/* * lzms-common.c * * Code shared between the compressor and decompressor for the LZMS compression * format. */ /* * Copyright (C) 2013 Eric Biggers * * This file is part of wimlib, a library for working with WIM files. * * wimlib is free software; you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. * * wimlib is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with wimlib; if not, see http://www.gnu.org/licenses/. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include "wimlib/endianness.h" #include "wimlib/lzms.h" #include "wimlib/util.h" #include /*************************************************************** * Constant tables initialized by lzms_compute_slots(): * ***************************************************************/ /* Table: position slot => position slot base value */ u32 lzms_position_slot_base[LZMS_MAX_NUM_OFFSET_SYMS + 1]; /* Table: position slot => number of extra position bits */ u8 lzms_extra_position_bits[LZMS_MAX_NUM_OFFSET_SYMS]; /* Table: log2(position) => [lower bound, upper bound] on position slot */ u16 lzms_order_to_position_slot_bounds[30][2]; /* Table: length slot => length slot base value */ u32 lzms_length_slot_base[LZMS_NUM_LEN_SYMS + 1]; /* Table: length slot => number of extra length bits */ u8 lzms_extra_length_bits[LZMS_NUM_LEN_SYMS]; /* Table: length (< LZMS_NUM_FAST_LENGTHS only) => length slot */ u8 lzms_length_slot_fast[LZMS_NUM_FAST_LENGTHS]; u32 lzms_get_slot(u32 value, const u32 slot_base_tab[], unsigned num_slots) { u32 l = 0; u32 r = num_slots - 1; for (;;) { LZMS_ASSERT(r >= l); u32 slot = (l + r) / 2; if (value >= slot_base_tab[slot]) { if (value < slot_base_tab[slot + 1]) return slot; else l = slot + 1; } else { r = slot - 1; } } } static void lzms_decode_delta_rle_slot_bases(u32 slot_bases[], u8 extra_bits[], const u8 delta_run_lens[], u32 num_run_lens, u32 final, u32 expected_num_slots) { u32 order = 0; u32 delta = 1; u32 base = 0; u32 slot = 0; for (u32 i = 0; i < num_run_lens; i++) { u8 run_len = delta_run_lens[i]; while (run_len--) { base += delta; if (slot > 0) extra_bits[slot - 1] = order; slot_bases[slot] = base; slot++; } delta <<= 1; order++; } LZMS_ASSERT(slot == expected_num_slots); slot_bases[slot] = final; extra_bits[slot - 1] = bsr32(slot_bases[slot] - slot_bases[slot - 1]); } /* Initialize the global position and length slot tables. */ static void lzms_compute_slots(void) { /* If an explicit formula that maps LZMS position and length slots to * slot bases exists, then it could be used here. But until one is * found, the following code fills in the slots using the observation * that the increase from one slot base to the next is an increasing * power of 2. Therefore, run-length encoding of the delta of adjacent * entries can be used. */ static const u8 position_slot_delta_run_lens[] = { 9, 0, 9, 7, 10, 15, 15, 20, 20, 30, 33, 40, 42, 45, 60, 73, 80, 85, 95, 105, 6, }; static const u8 length_slot_delta_run_lens[] = { 27, 4, 6, 4, 5, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, }; /* Position slots */ lzms_decode_delta_rle_slot_bases(lzms_position_slot_base, lzms_extra_position_bits, position_slot_delta_run_lens, ARRAY_LEN(position_slot_delta_run_lens), 0x7fffffff, LZMS_MAX_NUM_OFFSET_SYMS); for (u32 order = 0; order < 30; order++) { lzms_order_to_position_slot_bounds[order][0] = lzms_get_slot(1U << order, lzms_position_slot_base, LZMS_MAX_NUM_OFFSET_SYMS); lzms_order_to_position_slot_bounds[order][1] = lzms_get_slot((1U << (order + 1)) - 1, lzms_position_slot_base, LZMS_MAX_NUM_OFFSET_SYMS); } /* Length slots */ lzms_decode_delta_rle_slot_bases(lzms_length_slot_base, lzms_extra_length_bits, length_slot_delta_run_lens, ARRAY_LEN(length_slot_delta_run_lens), 0x400108ab, LZMS_NUM_LEN_SYMS); /* Create table mapping short lengths to length slots. */ for (u32 slot = 0, i = 0; i < LZMS_NUM_FAST_LENGTHS; i++) { if (i >= lzms_length_slot_base[slot + 1]) slot++; lzms_length_slot_fast[i] = slot; } } /* Initialize the global position and length slot tables if not done so already. * */ void lzms_init_slots(void) { static bool done = false; static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; if (unlikely(!done)) { pthread_mutex_lock(&mutex); if (!done) { lzms_compute_slots(); done = true; } pthread_mutex_unlock(&mutex); } } static s32 