/* * lzms-compress.c */ /* * Copyright (C) 2013, 2014 Eric Biggers * * This file is part of wimlib, a library for working with WIM files. * * wimlib is free software; you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. * * wimlib is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with wimlib; if not, see http://www.gnu.org/licenses/. */ /* This a compressor for the LZMS compression format. More details about this * format can be found in lzms-decompress.c. * * Also see lzx-compress.c for general information about match-finding and * match-choosing that also applies to this LZMS compressor. * * NOTE: this compressor currently does not code any delta matches. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include "wimlib/assert.h" #include "wimlib/compiler.h" #include "wimlib/compressor_ops.h" #include "wimlib/compress_common.h" #include "wimlib/endianness.h" #include "wimlib/error.h" #include "wimlib/lz_mf.h" #include "wimlib/lzms.h" #include "wimlib/util.h" #include #include #include /* Stucture used for writing raw bits to the end of the LZMS-compressed data as * a series of 16-bit little endian coding units. */ struct lzms_output_bitstream { /* Buffer variable containing zero or more bits that have been logically * written to the bitstream but not yet written to memory. This must be * at least as large as the coding unit size. */ u16 bitbuf; /* Number of bits in @bitbuf that are valid. */ unsigned num_free_bits; /* Pointer to one past the next position in the compressed data buffer * at which to output a 16-bit coding unit. */ le16 *out; /* Maximum number of 16-bit coding units that can still be output to * the compressed data buffer. */ size_t num_le16_remaining; /* Set to %true if not all coding units could be output due to * insufficient space. */ bool overrun; }; /* Stucture used for range encoding (raw version). */ struct lzms_range_encoder_raw { /* A 33-bit variable that holds the low boundary of the current range. * The 33rd bit is needed to catch carries. */ u64 low; /* Size of the current range. */ u32 range; /* Next 16-bit coding unit to output. */ u16 cache; /* Number of 16-bit coding units whose output has been delayed due to * possible carrying. The first such coding unit is @cache; all * subsequent such coding units are 0xffff. */ u32 cache_size; /* Pointer to the next position in the compressed data buffer at which * to output a 16-bit coding unit. */ le16 *out; /* Maximum number of 16-bit coding units that can still be output to * the compressed data buffer. */ size_t num_le16_remaining; /* %true when the very first coding unit has not yet been output. */ bool first; /* Set to %true if not all coding units could be output due to * insufficient space. */ bool overrun; }; /* Structure used for range encoding. This wraps around `struct * lzms_range_encoder_raw' to use and maintain probability entries. */ struct lzms_range_encoder { /* Pointer to the raw range encoder, which has no persistent knowledge * of probabilities. Multiple lzms_range_encoder's share the same * lzms_range_encoder_raw. */ struct lzms_range_encoder_raw *rc; /* Bits recently encoded by this range encoder. This is used as an * index into @prob_entries. */ u32 state; /* Bitmask for @state to prevent its value from exceeding the number of * probability entries. */ u32 mask; /* Probability entries being used for this range encoder. */ struct lzms_probability_entry prob_entries[LZMS_MAX_NUM_STATES]; }; /* Structure used for Huffman encoding. */ struct lzms_huffman_encoder { /* Bitstream to write Huffman-encoded symbols and verbatim bits to. * Multiple lzms_huffman_encoder's share the same lzms_output_bitstream. */ struct lzms_output_bitstream *os; /* Number of symbols that have been written using this code far. Reset * to 0 whenever the code is rebuilt. */ u32 num_syms_written; /* When @num_syms_written reaches this number, the Huffman code must be * rebuilt. */ u32 rebuild_freq; /* Number of symbols in the represented Huffman code. */ unsigned num_syms; /* Running totals of symbol frequencies. These are diluted slightly * whenever the code is rebuilt. */ u32 sym_freqs[LZMS_MAX_NUM_SYMS]; /* The length, in bits, of each symbol in the Huffman code. */ u8 lens[LZMS_MAX_NUM_SYMS]; /* The codeword of each symbol in the Huffman code. */ u32 codewords[LZMS_MAX_NUM_SYMS]; }; struct lzms_compressor_params { u32 min_match_length; u32 nice_match_length; u32 max_search_depth; u32 optim_array_length; }; /* State of the LZMS compressor. */ struct lzms_compressor { /* Pointer to a buffer holding the preprocessed data to compress. */ u8 *window; /* Current position in @buffer. */ u32 cur_window_pos; /* Size of the data in @buffer. */ u32 window_size; /* Lempel-Ziv match-finder. */ struct lz_mf *mf; /* Temporary space to store found matches. */ struct lz_match *matches; /* Match-chooser data. */ struct lzms_mc_pos_data *optimum; unsigned optimum_cur_idx; unsigned optimum_end_idx; /* Maximum block size this compressor