]> wimlib.net Git - wimlib/blobdiff - src/decompress.c
make_huffman_decode_table(): Add SSE2 entry filling (with aliasing handled correctly)
[wimlib] / src / decompress.c
index 6d4b41e2285512d33ad21e8a360a0d61931ca198..cc01ba449a9305a787119664273ffdcb9bce8a83 100644 (file)
@@ -5,7 +5,7 @@
  */
 
 /*
- * Copyright (C) 2012 Eric Biggers
+ * Copyright (C) 2012, 2013 Eric Biggers
  *
  * This file is part of wimlib, a library for working with WIM files.
  *
  * along with wimlib; if not, see http://www.gnu.org/licenses/.
  */
 
-#include "decompress.h"
+#ifdef HAVE_CONFIG_H
+#  include "config.h"
+#endif
+
+#include "wimlib/decompress.h"
+#include "wimlib/util.h"
+
 #include <string.h>
 
+#ifdef __GNUC__
+#  ifdef __SSE2__
+#    define USE_SSE2_FILL
+#    include <emmintrin.h>
+#  else
+#    define USE_LONG_FILL
+#  endif
+#endif
+
 /*
- * Builds a fast huffman decoding table from an array that gives the length of
- * the codeword for each symbol in the alphabet.  Originally based on code
- * written by David Tritscher (taken the original LZX decompression code); also
- * heavily modified to add some optimizations used in the zlib code, as well as
- * more comments.
+ * make_huffman_decode_table: - Builds a fast huffman decoding table from an
+ * array that gives the length of the codeword for each symbol in the alphabet.
+ * Originally based on code written by David Tritscher (taken the original LZX
+ * decompression code); also heavily modified to add some optimizations used in
+ * the zlib code, as well as more comments; also added some optimizations to
+ * make filling in the decode table entries faster (may not help significantly
+ * though).
  *
  * @decode_table:      The array in which to create the fast huffman decoding
  *                     table.  It must have a length of at least
  *                     (2**table_bits) + 2 * num_syms to guarantee
  *                     that there is enough space.
  *
- * @num_syms:          Total number of symbols in the Huffman tree.
+ * @num_syms:          Number of symbols in the alphabet, including symbols
+ *                     that do not appear in this particular input chunk.
  *
  * @table_bits:                Any symbols with a code length of table_bits or less can
  *                     be decoded in one lookup of the table.  2**table_bits
@@ -46,7 +64,7 @@
  *                     any Huffman codes longer than @table_bits.
  *
  * @lens:              An array of length @num_syms, indexable by symbol, that
- *                     gives the length of the Huffman codeward for that
+ *                     gives the length of the Huffman codeword for that
  *                     symbol.  Because the Huffman tree is in canonical form,
  *                     it can be reconstructed by only knowing the length of
  *                     the codeword for each symbol.  It is assumed, but not
  * indices into the decoding table, and symbol entries are distinguished from
  * pointers by the fact that values less than @num_syms must be symbol values.
  */
-int make_huffman_decode_table(u16 decode_table[],  unsigned num_syms,
-                             unsigned table_bits, const u8 lens[],
-                             unsigned max_codeword_len)
+int
+make_huffman_decode_table(u16 *decode_table,  unsigned num_syms,
+                         unsigned table_bits, const u8 *lens,
+                         unsigned max_codeword_len)
 {
        unsigned len_counts[max_codeword_len + 1];
        u16 sorted_syms[num_syms];
        unsigned offsets[max_codeword_len + 1];
        const unsigned table_num_entries = 1 << table_bits;
+       int left;
+       unsigned decode_table_pos;
+       void *decode_table_ptr;
+       unsigned sym_idx;
+       unsigned codeword_len;
+       unsigned stores_per_loop;
+
+#ifdef USE_LONG_FILL
+       const unsigned entries_per_long = sizeof(unsigned long) / sizeof(decode_table[0]);
+#endif
+
+#ifdef USE_SSE2_FILL
+       const unsigned entries_per_xmm = sizeof(__m128i) / sizeof(decode_table[0]);
+#endif
+
+       wimlib_assert2((uintptr_t)decode_table % DECODE_TABLE_ALIGNMENT == 0);
 
