write_time = now;
+       }
+       return inode;
+}
+
+/*
  * Creates an unlinked directory entry.
  *
- * @name:    The base name of the new dentry.
- * @return:  A pointer to the new dentry, or NULL if out of memory.
+ * @name:  The UTF-8 filename of the new dentry.
+ *
+ * Returns a pointer to the new dentry, or NULL if out of memory.
  */
 struct dentry *new_dentry(const char *name)
 {
        struct dentry *dentry;
-       
+
        dentry = MALLOC(sizeof(struct dentry));
        if (!dentry)
-               return NULL;
+               goto err;
 
        dentry_common_init(dentry);
-       if (change_dentry_name(dentry, name) != 0) {
-               FREE(dentry);
-               return NULL;
+       if (change_dentry_name(dentry, name) != 0)
+               goto err;
+
+       dentry->parent = dentry;
+
+       return dentry;
+err:
+       FREE(dentry);
+       ERROR("Failed to allocate new dentry");
+       return NULL;
+}
+
+
+static struct dentry *__new_dentry_with_inode(const char *name, bool timeless)
+{
+       struct dentry *dentry;
+       dentry = new_dentry(name);
+       if (dentry) {
+               if (timeless)
+                       dentry->d_inode = new_timeless_inode();
+               else
+                       dentry->d_inode = new_inode();
+               if (dentry->d_inode) {
+                       inode_add_dentry(dentry, dentry->d_inode);
+               } else {
+                       free_dentry(dentry);
+                       dentry = NULL;
+               }
+       }
+       return dentry;
+}
+
+struct dentry *new_dentry_with_timeless_inode(const char *name)
+{
+       return __new_dentry_with_inode(name, true);
+}
+
+struct dentry *new_dentry_with_inode(const char *name)
+{
+       return __new_dentry_with_inode(name, false);
+}
+
+
+static int init_ads_entry(struct ads_entry *ads_entry, const char *name)
+{
+       int ret = 0;
+       memset(ads_entry, 0, sizeof(*ads_entry));
+       if (name && *name)
+               ret = change_ads_name(ads_entry, name);
+       return ret;
+}
+
+static void destroy_ads_entry(struct ads_entry *ads_entry)
+{
+       FREE(ads_entry->stream_name);
+       FREE(ads_entry->stream_name_utf8);
+}
+
+
+/* Frees an inode. */
+void free_inode(struct inode *inode)
+{
+       if (inode) {
+               if (inode->ads_entries) {
+                       for (u16 i = 0; i < inode->num_ads; i++)
+                               destroy_ads_entry(&inode->ads_entries[i]);
+                       FREE(inode->ads_entries);
+               }
+       #ifdef WITH_FUSE
+               wimlib_assert(inode->num_opened_fds == 0);
+               FREE(inode->fds);
+               pthread_mutex_destroy(&inode->i_mutex);
+       #endif
+               FREE(inode->extracted_file);
+               FREE(inode);
        }
-
-       dentry_update_all_timestamps(dentry);
-       dentry->next   = dentry;
-       dentry->prev   = dentry;
-       dentry->parent = dentry;
-       return dentry;
 }
 
+/* Decrements link count on an inode and frees it if the link count reaches 0.
+ * */
+static void put_inode(struct inode *inode)
+{
+       wimlib_assert(inode);
+       wimlib_assert(inode->link_count);
+       if (--inode->link_count == 0) {
+       #ifdef WITH_FUSE
+               if (inode->num_opened_fds == 0)
+       #endif
+               {
+                       free_inode(inode);
+               }
+       }
+}
 
+/* Frees a WIM dentry.
+ *
+ * The inode is freed only if its link count is decremented to 0.
+ */
 void free_dentry(struct dentry *dentry)
 {
+       wimlib_assert(dentry != NULL);
        FREE(dentry->file_name);
        FREE(dentry->file_name_utf8);
        FREE(dentry->short_name);
        FREE(dentry->full_path_utf8);
+       if (dentry->d_inode)
+               put_inode(dentry->d_inode);
        FREE(dentry);
 }
 
-/* Arguments for do_free_dentry(). */
-struct free_dentry_args {
-       struct lookup_table *lookup_table;
-       bool decrement_refcnt;
-};
+void put_dentry(struct dentry *dentry)
+{
+       wimlib_assert(dentry != NULL);
+       wimlib_assert(dentry->refcnt != 0);
+
+       if (--dentry->refcnt == 0)
+               free_dentry(dentry);
+}
 
-/* 
+/*
  * This function is passed as an argument to for_dentry_in_tree_depth() in order
  * to free a directory tree.  __args is a pointer to a `struct free_dentry_args'.
  */
-static int do_free_dentry(struct dentry *dentry, void *__args)
+static int do_free_dentry(struct dentry *dentry, void *__lookup_table)
 {
-       struct free_dentry_args *args = (struct free_dentry_args*)__args;
+       struct lookup_table *lookup_table = __lookup_table;
+       unsigned i;
 
-       if (args->decrement_refcnt && !dentry_is_directory(dentry)) {
-               lookup_table_decrement_refcnt(args->lookup_table, 
-                                             dentry->hash);
+       if (lookup_table) {
+               struct lookup_table_entry *lte;
+               struct inode *inode = dentry->d_inode;
+               wimlib_assert(inode->link_count);
+               for (i = 0; i <= inode->num_ads; i++) {
+                       lte = inode_stream_lte(inode, i, lookup_table);
+                       if (lte)
+                               lte_decrement_refcnt(lte, lookup_table);
+               }
        }
 
-       wimlib_assert(dentry->refcnt >= 1);
-       if (--dentry->refcnt == 0)
-               free_dentry(dentry);
+       put_dentry(dentry);
        return 0;
 }
 
-/* 
+/*
  * Unlinks and frees a dentry tree.
  *
  * @root:              The root of the tree.
- * @lookup_table:      The lookup table for dentries.
- * @decrement_refcnt:          True if the dentries in the tree are to have their 
- *                     reference counts in the lookup table decremented.
+ * @lookup_table:      The lookup table for dentries.  If non-NULL, the
+ *                     reference counts in the lookup table for the lookup
+ *                     table entries corresponding to the dentries will be
+ *                     decremented.
  */
-void free_dentry_tree(struct dentry *root, struct lookup_table *lookup_table, 
-                     bool decrement_refcnt)
+void free_dentry_tree(struct dentry *root, struct lookup_table *lookup_table)
 {
        if (!root || !root->parent)
                return;
-
-       struct free_dentry_args args;
-       args.lookup_table        = lookup_table;
-       args.decrement_refcnt    = decrement_refcnt;
-       for_dentry_in_tree_depth(root, do_free_dentry, &args);
+       for_dentry_in_tree_depth(root, do_free_dentry, lookup_table);
 }
 
 int increment_dentry_refcnt(struct dentry *dentry, void *ignore)
@@ -454,164 +1080,489 @@ int increment_dentry_refcnt(struct dentry *dentry, void *ignore)
        return 0;
 }
 