instantiation allows. This is the * allocated size of @window. */ u32 max_block_size; /* Compression parameters. */ struct lzms_compressor_params params; /* Raw range encoder which outputs to the beginning of the compressed * data buffer, proceeding forwards. */ struct lzms_range_encoder_raw rc; /* Bitstream which outputs to the end of the compressed data buffer, * proceeding backwards. */ struct lzms_output_bitstream os; /* Range encoders. */ struct lzms_range_encoder main_range_encoder; struct lzms_range_encoder match_range_encoder; struct lzms_range_encoder lz_match_range_encoder; struct lzms_range_encoder lz_repeat_match_range_encoders[LZMS_NUM_RECENT_OFFSETS - 1]; struct lzms_range_encoder delta_match_range_encoder; struct lzms_range_encoder delta_repeat_match_range_encoders[LZMS_NUM_RECENT_OFFSETS - 1]; /* Huffman encoders. */ struct lzms_huffman_encoder literal_encoder; struct lzms_huffman_encoder lz_offset_encoder; struct lzms_huffman_encoder length_encoder; struct lzms_huffman_encoder delta_power_encoder; struct lzms_huffman_encoder delta_offset_encoder; /* LRU (least-recently-used) queues for match information. */ struct lzms_lru_queues lru; /* Used for preprocessing. */ s32 last_target_usages[65536]; }; struct lzms_mc_pos_data { u32 cost; #define MC_INFINITE_COST ((u32)~0UL) union { struct { u32 link; u32 match_offset; } prev; struct { u32 link; u32 match_offset; } next; }; struct lzms_adaptive_state { struct lzms_lz_lru_queues lru; u8 main_state; u8 match_state; u8 lz_match_state; u8 lz_repeat_match_state[LZMS_NUM_RECENT_OFFSETS - 1]; } state; }; /* Initialize the output bitstream @os to write forwards to the specified * compressed data buffer @out that is @out_limit 16-bit integers long. */ static void lzms_output_bitstream_init(struct lzms_output_bitstream *os, le16 *out, size_t out_limit) { os->bitbuf = 0; os->num_free_bits = 16; os->out = out + out_limit; os->num_le16_remaining = out_limit; os->overrun = false; } /* Write @num_bits bits, contained in the low @num_bits bits of @bits (ordered * from high-order to low-order), to the output bitstream @os. */ static void lzms_output_bitstream_put_bits(struct lzms_output_bitstream *os, u32 bits, unsigned num_bits) { bits &= (1U << num_bits) - 1; while (num_bits > os->num_free_bits) { if (unlikely(os->num_le16_remaining == 0)) { os->overrun = true; return; } unsigned num_fill_bits = os->num_free_bits; os->bitbuf <<= num_fill_bits; os->bitbuf |= bits >> (num_bits - num_fill_bits); *--os->out = cpu_to_le16(os->bitbuf); --os->num_le16_remaining; os->num_free_bits = 16; num_bits -= num_fill_bits; bits &= (1U << num_bits) - 1; } os->bitbuf <<= num_bits; os->bitbuf |= bits; os->num_free_bits -= num_bits; } /* Flush the output bitstream, ensuring that all bits written to it have been * written to memory. Returns %true if all bits were output successfully, or * %false if an overrun occurred. */ static bool lzms_output_bitstream_flush(struct lzms_output_bitstream *os) { if (os->num_free_bits != 16) lzms_output_bitstream_put_bits(os, 0, os->num_free_bits + 1); return !os->overrun; } /* Initialize the range encoder @rc to write forwards to the specified * compressed data buffer @out that is @out_limit 16-bit integers long. */ static void lzms_range_encoder_raw_init(struct lzms_range_encoder_raw *rc, le16 *out, size_t out_limit) { rc->low = 0; rc->range = 0xffffffff; rc->cache = 0; rc->cache_size = 1; rc->out = out; rc->num_le16_remaining = out_limit; rc->first = true; rc->overrun = false; } /* * Attempt to flush bits from the range encoder. * * Note: this is based on the public domain code for LZMA written by Igor * Pavlov. The only differences in this function are that in LZMS the bits must * be output in 16-bit coding units instead of 8-bit coding units, and that in * LZMS the first coding unit is not ignored by the decompressor, so the encoder * cannot output a dummy value to that position. * * The basic idea is that we're writing bits from @rc->low to the output. * However, due to carrying, the writing of coding units with value 0xffff, as * well as one prior coding unit, must be delayed until it is determined whether * a carry is needed. */ static void lzms_range_encoder_raw_shift_low(struct lzms_range_encoder_raw *rc) { LZMS_DEBUG("low=%"PRIx64", cache=%"PRIx64", cache_size=%u", rc->low, rc->cache, rc->cache_size); if ((u32)(rc->low) < 0xffff0000 || (u32)(rc->low >> 32) != 0) { /* Carry not needed (rc->low < 0xffff0000), or carry occurred * ((rc->low >> 32) != 0, a.k.a. the carry bit is 1). */ do { if (!rc->first) { if (rc->num_le16_remaining == 0) { rc->overrun = true; return; } *rc->out++ = cpu_to_le16(rc->cache + (u16)(rc->low >> 32)); --rc->num_le16_remaining; } else { rc->first = false; } rc->cache = 0xffff; } while (--rc->cache_size != 0); rc->cache = (rc->low >> 16) & 0xffff; } ++rc->cache_size; rc->low = (rc->low & 0xffff) << 16; } static void lzms_range_encoder_raw_normalize(struct lzms_range_encoder_raw *rc) { if (rc->range <= 