/*
* lzms_decompress.c
*
* A decompressor for the LZMS compression format.
*/
/*
* Copyright (C) 2013, 2014, 2015 Eric Biggers
*
* This file is free software; you can redistribute it and/or modify it under
* the terms of the GNU Lesser General Public License as published by the Free
* Software Foundation; either version 3 of the License, or (at your option) any
* later version.
*
* This file is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
* FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this file; if not, see http://www.gnu.org/licenses/.
*/
/*
* This is a decompressor for the LZMS compression format used by Microsoft.
* This format is not documented, but it is one of the formats supported by the
* compression API available in Windows 8, and as of Windows 8 it is one of the
* formats that can be used in WIM files.
*
* This decompressor only implements "raw" decompression, which decompresses a
* single LZMS-compressed block. This behavior is the same as that of
* Decompress() in the Windows 8 compression API when using a compression handle
* created with CreateDecompressor() with the Algorithm parameter specified as
* COMPRESS_ALGORITHM_LZMS | COMPRESS_RAW. Presumably, non-raw LZMS data is a
* container format from which the locations and sizes (both compressed and
* uncompressed) of the constituent blocks can be determined.
*
* An LZMS-compressed block must be read in 16-bit little endian units from both
* directions. One logical bitstream starts at the front of the block and
* proceeds forwards. Another logical bitstream starts at the end of the block
* and proceeds backwards. Bits read from the forwards bitstream constitute
* binary range-encoded data, whereas bits read from the backwards bitstream
* constitute Huffman-encoded symbols or verbatim bits. For both bitstreams,
* the ordering of the bits within the 16-bit coding units is such that the
* first bit is the high-order bit and the last bit is the low-order bit.
*
* From these two logical bitstreams, an LZMS decompressor can reconstitute the
* series of items that make up the LZMS data representation. Each such item
* may be a literal byte or a match. Matches may be either traditional LZ77
* matches or "delta" matches, either of which can have its offset encoded
* explicitly or encoded via a reference to a recently used (repeat) offset.
*
* A traditional LZ77 match consists of a length and offset. It asserts that
* the sequence of bytes beginning at the current position and extending for the
* length is equal to the same-length sequence of bytes at the offset back in
* the data buffer. This type of match can be visualized as follows, with the
* caveat that the sequences may overlap:
*
* offset
* --------------------
* | |
* B[1...len] A[1...len]
*
* Decoding proceeds as follows:
*
* do {
* *A++ = *B++;
* } while (--length);
*
* On the other hand, a delta match consists of a "span" as well as a length and
* offset. A delta match can be visualized as follows, with the caveat that the
* various sequences may overlap:
*
* offset
* -----------------------------
* | |
* span | span |
* ------------- -------------
* | | | |
* D[1...len] C[1...len] B[1...len] A[1...len]
*
* Decoding proceeds as follows:
*
* do {
* *A++ = *B++ + *C++ - *D++;
* } while (--length);
*
* A delta match asserts that the bytewise differences of the A and B sequences
* are equal to the bytewise differences of the C and D sequences. The
* sequences within each pair are separated by the same number of bytes, the
* "span". The inter-pair distance is the "offset". In LZMS, spans are
* restricted to powers of 2 between 2**0 and 2**7 inclusively. Offsets are
* restricted to multiples of the span. The stored value for the offset is the
* "raw offset", which is the real offset divided by the span.
*
* Delta matches can cover data containing a series of power-of-2 sized integers
* that is linearly increasing or decreasing. Another way of thinking about it
* is that a delta match can match a longer sequence that is interrupted by a
* non-matching byte, provided that the non-matching byte is a continuation of a
* linearly changing pattern. Examples of files that may contain data like this
* are uncompressed bitmap images, uncompressed digital audio, and Unicode data
* tables. To some extent, this match type is a replacement for delta filters
* or multimedia filters that are sometimes used in other compression software
* (e.g. 'xz --delta --lzma2'). However, on most types of files, delta matches
* do not seem to be very useful.
*
* Both LZ and delta matches may use overlapping sequences. Therefore, they
* must be decoded as if only one byte is copied at a time.
*
* For both LZ and delta matches, any match length in [1, 1073809578] can be
* represented. Similarly, any match offset in [1, 1180427428] can be
* represented. For delta matches, this range applies to the raw offset, so the
* real offset may be larger.
*
* For LZ matches, up to 3 repeat offsets are allowed, similar to some other
* LZ-based formats such as LZX and LZMA. They must updated in an LRU fashion,
* except for a quirk: inserting anything to the front of the queue must be
* delayed by one LZMS item. The reason for this is presumably that there is
* almost no reason to code the same match offset twice in a row, since you
* might as well have coded a longer match at that offset. For this same
* reason, it also is a requirement that when an offset in the queue is used,
* that offset is removed from the queue immediately (and made pending for
* front-insertion after the following decoded item), and everything to the
* right is shifted left one queue slot. This creates a need for an "overflow"
* fourth entry in the queue, even though it is only possible to decode
* references to the first 3 entries at any given time. The queue must be
* initialized to the offsets {1, 2, 3, 4}.