-/* 
+/*
  * Links a dentry into the directory tree.
  *
  * @dentry: The dentry to link.
  * @parent: The dentry that will be the parent of @dentry.
  */
-void link_dentry(struct dentry *dentry, struct dentry *parent)
-{
-       dentry->parent = parent;
-       if (parent->children) {
-               /* Not an only child; link to siblings. */
-               dentry->next = parent->children;
-               dentry->prev = parent->children->prev;
-               dentry->next->prev = dentry;
-               dentry->prev->next = dentry;
-       } else {
-               /* Only child; link to parent. */
-               parent->children = dentry;
-               dentry->next = dentry;
-               dentry->prev = dentry;
+bool dentry_add_child(struct dentry * restrict parent,
+                     struct dentry * restrict child)
+{
+       wimlib_assert(dentry_is_directory(parent));
+
+       struct rb_root *root = &parent->d_inode->children;
+       struct rb_node **new = &(root->rb_node);
+       struct rb_node *rb_parent = NULL;
+
+       while (*new) {
+               struct dentry *this = rbnode_dentry(*new);
+               int result = dentry_compare_names(child, this);
+
+               rb_parent = *new;
+
+               if (result < 0)
+                       new = &((*new)->rb_left);
+               else if (result > 0)
+                       new = &((*new)->rb_right);
+               else
+                       return false;
        }
+       child->parent = parent;
+       rb_link_node(&child->rb_node, rb_parent, new);
+       rb_insert_color(&child->rb_node, root);
+       return true;
 }
 
-/* Unlink a dentry from the directory tree. */
+#ifdef WITH_FUSE
+/*
+ * Unlink a dentry from the directory tree.
+ *
+ * Note: This merely removes it from the in-memory tree structure.
+ */
 void unlink_dentry(struct dentry *dentry)
 {
-       if (dentry_is_root(dentry))
+       struct dentry *parent = dentry->parent;
+       if (parent == dentry)
                return;
-       if (dentry_is_only_child(dentry)) {
-               dentry->parent->children = NULL;
-       } else {
-               if (dentry_is_first_sibling(dentry))
-                       dentry->parent->children = dentry->next;
-               dentry->next->prev = dentry->prev;
-               dentry->prev->next = dentry->next;
-       }
+       rb_erase(&dentry->rb_node, &parent->d_inode->children);
 }
+#endif
 
-
-/* Recalculates the length of @dentry based on its file name length and short
- * name length.  */
-static inline void recalculate_dentry_size(struct dentry *dentry)
+static inline struct dentry *inode_first_dentry(struct inode *inode)
 {
-       dentry->length = WIM_DENTRY_DISK_SIZE + dentry->file_name_len + 
-                        2 + dentry->short_name_len;
-       /* Must be multiple of 8. */
-       dentry->length += (8 - dentry->length % 8) % 8;
+       wimlib_assert(inode->dentry_list.next != &inode->dentry_list);
+       return container_of(inode->dentry_list.next, struct dentry,
+                           inode_dentry_list);
 }
 
-/* Changes the name of a dentry to @new_name.  Only changes the file_name and
- * file_name_utf8 fields; does not change the short_name, short_name_utf8, or
- * full_path_utf8 fields.  Also recalculates its length. */
-int change_dentry_name(struct dentry *dentry, const char *new_name)
+static int verify_inode(struct inode *inode, const WIMStruct *w)
 {
-       size_t utf8_len;
-       size_t utf16_len;
+       const struct lookup_table *table = w->lookup_table;
+       const struct wim_security_data *sd = wim_const_security_data(w);
+       const struct dentry *first_dentry = inode_first_dentry(inode);
+       int ret = WIMLIB_ERR_INVALID_DENTRY;
+
+       /* Check the security ID */
+       if (inode->security_id < -1) {
+               ERROR("Dentry `%s' has an invalid security ID (%d)",
+                       first_dentry->full_path_utf8, inode->security_id);
+               goto out;
+       }
+       if (inode->security_id >= sd->num_entries) {
+               ERROR("Dentry `%s' has an invalid security ID (%d) "
+                     "(there are only %u entries in the security table)",
+                       first_dentry->full_path_utf8, inode->security_id,
+                       sd->num_entries);
+               goto out;
+       }
 
-       FREE(dentry->file_name);
+       /* Check that lookup table entries for all the resources exist, except
+        * if the SHA1 message digest is all 0's, which indicates there is
+        * intentionally no resource there.  */
+       if (w->hdr.total_parts == 1) {
+               for (unsigned i = 0; i <= inode->num_ads; i++) {
+                       struct lookup_table_entry *lte;
+                       const u8 *hash;
+                       hash = inode_stream_hash_unresolved(inode, i);
+                       lte = __lookup_resource(table, hash);
+                       if (!lte && !is_zero_hash(hash)) {
+                               ERROR("Could not find lookup table entry for stream "
+                                     "%u of dentry `%s'", i, first_dentry->full_path_utf8);
+                               goto out;
+                       }
+                       if (lte && (lte->real_refcnt += inode->link_count) > lte->refcnt)
+                       {
+                       #ifdef ENABLE_ERROR_MESSAGES
+                               WARNING("The following lookup table entry "
+                                       "has a reference count of %u, but",
+                                       lte->refcnt);
+                               WARNING("We found %u references to it",
+                                       lte->real_refcnt);
+                               WARNING("(One dentry referencing it is at `%s')",
+                                        first_dentry->full_path_utf8);
+
+                               print_lookup_table_entry(lte);
+                       #endif
+                               /* Guess what!  install.wim for Windows 8
+                                * contains a stream with 2 dentries referencing
+                                * it, but the lookup table entry has reference
+                                * count of 1.  So we will need to handle this
+                                * case and not just make it be an error...  I'm
+                                * just setting the reference count to the
+                                * number of references we found.
+                                * (Unfortunately, even after doing this, the
+                                * reference count could be too low if it's also
+                                * referenced in other WIM images) */
+
+                       #if 1
+                               lte->refcnt = lte->real_refcnt;
+                               WARNING("Fixing reference count");
+                       #else
+                               goto out;
+                       #endif
+                       }
+               }
+       }
+
+       /* Make sure there is only one un-named stream. */
+       unsigned num_unnamed_streams = 0;
+       for (unsigned i = 0; i <= inode->num_ads; i++) {
+               const u8 *hash;
+               hash = inode_stream_hash_unresolved(inode, i);
+               if (!inode_stream_name_len(inode, i) && !is_zero_hash(hash))
+                       num_unnamed_streams++;
+       }
+       if (num_unnamed_streams > 1) {
+               ERROR("Dentry `%s' has multiple (%u) un-named streams",
+                     first_dentry->full_path_utf8, num_unnamed_streams);
+               goto out;
+       }
+       inode->verified = true;
+       ret = 0;
+out:
+       return ret;
+}
 
