/* * lzms-common.c * * Code shared between the compressor and decompressor for the LZMS compression * format. */ /* * Copyright (C) 2013, 2014 Eric Biggers * * This file is free software; you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) any * later version. * * This file is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more * details. * * You should have received a copy of the GNU Lesser General Public License * along with this file; if not, see http://www.gnu.org/licenses/. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include "wimlib/endianness.h" #include "wimlib/lzms.h" #include "wimlib/unaligned.h" #include "wimlib/util.h" #include /*************************************************************** * Constant tables initialized by lzms_compute_slots(): * ***************************************************************/ /* Table: offset slot => offset slot base value */ u32 lzms_offset_slot_base[LZMS_MAX_NUM_OFFSET_SYMS + 1]; /* Table: offset slot => number of extra offset bits */ u8 lzms_extra_offset_bits[LZMS_MAX_NUM_OFFSET_SYMS]; /* Table: length slot => length slot base value */ u32 lzms_length_slot_base[LZMS_NUM_LEN_SYMS + 1]; /* Table: length slot => number of extra length bits */ u8 lzms_extra_length_bits[LZMS_NUM_LEN_SYMS]; unsigned lzms_get_slot(u32 value, const u32 slot_base_tab[], unsigned num_slots) { unsigned l = 0; unsigned r = num_slots - 1; for (;;) { LZMS_ASSERT(r >= l); unsigned slot = (l + r) / 2; if (value >= slot_base_tab[slot]) { if (value < slot_base_tab[slot + 1]) return slot; else l = slot + 1; } else { r = slot - 1; } } } static void lzms_decode_delta_rle_slot_bases(u32 slot_bases[], u8 extra_bits[], const u8 delta_run_lens[], unsigned num_run_lens, u32 final, unsigned expected_num_slots) { unsigned order = 0; u32 delta = 1; u32 base = 0; unsigned slot = 0; for (unsigned i = 0; i < num_run_lens; i++) { unsigned run_len = delta_run_lens[i]; while (run_len--) { base += delta; if (slot > 0) extra_bits[slot - 1] = order; slot_bases[slot] = base; slot++; } delta <<= 1; order++; } LZMS_ASSERT(slot == expected_num_slots); slot_bases[slot] = final; extra_bits[slot - 1] = bsr32(slot_bases[slot] - slot_bases[slot - 1]); } /* Initialize the global offset and length slot tables. */ static void lzms_compute_slots(void) { /* If an explicit formula that maps LZMS offset and length slots to slot * bases exists, then it could be used here. But until one is found, * the following code fills in the slots using the observation that the * increase from one slot base to the next is an increasing power of 2. * Therefore, run-length encoding of the delta of adjacent entries can * be used. */ static const u8 offset_slot_delta_run_lens[] = { 9, 0, 9, 7, 10, 15, 15, 20, 20, 30, 33, 40, 42, 45, 60, 73, 80, 85, 95, 105, 6, }; static const u8 length_slot_delta_run_lens[] = { 27, 4, 6, 4, 5, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, }; /* Offset slots */ lzms_decode_delta_rle_slot_bases(lzms_offset_slot_base, lzms_extra_offset_bits, offset_slot_delta_run_lens, ARRAY_LEN(offset_slot_delta_run_lens), 0x7fffffff, LZMS_MAX_NUM_OFFSET_SYMS); /* Length slots */ lzms_decode_delta_rle_slot_bases(lzms_length_slot_base, lzms_extra_length_bits, length_slot_delta_run_lens, ARRAY_LEN(length_slot_delta_run_lens), 0x400108ab, LZMS_NUM_LEN_SYMS); } /* Initialize the global offset and length slot tables if not already done. */ void lzms_init_slots(void) { static pthread_once_t once = PTHREAD_ONCE_INIT; pthread_once(&once, lzms_compute_slots); } static s32 lzms_maybe_do_x86_translation(u8 data[restrict], s32 i, s32 num_op_bytes, s32 * restrict closest_target_usage_p, s32 last_target_usages[restrict], s32 max_trans_offset, bool undo) { u16 pos; if (undo) { if (i - *closest_target_usage_p <= max_trans_offset) { LZMS_DEBUG("Undid x86 translation at position %d " "(opcode 0x%02x)", i, data[i]); void *p32 = &data[i + num_op_bytes]; u32 n = le32_to_cpu(load_le32_unaligned(p32)); store_le32_unaligned(cpu_to_le32(n - i), p32); } pos = i + le16_to_cpu(load_le16_unaligned(&data[i + num_op_bytes])); } else { pos = i + le16_to_cpu(load_le16_unaligned(&data[i + num_op_bytes])); if (i - *closest_target_usage_p <= max_trans_offset) { LZMS_DEBUG("Did x86 translation at position %d " "(opcode 0x%02x)", i, data[i]); void *p32 = &data[i + num_op_bytes]; u32 n = le32_to_cpu(load_le32_unaligned(p32)); store_le32_unaligned(cpu_to_le32(n + i), p32); } } i += num_op_bytes + sizeof(le32) - 1; if (i - last_target_usages[pos] <= LZMS_X86_MAX_GOOD_TARGET_OFFSET) *closest_target_usage_p = i; last_target_usages[pos] = i; return i + 1; } static inline s32 lzms_may_x86_translate(const u8 p[restrict], s32 *restrict max_offset_ret) { /* Switch on first byte of the opcode, assuming it is really an x86 * instruction. */ *max_offset_ret = LZMS_X86_MAX_TRANSLATION_OFFSET; switch (p[0]) { case 0x48: if (p[1] == 0x8b) { if (p[2] == 0x5 || p[2] == 0xd) { /* Load relative (x86_64) */ return 3; } } else if (p[1] == 0x8d) { if ((p[2] & 0x7) == 0x5) { /* Load effective address relative (x86_64) */ return 3; } } break; case 0x4c: if (p[1] == 0x8d) { if ((p[2] & 0x7) == 0x5) { /* Load effective address relative (x86_64) */ return 3; } } break; case 0xe8: /* Call relative */ *max_offset_ret = LZMS_X86_MAX_TRANSLATION_OFFSET / 2; return 1; case 0xe9: /* Jump relative */ *max_offset_ret = 0; return 5; case 0xf0: if (p[1] == 0x83 && p[2] == 0x05) { /* Lock add relative */ return 3; } break; case 0xff: if (p[1] == 0x15) { /* Call indirect */ return 2; } break; } *max_offset_ret = 0; return 1; } /* * Translate relative addresses embedded in x86 instructions into absolute * addresses (@undo == %false), or undo this translation (@undo == %true). * * Absolute addresses are usually more compressible by LZ factorization. * * @last_target_usages must be a temporary array of length >= 65536. */ void lzms_x86_filter(u8 data[restrict], s32 size, s32 last_target_usages[restrict], bool undo) { /* * Note: this filter runs unconditionally and uses a custom algorithm to * detect data regions that probably contain x86 code. * * 'closest_target_usage' tracks the most recent position that has a * good chance of being an x86 instruction. When the filter detects a * likely x86 instruction, it updates this variable and considers the * next 1023 bytes of data as valid for x86 translations. * * If part of the data does not, in fact, contain x86 machine code, then * 'closest_target_usage' will, very likely, eventually fall more than * 1023 bytes behind the current position. This results in x86 * translations being disabled until the next likely x86 instruction is * detected. * * Translations on relative call (e8 opcode) instructions are slightly * more restricted. They require that the most recent likely x86 * instruction was in the last 511 bytes, rather than the last 1023 * bytes. * * To identify "likely x86 instructions", the algorithm attempts to * track the position of the most recent potential relative-addressing * instruction that referenced each possible memory address. If it * finds two references to the same memory address within a 65535 byte * window, the second reference is flagged as a likely x86 instruction. * Since the instructions considered for translation necessarily use * relative addressing, the algorithm does a tentative translation into * absolute addresses. In addition, so that memory addresses can be * looked up in an array of reasonable size (in this code, * 'last_target_usages'), only the low-order 2 bytes of each address are * considered significant. */ s32 closest_target_usage = -LZMS_X86_MAX_TRANSLATION_OFFSET - 1; for (s32 i = 0; i < 65536; i++) last_target_usages[i] = -LZMS_X86_MAX_GOOD_TARGET_OFFSET - 1; for (s32 i = 1; i < size - 16; ) { s32 max_trans_offset; s32 n; n = lzms_may_x86_translate(data + i, &max_trans_offset); if (max_trans_offset) { /* Recognized opcode. */ i = lzms_maybe_do_x86_translation(data, i, n, &closest_target_usage, last_target_usages, max_trans_offset, undo); } else { /* Not a recognized opcode. */ i += n; } } } void lzms_init_lz_lru_queues(struct lzms_lz_lru_queues *lz) { /* Recent offsets for LZ matches */ for (u32 i = 0; i < LZMS_NUM_RECENT_OFFSETS + 1; i++) lz->recent_offsets[i] = i + 1; lz->prev_offset = 0; lz->upcoming_offset = 0; } void lzms_init_delta_lru_queues(struct lzms_delta_lru_queues *delta) { /* Recent offsets and powers for LZ matches */ for (u32 i = 0; i < LZMS_NUM_RECENT_OFFSETS + 1; i++) { delta->recent_offsets[i] = i + 1; delta->recent_powers[i] = 0; } delta->prev_offset = 0; delta->prev_power = 0; delta->upcoming_offset = 0; delta->upcoming_power = 0; } void lzms_init_lru_queues(struct lzms_lru_queues *lru) { lzms_init_lz_lru_queues(&lru->lz); lzms_init_delta_lru_queues(&lru->delta); } void lzms_update_lz_lru_queue(struct lzms_lz_lru_queues *lz) { if (lz->prev_offset != 0) { for (int i = LZMS_NUM_RECENT_OFFSETS - 1; i >= 0; i--) lz->recent_offsets[i + 1] = lz->recent_offsets[i]; lz->recent_offsets[0] = lz->prev_offset; } lz->prev_offset = lz->upcoming_offset; } void lzms_update_delta_lru_queues(struct lzms_delta_lru_queues *delta) { if (delta->prev_offset != 0) { for (int i = LZMS_NUM_RECENT_OFFSETS - 1; i >= 0; i--) { delta->recent_offsets[i + 1] = delta->recent_offsets[i]; delta->recent_powers[i + 1] = delta->recent_powers[i]; } delta->recent_offsets[0] = delta->prev_offset; delta->recent_powers[0] = delta->prev_power; } delta->prev_offset = delta->upcoming_offset; delta->prev_power = delta->upcoming_power; } void lzms_update_lru_queues(struct lzms_lru_queues *lru) { lzms_update_lz_lru_queue(&lru->lz); lzms_update_delta_lru_queues(&lru->delta); }