/* * dentry.c * * A dentry (directory entry) contains the metadata for a file. In the WIM file * format, the dentries are stored in the "metadata resource" section right * after the security data. Each image in the WIM file has its own metadata * resource with its own security data and dentry tree. Dentries in different * images may share file resources by referring to the same lookup table * entries. */ /* * Copyright (C) 2012 Eric Biggers * * This file is part of wimlib, a library for working with WIM files. * * wimlib is free software; you can redistribute it and/or modify it under the * terms of the GNU General Public License as published by the Free Software * Foundation; either version 3 of the License, or (at your option) any later * version. * * wimlib is distributed in the hope that it will be useful, but WITHOUT ANY * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR * A PARTICULAR PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with * wimlib; if not, see http://www.gnu.org/licenses/. */ #include #include #include #include #include "dentry.h" #include "io.h" #include "lookup_table.h" #include "sha1.h" #include "timestamp.h" #include "wimlib_internal.h" static u64 __dentry_correct_length_unaligned(u16 file_name_len, u16 short_name_len) { u64 length = WIM_DENTRY_DISK_SIZE; if (file_name_len) length += file_name_len + 2; if (short_name_len) length += short_name_len + 2; return length; } static u64 dentry_correct_length_unaligned(const struct dentry *dentry) { return __dentry_correct_length_unaligned(dentry->file_name_len, dentry->short_name_len); } /* Return the "correct" value to write in the length field of the dentry, based * on the file name length and short name length */ static u64 dentry_correct_length(const struct dentry *dentry) { return (dentry_correct_length_unaligned(dentry) + 7) & ~7; } /* * Returns true if @dentry has the UTF-8 file name @name that has length * @name_len. */ static bool dentry_has_name(const struct dentry *dentry, const char *name, size_t name_len) { if (dentry->file_name_utf8_len != name_len) return false; return memcmp(dentry->file_name_utf8, name, name_len) == 0; } static inline bool ads_entry_has_name(const struct ads_entry *entry, const char *name, size_t name_len) { if (entry->stream_name_utf8_len != name_len) return false; return memcmp(entry->stream_name_utf8, name, name_len) == 0; } /* Duplicates a UTF-8 name into UTF-8 and UTF-16 strings and returns the strings * and their lengths in the pointer arguments */ int get_names(char **name_utf16_ret, char **name_utf8_ret, u16 *name_utf16_len_ret, u16 *name_utf8_len_ret, const char *name) { size_t utf8_len; size_t utf16_len; char *name_utf16, *name_utf8; utf8_len = strlen(name); name_utf16 = utf8_to_utf16(name, utf8_len, &utf16_len); if (!name_utf16) return WIMLIB_ERR_NOMEM; name_utf8 = MALLOC(utf8_len + 1); if (!name_utf8) { FREE(name_utf8); return WIMLIB_ERR_NOMEM; } memcpy(name_utf8, name, utf8_len + 1); FREE(*name_utf8_ret); FREE(*name_utf16_ret); *name_utf8_ret = name_utf8; *name_utf16_ret = name_utf16; *name_utf8_len_ret = utf8_len; *name_utf16_len_ret = utf16_len; return 0; } /* Changes the name of a dentry to @new_name. Only changes the file_name and * file_name_utf8 fields; does not change the short_name, short_name_utf8, or * full_path_utf8 fields. Also recalculates its length. */ static int change_dentry_name(struct dentry *dentry, const char *new_name) { int ret; ret = get_names(&dentry->file_name, &dentry->file_name_utf8, &dentry->file_name_len, &dentry->file_name_utf8_len, new_name); FREE(dentry->short_name); dentry->short_name_len = 0; if (ret == 0) dentry->length = dentry_correct_length(dentry); return ret; } /* * Changes the name of an alternate data stream */ static int change_ads_name(struct ads_entry *entry, const char *new_name) { return get_names(&entry->stream_name, &entry->stream_name_utf8, &entry->stream_name_len, &entry->stream_name_utf8_len, new_name); } /* Returns the total length of a WIM alternate data stream entry on-disk, * including the stream name, the null terminator, AND the padding after the * entry to align the next one (or the next dentry) on an 8-byte boundary. */ static u64 ads_entry_total_length(const struct ads_entry *entry) { u64 len = WIM_ADS_ENTRY_DISK_SIZE; if (entry->stream_name_len) len += entry->stream_name_len + 2; return (len + 7) & ~7; } static u64 __dentry_total_length(const struct dentry *dentry, u64 length) { const struct inode *inode = dentry->d_inode; for (u16 i = 0; i < inode->num_ads; i++) length += ads_entry_total_length(&inode->ads_entries[i]); return (length + 7) & ~7; } u64 dentry_correct_total_length(const struct dentry *dentry) { return __dentry_total_length(dentry, dentry_correct_length_unaligned(dentry)); } /* Real length of a dentry, including the alternate data stream entries, which * are not included in the dentry->length field... */ static u64 dentry_total_length(const struct dentry *dentry) { return __dentry_total_length(dentry, dentry->length); } /* Transfers file attributes from a `stat' buffer to an inode. */ void stbuf_to_inode(const struct stat *stbuf, struct inode *inode) { if (S_ISLNK(stbuf->st_mode)) { inode->attributes = FILE_ATTRIBUTE_REPARSE_POINT; inode->reparse_tag = WIM_IO_REPARSE_TAG_SYMLINK; } else if (S_ISDIR(stbuf->st_mode)) { inode->attributes = FILE_ATTRIBUTE_DIRECTORY; } else { inode->attributes = FILE_ATTRIBUTE_NORMAL; } if (sizeof(ino_t) >= 8) inode->ino = (u64)stbuf->st_ino; else inode->ino = (u64)stbuf->st_ino | ((u64)stbuf->st_dev << (sizeof(ino_t) * 8)); /* Set timestamps */ inode->creation_time = timespec_to_wim_timestamp(&stbuf->st_mtim); inode->last_write_time = timespec_to_wim_timestamp(&stbuf->st_mtim); inode->last_access_time = timespec_to_wim_timestamp(&stbuf->st_atim); } #ifdef WITH_FUSE /* Transfers file attributes from a struct inode to a `stat' buffer. * * The lookup table entry tells us which stream in the inode we are statting. * For a named data stream, everything returned is the same as the unnamed data * stream except possibly the size and block count. */ int inode_to_stbuf(const struct inode *inode, struct lookup_table_entry *lte, struct stat *stbuf) { if (inode_is_symlink(inode)) stbuf->st_mode = S_IFLNK | 0777; else if (inode_is_directory(inode)) stbuf->st_mode = S_IFDIR | 0755; else stbuf->st_mode = S_IFREG | 0644; stbuf->st_ino = (ino_t)inode->ino; stbuf->st_nlink = inode->link_count; stbuf->st_uid = getuid(); stbuf->st_gid = getgid(); if (lte) { if (lte->resource_location == RESOURCE_IN_STAGING_FILE) { wimlib_assert(lte->staging_file_name); struct stat native_stat; if (stat(lte->staging_file_name, &native_stat) != 0) { DEBUG("Failed to stat `%s': %m", lte->staging_file_name); return -errno; } stbuf->st_size = native_stat.st_size; } else { stbuf->st_size = wim_resource_size(lte); } } else { stbuf->st_size = 0; } stbuf->st_atime = wim_timestamp_to_unix(inode->last_access_time); stbuf->st_mtime = wim_timestamp_to_unix(inode->last_write_time); stbuf->st_ctime = wim_timestamp_to_unix(inode->creation_time); stbuf->st_blocks = (stbuf->st_size + 511) / 512; return 0; } #endif /* * Calls a function on all directory entries in a directory tree. It is called * on a parent before its children. */ int for_dentry_in_tree(struct dentry *root, int (*visitor)(struct dentry*, void*), void *arg) { int ret; struct dentry *child; ret = visitor(root, arg); if (ret != 0) return ret; child = root->d_inode->children; if (!child) return 0; do { ret = for_dentry_in_tree(child, visitor, arg); if (ret != 0) return ret; child = child->next; } while (child != root->d_inode->children); return 0; } /* * Like for_dentry_in_tree(), but the visitor function is always called on a * dentry's children before on itself. */ int for_dentry_in_tree_depth(struct dentry *root, int (*visitor)(struct dentry*, void*), void *arg) { int ret; struct dentry *child; struct dentry *next; child = root->d_inode->children; if (child) { do { next = child->next; ret = for_dentry_in_tree_depth(child, visitor, arg); if (ret != 0) return ret; child = next; } while (child != root->d_inode->children); } return visitor(root, arg); } /* * Calculate the full path of @dentry, based on its parent's full path and on * its UTF-8 file name. */ int calculate_dentry_full_path(struct dentry *dentry, void *ignore) { char *full_path; u32 full_path_len; if (dentry_is_root(dentry)) { full_path = MALLOC(2); if (!full_path) goto oom; full_path[0] = '/'; full_path[1] = '\0'; full_path_len = 1; } else { char *parent_full_path; u32 parent_full_path_len; const struct dentry *parent = dentry->parent; if (dentry_is_root(parent)) { parent_full_path = ""; parent_full_path_len = 0; } else { parent_full_path = parent->full_path_utf8; parent_full_path_len = parent->full_path_utf8_len; } full_path_len = parent_full_path_len + 1 + dentry->file_name_utf8_len; full_path = MALLOC(full_path_len + 1); if (!full_path) goto oom; memcpy(full_path, parent_full_path, parent_full_path_len); full_path[parent_full_path_len] = '/'; memcpy(full_path + parent_full_path_len + 1, dentry->file_name_utf8, dentry->file_name_utf8_len); full_path[full_path_len] = '\0'; } FREE(dentry->full_path_utf8); dentry->full_path_utf8 = full_path; dentry->full_path_utf8_len = full_path_len; return 0; oom: ERROR("Out of memory while calculating dentry full path"); return WIMLIB_ERR_NOMEM; } /* * Recursively calculates the