-       utf8_len = strlen(new_name);
+/* Run some miscellaneous verifications on a WIM dentry */
+int verify_dentry(struct dentry *dentry, void *wim)
+{
+       int ret;
 
-       dentry->file_name = utf8_to_utf16(new_name, utf8_len, &utf16_len);
+       if (!dentry->d_inode->verified) {
+               ret = verify_inode(dentry->d_inode, wim);
+               if (ret != 0)
+                       return ret;
+       }
 
-       if (!dentry->file_name)
-               return WIMLIB_ERR_NOMEM;
+       /* Cannot have a short name but no long name */
+       if (dentry->short_name_len && !dentry->file_name_len) {
+               ERROR("Dentry `%s' has a short name but no long name",
+                     dentry->full_path_utf8);
+               return WIMLIB_ERR_INVALID_DENTRY;
+       }
 
-       FREE(dentry->file_name_utf8);
-       dentry->file_name_utf8 = MALLOC(utf8_len + 1);
-       if (!dentry->file_name_utf8) {
-               FREE(dentry->file_name);
-               dentry->file_name = NULL;
-               return WIMLIB_ERR_NOMEM;
+       /* Make sure root dentry is unnamed */
+       if (dentry_is_root(dentry)) {
+               if (dentry->file_name_len) {
+                       ERROR("The root dentry is named `%s', but it must "
+                             "be unnamed", dentry->file_name_utf8);
+                       return WIMLIB_ERR_INVALID_DENTRY;
+               }
        }
 
-       dentry->file_name_len = utf16_len;
-       dentry->file_name_utf8_len = utf8_len;
-       memcpy(dentry->file_name_utf8, new_name, utf8_len + 1);
-       recalculate_dentry_size(dentry);
+#if 0
+       /* Check timestamps */
+       if (inode->last_access_time < inode->creation_time ||
+           inode->last_write_time < inode->creation_time) {
+               WARNING("Dentry `%s' was created after it was last accessed or "
+                     "written to", dentry->full_path_utf8);
+       }
+#endif
+
        return 0;
 }
 
-/* Parameters for calculate_dentry_statistics(). */
-struct image_statistics {
-       struct lookup_table *lookup_table;
-       u64 *dir_count;
-       u64 *file_count;
-       u64 *total_bytes;
-       u64 *hard_link_bytes;
-};
 
-static int calculate_dentry_statistics(struct dentry *dentry, void *arg)
+#ifdef WITH_FUSE
+/* Returns the alternate data stream entry belonging to @inode that has the
+ * stream name @stream_name. */
+struct ads_entry *inode_get_ads_entry(struct inode *inode,
+                                     const char *stream_name,
+                                     u16 *idx_ret)
+{
+       size_t stream_name_len;
+       if (!stream_name)
+               return NULL;
+       if (inode->num_ads) {
+               u16 i = 0;
+               stream_name_len = strlen(stream_name);
+               do {
+                       if (ads_entry_has_name(&inode->ads_entries[i],
+                                              stream_name, stream_name_len))
+                       {
+                               if (idx_ret)
+                                       *idx_ret = i;
+                               return &inode->ads_entries[i];
+                       }
+               } while (++i != inode->num_ads);
+       }
+       return NULL;
+}
+#endif
+
+#if defined(WITH_FUSE) || defined(WITH_NTFS_3G)
+/*
+ * Add an alternate stream entry to an inode and return a pointer to it, or NULL
+ * if memory could not be allocated.
+ */
+struct ads_entry *inode_add_ads(struct inode *inode, const char *stream_name)
 {
-       struct image_statistics *stats;
-       struct lookup_table_entry *lte; 
-       
-       stats = arg;
-       lte = lookup_resource(stats->lookup_table, dentry->hash);
+       u16 num_ads;
+       struct ads_entry *ads_entries;
+       struct ads_entry *new_entry;
 
-       if (dentry_is_directory(dentry) && !dentry_is_root(dentry))
-               ++*stats->dir_count;
-       else
-               ++*stats->file_count;
+       DEBUG("Add alternate data stream \"%s\"", stream_name);
 
-       if (lte) {
-               u64 size = lte->resource_entry.original_size;
-               *stats->total_bytes += size;
-               if (++lte->out_refcnt == 1)
-                       *stats->hard_link_bytes += size;
+       if (inode->num_ads >= 0xfffe) {
+               ERROR("Too many alternate data streams in one inode!");
+               return NULL;
        }
-       return 0;
+       num_ads = inode->num_ads + 1;
+       ads_entries = REALLOC(inode->ads_entries,
+                             num_ads * sizeof(inode->ads_entries[0]));
+       if (!ads_entries) {
+               ERROR("Failed to allocate memory for new alternate data stream");
+               return NULL;
+       }
+       inode->ads_entries = ads_entries;
+
+       new_entry = &inode->ads_entries[num_ads - 1];
+       if (init_ads_entry(new_entry, stream_name) != 0)
+               return NULL;
+#ifdef WITH_FUSE
+       new_entry->stream_id = inode->next_stream_id++;
+#endif
+       inode->num_ads = num_ads;
+       return new_entry;
+}
+#endif
+
+#ifdef WITH_FUSE
+/* Remove an alternate data stream from the inode  */
+void inode_remove_ads(struct inode *inode, u16 idx,
+                     struct lookup_table *lookup_table)
+{
+       struct ads_entry *ads_entry;
+       struct lookup_table_entry *lte;
+
+       wimlib_assert(idx < inode->num_ads);
+       wimlib_assert(inode->resolved);
+
+       ads_entry = &inode->ads_entries[idx];
+
+       DEBUG("Remove alternate data stream \"%s\"", ads_entry->stream_name_utf8);
+
+       lte = ads_entry->lte;
+       if (lte)
+               lte_decrement_refcnt(lte, lookup_table);
+
+       destroy_ads_entry(ads_entry);
+
+       memcpy(&inode->ads_entries[idx],
+              &inode->ads_entries[idx + 1],
+              (inode->num_ads - idx - 1) * sizeof(inode->ads_entries[0]));
+       inode->num_ads--;
 }
+#endif
+
 