*
* Repeat delta matches are handled similarly, but for them there are two queues
* updated in lock-step: one for powers and one for raw offsets. The power
* queue must be initialized to {0, 0, 0, 0}, and the raw offset queue must be
* initialized to {1, 2, 3, 4}.
*
* Bits from the binary range decoder must be used to disambiguate item types.
* The range decoder must hold two state variables: the range, which must
* initially be set to 0xffffffff, and the current code, which must initially be
* set to the first 32 bits read from the forwards bitstream. The range must be
* maintained above 0xffff; when it falls below 0xffff, both the range and code
* must be left-shifted by 16 bits and the low 16 bits of the code must be
* filled in with the next 16 bits from the forwards bitstream.
*
* To decode each bit, the binary range decoder requires a probability that is
* logically a real number between 0 and 1. Multiplying this probability by the
* current range and taking the floor gives the bound between the 0-bit region of
* the range and the 1-bit region of the range. However, in LZMS, probabilities
* are restricted to values of n/64 where n is an integer is between 1 and 63
* inclusively, so the implementation may use integer operations instead.
* Following calculation of the bound, if the current code is in the 0-bit
* region, the new range becomes the current code and the decoded bit is 0;
* otherwise, the bound must be subtracted from both the range and the code, and
* the decoded bit is 1. More information about range coding can be found at
* https://en.wikipedia.org/wiki/Range_encoding. Furthermore, note that the
* LZMA format also uses range coding and has public domain code available for
* it.
*
* The probability used to range-decode each bit must be taken from a table, of
* which one instance must exist for each distinct context in which a
* range-decoded bit is needed. At each call of the range decoder, the
* appropriate probability must be obtained by indexing the appropriate
* probability table with the last 4 (in the context disambiguating literals
* from matches), 5 (in the context disambiguating LZ matches from delta
* matches), or 6 (in all other contexts) bits recently range-decoded in that
* context, ordered such that the most recently decoded bit is the low-order bit
* of the index.
*
* Furthermore, each probability entry itself is variable, as its value must be
* maintained as n/64 where n is the number of 0 bits in the most recently
* decoded 64 bits with that same entry. This allows the compressed
* representation to adapt to the input and use fewer bits to represent the most
* likely data; note that LZMA uses a similar scheme. Initially, the most
* recently 64 decoded bits for each probability entry are assumed to be
* 0x0000000055555555 (high order to low order); therefore, all probabilities
* are initially 48/64. During the course of decoding, each probability may be
* updated to as low as 0/64 (as a result of reading many consecutive 1 bits
* with that entry) or as high as 64/64 (as a result of reading many consecutive
* 0 bits with that entry); however, probabilities of 0/64 and 64/64 cannot be
* used as-is but rather must be adjusted to 1/64 and 63/64, respectively,
* before being used for range decoding.
*
* Representations of the LZMS items themselves must be read from the backwards
* bitstream. For this, there are 5 different Huffman codes used:
*
* - The literal code, used for decoding literal bytes. Each of the 256
* symbols represents a literal byte. This code must be rebuilt whenever
* 1024 symbols have been decoded with it.
*
* - The LZ offset code, used for decoding the offsets of standard LZ77
* matches. Each symbol represents an offset slot, which corresponds to a
* base value and some number of extra bits which must be read and added to
* the base value to reconstitute the full offset. The number of symbols in
* this code is the number of offset slots needed to represent all possible
* offsets in the uncompressed block. This code must be rebuilt whenever
* 1024 symbols have been decoded with it.
*
* - The length code, used for decoding length symbols. Each of the 54 symbols
* represents a length slot, which corresponds to a base value and some
* number of extra bits which must be read and added to the base value to
* reconstitute the full length. This code must be rebuilt whenever 512
* symbols have been decoded with it.
*
* - The delta offset code, used for decoding the offsets of delta matches.
* Each symbol corresponds to an offset slot, which corresponds to a base
* value and some number of extra bits which must be read and added to the
* base value to reconstitute the full offset. The number of symbols in this
* code is equal to the number of symbols in the LZ offset code. This code
* must be rebuilt whenever 1024 symbols have been decoded with it.
*
* - The delta power code, used for decoding the powers of delta matches. Each
* of the 8 symbols corresponds to a power. This code must be rebuilt
* whenever 512 symbols have been decoded with it.
*
* Initially, each Huffman code must be built assuming that each symbol in that
* code has frequency 1. Following that, each code must be rebuilt each time a
* certain number of symbols, as noted above, has been decoded with it. The
* symbol frequencies for a code must be halved after each rebuild of that code;
* this makes the codes adapt to the more recent data.