subdir offsets for a directory tree. * * @dentry: The root of the directory tree. * @subdir_offset_p: The current subdirectory offset; i.e., the subdirectory * offset for @dentry. */ void calculate_subdir_offsets(struct dentry *dentry, u64 *subdir_offset_p) { struct dentry *child; child = dentry->d_inode->children; dentry->subdir_offset = *subdir_offset_p; if (child) { /* Advance the subdir offset by the amount of space the children * of this dentry take up. */ do { *subdir_offset_p += dentry_correct_total_length(child); child = child->next; } while (child != dentry->d_inode->children); /* End-of-directory dentry on disk. */ *subdir_offset_p += 8; /* Recursively call calculate_subdir_offsets() on all the * children. */ do { calculate_subdir_offsets(child, subdir_offset_p); child = child->next; } while (child != dentry->d_inode->children); } else { /* On disk, childless directories have a valid subdir_offset * that points to an 8-byte end-of-directory dentry. Regular * files or reparse points have a subdir_offset of 0. */ if (dentry_is_directory(dentry)) *subdir_offset_p += 8; else dentry->subdir_offset = 0; } } /* Returns the child of @dentry that has the file name @name. * Returns NULL if no child has the name. */ struct dentry *get_dentry_child_with_name(const struct dentry *dentry, const char *name) { struct dentry *child; size_t name_len; child = dentry->d_inode->children; if (child) { name_len = strlen(name); do { if (dentry_has_name(child, name, name_len)) return child; child = child->next; } while (child != dentry->d_inode->children); } return NULL; } /* Retrieves the dentry that has the UTF-8 @path relative to the dentry * @cur_dir. Returns NULL if no dentry having the path is found. */ static struct dentry *get_dentry_relative_path(struct dentry *cur_dir, const char *path) { struct dentry *child; size_t base_len; const char *new_path; if (*path == '\0') return cur_dir; child = cur_dir->d_inode->children; if (child) { new_path = path_next_part(path, &base_len); do { if (dentry_has_name(child, path, base_len)) return get_dentry_relative_path(child, new_path); child = child->next; } while (child != cur_dir->d_inode->children); } return NULL; } /* Returns the dentry corresponding to the UTF-8 @path, or NULL if there is no * such dentry. */ struct dentry *get_dentry(WIMStruct *w, const char *path) { struct dentry *root = wim_root_dentry(w); while (*path == '/') path++; return get_dentry_relative_path(root, path); } struct inode *wim_pathname_to_inode(WIMStruct *w, const char *path) { struct dentry *dentry; dentry = get_dentry(w, path); if (!dentry) return NULL; else return dentry->d_inode; } /* Returns the dentry that corresponds to the parent directory of @path, or NULL * if the dentry is not found. */ struct dentry *get_parent_dentry(WIMStruct *w, const char *path) { size_t path_len = strlen(path); char buf[path_len + 1]; memcpy(buf, path, path_len + 1); to_parent_name(buf, path_len); return get_dentry(w, buf); } /* Prints the full path of a dentry. */ int print_dentry_full_path(struct dentry *dentry, void *ignore) { if (dentry->full_path_utf8) puts(dentry->full_path_utf8); return 0; } /* We want to be able to show the names of the file attribute flags that are * set. */ struct file_attr_flag { u32 flag; const char *name; }; struct file_attr_flag file_attr_flags[] = { {FILE_ATTRIBUTE_READONLY, "READONLY"}, {FILE_ATTRIBUTE_HIDDEN, "HIDDEN"}, {FILE_ATTRIBUTE_SYSTEM, "SYSTEM"}, {FILE_ATTRIBUTE_DIRECTORY, "DIRECTORY"}, {FILE_ATTRIBUTE_ARCHIVE, "ARCHIVE"}, {FILE_ATTRIBUTE_DEVICE, "DEVICE"}, {FILE_ATTRIBUTE_NORMAL, "NORMAL"}, {FILE_ATTRIBUTE_TEMPORARY, "TEMPORARY"}, {FILE_ATTRIBUTE_SPARSE_FILE, "SPARSE_FILE"}, {FILE_ATTRIBUTE_REPARSE_POINT, "REPARSE_POINT"}, {FILE_ATTRIBUTE_COMPRESSED, "COMPRESSED"}, {FILE_ATTRIBUTE_OFFLINE, "OFFLINE"}, {FILE_ATTRIBUTE_NOT_CONTENT_INDEXED,"NOT_CONTENT_INDEXED"}, {FILE_ATTRIBUTE_ENCRYPTED, "ENCRYPTED"}, {FILE_ATTRIBUTE_VIRTUAL, "VIRTUAL"}, }; /* Prints a directory entry. @lookup_table is a pointer to the lookup table, if * available. If the dentry is unresolved and the lookup table is NULL, the * lookup table entries will not be printed. Otherwise, they will be. */ int print_dentry(struct dentry *dentry, void *lookup_table) { const u8 *hash; struct lookup_table_entry *lte; const struct inode *inode = dentry->d_inode; time_t time; char *p; printf("[DENTRY]\n"); printf("Length = %"PRIu64"\n", dentry->length); printf("Attributes = 0x%x\n", inode->attributes); for (unsigned i = 0; i < ARRAY_LEN(file_attr_flags); i++) if (file_attr_flags[i].flag & inode->attributes) printf(" FILE_ATTRIBUTE_%s is set\n", file_attr_flags[i].name); printf("Security ID = %d\n", inode->security_id); printf("Subdir