-void calculate_dir_tree_statistics(struct dentry *root, struct lookup_table *table, 
-                                  u64 *dir_count_ret, u64 *file_count_ret, 
-                                  u64 *total_bytes_ret, 
-                                  u64 *hard_link_bytes_ret)
+
+/*
+ * Reads the alternate data stream entries for a dentry.
+ *
+ * @p: Pointer to buffer that starts with the first alternate stream entry.
+ *
+ * @inode:     Inode to load the alternate data streams into.
+ *                     @inode->num_ads must have been set to the number of
+ *                     alternate data streams that are expected.
+ *
+ * @remaining_size:    Number of bytes of data remaining in the buffer pointed
+ *                             to by @p.
+ *
+ * The format of the on-disk alternate stream entries is as follows:
+ *
+ * struct ads_entry_on_disk {
+ *     u64  length;          // Length of the entry, in bytes.  This includes
+ *                                 all fields (including the stream name and
+ *                                 null terminator if present, AND the padding!).
+ *     u64  reserved;        // Seems to be unused
+ *     u8   hash[20];        // SHA1 message digest of the uncompressed stream
+ *     u16  stream_name_len; // Length of the stream name, in bytes
+ *     char stream_name[];   // Stream name in UTF-16LE, @stream_name_len bytes long,
+ *                                  not including null terminator
+ *     u16  zero;            // UTF-16 null terminator for the stream name, NOT
+ *                                 included in @stream_name_len.  Based on what
+ *                                 I've observed from filenames in dentries,
+ *                                 this field should not exist when
+ *                                 (@stream_name_len == 0), but you can't
+ *                                 actually tell because of the padding anyway
+ *                                 (provided that the padding is zeroed, which
+ *                                 it always seems to be).
+ *     char padding[];       // Padding to make the size a multiple of 8 bytes.
+ * };
+ *
+ * In addition, the entries are 8-byte aligned.
+ *
+ * Return 0 on success or nonzero on failure.  On success, inode->ads_entries
+ * is set to an array of `struct ads_entry's of length inode->num_ads.  On
+ * failure, @inode is not modified.
+ */
+static int read_ads_entries(const u8 *p, struct inode *inode,
+                           u64 remaining_size)
 {
-       struct image_statistics stats;
-       *dir_count_ret         = 0;
-       *file_count_ret        = 0;
-       *total_bytes_ret       = 0;
-       *hard_link_bytes_ret   = 0;
-       stats.lookup_table     = table;
-       stats.dir_count       = dir_count_ret;
-       stats.file_count      = file_count_ret;
-       stats.total_bytes     = total_bytes_ret;
-       stats.hard_link_bytes = hard_link_bytes_ret;
-       for_lookup_table_entry(table, zero_out_refcnts, NULL);
-       for_dentry_in_tree(root, calculate_dentry_statistics, &stats);
+       u16 num_ads;
+       struct ads_entry *ads_entries;
+       int ret;
+
+       num_ads = inode->num_ads;
+       ads_entries = CALLOC(num_ads, sizeof(inode->ads_entries[0]));
+       if (!ads_entries) {
+               ERROR("Could not allocate memory for %"PRIu16" "
+                     "alternate data stream entries", num_ads);
+               return WIMLIB_ERR_NOMEM;
+       }
+
+       for (u16 i = 0; i < num_ads; i++) {
+               struct ads_entry *cur_entry;
+               u64 length;
+               u64 length_no_padding;
+               u64 total_length;
+               size_t utf8_len;
+               const u8 *p_save = p;
+
+               cur_entry = &ads_entries[i];
+
+       #ifdef WITH_FUSE
+               ads_entries[i].stream_id = i + 1;
+       #endif
+
+               /* Read the base stream entry, excluding the stream name. */
+               if (remaining_size < WIM_ADS_ENTRY_DISK_SIZE) {
+                       ERROR("Stream entries go past end of metadata resource");
+                       ERROR("(remaining_size = %"PRIu64")", remaining_size);
+                       ret = WIMLIB_ERR_INVALID_DENTRY;
+                       goto out_free_ads_entries;
+               }
+
+               p = get_u64(p, &length);
+               p += 8; /* Skip the reserved field */
+               p = get_bytes(p, SHA1_HASH_SIZE, (u8*)cur_entry->hash);
+               p = get_u16(p, &cur_entry->stream_name_len);
+
+               cur_entry->stream_name = NULL;
+               cur_entry->stream_name_utf8 = NULL;
+
+               /* Length including neither the null terminator nor the padding
+                * */
+               length_no_padding = WIM_ADS_ENTRY_DISK_SIZE +
+                                   cur_entry->stream_name_len;
+
+               /* Length including the null terminator and the padding */
+               total_length = ((length_no_padding + 2) + 7) & ~7;
+
+               wimlib_assert(total_length == ads_entry_total_length(cur_entry));
+
+               if (remaining_size < length_no_padding) {
+                       ERROR("Stream entries go past end of metadata resource");
+                       ERROR("(remaining_size = %"PRIu64" bytes, "
+                             "length_no_padding = %"PRIu64" bytes)",
+                             remaining_size, length_no_padding);
+                       ret = WIMLIB_ERR_INVALID_DENTRY;
+                       goto out_free_ads_entries;
+               }
+
+               /* The @length field in the on-disk ADS entry is expected to be
+                * equal to @total_length, which includes all of the entry and
+                * the padding that follows it to align the next ADS entry to an
+                * 8-byte boundary.  However, to be safe, we'll accept the
+                * length field as long as it's not less than the un-padded
+                * total length and not more than the padded total length. */
+               if (length < length_no_padding || length > total_length) {
+                       ERROR("Stream entry has unexpected length "
+                             "field (length field = %"PRIu64", "
+                             "unpadded total length = %"PRIu64", "
+                             "padded total length = %"PRIu64")",
+                             length, length_no_padding, total_length);
+                       ret = WIMLIB_ERR_INVALID_DENTRY;
+                       goto out_free_ads_entries;
+               }
+
+               if (cur_entry->stream_name_len) {
+                       cur_entry->stream_name = MALLOC(cur_entry->stream_name_len);
+                       if (!cur_entry->stream_name) {
+                               ret = WIMLIB_ERR_NOMEM;
+                               goto out_free_ads_entries;
+                       }
+                       get_bytes(p, cur_entry->stream_name_len,
+                                 (u8*)cur_entry->stream_name);
+                       cur_entry->stream_name_utf8 = utf16_to_utf8(cur_entry->stream_name,
+                                                                   cur_entry->stream_name_len,
+                                                                   &utf8_len);
+                       cur_entry->stream_name_utf8_len = utf8_len;
+
+                       if (!cur_entry->stream_name_utf8) {
+                               ret = WIMLIB_ERR_NOMEM;
+                               goto out_free_ads_entries;
+                       }
+               }
+               /* It's expected that the size of every ADS entry is a multiple
+                * of 8.  However, to be safe, I'm allowing the possibility of
+                * an ADS entry at the very end of the metadata resource ending
+                * un-aligned.  So although we still need to increment the input
+                * pointer by @total_length to reach the next ADS entry, it's
+                * possible that less than @total_length is actually remaining
+                * in the metadata resource. We should set the remaining size to
+                * 0 bytes if this happens. */
+               p = p_save + total_length;
+               if (remaining_size < total_length)
+                       remaining_size = 0;
+               else
+                       remaining_size -= total_length;
+       }
+       inode->ads_entries = ads_entries;
+#ifdef WITH_FUSE
+       inode->next_stream_id = inode->num_ads + 1;
+#endif
+       return 0;
+out_free_ads_entries:
+       for (u16 i = 0; i < num_ads; i++)
+               destroy_ads_entry(&ads_entries[i]);
+       FREE(ads_entries);
+       return ret;
 }
 