0xffff) { rc->range <<= 16; lzms_range_encoder_raw_shift_low(rc); } } static bool lzms_range_encoder_raw_flush(struct lzms_range_encoder_raw *rc) { for (unsigned i = 0; i < 4; i++) lzms_range_encoder_raw_shift_low(rc); return !rc->overrun; } /* Encode the next bit using the range encoder (raw version). * * @prob is the chance out of LZMS_PROBABILITY_MAX that the next bit is 0. */ static void lzms_range_encoder_raw_encode_bit(struct lzms_range_encoder_raw *rc, int bit, u32 prob) { lzms_range_encoder_raw_normalize(rc); u32 bound = (rc->range >> LZMS_PROBABILITY_BITS) * prob; if (bit == 0) { rc->range = bound; } else { rc->low += bound; rc->range -= bound; } } /* Encode a bit using the specified range encoder. This wraps around * lzms_range_encoder_raw_encode_bit() to handle using and updating the * appropriate probability table. */ static void lzms_range_encode_bit(struct lzms_range_encoder *enc, int bit) { struct lzms_probability_entry *prob_entry; u32 prob; /* Load the probability entry corresponding to the current state. */ prob_entry = &enc->prob_entries[enc->state]; /* Treat the number of zero bits in the most recently encoded * LZMS_PROBABILITY_MAX bits with this probability entry as the chance, * out of LZMS_PROBABILITY_MAX, that the next bit will be a 0. However, * don't allow 0% or 100% probabilities. */ prob = prob_entry->num_recent_zero_bits; if (prob == 0) prob = 1; else if (prob == LZMS_PROBABILITY_MAX) prob = LZMS_PROBABILITY_MAX - 1; /* Encode the next bit. */ lzms_range_encoder_raw_encode_bit(enc->rc, bit, prob); /* Update the state based on the newly encoded bit. */ enc->state = ((enc->state << 1) | bit) & enc->mask; /* Update the recent bits, including the cached count of 0's. */ BUILD_BUG_ON(LZMS_PROBABILITY_MAX > sizeof(prob_entry->recent_bits) * 8); if (bit == 0) { if (prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1))) { /* Replacing 1 bit with 0 bit; increment the zero count. */ prob_entry->num_recent_zero_bits++; } } else { if (!(prob_entry->recent_bits & (1ULL << (LZMS_PROBABILITY_MAX - 1)))) { /* Replacing 0 bit with 1 bit; decrement the zero count. */ prob_entry->num_recent_zero_bits--; } } prob_entry->recent_bits = (prob_entry->recent_bits << 1) | bit; } /* Encode a symbol using the specified Huffman encoder. */ static void lzms_huffman_encode_symbol(struct lzms_huffman_encoder *enc, u32 sym) { LZMS_ASSERT(sym < enc->num_syms); lzms_output_bitstream_put_bits(enc->os, enc->codewords[sym], enc->lens[sym]); ++enc->sym_freqs[sym]; if (++enc->num_syms_written == enc->rebuild_freq) { /* Adaptive code needs to be rebuilt. */ LZMS_DEBUG("Rebuilding code (num_syms=%u)", enc->num_syms); make_canonical_huffman_code(enc->num_syms, LZMS_MAX_CODEWORD_LEN, enc->sym_freqs, enc->lens, enc->codewords); /* Dilute the frequencies. */ for (unsigned i = 0; i < enc->num_syms; i++) { enc->sym_freqs[i] >>= 1; enc->sym_freqs[i] += 1; } enc->num_syms_written = 0; } } static void lzms_encode_length(struct lzms_huffman_encoder *enc, u32 length) { unsigned slot; unsigned num_extra_bits; u32 extra_bits; slot = lzms_get_length_slot(length); num_extra_bits = lzms_extra_length_bits[slot]; extra_bits = length - lzms_length_slot_base[slot]; lzms_huffman_encode_symbol(enc, slot); lzms_output_bitstream_put_bits(enc->os, extra_bits, num_extra_bits); } static void lzms_encode_offset(struct lzms_huffman_encoder *enc, u32 offset) { unsigned slot; unsigned num_extra_bits; u32 extra_bits; slot = lzms_get_position_slot(offset); num_extra_bits = lzms_extra_position_bits[slot]; extra_bits = offset - lzms_position_slot_base[slot]; lzms_huffman_encode_symbol(enc, slot); lzms_output_bitstream_put_bits(enc->os, extra_bits, num_extra_bits); } static void lzms_begin_encode_item(struct lzms_compressor *ctx) { ctx->lru.lz.upcoming_offset = 0; ctx->lru.delta.upcoming_offset = 0; ctx->lru.delta.upcoming_power = 0; } static void lzms_end_encode_item(struct lzms_compressor *ctx, u32 length) { LZMS_ASSERT(ctx->window_size - ctx->cur_window_pos >= length); ctx->cur_window_pos += length; lzms_update_lru_queues(&ctx->lru); } /* Encode a literal byte. */ static void lzms_encode_literal(struct lzms_compressor *ctx, u8 literal) { LZMS_DEBUG("Position %u: Encoding literal 0x%02x ('%c')", ctx->cur_window_pos, literal, literal); lzms_begin_encode_item(ctx); /* Main bit: 0 = a literal, not a match. */ lzms_range_encode_bit(&ctx->main_range_encoder, 0); /* Encode the literal using the current literal Huffman code. */ lzms_huffman_encode_symbol(&ctx->literal_encoder, literal); lzms_end_encode_item(ctx, 1); } /* Encode a (length, offset) pair (LZ match). */ static void lzms_encode_lz_match(struct lzms_compressor *ctx, u32 length, u32 offset) { int recent_offset_idx; LZMS_DEBUG("Position %u: Encoding LZ match {length=%u, offset=%u}", ctx->cur_window_pos, length, offset); LZMS_ASSERT(length <= ctx->window_size - ctx->cur_window_pos); LZMS_ASSERT(offset <= ctx->cur_window_pos); LZMS_ASSERT(!memcmp(&ctx->window[ctx->cur_window_pos], &ctx->window[ctx->cur_window_pos - offset], length)); lzms_begin_encode_item(ctx); /* Main bit: 1 = a match, not a literal. */ lzms_range_encode_bit(&ctx->main_range_encoder, 1); /* Match bit: 0 = an LZ match, not a delta match. */ lzms_range_encode_bit(&ctx->match_range_encoder, 0); /* Determine if the offset can be represented as a recent offset. */ for (recent_offset_idx = 0; recent_offset_idx < LZMS_NUM_RECENT_OFFSETS; recent_offset_idx++) if (offset == ctx->lru.lz.recent_offsets[recent_offset_idx]) break; if (recent_offset_idx == LZMS_NUM_RECENT_OFFSETS) { /* Explicit offset. */ /* LZ match bit: 0 = explicit offset, not a recent offset. */ lzms_range_encode_bit(&ctx->lz_match_range_encoder, 0); /* Encode the match offset. */ lzms_encode_offset(&ctx->lz_offset_encoder, offset); } else { int i; /* Recent offset. */ /* LZ match bit: 1 = recent offset, not an explicit offset. */ lzms_range_encode_bit(&ctx->lz_match_range_encoder, 1); /* Encode the recent offset index. A 1 bit is encoded for each * index passed up. This sequence of 1 bits is terminated by a * 0 bit, or automatically when (LZMS_NUM_RECENT_OFFSETS - 1) 1 * bits have been encoded. */ for (i = 0; i < recent_offset_idx; i++) lzms_range_encode_bit(&ctx->lz_repeat_match_range_encoders[i], 1); if (i < LZMS_NUM_RECENT_OFFSETS - 1) lzms_range_encode_bit(&ctx->lz_repeat_match_range_encoders[i], 0); /* Initial update of the LZ match offset LRU queue. */ for (; i < LZMS_NUM_RECENT_OFFSETS; i++) ctx->lru.lz.recent_offsets[i] = ctx->lru.lz.recent_offsets[i + 1]; } /* Encode the match length. */ lzms_encode_length(&ctx->length_encoder, length); /* Save the match offset for later insertion at the front of the LZ * match offset LRU queue. */ ctx->lru.lz.upcoming_offset = offset; lzms_end_encode_item(ctx, length); } #define LZMS_COST_SHIFT 5 /*#define LZMS_RC_COSTS_USE_FLOATING_POINT*/ static u32 lzms_rc_costs[LZMS_PROBABILITY_MAX + 1]; #ifdef LZMS_RC_COSTS_USE_FLOATING_POINT # include #endif static void lzms_do_init_rc_costs(void) { /* Fill in a table that maps range coding probabilities needed to code a * bit X (0 or 1) to the number of bits (scaled by a constant factor, to * handle fractional costs) needed to code that bit X. * * Consider the range of the range decoder. To eliminate exactly half * the range (logical probability of 0.5), we need exactly 1 bit. For * lower probabilities we need more bits and for higher probabilities we * need fewer bits. In general, a logical probability of N will * eliminate the proportion 1 - N of the range; this information takes * log2(1 / N) bits to encode. * * The below loop is simply calculating this number of bits for each * possible probability allowed by the LZMS compression format, but * without using real numbers. To handle fractional probabilities, each * cost is multiplied by (1 << LZMS_COST_SHIFT). These techniques are * based on those used by LZMA. * * Note that in LZMS, a probability x really means x / 64, and 0 / 64 is * really interpreted as 1 / 64 and 64 / 64 is really interpreted as * 63 / 64. */ for (u32 i = 0; i <= LZMS_PROBABILITY_MAX; i++) { u32 prob = i; if (prob == 0) prob = 1; else if (prob == LZMS_PROBABILITY_MAX) prob = LZMS_PROBABILITY_MAX - 1; #ifdef LZMS_RC_COSTS_USE_FLOATING_POINT lzms_rc_costs[i] = log2((double)LZMS_PROBABILITY_MAX / prob) * (1 << LZMS_COST_SHIFT); #else u32 w = prob; u32 bit_count = 0; for (u32 j = 0; j < LZMS_COST_SHIFT; j++) { w *= w; bit_count <<= 1; while (w >= (1U << 16)) { w >>= 1; ++bit_count; } } lzms_rc_costs[i] = (LZMS_PROBABILITY_BITS << LZMS_COST_SHIFT) - (15 + bit_count); #endif } } static void lzms_init_rc_costs(void) { static pthread_once_t once = PTHREAD_ONCE_INIT; pthread_once(&once, lzms_do_init_rc_costs); } /* * Return the cost to range-encode the specified bit when in the specified * state. * * @enc The range encoder to use. * @cur_state Current state, which indicates the probability entry to choose. * Updated by this function. * @bit The bit to encode (0 or 1). */ static u32 lzms_rc_bit_cost(const struct lzms_range_encoder *enc, u8 *cur_state, int bit) { u32 prob_zero; u32 prob_correct; prob_zero = enc->prob_entries[*cur_state & enc->mask].num_recent_zero_bits; *cur_state = (*cur_state << 1) | bit; if (bit == 0) prob_correct = prob_zero; else prob_correct = LZMS_PROBABILITY_MAX - prob_zero; return lzms_rc_costs[prob_correct]; } static u32 lzms_huffman_symbol_cost(const struct lzms_huffman_encoder *enc, u32 sym) { return enc->lens[sym] << LZMS_COST_SHIFT; } static u32 lzms_offset_cost(const struct lzms_huffman_encoder *enc, u32 offset) { u32 slot; u32 num_extra_bits; u32 cost = 0; slot = lzms_get_position_slot(offset); cost += lzms_huffman_symbol_cost(enc, slot); num_extra_bits = lzms_extra_position_bits[slot]; cost += num_extra_bits << LZMS_COST_SHIFT; return cost; } static u32 lzms_get_length_cost(const struct lzms_huffman_encoder *enc, u32 length) { u32 slot; u32 num_extra_bits; u32 cost = 0; slot = lzms_get_length_slot(length); cost += lzms_huffman_symbol_cost(enc, slot); num_extra_bits = lzms_extra_length_bits[slot]; cost += num_extra_bits << LZMS_COST_SHIFT; return cost; } static u32 lzms_get_matches(struct lzms_compressor *ctx, struct lz_match **matches_ret) { *matches_ret = ctx->matches; return lz_mf_get_matches(ctx->mf, ctx->matches); } static void lzms_skip_bytes(struct lzms_compressor *ctx, u32 n) { lz_mf_skip_positions(ctx->mf, n); } static u32 lzms_get_literal_cost(struct lzms_compressor *ctx, struct lzms_adaptive_state *state, u8 literal) { u32 cost = 0; state->lru.upcoming_offset = 0; lzms_update_lz_lru_queues(&state->lru); cost += lzms_rc_bit_cost(&ctx->main_range_encoder, &state->main_state, 0); cost += lzms_huffman_symbol_cost(&ctx->literal_encoder, literal); return cost; } static u32 lzms_get_lz_match_cost_nolen(struct lzms_compressor *ctx, struct lzms_adaptive_state *state, u32 offset) { u32 cost = 0; int recent_offset_idx; cost += lzms_rc_bit_cost(&ctx->main_range_encoder, &state->main_state, 1); cost += lzms_rc_bit_cost(&ctx->match_range_encoder, &state->match_state, 0); for (recent_offset_idx = 0; recent_offset_idx < LZMS_NUM_RECENT_OFFSETS; recent_offset_idx++) if (offset == state->lru.recent_offsets[recent_offset_idx]) break; if (recent_offset_idx == LZMS_NUM_RECENT_OFFSETS) { /* Explicit offset. */ cost += lzms_rc_bit_cost(&ctx->lz_match_range_encoder, &state->lz_match_state, 0); cost += lzms_offset_cost(&ctx->lz_offset_encoder, offset); } else { int i; /* Recent offset. */ cost += lzms_rc_bit_cost(&ctx->lz_match_range_encoder, &state->lz_match_state, 1); for (i = 0; i < recent_offset_idx; i++) cost += lzms_rc_bit_cost(&ctx->lz_repeat_match_range_encoders[i], &state->lz_repeat_match_state[i], 0); if (i < LZMS_NUM_RECENT_OFFSETS - 1) cost += lzms_rc_bit_cost(&ctx->lz_repeat_match_range_encoders[i], &state->lz_repeat_match_state[i], 1); /* Initial update of the LZ match offset LRU queue. */ for (; i < LZMS_NUM_RECENT_OFFSETS; i++) state->lru.recent_offsets[i] = state->lru.recent_offsets[i + 1]; } state->lru.upcoming_offset = offset; lzms_update_lz_lru_queues(&state->lru); return cost; } static u32 lzms_get_lz_match_cost(struct lzms_compressor *ctx, struct lzms_adaptive_state *state, u32 length, u32 offset) { return lzms_get_lz_match_cost_nolen(ctx, state, offset) + lzms_get_length_cost(&ctx->length_encoder, length); } static struct lz_match lzms_match_chooser_reverse_list(struct lzms_compressor *ctx, unsigned cur_pos) { unsigned prev_link, saved_prev_link; unsigned prev_match_offset, saved_prev_match_offset; ctx->optimum_end_idx = cur_pos; saved_prev_link = ctx->optimum[cur_pos].prev.link; saved_prev_match_offset = ctx->optimum[cur_pos].prev.match_offset; do { prev_link = saved_prev_link; prev_match_offset = saved_prev_match_offset; saved_prev_link = ctx->optimum[prev_link].prev.link; saved_prev_match_offset = ctx->optimum[prev_link].prev.match_offset; ctx->optimum[prev_link].next.link = cur_pos; ctx->optimum[prev_link].next.match_offset = prev_match_offset; cur_pos = prev_link; } while (cur_pos != 0); ctx->optimum_cur_idx = ctx->optimum[0].next.link; return (struct lz_match) { .len = ctx->optimum_cur_idx, .offset = ctx->optimum[0].next.match_offset, }; } /* This is similar to lzx_choose_near_optimal_item() in lzx-compress.c. * Read that one if you want to understand it. */ static struct lz_match lzms_get_near_optimal_item(struct lzms_compressor *ctx) { u32 num_matches; struct lz_match *matches; struct lz_match match; u32 longest_len; u32 longest_rep_len; u32 longest_rep_offset; unsigned cur_pos; unsigned end_pos; struct lzms_adaptive_state initial_state; if (ctx->optimum_cur_idx != ctx->optimum_end_idx) { match.len = ctx->optimum[ctx->optimum_cur_idx].next.link - ctx->optimum_cur_idx; match.offset = ctx->optimum[ctx->optimum_cur_idx].next.match_offset; ctx->optimum_cur_idx = ctx->optimum[ctx->optimum_cur_idx].next.link; return match; } ctx->optimum_cur_idx = 0; ctx->optimum_end_idx = 0; longest_rep_len = ctx->params.min_match_length - 1; if (lz_mf_get_position(ctx->mf) >= LZMS_MAX_INIT_RECENT_OFFSET) { u32 limit = lz_mf_get_bytes_remaining(ctx->mf); for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS; i++) { u32 offset = ctx->lru.lz.recent_offsets[i]; const u8 *strptr = lz_mf_get_window_ptr(ctx->mf); const u8 *matchptr = strptr - offset; u32 len = 0; while (len < limit && strptr[len] == matchptr[len]) len++; if (len > longest_rep_len) { longest_rep_len = len; longest_rep_offset = offset; } } } if (longest_rep_len >= ctx->params.nice_match_length) { lzms_skip_bytes(ctx, longest_rep_len); return (struct lz_match) { .len = longest_rep_len, .offset = longest_rep_offset, }; } num_matches = lzms_get_matches(ctx, &matches); if (num_matches) { longest_len = matches[num_matches - 1].len; if (longest_len >= ctx->params.nice_match_length) { lzms_skip_bytes(ctx, longest_len - 1); return matches[num_matches - 1]; } } else { longest_len = 1; } initial_state.lru = ctx->lru.lz; initial_state.main_state = ctx->main_range_encoder.state; initial_state.match_state = ctx->match_range_encoder.state; initial_state.lz_match_state = ctx->lz_match_range_encoder.state; for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS - 1; i++) initial_state.lz_repeat_match_state[i] = ctx->lz_repeat_match_range_encoders[i].state; ctx->optimum[1].state = initial_state; ctx->optimum[1].cost = lzms_get_literal_cost(ctx, &ctx->optimum[1].state, *(lz_mf_get_window_ptr(ctx->mf) - 1)); ctx->optimum[1].prev.link = 0; for (u32 i = 0, len = 2; i < num_matches; i++) { u32 offset = matches[i].offset; struct lzms_adaptive_state state; u32 position_cost; state = initial_state; position_cost = 0; position_cost += lzms_get_lz_match_cost_nolen(ctx, &state, offset); do { u32 cost; cost = position_cost; cost += lzms_get_length_cost(&ctx->length_encoder, len); ctx->optimum[len].state = state; ctx->optimum[len].prev.link = 0; ctx->optimum[len].prev.match_offset = offset; ctx->optimum[len].cost = cost; } while (++len <= matches[i].len); } end_pos = longest_len; if (longest_rep_len >= ctx->params.min_match_length) { struct lzms_adaptive_state state; u32 cost; while (end_pos < longest_rep_len) ctx->optimum[++end_pos].cost = MC_INFINITE_COST; state = initial_state; cost = lzms_get_lz_match_cost(ctx, &state, longest_rep_len, longest_rep_offset); if (cost <= ctx->optimum[longest_rep_len].cost) { ctx->optimum[longest_rep_len].state = state; ctx->optimum[longest_rep_len].prev.link = 0; ctx->optimum[longest_rep_len].prev.match_offset = longest_rep_offset; ctx->optimum[longest_rep_len].cost = cost; } } cur_pos = 0; for (;;) { u32 cost; struct lzms_adaptive_state state; cur_pos++; if (cur_pos == end_pos || cur_pos == ctx->params.optim_array_length) return lzms_match_chooser_reverse_list(ctx, cur_pos); longest_rep_len = ctx->params.min_match_length - 1; if (lz_mf_get_position(ctx->mf) >= LZMS_MAX_INIT_RECENT_OFFSET) { u32 limit = lz_mf_get_bytes_remaining(ctx->mf); for (int i = 0; i < LZMS_NUM_RECENT_OFFSETS; i++) { u32 offset = ctx->optimum[cur_pos].state.lru.recent_offsets[i]; const u8 *strptr = lz_mf_get_window_ptr(ctx->mf); const u8 *matchptr = strptr - offset; u32 len = 0; while (len < limit && strptr[len] == matchptr[len]) len++; if (len > longest_rep_len) { longest_rep_len = len; longest_rep_offset = offset; } } } if (longest_rep_len >= ctx->params.nice_match_length) { match = lzms_match_chooser_reverse_list(ctx, cur_pos); ctx->optimum[cur_pos].next.match_offset = longest_rep_offset; ctx->optimum[cur_pos].next.link = cur_pos + longest_rep_len; ctx->optimum_end_idx = cur_pos + longest_rep_len; lzms_skip_bytes(ctx, longest_rep_len); return match; } num_matches = lzms_get_matches(ctx, &matches); if (num_matches) { longest_len = matches[num_matches - 1].len; if (longest_len >= ctx->params.nice_match_length) { match = lzms_match_chooser_reverse_list(ctx, cur_pos); ctx->optimum[cur_pos].next.match_offset = matches[num_matches - 1].offset; ctx->optimum[cur_pos].next.link = cur_pos + longest_len; ctx->optimum_end_idx = cur_pos + longest_len; lzms_skip_bytes(ctx, longest_len - 1); return match; } } else { longest_len = 1; } while (end_pos < cur_pos + longest_len) ctx->optimum[++end_pos].cost = MC_INFINITE_COST; state = ctx->optimum[cur_pos].state; cost = ctx->optimum[cur_pos].cost + lzms_get_literal_cost(ctx, &state, *(lz_mf_get_window_ptr(ctx->mf) - 1)); if (cost < ctx->optimum[cur_pos + 1].cost) { ctx->optimum[cur_pos + 1].state = state; ctx->optimum[cur_pos + 1].cost = cost; ctx->optimum[cur_pos + 1].prev.link = cur_pos; } for (u32 i = 0, len = 2; i < num_matches; i++) { u32 offset = matches[i].offset; struct lzms_adaptive_state state; u32 position_cost; state = ctx->optimum[cur_pos].state; position_cost = ctx->optimum[cur_pos].cost; position_cost += lzms_get_lz_match_cost_nolen(ctx, &state, offset); do { u32 cost; cost = position_cost; cost += lzms_get_length_cost(&ctx->length_encoder, len); if (cost < ctx->optimum[cur_pos + len].cost) { ctx->optimum[cur_pos + len].state = state; ctx->optimum[cur_pos + len].prev.link = cur_pos; ctx->optimum[cur_pos + len].prev.match_offset = offset; ctx->optimum[cur_pos + len].cost = cost; } } while (++len <= matches[i].len); } if (longest_rep_len >= ctx->params.min_match_length) { while (end_pos < cur_pos + longest_rep_len) ctx->optimum[++end_pos].cost = MC_INFINITE_COST; state = ctx->optimum[cur_pos].state; cost = ctx->optimum[cur_pos].cost + lzms_get_lz_match_cost(ctx, &state, longest_rep_len, longest_rep_offset); if (cost <= ctx->optimum[cur_pos + longest_rep_len].cost) { ctx->optimum[cur_pos + longest_rep_len].state = state; ctx->optimum[cur_pos + longest_rep_len].prev.link = cur_pos; ctx->optimum[cur_pos + longest_rep_len].prev.match_offset = longest_rep_offset; ctx->optimum[cur_pos + longest_rep_len].cost = cost; } } } } /* * The main loop for the LZMS compressor. * * Notes: * * - This does not output any delta matches. * * - The costs of literals and matches are estimated using the range encoder * states and the