*
* Like other compression formats such as XPRESS, LZX, and DEFLATE, the LZMS
* format requires that all Huffman codes be constructed in canonical form.
* This form requires that same-length codewords be lexicographically ordered
* the same way as the corresponding symbols and that all shorter codewords
* lexicographically precede longer codewords. Such a code can be constructed
* directly from codeword lengths.
*
* Even with the canonical code restriction, the same frequencies can be used to
* construct multiple valid Huffman codes. Therefore, the decompressor needs to
* construct the right one. Specifically, the LZMS format requires that the
* Huffman code be constructed as if the well-known priority queue algorithm is
* used and frequency ties are always broken in favor of leaf nodes.
*
* Codewords in LZMS are guaranteed to not exceed 15 bits. The format otherwise
* places no restrictions on codeword length. Therefore, the Huffman code
* construction algorithm that a correct LZMS decompressor uses need not
* implement length-limited code construction. But if it does (e.g. by virtue
* of being shared among multiple compression algorithms), the details of how it
* does so are unimportant, provided that the maximum codeword length parameter
* is set to at least 15 bits.
*
* After all LZMS items have been decoded, the data must be postprocessed to
* translate absolute address encoded in x86 instructions into their original
* relative addresses.
*
* Details omitted above can be found in the code. Note that in the absence of
* an official specification there is no guarantee that this decompressor
* handles all possible cases.
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "wimlib/compress_common.h"
#include "wimlib/decompress_common.h"
#include "wimlib/decompressor_ops.h"
#include "wimlib/error.h"
#include "wimlib/lzms_common.h"
#include "wimlib/util.h"
/* The TABLEBITS values can be changed; they only affect decoding speed. */
#define LZMS_LITERAL_TABLEBITS 10
#define LZMS_LENGTH_TABLEBITS 10
#define LZMS_LZ_OFFSET_TABLEBITS 10
#define LZMS_DELTA_OFFSET_TABLEBITS 10
#define LZMS_DELTA_POWER_TABLEBITS 8
struct lzms_range_decoder {
/* The relevant part of the current range. Although the logical range
* for range decoding is a very large integer, only a small portion
* matters at any given time, and it can be normalized (shifted left)
* whenever it gets too small. */
u32 range;
/* The current position in the range encoded by the portion of the input
* read so far. */
u32 code;
/* Pointer to the next little-endian 16-bit integer in the compressed
* input data (reading forwards). */
const le16 *next;
/* Pointer to the end of the compressed input data. */
const le16 *end;
};
typedef u64 bitbuf_t;
struct lzms_input_bitstream {
/* Holding variable for bits that have been read from the compressed
* data. The bit ordering is high to low. */
bitbuf_t bitbuf;
/* Number of bits currently held in @bitbuf. */
unsigned bitsleft;
/* Pointer to the one past the next little-endian 16-bit integer in the
* compressed input data (reading backwards). */
const le16 *next;
/* Pointer to the beginning of the compressed input data. */
const le16 *begin;
};
/* Bookkeeping information for an adaptive Huffman code */
struct lzms_huffman_rebuild_info {
unsigned num_syms_until_rebuild;
unsigned rebuild_freq;
u16 *decode_table;
unsigned table_bits;
u32 *freqs;
u32 *codewords;
u8 *lens;
unsigned num_syms;
};
struct lzms_decompressor {
/* 'last_target_usages' is in union with everything else because it is
* only used for postprocessing. */
union {
struct {
struct lzms_range_decoder rd;
struct lzms_input_bitstream is;
/* Match offset LRU queues */
u32 recent_lz_offsets[LZMS_NUM_RECENT_OFFSETS + 1];
u64 recent_delta_offsets[LZMS_NUM_RECENT_OFFSETS + 1];
u32 pending_lz_offset;
u64 pending_delta_offset;
const u8 *lz_offset_still_pending;
const u8 *delta_offset_still_pending;
/* States and probabilities for range decoding */
u32 main_state;
struct lzms_probability_entry main_prob_entries[
LZMS_NUM_MAIN_STATES];
u32 match_state;
struct lzms_probability_entry match_prob_entries[