offset = %"PRIu64"\n", dentry->subdir_offset); /* Translate the timestamps into something readable */ time = wim_timestamp_to_unix(inode->creation_time); p = asctime(gmtime(&time)); *(strrchr(p, '\n')) = '\0'; printf("Creation Time = %s UTC\n", p); time = wim_timestamp_to_unix(inode->last_access_time); p = asctime(gmtime(&time)); *(strrchr(p, '\n')) = '\0'; printf("Last Access Time = %s UTC\n", p); time = wim_timestamp_to_unix(inode->last_write_time); p = asctime(gmtime(&time)); *(strrchr(p, '\n')) = '\0'; printf("Last Write Time = %s UTC\n", p); printf("Reparse Tag = 0x%"PRIx32"\n", inode->reparse_tag); printf("Hard Link Group = 0x%"PRIx64"\n", inode->ino); printf("Hard Link Group Size = %"PRIu32"\n", inode->link_count); printf("Number of Alternate Data Streams = %hu\n", inode->num_ads); printf("Filename = \""); print_string(dentry->file_name, dentry->file_name_len); puts("\""); printf("Filename Length = %hu\n", dentry->file_name_len); printf("Filename (UTF-8) = \"%s\"\n", dentry->file_name_utf8); printf("Filename (UTF-8) Length = %hu\n", dentry->file_name_utf8_len); printf("Short Name = \""); print_string(dentry->short_name, dentry->short_name_len); puts("\""); printf("Short Name Length = %hu\n", dentry->short_name_len); printf("Full Path (UTF-8) = \"%s\"\n", dentry->full_path_utf8); lte = inode_stream_lte(dentry->d_inode, 0, lookup_table); if (lte) { print_lookup_table_entry(lte); } else { hash = inode_stream_hash(inode, 0); if (hash) { printf("Hash = 0x"); print_hash(hash); putchar('\n'); putchar('\n'); } } for (u16 i = 0; i < inode->num_ads; i++) { printf("[Alternate Stream Entry %u]\n", i); printf("Name = \"%s\"\n", inode->ads_entries[i].stream_name_utf8); printf("Name Length (UTF-16) = %u\n", inode->ads_entries[i].stream_name_len); hash = inode_stream_hash(inode, i + 1); if (hash) { printf("Hash = 0x"); print_hash(hash); putchar('\n'); } print_lookup_table_entry(inode_stream_lte(inode, i + 1, lookup_table)); } return 0; } /* Initializations done on every `struct dentry'. */ static void dentry_common_init(struct dentry *dentry) { memset(dentry, 0, sizeof(struct dentry)); dentry->refcnt = 1; } static struct inode *new_timeless_inode() { struct inode *inode = CALLOC(1, sizeof(struct inode)); if (!inode) return NULL; inode->security_id = -1; inode->link_count = 1; INIT_LIST_HEAD(&inode->dentry_list); return inode; } static struct inode *new_inode() { struct inode *inode = new_timeless_inode(); if (!inode) return NULL; u64 now = get_wim_timestamp(); inode->creation_time = now; inode->last_access_time = now; inode->last_write_time = now; return inode; } /* * Creates an unlinked directory entry. * * @name: The UTF-8 filename of the new dentry. * * Returns a pointer to the new dentry, or NULL if out of memory. */ struct dentry *new_dentry(const char *name) { struct dentry *dentry; dentry = MALLOC(sizeof(struct dentry)); if (!dentry) goto err; dentry_common_init(dentry); if (change_dentry_name(dentry, name) != 0) goto err; dentry->next = dentry; dentry->prev = dentry; dentry->parent = dentry; return dentry; err: FREE(dentry); ERROR("Failed to allocate new dentry"); return NULL; } static struct dentry *__new_dentry_with_inode(const char *name, bool timeless) { struct dentry *dentry; dentry = new_dentry(name); if (dentry) { if (timeless) dentry->d_inode = new_timeless_inode(); else dentry->d_inode = new_inode(); if (dentry->d_inode) { inode_add_dentry(dentry, dentry->d_inode); } else { free_dentry(dentry); dentry = NULL; } } return dentry; } struct dentry *new_dentry_with_timeless_inode(const char *name) { return __new_dentry_with_inode(name, true); } struct dentry *new_dentry_with_inode(const char *name) { return __new_dentry_with_inode(name, false); } static int init_ads_entry(struct ads_entry *ads_entry, const char *name) { int ret = 0; memset(ads_entry, 0, sizeof(*ads_entry)); if (name && *name) ret = change_ads_name(ads_entry, name); return ret; } static void destroy_ads_entry(struct ads_entry *ads_entry) { FREE(ads_entry->stream_name); FREE(ads_entry->stream_name_utf8); } /* Frees an inode. */ void free_inode(struct inode *inode) { if (inode) { if (inode->ads_entries) { for (u16 i = 0; i < inode->num_ads; i++) destroy_ads_entry(&inode->ads_entries[i]); FREE(inode->ads_entries); } #ifdef WITH_FUSE wimlib_assert(inode->num_opened_fds == 0); FREE(inode->fds); #endif FREE(inode); } } /* Decrements link count on an inode and frees it if the link count reaches 0. * */ static void put_inode(struct inode *inode) { wimlib_assert(inode); wimlib_assert(inode->link_count); if (--inode->link_count == 0) { #ifdef WITH_FUSE if (inode->num_opened_fds == 0) #endif { free_inode(inode); inode = NULL; } } } /* Frees a WIM