        /* accumulate lengths for codes */
        for (unsigned i = 0; i <= max_codeword_len; i++)
@@ -107,16 +142,17 @@ int make_huffman_decode_table(u16 decode_table[],  unsigned num_syms,
        }
 
        /* check for an over-subscribed or incomplete set of lengths */
-       int left = 1;
+       left = 1;
        for (unsigned len = 1; len <= max_codeword_len; len++) {
                left <<= 1;
                left -= len_counts[len];
-               if (left < 0) { /* over-subscribed */
+               if (unlikely(left < 0)) { /* over-subscribed */
                        ERROR("Invalid Huffman code (over-subscribed)");
                        return -1;
                }
        }
-       if (left != 0) /* incomplete set */{
+
+       if (unlikely(left != 0)) /* incomplete set */{
                if (left == 1 << max_codeword_len) {
                        /* Empty code--- okay in XPRESS and LZX */
                        memset(decode_table, 0,
@@ -134,16 +170,10 @@ int make_huffman_decode_table(u16 decode_table[],  unsigned num_syms,
                offsets[len + 1] = offsets[len] + len_counts[len];
 
        /* Sort symbols primarily by length and secondarily by symbol order.
-        * This is basically a count-sort over the codeword lengths.
-        * In the process, calculate the number of symbols that have nonzero
-        * length and are therefore used in the symbol stream. */
-       unsigned num_used_syms = 0;
-       for (unsigned sym = 0; sym < num_syms; sym++) {
-               if (lens[sym] != 0) {
+        * This is basically a count-sort over the codeword lengths. */
+       for (unsigned sym = 0; sym < num_syms; sym++)
+               if (lens[sym] != 0)
                        sorted_syms[offsets[lens[sym]]++] = sym;
-                       num_used_syms++;
-               }
-       }
 