semi-adaptive Huffman codes. Except for range encoding * states, costs are assumed to be constant throughout a single run of the * parsing algorithm, which can parse up to @optim_array_length bytes of data. * This introduces a source of inaccuracy because the probabilities and * Huffman codes can change over this part of the data. */ static void lzms_encode(struct lzms_compressor *ctx) { struct lz_match item; /* Load window into the match-finder. */ lz_mf_load_window(ctx->mf, ctx->window, ctx->window_size); /* Reset the match-chooser. */ ctx->optimum_cur_idx = 0; ctx->optimum_end_idx = 0; while (ctx->cur_window_pos != ctx->window_size) { item = lzms_get_near_optimal_item(ctx); if (item.len <= 1) lzms_encode_literal(ctx, ctx->window[ctx->cur_window_pos]); else lzms_encode_lz_match(ctx, item.len, item.offset); } } static void lzms_init_range_encoder(struct lzms_range_encoder *enc, struct lzms_range_encoder_raw *rc, u32 num_states) { enc->rc = rc; enc->state = 0; enc->mask = num_states - 1; for (u32 i = 0; i < num_states; i++) { enc->prob_entries[i].num_recent_zero_bits = LZMS_INITIAL_PROBABILITY; enc->prob_entries[i].recent_bits = LZMS_INITIAL_RECENT_BITS; } } static void lzms_init_huffman_encoder(struct lzms_huffman_encoder *enc, struct lzms_output_bitstream *os, unsigned num_syms, unsigned rebuild_freq) { enc->os = os; enc->num_syms_written = 0; enc->rebuild_freq = rebuild_freq; enc->num_syms = num_syms; for (unsigned i = 0; i < num_syms; i++) enc->sym_freqs[i] = 1; make_canonical_huffman_code(enc->num_syms, LZMS_MAX_CODEWORD_LEN, enc->sym_freqs, enc->lens, enc->codewords); } /* Initialize the LZMS compressor. */ static void lzms_init_compressor(struct lzms_compressor *ctx, const u8 *udata, u32 ulen, le16 *cdata, u32 clen16) { unsigned num_position_slots; /* Copy the uncompressed data into the @ctx->window buffer. */ memcpy(ctx->window, udata, ulen); ctx->cur_window_pos = 0; ctx->window_size = ulen; /* Initialize the raw range encoder (writing forwards). */ lzms_range_encoder_raw_init(&ctx->rc, cdata, clen16); /* Initialize the output bitstream for Huffman symbols and verbatim bits * (writing backwards). */ lzms_output_bitstream_init(&ctx->os, cdata, clen16); /* Calculate the number of position slots needed for this compressed * block. */ num_position_slots = lzms_get_position_slot(ulen - 1) + 1; LZMS_DEBUG("Using %u position slots", num_position_slots); /* Initialize Huffman encoders for each alphabet used in the compressed * representation. */ lzms_init_huffman_encoder(&ctx->literal_encoder, &ctx->os, LZMS_NUM_LITERAL_SYMS, LZMS_LITERAL_CODE_REBUILD_FREQ); lzms_init_huffman_encoder(&ctx->lz_offset_encoder, &ctx->os, num_position_slots, LZMS_LZ_OFFSET_CODE_REBUILD_FREQ); lzms_init_huffman_encoder(&ctx->length_encoder, &ctx->os, LZMS_NUM_LEN_SYMS, LZMS_LENGTH_CODE_REBUILD_FREQ); lzms_init_huffman_encoder(&ctx->delta_offset_encoder, &ctx->os, num_position_slots, LZMS_DELTA_OFFSET_CODE_REBUILD_FREQ); lzms_init_huffman_encoder(&ctx->delta_power_encoder, &ctx->os, LZMS_NUM_DELTA_POWER_SYMS, LZMS_DELTA_POWER_CODE_REBUILD_FREQ); /* Initialize range encoders, all of which wrap around the same * lzms_range_encoder_raw. */ lzms_init_range_encoder(&ctx->main_range_encoder, &ctx->rc, LZMS_NUM_MAIN_STATES); lzms_init_range_encoder(&ctx->match_range_encoder, &ctx->rc, LZMS_NUM_MATCH_STATES); lzms_init_range_encoder(&ctx->lz_match_range_encoder, &ctx->rc, LZMS_NUM_LZ_MATCH_STATES); for (size_t i = 0; i < ARRAY_LEN(ctx->lz_repeat_match_range_encoders); i++) lzms_init_range_encoder(&ctx->lz_repeat_match_range_encoders[i], &ctx->rc, LZMS_NUM_LZ_REPEAT_MATCH_STATES); lzms_init_range_encoder(&ctx->delta_match_range_encoder, &ctx->rc, LZMS_NUM_DELTA_MATCH_STATES); for (size_t i = 0; i < ARRAY_LEN(ctx->delta_repeat_match_range_encoders); i++) lzms_init_range_encoder(&ctx->delta_repeat_match_range_encoders[i], &ctx->rc, LZMS_NUM_DELTA_REPEAT_MATCH_STATES); /* Initialize LRU match information. */ lzms_init_lru_queues(&ctx->lru); } /* Flush the output streams, prepare the final compressed data, and return its * size in bytes. * * A return value of 0 indicates that the data could not be compressed to fit in * the available space. */ static size_t lzms_finalize(struct lzms_compressor *ctx, u8 *cdata, size_t csize_avail) { size_t num_forwards_bytes; size_t num_backwards_bytes; size_t compressed_size; /* Flush both the forwards and backwards streams, and make sure they * didn't cross each other and start overwriting each other's data. */ if (!lzms_output_bitstream_flush(&ctx->os)) { LZMS_DEBUG("Backwards bitstream overrun."); return 0; } if (!lzms_range_encoder_raw_flush(&ctx->rc)) { LZMS_DEBUG("Forwards bitstream overrun."); return 0; } if (ctx->rc.out > ctx->os.out) { LZMS_DEBUG("Two bitstreams crossed."); return 0; } /* Now the compressed buffer contains the data output by the forwards * bitstream, then empty space, then data output by the backwards * bitstream. Move the data output by the backwards bitstream to be * adjacent to the data output by the forward bitstream, and calculate * the compressed size that this results in. */ num_forwards_bytes = (u8*)ctx->rc.out - (u8*)cdata; num_backwards_bytes = ((u8*)cdata + csize_avail) - (u8*)ctx->os.out; memmove(cdata + num_forwards_bytes, ctx->os.out, num_backwards_bytes); compressed_size = num_forwards_bytes + num_backwards_bytes; LZMS_DEBUG("num_forwards_bytes=%zu, num_backwards_bytes=%zu, " "compressed_size=%zu", num_forwards_bytes, num_backwards_bytes, compressed_size); LZMS_ASSERT(compressed_size % 2 == 0); return compressed_size; } static void lzms_build_params(unsigned int compression_level, struct lzms_compressor_params *lzms_params) { lzms_params->min_match_length = (compression_level >= 50) ? 