-/* 
- * Reads a directory entry from the metadata resource.
+/*
+ * Reads a directory entry, including all alternate data stream entries that
+ * follow it, from the WIM image's metadata resource.
+ *
+ * @metadata_resource: Buffer containing the uncompressed metadata resource.
+ * @metadata_resource_len:   Length of the metadata resource.
+ * @offset:    Offset of this directory entry in the metadata resource.
+ * @dentry:    A `struct dentry' that will be filled in by this function.
+ *
+ * Return 0 on success or nonzero on failure.  On failure, @dentry have been
+ * modified, bu it will be left with no pointers to any allocated buffers.
+ * On success, the dentry->length field must be examined.  If zero, this was a
+ * special "end of directory" dentry and not a real dentry.  If nonzero, this
+ * was a real dentry.
  */
-int read_dentry(const u8 metadata_resource[], u64 metadata_resource_len, 
-                                       u64 offset, struct dentry *dentry)
+int read_dentry(const u8 metadata_resource[], u64 metadata_resource_len,
+               u64 offset, struct dentry *dentry)
 {
        const u8 *p;
        u64 calculated_size;
-       char *file_name;
-       char *file_name_utf8;
-       char *short_name;
+       char *file_name = NULL;
+       char *file_name_utf8 = NULL;
+       char *short_name = NULL;
        u16 short_name_len;
        u16 file_name_len;
-       size_t file_name_utf8_len;
+       size_t file_name_utf8_len = 0;
+       int ret;
+       struct inode *inode = NULL;
 
        dentry_common_init(dentry);
 
        /*Make sure the dentry really fits into the metadata resource.*/
-       if (offset + 8 > metadata_resource_len) {
+       if (offset + 8 > metadata_resource_len || offset + 8 < offset) {
                ERROR("Directory entry starting at %"PRIu64" ends past the "
-                       "end of the metadata resource (size %"PRIu64")!\n",
-                       offset, metadata_resource_len);
+                     "end of the metadata resource (size %"PRIu64")",
+                     offset, metadata_resource_len);
                return WIMLIB_ERR_INVALID_DENTRY;
        }
 
-       /* Before reading the whole entry, we need to read just the length.
-        * This is because aentry of length 8 (that is, just the length field)
+       /* Before reading the whole dentry, we need to read just the length.
+        * This is because a dentry of length 8 (that is, just the length field)
         * terminates the list of sibling directory entries. */
 
        p = get_u64(&metadata_resource[offset], &dentry->length);
@@ -619,103 +1570,213 @@ int read_dentry(const u8 metadata_resource[], u64 metadata_resource_len,
        /* A zero length field (really a length of 8, since that's how big the
         * directory entry is...) indicates that this is the end of directory
         * dentry.  We do not read it into memory as an actual dentry, so just
-        * return true in that case. */
+        * return successfully in that case. */
        if (dentry->length == 0)
                return 0;
 
-       if (offset + dentry->length >= metadata_resource_len) {
+       /* If the dentry does not overflow the metadata resource buffer and is
+        * not too short, read the rest of it (excluding the alternate data
+        * streams, but including the file name and short name variable-length
+        * fields) into memory. */
+       if (offset + dentry->length >= metadata_resource_len
+           || offset + dentry->length < offset)
+       {
                ERROR("Directory entry at offset %"PRIu64" and with size "
-                               "%"PRIu64" ends past the end of the metadata resource "
-                               "(size %"PRIu64")!\n", offset, dentry->length,
-                               metadata_resource_len);
+                     "%"PRIu64" ends past the end of the metadata resource "
+                     "(size %"PRIu64")",
+                     offset, dentry->length, metadata_resource_len);
                return WIMLIB_ERR_INVALID_DENTRY;
        }
 
-       /* If it is a recognized length, read the rest of the directory entry.
-        * Note: The root directory entry has no name, and its length does not
-        * include the short name length field.  */
        if (dentry->length < WIM_DENTRY_DISK_SIZE) {
-               ERROR("Directory entry has invalid length of "
-                               "%"PRIu64" bytes\n", dentry->length);
+               ERROR("Directory entry has invalid length of %"PRIu64" bytes",
+                     dentry->length);
                return WIMLIB_ERR_INVALID_DENTRY;
        }
 
-       p = get_u32(p, &dentry->attributes);
-#ifdef ENABLE_SECURITY_DATA
-       p = get_u32(p, (u32*)&dentry->security_id);
-#else
-       p += sizeof(u32);
-#endif
+       inode = new_timeless_inode();
+       if (!inode)
+               return WIMLIB_ERR_NOMEM;
+
+       p = get_u32(p, &inode->attributes);
+       p = get_u32(p, (u32*)&inode->security_id);
        p = get_u64(p, &dentry->subdir_offset);
 
        /* 2 unused fields */
        p += 2 * sizeof(u64);
+       /*p = get_u64(p, &dentry->unused1);*/
+       /*p = get_u64(p, &dentry->unused2);*/
+
+       p = get_u64(p, &inode->creation_time);
+       p = get_u64(p, &inode->last_access_time);
+       p = get_u64(p, &inode->last_write_time);
+
+       p = get_bytes(p, SHA1_HASH_SIZE, inode->hash);
+
+       /*
+        * I don't know what's going on here.  It seems like M$ screwed up the
+        * reparse points, then put the fields in the same place and didn't
+        * document it.  The WIM_HDR_FLAG_RP_FIX flag in the WIM header might
+        * have something to do with this, but it's not documented.
+        */
+       if (inode->attributes & FILE_ATTRIBUTE_REPARSE_POINT) {
+               /* ??? */
+               p += 4;
+               p = get_u32(p, &inode->reparse_tag);
+               p += 4;
+       } else {
+               p = get_u32(p, &inode->reparse_tag);
+               p = get_u64(p, &inode->ino);
+       }
 
-       p = get_u64(p, &dentry->creation_time);
-       p = get_u64(p, &dentry->last_access_time);
-       p = get_u64(p, &dentry->last_write_time);
-
-       p = get_bytes(p, WIM_HASH_SIZE, dentry->hash);
-       
-       /* Currently ignoring reparse_tag. */
-       p += sizeof(u32);
-
-       /* The reparse_reserved field does not actually exist. */
+       /* By the way, the reparse_reserved field does not actually exist (at
+        * least when the file is not a reparse point) */
 
-       p = get_u64(p, &dentry->hard_link);
-       
-       /* Currently ignoring streams. */
-       p += sizeof(u16);
+       p = get_u16(p, &inode->num_ads);
 
        p = get_u16(p, &short_name_len);
        p = get_u16(p, &file_name_len);
 