        /* Fill entries for codewords short enough for a direct mapping.  We can
         * take advantage of the ordering of the codewords, since the Huffman
@@ -152,145 +182,219 @@ int make_huffman_decode_table(u16 decode_table[],  unsigned num_syms,
         * Furthermore, if we have 2 symbols A and B with the same codeword
         * length but symbol A is sorted before symbol B, then then we know that
         * the codeword for A numerically precedes the codeword for B. */
-       unsigned decode_table_pos = 0;
-       unsigned i = 0;
-
-       wimlib_assert2(num_used_syms != 0);
-       while (1) {
-               unsigned sym = sorted_syms[i];
-               unsigned codeword_len = lens[sym];
-               if (codeword_len > table_bits)
-                       break;
-
-               unsigned num_entries = 1 << (table_bits - codeword_len);
-               if (num_entries >=
-                       (sizeof(unsigned long) / sizeof(decode_table[0])))
-               {
-                       wimlib_assert2(decode_table_pos % 4 == 0);
-                       BUILD_BUG_ON(sizeof(unsigned long) != 4 &&
-                                    sizeof(unsigned long) != 8);
-
-                       unsigned long *p = (unsigned long *)&decode_table[decode_table_pos];
-                       unsigned long n = num_entries /
-                                               (sizeof(unsigned long) /
-                                                       sizeof(decode_table[0]));
-                       unsigned long v = sym;
-                       if (sizeof(unsigned long) >= 4)
+       decode_table_ptr = decode_table;
+       sym_idx = 0;
+       codeword_len = 1;
+#ifdef USE_SSE2_FILL
+       /* Fill in the Huffman decode table entries one 128-bit vector at a
+        * time.  This is 8 entries per store. */
+       stores_per_loop = (1 << (table_bits - codeword_len)) / entries_per_xmm;
+       for (; stores_per_loop != 0; codeword_len++, stores_per_loop >>= 1) {
+               unsigned end_sym_idx = sym_idx + len_counts[codeword_len];
+               for (; sym_idx < end_sym_idx; sym_idx++) {
+                       /* Note: unlike in the 'long' version below, the __m128i
+                        * type already has __attribute__((may_alias)), so using
+                        * it to access the decode table, which is an array of
+                        * unsigned shorts, will not violate strict aliasing. */
+                       u16 sym;
+                       __m128i v;
+                       __m128i *p;
+                       unsigned n;
+
+                       sym = sorted_syms[sym_idx];
+
+                       v = _mm_set1_epi16(sym);
+                       p = (__m128i*)decode_table_ptr;
+                       n = stores_per_loop;
+                       do {
+                               *p++ = v;
+                       } while (--n);
+                       decode_table_ptr = p;
+               }
+       }
+#endif /* USE_SSE2_FILL */
+
+#ifdef USE_LONG_FILL
+       /* Fill in the Huffman decode table entries one 'unsigned long' at a
+        * time.  On 32-bit systems this is 2 entries per store, while on 64-bit
+        * systems this is 4 entries per store. */
+       stores_per_loop = (1 << (table_bits - codeword_len)) / entries_per_long;
+       for (; stores_per_loop != 0; codeword_len++, stores_per_loop >>= 1) {
+               unsigned end_sym_idx = sym_idx + len_counts[codeword_len];
+               for (; sym_idx < end_sym_idx; sym_idx++) {
+
+                       /* Accessing the array of unsigned shorts as unsigned
+                        * longs would violate strict aliasing and would require
+                        * compiling the code with -fno-strict-aliasing to
+                        * guarantee correctness.  To work around this problem,
+                        * use the gcc 'may_alias' extension to define a special
+                        * unsigned long type that may alias any other in-memory
+                        * variable.  */
+                       typedef unsigned long __attribute__((may_alias)) aliased_long_t;
+
+                       u16 sym;
+                       aliased_long_t *p;
+                       aliased_long_t v;
+                       unsigned n;
+
+                       sym = sorted_syms[sym_idx];
+
+                       BUILD_BUG_ON(sizeof(aliased_long_t) != 4 &&
+                                    sizeof(aliased_long_t) != 8);
+
+                       v = sym;
+                       if (sizeof(aliased_long_t) >= 4)
                                v |= v << 16;
-                       if (sizeof(unsigned long) >= 8)
+                       if (sizeof(aliased_long_t) >= 8) {
+                               /* This may produce a compiler warning if an
+                                * aliased_long_t is 32 bits, but this won't be
+                                * executed unless an aliased_long_t is at least
+                                * 64 bits anyway. */
                                v |= v << 32;
+                       }
+
+                       p = (aliased_long_t *)decode_table_ptr;
+                       n = stores_per_loop;
+
                        do {
                                *p++ = v;
                        } while (--n);
+                       decode_table_ptr = p;
+               }
+       }
+#endif /* USE_LONG_FILL */
+
+       /* Fill in the Huffman decode table entries one 16-bit integer at a
+        * time. */
+       stores_per_loop = (1 << (table_bits - codeword_len));
+       for (; stores_per_loop != 0; codeword_len++, stores_per_loop >>= 1) {
+               unsigned end_sym_idx = sym_idx + len_counts[codeword_len];
+               for (; sym_idx < end_sym_idx; sym_idx++) {
+                       u16 sym;
+                       u16 *p;
+                       unsigned n;
+
+                       sym = sorted_syms[sym_idx];
+
+                       p = (u16*)decode_table_ptr;
+                       n = stores_per_loop;
 
-                       decode_table_pos += num_entries;
-               } else {
                        do {
-                               decode_table[decode_table_pos++] = sym;
-                       } while (--num_entries);
-               }
-               wimlib_assert2(decode_table_pos <= table_num_entries);
-               if (++i == num_used_syms) {
-                       wimlib_assert2(decode_table_pos == table_num_entries);
-                       /* No codewords were longer than @table_bits, so the
-                        * table is now entirely filled with the codewords. */
-                       return 0;
+                               *p++ = sym;
+                       } while (--n);
+
+                       decode_table_ptr = p;
                }
        }
 