LZMS_NUM_MATCH_STATES];
u32 lz_match_state;
struct lzms_probability_entry lz_match_prob_entries[
LZMS_NUM_LZ_MATCH_STATES];
u32 delta_match_state;
struct lzms_probability_entry delta_match_prob_entries[
LZMS_NUM_DELTA_MATCH_STATES];
u32 lz_repeat_match_states[LZMS_NUM_RECENT_OFFSETS - 1];
struct lzms_probability_entry lz_repeat_match_prob_entries[
LZMS_NUM_RECENT_OFFSETS - 1][LZMS_NUM_LZ_REPEAT_MATCH_STATES];
u32 delta_repeat_match_states[LZMS_NUM_RECENT_OFFSETS - 1];
struct lzms_probability_entry delta_repeat_match_prob_entries[
LZMS_NUM_RECENT_OFFSETS - 1][LZMS_NUM_DELTA_REPEAT_MATCH_STATES];
/* Huffman decoding */
u16 literal_decode_table[(1 << LZMS_LITERAL_TABLEBITS) +
(2 * LZMS_NUM_LITERAL_SYMS)]
_aligned_attribute(DECODE_TABLE_ALIGNMENT);
u32 literal_freqs[LZMS_NUM_LITERAL_SYMS];
struct lzms_huffman_rebuild_info literal_rebuild_info;
u16 length_decode_table[(1 << LZMS_LENGTH_TABLEBITS) +
(2 * LZMS_NUM_LENGTH_SYMS)]
_aligned_attribute(DECODE_TABLE_ALIGNMENT);
u32 length_freqs[LZMS_NUM_LENGTH_SYMS];
struct lzms_huffman_rebuild_info length_rebuild_info;
u16 lz_offset_decode_table[(1 << LZMS_LZ_OFFSET_TABLEBITS) +
( 2 * LZMS_MAX_NUM_OFFSET_SYMS)]
_aligned_attribute(DECODE_TABLE_ALIGNMENT);
u32 lz_offset_freqs[LZMS_MAX_NUM_OFFSET_SYMS];
struct lzms_huffman_rebuild_info lz_offset_rebuild_info;
u16 delta_offset_decode_table[(1 << LZMS_DELTA_OFFSET_TABLEBITS) +
(2 * LZMS_MAX_NUM_OFFSET_SYMS)]
_aligned_attribute(DECODE_TABLE_ALIGNMENT);
u32 delta_offset_freqs[LZMS_MAX_NUM_OFFSET_SYMS];
struct lzms_huffman_rebuild_info delta_offset_rebuild_info;
u16 delta_power_decode_table[(1 << LZMS_DELTA_POWER_TABLEBITS) +
(2 * LZMS_NUM_DELTA_POWER_SYMS)]
_aligned_attribute(DECODE_TABLE_ALIGNMENT);
u32 delta_power_freqs[LZMS_NUM_DELTA_POWER_SYMS];
struct lzms_huffman_rebuild_info delta_power_rebuild_info;
u32 codewords[LZMS_MAX_NUM_SYMS];
u8 lens[LZMS_MAX_NUM_SYMS];
}; // struct
s32 last_target_usages[65536];
}; // union
};
/* Initialize the input bitstream @is to read backwards from the compressed data
* buffer @in that is @count 16-bit integers long. */
static void
lzms_input_bitstream_init(struct lzms_input_bitstream *is,
const le16 *in, size_t count)
{
is->bitbuf = 0;
is->bitsleft = 0;
is->next = in + count;
is->begin = in;
}
/* Ensure that at least @num_bits bits are in the bitbuffer variable.
* @num_bits cannot be more than 32. */
static inline void
lzms_ensure_bits(struct lzms_input_bitstream *is, unsigned num_bits)
{
if (is->bitsleft >= num_bits)
return;
if (likely(is->next != is->begin))
is->bitbuf |= (bitbuf_t)le16_to_cpu(*--is->next)
<< (sizeof(is->bitbuf) * 8 - is->bitsleft - 16);
is->bitsleft += 16;
if (likely(is->next != is->begin))
is->bitbuf |= (bitbuf_t)le16_to_cpu(*--is->next)
<< (sizeof(is->bitbuf) * 8 - is->bitsleft - 16);
is->bitsleft += 16;
}
/* Get @num_bits bits from the bitbuffer variable. */
static inline bitbuf_t
lzms_peek_bits(struct lzms_input_bitstream *is, unsigned num_bits)
{
if (unlikely(num_bits == 0))
return 0;
return is->bitbuf >> (sizeof(is->bitbuf) * 8 - num_bits);
}
/* Remove @num_bits bits from the bitbuffer variable. */
static inline void
lzms_remove_bits(struct lzms_input_bitstream *is, unsigned num_bits)
{
is->bitbuf <<= num_bits;
is->bitsleft -= num_bits;
}
/* Remove and return @num_bits bits from the bitbuffer variable. */
static inline bitbuf_t
lzms_pop_bits(struct lzms_input_bitstream *is, unsigned num_bits)
{
bitbuf_t bits = lzms_peek_bits(is, num_bits);
lzms_remove_bits(is, num_bits);
return bits;
}
/* Read @num_bits bits from the input bitstream. */
static inline bitbuf_t
lzms_read_bits(struct lzms_input_bitstream *is, unsigned num_bits)
{
lzms_ensure_bits(is, num_bits);
return lzms_pop_bits(is, num_bits);
}
/* Initialize the range decoder @rd to read forwards from the compressed data
* buffer @in that is @count 16-bit integers long. */
static void
lzms_range_decoder_init(struct lzms_range_decoder *rd,
const le16 *in, size_t count)
{
rd->range = 0xffffffff;
rd->code = ((u32)le16_to_cpu(in[0]) << 16) | le16_to_cpu(in[1]);
rd->next = in + 2;
rd->end = in + count;
}
/* Decode and return the next bit from the range decoder.