dentry. * * The inode is freed only if its link count is decremented to 0. */ void free_dentry(struct dentry *dentry) { wimlib_assert(dentry); struct inode *inode; FREE(dentry->file_name); FREE(dentry->file_name_utf8); FREE(dentry->short_name); FREE(dentry->full_path_utf8); put_inode(dentry->d_inode); FREE(dentry); } void put_dentry(struct dentry *dentry) { wimlib_assert(dentry); wimlib_assert(dentry->refcnt); if (--dentry->refcnt == 0) free_dentry(dentry); } /* * This function is passed as an argument to for_dentry_in_tree_depth() in order * to free a directory tree. __args is a pointer to a `struct free_dentry_args'. */ static int do_free_dentry(struct dentry *dentry, void *__lookup_table) { struct lookup_table *lookup_table = __lookup_table; unsigned i; if (lookup_table) { struct lookup_table_entry *lte; struct inode *inode = dentry->d_inode; wimlib_assert(inode->link_count); for (i = 0; i <= inode->num_ads; i++) { lte = inode_stream_lte(inode, i, lookup_table); if (lte) lte_decrement_refcnt(lte, lookup_table); } } put_dentry(dentry); return 0; } /* * Unlinks and frees a dentry tree. * * @root: The root of the tree. * @lookup_table: The lookup table for dentries. If non-NULL, the * reference counts in the lookup table for the lookup * table entries corresponding to the dentries will be * decremented. */ void free_dentry_tree(struct dentry *root, struct lookup_table *lookup_table) { if (!root || !root->parent) return; for_dentry_in_tree_depth(root, do_free_dentry, lookup_table); } int increment_dentry_refcnt(struct dentry *dentry, void *ignore) { dentry->refcnt++; return 0; } /* * Links a dentry into the directory tree. * * @dentry: The dentry to link. * @parent: The dentry that will be the parent of @dentry. */ void link_dentry(struct dentry *dentry, struct dentry *parent) { wimlib_assert(dentry_is_directory(parent)); dentry->parent = parent; if (parent->d_inode->children) { /* Not an only child; link to siblings. */ dentry->next = parent->d_inode->children; dentry->prev = parent->d_inode->children->prev; dentry->next->prev = dentry; dentry->prev->next = dentry; } else { /* Only child; link to parent. */ parent->d_inode->children = dentry; dentry->next = dentry; dentry->prev = dentry; } } #ifdef WITH_FUSE /* * Unlink a dentry from the directory tree. * * Note: This merely removes it from the in-memory tree structure. */ void unlink_dentry(struct dentry *dentry) { if (dentry_is_root(dentry)) return; if (dentry_is_only_child(dentry)) { dentry->parent->d_inode->children = NULL; } else { if (dentry_is_first_sibling(dentry)) dentry->parent->d_inode->children = dentry->next; dentry->next->prev = dentry->prev; dentry->prev->next = dentry->next; } } #endif /* Parameters for calculate_dentry_statistics(). */ struct image_statistics { struct lookup_table *lookup_table; u64 *dir_count; u64 *file_count; u64 *total_bytes; u64 *hard_link_bytes; }; static int calculate_dentry_statistics(struct dentry *dentry, void *arg) { struct image_statistics *stats; struct lookup_table_entry *lte; stats = arg; if (dentry_is_directory(dentry) && !dentry_is_root(dentry)) ++*stats->dir_count; else ++*stats->file_count; for (unsigned i = 0; i <= dentry->d_inode->num_ads; i++) { lte = inode_stream_lte(dentry->d_inode, i, stats->lookup_table); if (lte) { *stats->total_bytes += wim_resource_size(lte); if (++lte->out_refcnt == 1) *stats->hard_link_bytes += wim_resource_size(lte); } } return 0; } /* Calculates some statistics about a dentry tree. */ void calculate_dir_tree_statistics(struct dentry *root, struct lookup_table *table, u64 *dir_count_ret, u64 *file_count_ret, u64 *total_bytes_ret, u64 *hard_link_bytes_ret) { struct image_statistics stats; *dir_count_ret = 0; *file_count_ret = 0; *total_bytes_ret = 0; *hard_link_bytes_ret = 0; stats.lookup_table = table; stats.dir_count = dir_count_ret; stats.file_count = file_count_ret; stats.total_bytes = total_bytes_ret; stats.hard_link_bytes = hard_link_bytes_ret; for_lookup_table_entry(table, lte_zero_out_refcnt, NULL); for_dentry_in_tree(root, calculate_dentry_statistics, &stats); } static inline struct dentry *inode_first_dentry(struct inode *inode) { wimlib_assert(inode->dentry_list.next != &inode->dentry_list); return container_of(inode->dentry_list.next, struct dentry, inode_dentry_list); } static int verify_inode(struct inode *inode, const WIMStruct *w) { const struct lookup_table *table = w->lookup_table; const struct wim_security_data *sd = wim_const_security_data(w); const struct dentry *first_dentry = inode_first_dentry(inode); int ret = WIMLIB_ERR_INVALID_DENTRY; /* Check the security ID */ if (inode->security_id < -1) { ERROR("Dentry `%s' has an invalid security ID (%d)", first_dentry->full_path_utf8, inode->security_id); goto out; } if (inode->security_id >= sd->num_entries) { ERROR("Dentry `%s' has an invalid security ID (%d) " "(there are only %u entries in the security table)", first_dentry->full_path_utf8, inode->security_id, sd->num_entries); goto out; } /* Check that lookup table entries for all the resources exist, except * if the SHA1 message digest is all 0's, which indicates there is * intentionally no resource there. */ if (w->hdr.total_parts == 1) { for (unsigned i = 0; i <= inode->num_ads; i++) { struct lookup_table_entry *lte; const u8 *hash; hash = inode_stream_hash_unresolved(inode, i); lte = __lookup_resource(table, hash); if (!lte && !is_zero_hash(hash)) { ERROR("Could not find lookup table entry for stream " "%u of dentry `%s'", i, first_dentry->full_path_utf8); goto out; } if (lte && (lte->real_refcnt += inode->link_count) > lte->refcnt) { #ifdef ENABLE_ERROR_MESSAGES WARNING("The following lookup table entry " "has a reference count of %u, but", lte->refcnt); WARNING("We found %zu references to it", lte->real_refcnt); WARNING("(One dentry referencing it is at `%s')", first_dentry->full_path_utf8); print_lookup_table_entry(lte); #endif /* Guess what! install.wim for Windows 8 * contains a stream with 2 dentries referencing * it, but the lookup table entry has reference * count of 1. So we will need to handle this * case and not just make it be an error... I'm * just setting the reference count to the * number of references we found. * (Unfortunately, even after doing this, the * reference count could be too low if it's also * referenced in other WIM images) */ #if 1 lte->refcnt = lte->real_refcnt; WARNING("Fixing reference count"); #else goto out; #endif } } } /* Make sure there is only one un-named stream. */ unsigned num_unnamed_streams = 0; for (unsigned i = 0; i <= inode->num_ads; i++) { const u8 *hash; hash = inode_stream_hash_unresolved(inode, i); if (!inode_stream_name_len(inode, i) && !is_zero_hash(hash)) num_unnamed_streams++; } if (num_unnamed_streams > 1) { ERROR("Dentry `%s' has multiple (%u) un-named streams", first_dentry->full_path_utf8, num_unnamed_streams); goto out; } inode->verified = true; ret = 0; out: return ret; } /* Run some miscellaneous verifications on a WIM dentry */ int verify_dentry(struct dentry *dentry, void *wim) { const WIMStruct *w = wim; const struct inode *inode = dentry->d_inode; int ret = WIMLIB_ERR_INVALID_DENTRY; if (!dentry->d_inode->verified) { ret = verify_inode(dentry->d_inode, w); if (ret != 0) goto out; } /* Cannot have a short name but no long name */ if (dentry->short_name_len && !dentry->file_name_len) { ERROR("Dentry `%s' has a short name but no long name", dentry->full_path_utf8); goto out; } /* Make sure root dentry is unnamed */ if (dentry_is_root(dentry)) { if (dentry->file_name_len) { ERROR("The root dentry is named `%s', but it must " "be unnamed", dentry->file_name_utf8); goto out; } } #if 0 /* Check timestamps */ if (inode->last_access_time < inode->creation_time || inode->last_write_time < inode->creation_time) { WARNING("Dentry `%s' was created after it was last accessed or " "written to", dentry->full_path_utf8); } #endif ret = 0; out: return ret; } #ifdef WITH_FUSE /* Returns the alternate data stream entry belonging to @inode that has the * stream name @stream_name. */ struct ads_entry *inode_get_ads_entry(struct inode *inode, const char *stream_name, u16 *idx_ret) { size_t stream_name_len; if (!stream_name) return NULL; if (inode->num_ads) { u16 i = 0; stream_name_len = strlen(stream_name); do { if (ads_entry_has_name(&inode->ads_entries[i], stream_name, stream_name_len)) { if (idx_ret) *idx_ret = i; return &inode->ads_entries[i]; } } while (++i != inode->num_ads); } return NULL; } #endif #if defined(WITH_FUSE) || defined(WITH_NTFS_3G) /* * Add an alternate stream entry to an inode and return a pointer to it, or NULL * if memory could not be allocated. */ struct ads_entry *inode_add_ads(struct inode *inode, const char *stream_name) { u16 num_ads; struct ads_entry *ads_entries; struct ads_entry *new_entry; DEBUG("Add alternate data stream `%s'", stream_name); if (inode->num_ads >= 0xfffe) { ERROR("Too many alternate data streams in one inode!"); return NULL; } num_ads = inode->num_ads + 1; ads_entries = REALLOC(inode->ads_entries, num_ads * sizeof(inode->ads_entries[0])); if (!ads_entries) { ERROR("Failed to allocate memory for new alternate data stream"); return NULL; } inode->ads_entries = ads_entries; new_entry = &inode->ads_entries[num_ads - 1]; if (init_ads_entry(new_entry, stream_name) != 0) return NULL; #ifdef WITH_FUSE new_entry->stream_id = inode->next_stream_id++; #endif inode->num_ads = num_ads; return