-       calculated_size = WIM_DENTRY_DISK_SIZE + file_name_len + 2 +
-                         short_name_len;
+       /* We now know the length of the file name and short name.  Make sure
+        * the length of the dentry is large enough to actually hold them.
+        *
+        * The calculated length here is unaligned to allow for the possibility
+        * that the dentry->length names an unaligned length, although this
+        * would be unexpected. */
+       calculated_size = __dentry_correct_length_unaligned(file_name_len,
+                                                           short_name_len);
 
        if (dentry->length < calculated_size) {
                ERROR("Unexpected end of directory entry! (Expected "
-                               "%"PRIu64" bytes, got %"PRIu64" bytes. "
-                               "short_name_len = %hu, file_name_len = %hu)\n", 
-                               calculated_size, dentry->length,
-                               short_name_len, file_name_len);
-               return WIMLIB_ERR_INVALID_DENTRY;
+                     "at least %"PRIu64" bytes, got %"PRIu64" bytes. "
+                     "short_name_len = %hu, file_name_len = %hu)",
+                     calculated_size, dentry->length,
+                     short_name_len, file_name_len);
+               ret = WIMLIB_ERR_INVALID_DENTRY;
+               goto out_free_inode;
        }
 
-       /* Read the filename. */
-       file_name = MALLOC(file_name_len);
-       if (!file_name) {
-               ERROR("Failed to allocate %hu bytes for dentry file name!\n",
-                               file_name_len);
-               return WIMLIB_ERR_NOMEM;
-       }
-       p = get_bytes(p, file_name_len, file_name);
+       /* Read the filename if present.  Note: if the filename is empty, there
+        * is no null terminator following it. */
+       if (file_name_len) {
+               file_name = MALLOC(file_name_len);
+               if (!file_name) {
+                       ERROR("Failed to allocate %hu bytes for dentry file name",
+                             file_name_len);
+                       ret = WIMLIB_ERR_NOMEM;
+                       goto out_free_inode;
+               }
+               p = get_bytes(p, file_name_len, file_name);
+
+               /* Convert filename to UTF-8. */
+               file_name_utf8 = utf16_to_utf8(file_name, file_name_len,
+                                              &file_name_utf8_len);
 
-       /* Convert filename to UTF-8. */
-       file_name_utf8 = utf16_to_utf8(file_name, file_name_len, 
-                                      &file_name_utf8_len);
+               if (!file_name_utf8) {
+                       ERROR("Failed to allocate memory to convert UTF-16 "
+                             "filename (%hu bytes) to UTF-8", file_name_len);
+                       ret = WIMLIB_ERR_NOMEM;
+                       goto out_free_file_name;
+               }
+               if (*(u16*)p)
+                       WARNING("Expected two zero bytes following the file name "
+                               "`%s', but found non-zero bytes", file_name_utf8);
+               p += 2;
+       }
 
-       if (!file_name_utf8) {
-               ERROR("Failed to allocate memory to convert UTF16 "
-                               "filename (%hu bytes) to UTF8\n",
-                               file_name_len);
-               goto err_nomem2;
+       /* Align the calculated size */
+       calculated_size = (calculated_size + 7) & ~7;
+
+       if (dentry->length > calculated_size) {
+               /* Weird; the dentry says it's longer than it should be.  Note
+                * that the length field does NOT include the size of the
+                * alternate stream entries. */
+
+               /* Strangely, some directory entries inexplicably have a little
+                * over 70 bytes of extra data.  The exact amount of data seems
+                * to be 72 bytes, but it is aligned on the next 8-byte
+                * boundary.  It does NOT seem to be alternate data stream
+                * entries.  Here's an example of the aligned data:
+                *
+                * 01000000 40000000 6c786bba c58ede11 b0bb0026 1870892a b6adb76f
+                * e63a3e46 8fca8653 0d2effa1 6c786bba c58ede11 b0bb0026 1870892a
+                * 00000000 00000000 00000000 00000000
+                *
+                * Here's one interpretation of how the data is laid out.
+                *
+                * struct unknown {
+                *      u32 field1; (always 0x00000001)
+                *      u32 field2; (always 0x40000000)
+                *      u8  data[48]; (???)
+                *      u64 reserved1; (always 0)
+                *      u64 reserved2; (always 0)
+                * };*/
+               DEBUG("Dentry for file or directory `%s' has %zu extra "
+                     "bytes of data",
+                     file_name_utf8, dentry->length - calculated_size);
        }
 
-       /* Undocumented padding between file name and short name.  This probably
-        * is supposed to be a terminating NULL character. */
-       p += 2;
+       /* Read the short filename if present.  Note: if there is no short
+        * filename, there is no null terminator following it. */
+       if (short_name_len) {
+               short_name = MALLOC(short_name_len);
+               if (!short_name) {
+                       ERROR("Failed to allocate %hu bytes for short filename",
+                             short_name_len);
+                       ret = WIMLIB_ERR_NOMEM;
+                       goto out_free_file_name_utf8;
+               }
 
-       /* Read the short filename. */
-       short_name = MALLOC(short_name_len);
-       if (!short_name) {
-               ERROR("Failed to allocate %hu bytes for short filename\n",
-                               short_name_len);
-               goto err_nomem1;
+               p = get_bytes(p, short_name_len, short_name);
+               if (*(u16*)p)
+                       WARNING("Expected two zero bytes following the short name of "
+                               "`%s', but found non-zero bytes", file_name_utf8);
+               p += 2;
        }
 
-       get_bytes(p, short_name_len, short_name);
+       /*
+        * Read the alternate data streams, if present.  dentry->num_ads tells
+        * us how many they are, and they will directly follow the dentry
+        * on-disk.
+        *
+        * Note that each alternate data stream entry begins on an 8-byte
+        * aligned boundary, and the alternate data stream entries are NOT
+        * included in the dentry->length field for some reason.
+        */
+       if (inode->num_ads != 0) {
+
+               /* Trying different lengths is just a hack to make sure we have
+                * a chance of reading the ADS entries correctly despite the
+                * poor documentation. */
+
+               if (calculated_size != dentry->length) {
+                       WARNING("Trying calculated dentry length (%"PRIu64") "
+                               "instead of dentry->length field (%"PRIu64") "
+                               "to read ADS entries",
+                               calculated_size, dentry->length);
+               }
+               u64 lengths_to_try[3] = {calculated_size,
+                                        (dentry->length + 7) & ~7,
+                                        dentry->length};
+               ret = WIMLIB_ERR_INVALID_DENTRY;
+               for (size_t i = 0; i < ARRAY_LEN(lengths_to_try); i++) {
+                       if (lengths_to_try[i] > metadata_resource_len - offset)
+                               continue;
+                       ret = read_ads_entries(&metadata_resource[offset + lengths_to_try[i]],
+                                              inode,
+                                              metadata_resource_len - offset - lengths_to_try[i]);
+                       if (ret == 0)
+                               goto out;
+               }
+               ERROR("Failed to read alternate data stream "
+                     "entries of `%s'", dentry->file_name_utf8);
+               goto out_free_short_name;
+       }
+out:
 