*
* @prob is the chance out of LZMS_PROBABILITY_MAX that the next bit is 0.
*/
static inline int
lzms_range_decoder_decode_bit(struct lzms_range_decoder *rd, u32 prob)
{
u32 bound;
/* Normalize if needed. */
if (rd->range <= 0xffff) {
rd->range <<= 16;
rd->code <<= 16;
if (likely(rd->next != rd->end))
rd->code |= le16_to_cpu(*rd->next++);
}
/* Based on the probability, calculate the bound between the 0-bit
* region and the 1-bit region of the range. */
bound = (rd->range >> LZMS_PROBABILITY_BITS) * prob;
if (rd->code < bound) {
/* Current code is in the 0-bit region of the range. */
rd->range = bound;
return 0;
} else {
/* Current code is in the 1-bit region of the range. */
rd->range -= bound;
rd->code -= bound;
return 1;
}
}
/* Decode and return the next bit from the range decoder. This wraps around
* lzms_range_decoder_decode_bit() to handle using and updating the appropriate
* state and probability entry. */
static inline int
lzms_range_decode_bit(struct lzms_range_decoder *rd,
u32 *state_p, u32 num_states,
struct lzms_probability_entry prob_entries[])
{
struct lzms_probability_entry *prob_entry;
u32 prob;
int bit;
/* Load the probability entry corresponding to the current state. */
prob_entry = &prob_entries[*state_p];
/* Get the probability that the next bit is 0. */
prob = lzms_get_probability(prob_entry);
/* Decode the next bit. */
bit = lzms_range_decoder_decode_bit(rd, prob);
/* Update the state and probability entry based on the decoded bit. */
*state_p = ((*state_p << 1) | bit) & (num_states - 1);
lzms_update_probability_entry(prob_entry, bit);
/* Return the decoded bit. */
return bit;
}
static int
lzms_decode_main_bit(struct lzms_decompressor *d)
{
return lzms_range_decode_bit(&d->rd, &d->main_state,
LZMS_NUM_MAIN_STATES,
d->main_prob_entries);
}
static int
lzms_decode_match_bit(struct lzms_decompressor *d)
{
return lzms_range_decode_bit(&d->rd, &d->match_state,
LZMS_NUM_MATCH_STATES,
d->match_prob_entries);
}
static int
lzms_decode_lz_match_bit(struct lzms_decompressor *d)
{
return lzms_range_decode_bit(&d->rd, &d->lz_match_state,
LZMS_NUM_LZ_MATCH_STATES,
d->lz_match_prob_entries);
}
static int
lzms_decode_delta_match_bit(struct lzms_decompressor *d)
{
return lzms_range_decode_bit(&d->rd, &d->delta_match_state,
LZMS_NUM_DELTA_MATCH_STATES,
d->delta_match_prob_entries);
}
static noinline int
lzms_decode_lz_repeat_match_bit(struct lzms_decompressor *d, int idx)
{
return lzms_range_decode_bit(&d->rd, &d->lz_repeat_match_states[idx],
LZMS_NUM_LZ_REPEAT_MATCH_STATES,
d->lz_repeat_match_prob_entries[idx]);
}
static noinline int
lzms_decode_delta_repeat_match_bit(struct lzms_decompressor *d, int idx)
{
return lzms_range_decode_bit(&d->rd, &d->delta_repeat_match_states[idx],
LZMS_NUM_DELTA_REPEAT_MATCH_STATES,
d->delta_repeat_match_prob_entries[idx]);
}
static void
lzms_init_huffman_rebuild_info(struct lzms_huffman_rebuild_info *info,
unsigned rebuild_freq,
u16 *decode_table, unsigned table_bits,
u32 *freqs, u32 *codewords, u8 *lens,
unsigned num_syms)
{
info->num_syms_until_rebuild = 1;
info->rebuild_freq = rebuild_freq;
info->decode_table = decode_table;
info->table_bits = table_bits;
info->freqs = freqs;
info->codewords = codewords;
info->lens = lens;
info->num_syms = num_syms;
lzms_init_symbol_frequencies(freqs, num_syms);
}
static noinline void
lzms_rebuild_huffman_code(struct lzms_huffman_rebuild_info *info)
{
make_canonical_huffman_code(info->num_syms, LZMS_MAX_CODEWORD_LEN,
info->freqs, info->lens, info->codewords);
make_huffman_decode_table(info->decode_table, info->num_syms,
info->table_bits, info->lens,
LZMS_MAX_CODEWORD_LEN);
for (unsigned i = 0; i < info->num_syms; i++)
info->freqs[i] = (info->freqs[i] >> 1) + 1;
info->num_syms_until_rebuild = info->rebuild_freq;
}
static inline unsigned
lzms_decode_huffman_symbol(struct lzms_input_bitstream *is,
u16 decode_table[], unsigned table_bits,
struct lzms_huffman_rebuild_info *rebuild_info)
{
unsigned key_bits;
unsigned entry;
unsigned sym;
if (unlikely(--rebuild_info->num_syms_until_rebuild == 0))
lzms_rebuild_huffman_code(rebuild_info);
lzms_ensure_bits(is, LZMS_MAX_CODEWORD_LEN);
/* Index the decode table by the next table_bits bits of the input. */
key_bits = lzms_peek_bits(is, table_bits);
entry = decode_table[key_bits];
if (likely(entry < 0xC000)) {
/* Fast case: The decode table directly provided the symbol and
* codeword length. The low 11 bits are the symbol, and the
* high 5 bits are the codeword length. */
lzms_remove_bits(is, entry >> 11);
sym = entry & 0x7FF;
} else {
/* Slow case: The codeword for the symbol is longer than
* table_bits, so the symbol does not have an entry directly in
* the first (1 << table_bits) entries of the decode table.