lzms_maybe_do_x86_translation(u8 data[restrict], s32 i, s32 num_op_bytes, s32 * restrict closest_target_usage_p, s32 last_target_usages[restrict], s32 max_trans_offset, bool undo) { u16 pos; if (undo) { if (i - *closest_target_usage_p <= max_trans_offset) { LZMS_DEBUG("Undid x86 translation at position %d " "(opcode 0x%02x)", i, data[i]); le32 *p32 = (le32*)&data[i + num_op_bytes]; u32 n = le32_to_cpu(*p32); *p32 = cpu_to_le32(n - i); } pos = i + le16_to_cpu(*(const le16*)&data[i + num_op_bytes]); } else { pos = i + le16_to_cpu(*(const le16*)&data[i + num_op_bytes]); if (i - *closest_target_usage_p <= max_trans_offset) { LZMS_DEBUG("Did x86 translation at position %d " "(opcode 0x%02x)", i, data[i]); le32 *p32 = (le32*)&data[i + num_op_bytes]; u32 n = le32_to_cpu(*p32); *p32 = cpu_to_le32(n + i); } } i += num_op_bytes + sizeof(le32) - 1; if (i - last_target_usages[pos] <= LZMS_X86_MAX_GOOD_TARGET_OFFSET) *closest_target_usage_p = i; last_target_usages[pos] = i; return i + 1; } static s32 lzms_may_x86_translate(const u8 p[restrict], s32 *restrict max_offset_ret) { /* Switch on first byte of the opcode, assuming it is really an x86 * instruction. */ *max_offset_ret = LZMS_X86_MAX_TRANSLATION_OFFSET; switch (p[0]) { case 0x48: if (p[1] == 0x8b) { if (p[2] == 0x5 || p[2] == 0xd) { /* Load relative (x86_64) */ return 3; } } else if (p[1] == 0x8d) { if ((p[2] & 0x7) == 0x5) { /* Load effective address relative (x86_64) */ return 3; } } break; case 0x4c: if (p[1] == 0x8d) { if ((p[2] & 0x7) == 0x5) { /* Load effective address relative (x86_64) */ return 3; } } break; case 0xe8: /* Call relative */ *max_offset_ret = LZMS_X86_MAX_TRANSLATION_OFFSET / 2; return 1; case 0xe9: /* Jump relative */ *max_offset_ret = 0; return 5; case 0xf0: if (p[1] == 0x83 && p[2] == 0x05) { /* Lock add relative */ return 3; } break; case 0xff: if (p[1] == 0x15) { /* Call indirect */ return 2; } break; } *max_offset_ret = 0; return 1; } /* * Translate relative addresses embedded in x86 instructions into absolute * addresses (@undo == %false), or undo this translation (@undo == %true). * * @last_target_usages is a temporary array of length >= 65536. */ void lzms_x86_filter(u8 data[restrict], s32 size, s32 last_target_usages[restrict], bool undo) { s32 closest_target_usage = -LZMS_X86_MAX_TRANSLATION_OFFSET - 1; for (s32 i = 0; i < 65536; i++) last_target_usages[i] = -LZMS_X86_MAX_GOOD_TARGET_OFFSET - 1; for (s32 i = 0; i < size - 16; ) { s32 max_trans_offset; s32 n; n = lzms_may_x86_translate(data + i, &max_trans_offset); if (max_trans_offset) { i = lzms_maybe_do_x86_translation(data, i, n, &closest_target_usage, last_target_usages, max_trans_offset, undo); } else { i += n; } } } static void lzms_init_lz_lru_queues(struct lzms_lz_lru_queues *lz) { /* Recent offsets for LZ matches */ for (u32 i = 0; i < LZMS_NUM_RECENT_OFFSETS + 1; i++) lz->recent_offsets[i] = i + 1; lz->prev_offset = 0; lz->upcoming_offset = 0; } static void lzms_init_delta_lru_queues(struct lzms_delta_lru_queues *delta) { /* Recent offsets and powers for LZ matches */ for (u32 i = 0; i < LZMS_NUM_RECENT_OFFSETS + 1; i++) { delta->recent_offsets[i] = i + 1; delta->recent_powers[i] = 0; } delta->prev_offset = 0; delta->prev_power = 0; delta->upcoming_offset = 0; delta->upcoming_power = 0; } void lzms_init_lru_queues(struct lzms_lru_queues *lru) { lzms_init_lz_lru_queues(&lru->lz); lzms_init_delta_lru_queues(&lru->delta); } void lzms_update_lz_lru_queues(struct lzms_lz_lru_queues *lz) { if (lz->prev_offset != 0) { for (int i = LZMS_NUM_RECENT_OFFSETS - 1; i >= 0; i--) lz->recent_offsets[i + 1] = lz->recent_offsets[i]; lz->recent_offsets[0] = lz->prev_offset; } lz->prev_offset = lz->upcoming_offset; } void lzms_update_delta_lru_queues(struct lzms_delta_lru_queues *delta) { if (delta->prev_offset != 0) { for (int i = LZMS_NUM_RECENT_OFFSETS - 1; i >= 0; i--) { delta->recent_offsets[i + 1] = delta->recent_offsets[i]; delta->recent_powers[i + 1] = delta->recent_powers[i]; } delta->recent_offsets[0] = delta->prev_offset; delta->recent_powers[0] = delta->prev_power; } delta->prev_offset = delta->upcoming_offset; delta->prev_power = delta->upcoming_power; } void lzms_update_lru_queues(struct lzms_lru_queues *lru) { lzms_update_lz_lru_queues(&lru->lz); lzms_update_delta_lru_queues(&lru->delta); }