+       /* We've read all the data for this dentry.  Set the names and their
+        * lengths, and we've done. */
+       dentry->d_inode            = inode;
        dentry->file_name          = file_name;
        dentry->file_name_utf8     = file_name_utf8;
        dentry->short_name         = short_name;
@@ -723,117 +1784,47 @@ int read_dentry(const u8 metadata_resource[], u64 metadata_resource_len,
        dentry->file_name_utf8_len = file_name_utf8_len;
        dentry->short_name_len     = short_name_len;
        return 0;
-err_nomem1:
-       FREE(dentry->file_name_utf8);
-err_nomem2:
-       FREE(dentry->file_name);
-       return WIMLIB_ERR_NOMEM;
-}
-
-/* 
- * Writes a dentry to an output buffer.
- *
- * @dentry:  The dentry structure.
- * @p:       The memory location to write the data to.
- * @return:  True on success, false on failure.
- */
-static u8 *write_dentry(const struct dentry *dentry, u8 *p)
-{
-       u8 *orig_p = p;
-       memset(p, 0, dentry->length);
-       p = put_u64(p, dentry->length);
-       p = put_u32(p, dentry->attributes);
-#ifdef ENABLE_SECURITY_DATA
-       p = put_u32(p, dentry->security_id);
-#else
-       p = put_u32(p, (u32)(-1));
-#endif
-       p = put_u64(p, dentry->subdir_offset);
-       p = put_u64(p, 0); /* unused1 */
-       p = put_u64(p, 0); /* unused2 */
-       p = put_u64(p, dentry->creation_time);
-       p = put_u64(p, dentry->last_access_time);
-       p = put_u64(p, dentry->last_write_time);
-       if (!is_empty_file_hash(dentry->hash))
-               memcpy(p, dentry->hash, WIM_HASH_SIZE);
-       else
-               DEBUG("zero hash for %s\n", dentry->file_name_utf8);
-       p += WIM_HASH_SIZE;
-       p = put_u32(p, 0); /* reparse_tag */
-       p = put_u64(p, dentry->hard_link);
-       p = put_u16(p, 0); /*streams */
-       p = put_u16(p, dentry->short_name_len);
-       p = put_u16(p, dentry->file_name_len);
-       p = put_bytes(p, dentry->file_name_len, (u8*)dentry->file_name);
-       p = put_u16(p, 0); /* filename padding, 2 bytes. */
-       p = put_bytes(p, dentry->short_name_len, (u8*)dentry->short_name);
-       return orig_p + dentry->length;
-}
-
-/* Recursive function that writes a dentry tree rooted at @tree, not including
- * @tree itself, which has already been written, except in the case of the root
- * dentry, which is written right away, along with an end-of-directory entry. */
-u8 *write_dentry_tree(const struct dentry *tree, u8 *p)
-{
-       const struct dentry *child;
-
-       if (dentry_is_root(tree)) {
-               p = write_dentry(tree, p);
-
-               /* write end of directory entry */
-               p = put_u64(p, 0);
-       } else {
-               /* Nothing to do for a regular file. */
-               if (dentry_is_regular_file(tree))
-                       return p;
-       }
-
-       /* Write child dentries and end-of-directory entry. */
-       child = tree->children;
-       if (child) {
-               do {
-                       p = write_dentry(child, p);
-                       child = child->next;
-               } while (child != tree->children);
-       }
-
-       /* write end of directory entry */
-       p = put_u64(p, 0);
-
-       /* Recurse on children. */
-       if (child) {
-               do {
-                       p = write_dentry_tree(child, p);
-                       child = child->next;
-               } while (child != tree->children);
-       }
-       return p;
+out_free_short_name:
+       FREE(short_name);
+out_free_file_name_utf8:
+       FREE(file_name_utf8);
+out_free_file_name:
+       FREE(file_name);
+out_free_inode:
+       free_inode(inode);
+       return ret;
 }
 
 /* Reads the children of a dentry, and all their children, ..., etc. from the
  * metadata resource and into the dentry tree.
  *
  * @metadata_resource: An array that contains the uncompressed metadata
- *                             resource for the WIM file.
- * @metadata_resource_len:     The length of @metadata_resource.
- * @dentry:    A pointer to a struct dentry that is the root of the directory tree
- *             and has already been read from the metadata resource.  It does not 
- *             need to be the real root, because this procedure is called 
- *             recursively.
- * @return:    True on success, false on failure. 
+ *                     resource for the WIM file.
+ *
+ * @metadata_resource_len:  The length of the uncompressed metadata resource, in
+ *                         bytes.
+ *
+ * @dentry:    A pointer to a `struct dentry' that is the root of the directory
+ *             tree and has already been read from the metadata resource.  It
+ *             does not need to be the real root because this procedure is
+ *             called recursively.
+ *
+ * @return:    Zero on success, nonzero on failure.
  */
 int read_dentry_tree(const u8 metadata_resource[], u64 metadata_resource_len,
                     struct dentry *dentry)
 {
        u64 cur_offset = dentry->subdir_offset;
-       struct dentry *prev_child = NULL;
-       struct dentry *first_child = NULL;
        struct dentry *child;
        struct dentry cur_child;
        int ret;
 
-       /* If @dentry is a regular file, nothing more needs to be done for this
-        * branch. */
+       /*
+        * If @dentry has no child dentries, nothing more needs to be done for
+        * this branch.  This is the case for regular files, symbolic links, and
+        * *possibly* empty directories (although an empty directory may also
+        * have one child dentry that is the special end-of-directory dentry)
+        */
        if (cur_offset == 0)
                return 0;
 
@@ -841,57 +1832,191 @@ int read_dentry_tree(const u8 metadata_resource[], u64 metadata_resource_len,
        while (1) {
 
                /* Read next child of @dentry into @cur_child. */
-               ret = read_dentry(metadata_resource, metadata_resource_len, 
+               ret = read_dentry(metadata_resource, metadata_resource_len,
                                  cur_offset, &cur_child);
                if (ret != 0)
                        break;
 
                /* Check for end of directory. */
-               if (cur_child.length == 0) {
-                       ret = 0;
+               if (cur_child.length == 0)
                        break;
-               }
 
                /* Not end of directory.  Allocate this child permanently and
                 * link it to the parent and previous child. */
                child = MALLOC(sizeof(struct dentry));
                if (!child) {
-                       ERROR("Failed to allocate %zu bytes for new dentry!\n",
-                                       sizeof(struct dentry));
+                       ERROR("Failed to allocate %zu bytes for new dentry",
+                             sizeof(struct dentry));
                        ret = WIMLIB_ERR_NOMEM;
                        break;
                }
                memcpy(child, &cur_child, sizeof(struct dentry));
 
-               if (prev_child) {
-                       prev_child->next = child;
-                       child->prev = prev_child;
-               } else {
-                       first_child = child;
-               }
+               dentry_add_child(dentry, child);
 
-               child->parent = dentry;
-               prev_child = child;
+               inode_add_dentry(child, child->d_inode);
 