* Traverse the appropriate binary tree bit-by-bit in order to
* decode the symbol. */
lzms_remove_bits(is, table_bits);
do {
key_bits = (entry & 0x3FFF) + lzms_pop_bits(is, 1);
} while ((entry = decode_table[key_bits]) >= 0xC000);
sym = entry;
}
/* Tally and return the decoded symbol. */
rebuild_info->freqs[sym]++;
return sym;
}
static unsigned
lzms_decode_literal(struct lzms_decompressor *d)
{
return lzms_decode_huffman_symbol(&d->is,
d->literal_decode_table,
LZMS_LITERAL_TABLEBITS,
&d->literal_rebuild_info);
}
static u32
lzms_decode_length(struct lzms_decompressor *d)
{
unsigned slot = lzms_decode_huffman_symbol(&d->is,
d->length_decode_table,
LZMS_LENGTH_TABLEBITS,
&d->length_rebuild_info);
u32 length = lzms_length_slot_base[slot];
unsigned num_extra_bits = lzms_extra_length_bits[slot];
/* Usually most lengths are short and have no extra bits. */
if (num_extra_bits)
length += lzms_read_bits(&d->is, num_extra_bits);
return length;
}
static u32
lzms_decode_lz_offset(struct lzms_decompressor *d)
{
unsigned slot = lzms_decode_huffman_symbol(&d->is,
d->lz_offset_decode_table,
LZMS_LZ_OFFSET_TABLEBITS,
&d->lz_offset_rebuild_info);
return lzms_offset_slot_base[slot] +
lzms_read_bits(&d->is, lzms_extra_offset_bits[slot]);
}
static u32
lzms_decode_delta_offset(struct lzms_decompressor *d)
{
unsigned slot = lzms_decode_huffman_symbol(&d->is,
d->delta_offset_decode_table,
LZMS_DELTA_OFFSET_TABLEBITS,
&d->delta_offset_rebuild_info);
return lzms_offset_slot_base[slot] +
lzms_read_bits(&d->is, lzms_extra_offset_bits[slot]);
}
static unsigned
lzms_decode_delta_power(struct lzms_decompressor *d)
{
return lzms_decode_huffman_symbol(&d->is,
d->delta_power_decode_table,
LZMS_DELTA_POWER_TABLEBITS,
&d->delta_power_rebuild_info);
}
/* Decode the series of literals and matches from the LZMS-compressed data.