-       wimlib_assert2(i < num_used_syms);
-       wimlib_assert2(decode_table_pos < table_num_entries);
+       /* If we've filled in the entire table, we are done.  Otherwise, there
+        * are codes longer than table bits that we need to store in the
+        * tree-like structure at the end of the table rather than directly in
+        * the main decode table itself. */
+
+       decode_table_pos = (u16*)decode_table_ptr - decode_table;
+       if (decode_table_pos != table_num_entries) {
+               unsigned j;
+               unsigned next_free_tree_slot;
+               unsigned cur_codeword;
+
+               wimlib_assert2(decode_table_pos < table_num_entries);
 
-       /* Fill in the remaining entries, which correspond to codes longer than
-        * @table_bits.
-        *
-        * First, zero out the rest of the entries.  This is necessary so that
-        * the entries appear as "unallocated" in the next part. */
-       {
-               unsigned j = decode_table_pos;
+               /* Fill in the remaining entries, which correspond to codes
+                * longer than @table_bits.
+                *
+                * First, zero out the rest of the entries.  This is necessary
+                * so that the entries appear as "unallocated" in the next part.
+                * */
+               j = decode_table_pos;
                do {
                        decode_table[j] = 0;
                } while (++j != table_num_entries);
-       }
 
-       /* Assert that 2**table_bits is at least num_syms.  If this wasn't the
-        * case, we wouldn't be able to distinguish pointer entries from symbol
-        * entries. */
-       wimlib_assert2(table_num_entries >= num_syms);
-
-       /* The current Huffman codeword  */
-       unsigned cur_codeword = decode_table_pos;
-
-       /* The tree nodes are allocated starting at decode_table[1 <<
-        * table_bits].  Remember that the full size of the table, including the
-        * extra space for the tree nodes, is actually 2**table_bits + 2 *
-        * num_syms slots, while table_num_entries is only 2**table_Bits. */
-       unsigned next_free_tree_slot = table_num_entries;
-
-       /* Go through every codeword of length greater than @table_bits,
-        * primarily in order of codeword length and secondarily in order of
-        * symbol. */
-       unsigned prev_codeword_len = table_bits;
-       do {
-               unsigned sym = sorted_syms[i];
-               unsigned codeword_len = lens[sym];
-               unsigned extra_bits = codeword_len - table_bits;
-               unsigned extra_mask;
-
-               cur_codeword <<= (codeword_len - prev_codeword_len);
-               prev_codeword_len = codeword_len;
-
-               /* index of the current node; find it from the prefix of the
-                * current Huffman codeword. */
-               unsigned node_idx = cur_codeword >> extra_bits;
-               wimlib_assert2(node_idx < table_num_entries);
-
-               /* Go through each bit of the current Huffman codeword beyond
-                * the prefix of length @table_bits and walk the tree,
-                * allocating any slots that have not yet been allocated. */
-               do {
+               /* Assert that 2**table_bits is at least num_syms.  If this
+                * wasn't the case, we wouldn't be able to distinguish pointer
+                * entries from symbol entries. */
+               wimlib_assert2(table_num_entries >= num_syms);
 
-                       /* If the current tree node points to nowhere
-                        * but we need to follow it, allocate a new node
-                        * for it to point to. */
-                       if (decode_table[node_idx] == 0) {
-                               decode_table[node_idx] = next_free_tree_slot;
-                               decode_table[next_free_tree_slot++] = 0;
-                               decode_table[next_free_tree_slot++] = 0;
-                               wimlib_assert2(next_free_tree_slot <=
-                                              table_num_entries + 2 * num_syms);
-                       }
 