2 : 3; lzms_params->nice_match_length = max(((u64)compression_level * 32) / 50, lzms_params->min_match_length); lzms_params->max_search_depth = ((u64)compression_level * 50) / 50; lzms_params->optim_array_length = 224 + compression_level * 16; } static void lzms_build_mf_params(const struct lzms_compressor_params *lzms_params, u32 max_window_size, struct lz_mf_params *mf_params) { memset(mf_params, 0, sizeof(*mf_params)); mf_params->algorithm = LZ_MF_DEFAULT; mf_params->max_window_size = max_window_size; mf_params->min_match_len = lzms_params->min_match_length; mf_params->max_search_depth = lzms_params->max_search_depth; mf_params->nice_match_len = lzms_params->nice_match_length; } static void lzms_free_compressor(void *_ctx); static u64 lzms_get_needed_memory(size_t max_block_size, unsigned int compression_level) { struct lzms_compressor_params params; lzms_build_params(compression_level, ¶ms); u64 size = 0; size += sizeof(struct lzms_compressor); size += max_block_size; size += lz_mf_get_needed_memory(LZ_MF_DEFAULT, max_block_size); size += params.max_search_depth * sizeof(struct lz_match); size += (params.optim_array_length + params.nice_match_length) * sizeof(struct lzms_mc_pos_data); return size; } static int lzms_create_compressor(size_t max_block_size, unsigned int compression_level, void **ctx_ret) { struct lzms_compressor *ctx; struct lzms_compressor_params params; struct lz_mf_params mf_params; if (max_block_size >= INT32_MAX) return WIMLIB_ERR_INVALID_PARAM; lzms_build_params(compression_level, ¶ms); lzms_build_mf_params(¶ms, max_block_size, &mf_params); if (!lz_mf_params_valid(&mf_params)) return WIMLIB_ERR_INVALID_PARAM; ctx = CALLOC(1, sizeof(struct lzms_compressor)); if (!ctx) goto oom; ctx->params = params; ctx->max_block_size = max_block_size; ctx->window = MALLOC(max_block_size); if (!ctx->window) goto oom; ctx->mf = lz_mf_alloc(&mf_params); if (!ctx->mf) goto oom; ctx->matches = MALLOC(params.max_search_depth * sizeof(struct lz_match)); if (!ctx->matches) goto oom; ctx->optimum = MALLOC((params.optim_array_length + params.nice_match_length) * sizeof(struct lzms_mc_pos_data)); if (!ctx->optimum) goto oom; /* Initialize position and length slot data if not done already. */ lzms_init_slots(); /* Initialize range encoding cost table if not done already. */ lzms_init_rc_costs(); *ctx_ret = ctx; return 0; oom: lzms_free_compressor(ctx); return WIMLIB_ERR_NOMEM; } static size_t lzms_compress(const void *uncompressed_data, size_t uncompressed_size, void *compressed_data, size_t compressed_size_avail, void *_ctx) { struct lzms_compressor *ctx = _ctx; size_t compressed_size; LZMS_DEBUG("uncompressed_size=%zu, compressed_size_avail=%zu", uncompressed_size, compressed_size_avail); /* Don't bother compressing extremely small inputs. */ if (uncompressed_size < 4) { LZMS_DEBUG("Input too small to bother compressing."); return 0; } /* Cap the available compressed size to a 32-bit integer and round it * down to the nearest multiple of 2. */ if (compressed_size_avail > UINT32_MAX) compressed_size_avail = UINT32_MAX; if (compressed_size_avail & 1) compressed_size_avail--; /* Initialize the compressor structures. */ lzms_init_compressor(ctx, uncompressed_data, uncompressed_size, compressed_data, compressed_size_avail / 2); /* Preprocess the uncompressed data. */ lzms_x86_filter(ctx->window, ctx->window_size, ctx->last_target_usages, false); /* Compute and encode a literal/match sequence that decompresses to the * preprocessed data. */ lzms_encode(ctx); /* Get and return the compressed data size. */ compressed_size = lzms_finalize(ctx, compressed_data, compressed_size_avail); if (compressed_size == 0) { LZMS_DEBUG("Data did not compress to requested size or less."); return 0; } LZMS_DEBUG("Compressed %zu => %zu bytes", uncompressed_size, compressed_size); return compressed_size; } static void lzms_free_compressor(void *_ctx) { struct lzms_compressor *ctx = _ctx; if (ctx) { FREE(ctx->window); lz_mf_free(ctx->mf); FREE(ctx->matches); FREE(ctx->optimum); FREE(ctx); } } const struct compressor_ops lzms_compressor_ops = { .get_needed_memory = lzms_get_needed_memory, .create_compressor = lzms_create_compressor, .compress = lzms_compress, .free_compressor = lzms_free_compressor, };