* Return 0 if successful or -1 if the compressed data is invalid. */
static int
lzms_decode_items(struct lzms_decompressor * const restrict d,
u8 * const restrict out, const size_t out_nbytes)
{
u8 *out_next = out;
u8 * const out_end = out + out_nbytes;
while (out_next != out_end) {
if (!lzms_decode_main_bit(d)) {
/* Literal */
*out_next++ = lzms_decode_literal(d);
} else if (!lzms_decode_match_bit(d)) {
/* LZ match */
u32 offset;
u32 length;
if (d->pending_lz_offset != 0 &&
out_next != d->lz_offset_still_pending)
{
BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
d->recent_lz_offsets[3] = d->recent_lz_offsets[2];
d->recent_lz_offsets[2] = d->recent_lz_offsets[1];
d->recent_lz_offsets[1] = d->recent_lz_offsets[0];
d->recent_lz_offsets[0] = d->pending_lz_offset;
d->pending_lz_offset = 0;
}
if (!lzms_decode_lz_match_bit(d)) {
/* Explicit offset */
offset = lzms_decode_lz_offset(d);
} else {
/* Repeat offset */
BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
if (!lzms_decode_lz_repeat_match_bit(d, 0)) {
offset = d->recent_lz_offsets[0];
d->recent_lz_offsets[0] = d->recent_lz_offsets[1];
d->recent_lz_offsets[1] = d->recent_lz_offsets[2];
d->recent_lz_offsets[2] = d->recent_lz_offsets[3];
} else if (!lzms_decode_lz_repeat_match_bit(d, 1)) {
offset = d->recent_lz_offsets[1];
d->recent_lz_offsets[1] = d->recent_lz_offsets[2];
d->recent_lz_offsets[2] = d->recent_lz_offsets[3];
} else {
offset = d->recent_lz_offsets[2];
d->recent_lz_offsets[2] = d->recent_lz_offsets[3];
}
}
if (d->pending_lz_offset != 0) {
BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
d->recent_lz_offsets[3] = d->recent_lz_offsets[2];
d->recent_lz_offsets[2] = d->recent_lz_offsets[1];
d->recent_lz_offsets[1] = d->recent_lz_offsets[0];
d->recent_lz_offsets[0] = d->pending_lz_offset;
}
d->pending_lz_offset = offset;
length = lzms_decode_length(d);
if (unlikely(length > out_end - out_next))
return -1;
if (unlikely(offset > out_next - out))
return -1;
lz_copy(out_next, length, offset, out_end, LZMS_MIN_MATCH_LEN);
out_next += length;
d->lz_offset_still_pending = out_next;
} else {
/* Delta match */
u32 power;
u32 raw_offset, offset1, offset2, offset;
const u8 *matchptr1, *matchptr2, *matchptr;
u32 length;
if (d->pending_delta_offset != 0 &&
out_next != d->delta_offset_still_pending)
{
BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
d->recent_delta_offsets[3] = d->recent_delta_offsets[2];
d->recent_delta_offsets[2] = d->recent_delta_offsets[1];
d->recent_delta_offsets[1] = d->recent_delta_offsets[0];
d->recent_delta_offsets[0] = d->pending_delta_offset;
d->pending_delta_offset = 0;
}
if (!lzms_decode_delta_match_bit(d)) {
/* Explicit offset */
power = lzms_decode_delta_power(d);
raw_offset = lzms_decode_delta_offset(d);
} else {
/* Repeat offset */
u64 val;
BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
if (!lzms_decode_delta_repeat_match_bit(d, 0)) {
val = d->recent_delta_offsets[0];
d->recent_delta_offsets[0] = d->recent_delta_offsets[1];
d->recent_delta_offsets[1] = d->recent_delta_offsets[2];
d->recent_delta_offsets[2] = d->recent_delta_offsets[3];
} else if (!lzms_decode_delta_repeat_match_bit(d, 1)) {
val = d->recent_delta_offsets[1];
d->recent_delta_offsets[1] = d->recent_delta_offsets[2];
d->recent_delta_offsets[2] = d->recent_delta_offsets[3];
} else {
val = d->recent_delta_offsets[2];
d->recent_delta_offsets[2] = d->recent_delta_offsets[3];
}
power = val >> 32;
raw_offset = (u32)val;
}
if (d->pending_delta_offset != 0) {
BUILD_BUG_ON(LZMS_NUM_RECENT_OFFSETS != 3);
d->recent_delta_offsets[3] = d->recent_delta_offsets[2];
d->recent_delta_offsets[2] = d->recent_delta_offsets[1];
d->recent_delta_offsets[1] = d->recent_delta_offsets[0];
d->recent_delta_offsets[0] = d->pending_delta_offset;
}
d->pending_delta_offset = raw_offset | ((u64)power << 32);
length = lzms_decode_length(d);
offset1 = (u32)1 << power;
offset2 = raw_offset << power;
offset = offset1 + offset2;
/* raw_offset<> power) != raw_offset))
return -1;
/* offset1+offset2 overflowed? */
if (unlikely(offset < offset2))
return -1;
if (unlikely(length > out_end - out_next))
return -1;
if (unlikely(offset > out_next - out))
return -1;
matchptr1 = out_next - offset1;