-                       /* Set node_idx to left child */
-                       node_idx = decode_table[node_idx];
-
-                       /* Is the next bit 0 or 1? If 0, go left (already done).
-                        * If 1, go right by incrementing node_idx. */
-                       --extra_bits;
-                       node_idx += (cur_codeword >> extra_bits) & 1;
-               } while (extra_bits != 0);
-
-               /* node_idx is now the index of the leaf entry into which the
-                * actual symbol will go. */
-               decode_table[node_idx] = sym;
-
-               /* cur_codeword is always incremented because this is
-                * how canonical Huffman codes are generated (add 1 for
-                * each code, then left shift whenever the code length
-                * increases) */
-               cur_codeword++;
-       } while (++i != num_used_syms);
+               /* The tree nodes are allocated starting at decode_table[1 <<
+                * table_bits].  Remember that the full size of the table,
+                * including the extra space for the tree nodes, is actually
+                * 2**table_bits + 2 * num_syms slots, while table_num_entries
+                * is only 2**table_bits. */
+               next_free_tree_slot = table_num_entries;
+
+               /* The current Huffman codeword  */
+               cur_codeword = decode_table_pos << 1;
+
+               /* Go through every codeword of length greater than @table_bits,
+                * primarily in order of codeword length and secondarily in
+                * order of symbol. */
+               wimlib_assert2(codeword_len == table_bits + 1);
+               for (; codeword_len <= max_codeword_len; codeword_len++, cur_codeword <<= 1)
+               {
+                       unsigned end_sym_idx = sym_idx + len_counts[codeword_len];
+                       for (; sym_idx < end_sym_idx; sym_idx++, cur_codeword++) {
+                               unsigned sym = sorted_syms[sym_idx];
+                               unsigned extra_bits = codeword_len - table_bits;
+
+                               /* index of the current node; find it from the
+                                * prefix of the current Huffman codeword. */
+                               unsigned node_idx = cur_codeword >> extra_bits;
+                               wimlib_assert2(node_idx < table_num_entries);
+
+                               /* Go through each bit of the current Huffman
+                                * codeword beyond the prefix of length
+                                * @table_bits and walk the tree, allocating any
+                                * slots that have not yet been allocated. */
+                               do {
+
+                                       /* If the current tree node points to
+                                        * nowhere but we need to follow it,
+                                        * allocate a new node for it to point
+                                        * to. */
+                                       if (decode_table[node_idx] == 0) {
+                                               decode_table[node_idx] = next_free_tree_slot;
+                                               decode_table[next_free_tree_slot++] = 0;
+                                               decode_table[next_free_tree_slot++] = 0;
+                                               wimlib_assert2(next_free_tree_slot <=
+                                                              table_num_entries + 2 * num_syms);
+                                       }
+
+                                       /* Set node_idx to left child */
+                                       node_idx = decode_table[node_idx];
+
+                                       /* Is the next bit 0 or 1? If 0, go left
+                                        * (already done).  If 1, go right by
+                                        * incrementing node_idx. */
+                                       --extra_bits;
+                                       node_idx += (cur_codeword >> extra_bits) & 1;
+                               } while (extra_bits != 0);
+
+                               /* node_idx is now the index of the leaf entry
+                                * into which the actual symbol will go. */
+                               decode_table[node_idx] = sym;
+
+                               /* Note: cur_codeword is always incremented at
+                                * the end of this loop because this is how
+                                * canonical Huffman codes are generated (add 1
+                                * for each code, then left shift whenever the
+                                * code length increases) */
+                       }
+               }
+       }
        return 0;
 }
 
-/* Reads a Huffman-encoded symbol when it is known there are less than
- * MAX_CODE_LEN bits remaining in the bitstream. */
-int read_huffsym_near_end_of_input(struct input_bitstream *istream,
-                                  const u16 decode_table[],
-                                  const u8 lens[],
-                                  unsigned num_syms,
-                                  unsigned table_bits,
-                                  unsigned *n)
+/* Reads a Huffman-encoded symbol from the bistream when the number of remaining
+ * bits is less than the maximum codeword length. */
+int
+read_huffsym_near_end_of_input(struct input_bitstream *istream,
+                              const u16 decode_table[],
+                              const u8 lens[],
+                              unsigned num_syms,
+                              unsigned table_bits,
+                              unsigned *n)
 {
        unsigned bitsleft = istream->bitsleft;
        unsigned key_size;