                /* If there are children of this child, call this procedure
                 * recursively. */
                if (child->subdir_offset != 0) {
-                       ret = read_dentry_tree(metadata_resource, 
+                       ret = read_dentry_tree(metadata_resource,
                                               metadata_resource_len, child);
                        if (ret != 0)
                                break;
                }
 
-               /* Advance to the offset of the next child. */
-               cur_offset += child->length;
+               /* Advance to the offset of the next child.  Note: We need to
+                * advance by the TOTAL length of the dentry, not by the length
+                * child->length, which although it does take into account the
+                * padding, it DOES NOT take into account alternate stream
+                * entries. */
+               cur_offset += dentry_total_length(child);
        }
+       return ret;
+}
 
-       /* Link last child to first one, and set parent's
-        * children pointer to the first child.  */
-       if (prev_child) {
-               prev_child->next = first_child;
-               first_child->prev = prev_child;
+/*
+ * Writes a WIM dentry to an output buffer.
+ *
+ * @dentry:  The dentry structure.
+ * @p:       The memory location to write the data to.
+ * @return:  Pointer to the byte after the last byte we wrote as part of the
+ *             dentry.
+ */
+static u8 *write_dentry(const struct dentry *dentry, u8 *p)
+{
+       u8 *orig_p = p;
+       const u8 *hash;
+       const struct inode *inode = dentry->d_inode;
+
+       /* We calculate the correct length of the dentry ourselves because the
+        * dentry->length field may been set to an unexpected value from when we
+        * read the dentry in (for example, there may have been unknown data
+        * appended to the end of the dentry...) */
+       u64 length = dentry_correct_length(dentry);
+
+       p = put_u64(p, length);
+       p = put_u32(p, inode->attributes);
+       p = put_u32(p, inode->security_id);
+       p = put_u64(p, dentry->subdir_offset);
+       p = put_u64(p, 0); /* unused1 */
+       p = put_u64(p, 0); /* unused2 */
+       p = put_u64(p, inode->creation_time);
+       p = put_u64(p, inode->last_access_time);
+       p = put_u64(p, inode->last_write_time);
+       hash = inode_stream_hash(inode, 0);
+       p = put_bytes(p, SHA1_HASH_SIZE, hash);
+       if (inode->attributes & FILE_ATTRIBUTE_REPARSE_POINT) {
+               p = put_zeroes(p, 4);
+               p = put_u32(p, inode->reparse_tag);
+               p = put_zeroes(p, 4);
+       } else {
+               u64 link_group_id;
+               p = put_u32(p, 0);
+               if (inode->link_count == 1)
+                       link_group_id = 0;
+               else
+                       link_group_id = inode->ino;
+               p = put_u64(p, link_group_id);
        }
-       dentry->children = first_child;
-       return ret;
+       p = put_u16(p, inode->num_ads);
+       p = put_u16(p, dentry->short_name_len);
+       p = put_u16(p, dentry->file_name_len);
+       if (dentry->file_name_len) {
+               p = put_bytes(p, dentry->file_name_len, (u8*)dentry->file_name);
+               p = put_u16(p, 0); /* filename padding, 2 bytes. */
+       }
+       if (dentry->short_name) {
+               p = put_bytes(p, dentry->short_name_len, (u8*)dentry->short_name);
+               p = put_u16(p, 0); /* short name padding, 2 bytes */
+       }
+
+       /* Align to 8-byte boundary */
+       wimlib_assert(length >= (p - orig_p) && length - (p - orig_p) <= 7);
+       p = put_zeroes(p, length - (p - orig_p));
+
+       /* Write the alternate data streams, if there are any.  Please see
+        * read_ads_entries() for comments about the format of the on-disk
+        * alternate data stream entries. */
+       for (u16 i = 0; i < inode->num_ads; i++) {
+               p = put_u64(p, ads_entry_total_length(&inode->ads_entries[i]));
+               p = put_u64(p, 0); /* Unused */
+               hash = inode_stream_hash(inode, i + 1);
+               p = put_bytes(p, SHA1_HASH_SIZE, hash);
+               p = put_u16(p, inode->ads_entries[i].stream_name_len);
+               if (inode->ads_entries[i].stream_name_len) {
+                       p = put_bytes(p, inode->ads_entries[i].stream_name_len,
+                                        (u8*)inode->ads_entries[i].stream_name);
+                       p = put_u16(p, 0);
+               }
+               p = put_zeroes(p, (8 - (p - orig_p) % 8) % 8);
+       }
+       wimlib_assert(p - orig_p == __dentry_total_length(dentry, length));
+       return p;
+}
+
+static int write_dentry_cb(struct dentry *dentry, void *_p)
+{
+       u8 **p = _p;
+       *p = write_dentry(dentry, *p);
+       return 0;
+}
+
+static u8 *write_dentry_tree_recursive(const struct dentry *parent, u8 *p);
+
+static int write_dentry_tree_recursive_cb(struct dentry *dentry, void *_p)
+{
+       u8 **p = _p;
+       *p = write_dentry_tree_recursive(dentry, *p);
+       return 0;
+}
+
+/* Recursive function that writes a dentry tree rooted at @parent, not including
+ * @parent itself, which has already been written. */
+static u8 *write_dentry_tree_recursive(const struct dentry *parent, u8 *p)
+{
+       /* Nothing to do if this dentry has no children. */
+       if (parent->subdir_offset == 0)
+               return p;
+
+       /* Write child dentries and end-of-directory entry.
+        *
+        * Note: we need to write all of this dentry's children before
+        * recursively writing the directory trees rooted at each of the child
+        * dentries, since the on-disk dentries for a dentry's children are
+        * always located at consecutive positions in the metadata resource! */
+       for_dentry_in_rbtree(parent->d_inode->children.rb_node, write_dentry_cb, &p);
+
+       /* write end of directory entry */
+       p = put_u64(p, 0);
+
+       /* Recurse on children. */
+       for_dentry_in_rbtree(parent->d_inode->children.rb_node,
+                            write_dentry_tree_recursive_cb, &p);
+       return p;
+}
+
+/* Writes a directory tree to the metadata resource.
+ *
+ * @root:      Root of the dentry tree.
+ * @p:         Pointer to a buffer with enough space for the dentry tree.
+ *
+ * Returns pointer to the byte after the last byte we wrote.
+ */
+u8 *write_dentry_tree(const struct dentry *root, u8 *p)
+{
+       DEBUG("Writing dentry tree.");
+       wimlib_assert(dentry_is_root(root));
+
+       /* If we're the root dentry, we have no parent that already
+        * wrote us, so we need to write ourselves. */
+       p = write_dentry(root, p);
+
+       /* Write end of directory entry after the root dentry just to be safe;
+        * however the root dentry obviously cannot have any siblings. */
+       p = put_u64(p, 0);
+
+       /* Recursively write the rest of the dentry tree. */
+       return write_dentry_tree_recursive(root, p);
 }
+