matchptr2 = out_next - offset2;
matchptr = out_next - offset;
do {
*out_next++ = *matchptr1++ + *matchptr2++ - *matchptr++;
} while (--length);
d->delta_offset_still_pending = out_next;
}
}
return 0;
}
static void
lzms_init_decompressor(struct lzms_decompressor *d, const void *in,
size_t in_nbytes, unsigned num_offset_slots)
{
/* Match offset LRU queues */
for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS + 1; i++) {
d->recent_lz_offsets[i] = i + 1;
d->recent_delta_offsets[i] = i + 1;
}
d->pending_lz_offset = 0;
d->pending_delta_offset = 0;
/* Range decoding */
lzms_range_decoder_init(&d->rd, in, in_nbytes / sizeof(le16));
d->main_state = 0;
lzms_init_probability_entries(d->main_prob_entries, LZMS_NUM_MAIN_STATES);
d->match_state = 0;
lzms_init_probability_entries(d->match_prob_entries, LZMS_NUM_MATCH_STATES);
d->lz_match_state = 0;
lzms_init_probability_entries(d->lz_match_prob_entries, LZMS_NUM_LZ_MATCH_STATES);
d->delta_match_state = 0;
lzms_init_probability_entries(d->delta_match_prob_entries, LZMS_NUM_DELTA_MATCH_STATES);
for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++) {
d->lz_repeat_match_states[i] = 0;
lzms_init_probability_entries(d->lz_repeat_match_prob_entries[i],
LZMS_NUM_LZ_REPEAT_MATCH_STATES);
d->delta_repeat_match_states[i] = 0;
lzms_init_probability_entries(d->delta_repeat_match_prob_entries[i],
LZMS_NUM_DELTA_REPEAT_MATCH_STATES);
}
/* Huffman decoding */
lzms_input_bitstream_init(&d->is, in, in_nbytes / sizeof(le16));
lzms_init_huffman_rebuild_info(&d->literal_rebuild_info,
LZMS_LITERAL_CODE_REBUILD_FREQ,
d->literal_decode_table,
LZMS_LITERAL_TABLEBITS,
d->literal_freqs,
d->codewords,
d->lens,
LZMS_NUM_LITERAL_SYMS);
lzms_init_huffman_rebuild_info(&d->length_rebuild_info,
LZMS_LENGTH_CODE_REBUILD_FREQ,
d->length_decode_table,
LZMS_LENGTH_TABLEBITS,
d->length_freqs,
d->codewords,
d->lens,
LZMS_NUM_LENGTH_SYMS);
lzms_init_huffman_rebuild_info(&d->lz_offset_rebuild_info,
LZMS_LZ_OFFSET_CODE_REBUILD_FREQ,
d->lz_offset_decode_table,
LZMS_LZ_OFFSET_TABLEBITS,
d->lz_offset_freqs,
d->codewords,
d->lens,
num_offset_slots);
lzms_init_huffman_rebuild_info(&d->delta_offset_rebuild_info,
LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ,
d->delta_offset_decode_table,
LZMS_DELTA_OFFSET_TABLEBITS,
d->delta_offset_freqs,
d->codewords,
d->lens,
num_offset_slots);
lzms_init_huffman_rebuild_info(&d->delta_power_rebuild_info,
LZMS_DELTA_POWER_CODE_REBUILD_FREQ,
d->delta_power_decode_table,
LZMS_DELTA_POWER_TABLEBITS,
d->delta_power_freqs,
d->codewords,
d->lens,
LZMS_NUM_DELTA_POWER_SYMS);
}
static int
lzms_create_decompressor(size_t max_bufsize, void **d_ret)
{
struct lzms_decompressor *d;
if (max_bufsize > LZMS_MAX_BUFFER_SIZE)
return WIMLIB_ERR_INVALID_PARAM;
d = ALIGNED_MALLOC(sizeof(struct lzms_decompressor),
DECODE_TABLE_ALIGNMENT);
if (!d)
return WIMLIB_ERR_NOMEM;
*d_ret = d;
return 0;
}
/* Decompress @in_nbytes bytes of LZMS-compressed data at @in and write the
* uncompressed data, which had original size @out_nbytes, to @out. Return 0 if
* successful or -1 if the compressed data is invalid. */
static int
lzms_decompress(const void *in, size_t in_nbytes, void *out, size_t out_nbytes,
void *_d)
{
struct lzms_decompressor *d = _d;
/*
* Requirements on the compressed data:
*
* 1. LZMS-compressed data is a series of 16-bit integers, so the
* compressed data buffer cannot take up an odd number of bytes.
* 2. To prevent poor performance on some architectures, we require that
* the compressed data buffer is 2-byte aligned.
* 3. There must be at least 4 bytes of compressed data, since otherwise
* we cannot even initialize the range decoder.
*/
if ((in_nbytes & 1) || ((uintptr_t)in & 1) || (in_nbytes < 4))
return -1;
lzms_init_decompressor(d, in, in_nbytes,
lzms_get_num_offset_slots(out_nbytes));
if (lzms_decode_items(d, out, out_nbytes))
return -1;
lzms_x86_filter(out, out_nbytes, d->last_target_usages, true);
return 0;
}
static void
lzms_free_decompressor(void *_d)
{
struct lzms_decompressor *d = _d;
ALIGNED_FREE(d);
}
const struct decompressor_ops lzms_decompressor_ops = {
.create_decompressor = lzms_create_decompressor,
.decompress = lzms_decompress,
.free_decompressor = lzms_free_decompressor,
};