new_entry; } #endif #ifdef WITH_FUSE /* Remove an alternate data stream from the inode */ void inode_remove_ads(struct inode *inode, u16 idx, struct lookup_table *lookup_table) { struct ads_entry *ads_entry; struct lookup_table_entry *lte; ads_entry = &inode->ads_entries[idx]; wimlib_assert(ads_entry); wimlib_assert(inode->resolved); lte = ads_entry->lte; if (lte) lte_decrement_refcnt(lte, lookup_table); destroy_ads_entry(ads_entry); wimlib_assert(inode->num_ads); memcpy(&inode->ads_entries[idx], &inode->ads_entries[idx + 1], (inode->num_ads - idx - 1) * sizeof(inode->ads_entries[0])); inode->num_ads--; } #endif /* * Reads the alternate data stream entries for a dentry. * * @p: Pointer to buffer that starts with the first alternate stream entry. * * @inode: Inode to load the alternate data streams into. * @inode->num_ads must have been set to the number of * alternate data streams that are expected. * * @remaining_size: Number of bytes of data remaining in the buffer pointed * to by @p. * * The format of the on-disk alternate stream entries is as follows: * * struct ads_entry_on_disk { * u64 length; // Length of the entry, in bytes. This includes * all fields (including the stream name and * null terminator if present, AND the padding!). * u64 reserved; // Seems to be unused * u8 hash[20]; // SHA1 message digest of the uncompressed stream * u16 stream_name_len; // Length of the stream name, in bytes * char stream_name[]; // Stream name in UTF-16LE, @stream_name_len bytes long, * not including null terminator * u16 zero; // UTF-16 null terminator for the stream name, NOT * included in @stream_name_len. Based on what * I've observed from filenames in dentries, * this field should not exist when * (@stream_name_len == 0), but you can't * actually tell because of the padding anyway * (provided that the padding is zeroed, which * it always seems to be). * char padding[]; // Padding to make the size a multiple of 8 bytes. * }; * * In addition, the entries are 8-byte aligned. * * Return 0 on success or nonzero on failure. On success, inode->ads_entries * is set to an array of `struct ads_entry's of length inode->num_ads. On * failure, @inode is not modified. */ static int read_ads_entries(const u8 *p, struct inode *inode, u64 remaining_size) { u16 num_ads; struct ads_entry *ads_entries; int ret; num_ads = inode->num_ads; ads_entries = CALLOC(num_ads, sizeof(inode->ads_entries[0])); if (!ads_entries) { ERROR("Could not allocate memory for %"PRIu16" " "alternate data stream entries", num_ads); return WIMLIB_ERR_NOMEM; } for (u16 i = 0; i < num_ads; i++) { struct ads_entry *cur_entry; u64 length; u64 length_no_padding; u64 total_length; size_t utf8_len; const u8 *p_save = p; cur_entry = &ads_entries[i]; #ifdef WITH_FUSE ads_entries[i].stream_id = i + 1; #endif /* Read the base stream entry, excluding the stream name. */ if (remaining_size < WIM_ADS_ENTRY_DISK_SIZE) { ERROR("Stream entries go past end of metadata resource"); ERROR("(remaining_size = %"PRIu64")", remaining_size); ret = WIMLIB_ERR_INVALID_DENTRY; goto out_free_ads_entries; } p = get_u64(p, &length); p += 8; /* Skip the reserved field */ p = get_bytes(p, SHA1_HASH_SIZE, (u8*)cur_entry->hash); p = get_u16(p, &cur_entry->stream_name_len); cur_entry->stream_name = NULL; cur_entry->stream_name_utf8 = NULL; /* Length including neither the null terminator nor the padding * */ length_no_padding = WIM_ADS_ENTRY_DISK_SIZE + cur_entry->stream_name_len; /* Length including the null terminator and the padding */ total_length = ((length_no_padding + 2) + 7) & ~7; wimlib_assert(total_length == ads_entry_total_length(cur_entry)); if (remaining_size < length_no_padding) { ERROR("Stream entries go past end of metadata resource"); ERROR("(remaining_size = %"PRIu64" bytes, " "length_no_padding = %"PRIu64" bytes)", remaining_size, length_no_padding); ret = WIMLIB_ERR_INVALID_DENTRY; goto out_free_ads_entries; } /* The @length field in the on-disk ADS entry is expected to be * equal to @total_length, which includes all of the entry and * the padding that follows it to align the next ADS entry to an * 8-byte boundary. However, to be safe, we'll accept the * length field as long as it's not less than the un-padded * total length and not more than the padded total length. */ if (length < length_no_padding || length > total_length) { ERROR("Stream entry has unexpected length " "field (length field = %"PRIu64", " "unpadded total length = %"PRIu64", " "padded total length = %"PRIu64")", length, length_no_padding, total_length); ret = WIMLIB_ERR_INVALID_DENTRY; goto out_free_ads_entries; } if (cur_entry->stream_name_len) { cur_entry->stream_name = MALLOC(cur_entry->stream_name_len); if (!cur_entry->stream_name) { ret = WIMLIB_ERR_NOMEM; goto out_free_ads_entries; } get_bytes(p, cur_entry->stream_name_len, (u8*)cur_entry->stream_name); cur_entry->stream_name_utf8 = utf16_to_utf8(cur_entry->stream_name, cur_entry->stream_name_len, &utf8_len); cur_entry->stream_name_utf8_len = utf8_len; if (!cur_entry->stream_name_utf8) { ret = WIMLIB_ERR_NOMEM; goto out_free_ads_entries; } } /* It's expected that the size of every ADS entry is a multiple * of 8. However, to be safe, I'm allowing the possibility of * an ADS entry at the very end of the metadata resource ending * un-aligned. So although we still need to increment the input * pointer by @total_length to reach the next ADS entry, it's * possible that less than @total_length is actually remaining * in the metadata resource. We should set the remaining size to * 0 bytes if this happens. */ p = p_save + total_length; if (remaining_size < total_length) remaining_size = 0; else remaining_size -= total_length; } inode->ads_entries = ads_entries; #ifdef WITH_FUSE inode->next_stream_id = inode->num_ads + 1; #endif return 0; out_free_ads_entries: for (u16 i = 0; i < num_ads; i++) destroy_ads_entry(&ads_entries[i]); FREE(ads_entries); return ret; } /* * Reads a directory entry, including all alternate data stream entries that * follow it, from the WIM image's metadata resource. * * @metadata_resource: Buffer containing the uncompressed metadata resource. * @metadata_resource_len: Length of the metadata resource. * @offset: Offset of this directory entry in the metadata resource. * @dentry: A `struct dentry' that will be filled in by this function. * * Return 0 on success or nonzero on failure. On failure, @dentry have been * modified, bu it will be left with no pointers to any allocated buffers. * On success, the dentry->length field must be examined. If zero, this was a * special "end of directory" dentry and not a real dentry. If nonzero, this * was a real dentry. */ int read_dentry(const u8 metadata_resource[], u64 metadata_resource_len, u64 offset, struct dentry *dentry) { const u8 *p; u64 calculated_size; char *file_name = NULL; char *file_name_utf8 = NULL; char *short_name = NULL; u16 short_name_len; u16 file_name_len; size_t file_name_utf8_len = 0; int ret; struct inode *inode = NULL; dentry_common_init(dentry); /*Make sure the dentry really fits into the metadata resource.*/ if (offset + 8 > metadata_resource_len || offset + 8 < offset) { ERROR("Directory entry starting at %"PRIu64" ends past the " "end of the metadata resource (size %"PRIu64")", offset, metadata_resource_len); return WIMLIB_ERR_INVALID_DENTRY; } /* Before reading the whole dentry, we need to read just the length. * This is because a dentry of length 8 (that is, just the length field) * terminates the list of sibling directory entries. */ p = get_u64(&metadata_resource[offset], &dentry->length); /* A zero length field (really a length of 8, since that's how big the * directory entry is...) indicates that this is the end of directory * dentry. We do not read it into memory as an actual dentry, so just * return successfully in that case. */ if (dentry->length == 0) return 0; /* If the dentry does not overflow the metadata resource buffer and is * not too short, read the rest of it (excluding the alternate data * streams, but including the file name and short name variable-length * fields) into memory. */ if (offset + dentry->length >= metadata_resource_len || offset + dentry->length < offset) { ERROR("Directory entry at offset %"PRIu64" and with size " "%"PRIu64" ends past the end of the metadata resource " "(size %"PRIu64")", offset, dentry->length, metadata_resource_len); return WIMLIB_ERR_INVALID_DENTRY; } if (dentry->length < WIM_DENTRY_DISK_SIZE) { ERROR("Directory entry has invalid length of %"PRIu64" bytes", dentry->length); return WIMLIB_ERR_INVALID_DENTRY; } inode = new_timeless_inode(); if (!inode) return WIMLIB_ERR_NOMEM; p = get_u32(p, &inode->attributes); p = get_u32(p, (u32*)&inode->security_id); p = get_u64(p, &dentry->subdir_offset); /* 2 unused fields */ p += 2 * sizeof(u64); /*p = get_u64(p, &dentry->unused1);*/ /*p = get_u64(p, &dentry->unused2);*/ p = get_u64(p, &inode->creation_time); p = get_u64(p, &inode->last_access_time); p = get_u64(p, &inode->last_write_time); p = get_bytes(p, SHA1_HASH_SIZE, inode->hash); /* * I don't know what's going on here. It seems like M$ screwed up the * reparse points, then put the fields in the same place and didn't * document it. The WIM_HDR_FLAG_RP_FIX flag in the WIM header might * have something to do with this, but it's not documented. */ if (inode->attributes & FILE_ATTRIBUTE_REPARSE_POINT) { /* ??? */ p += 4; p = get_u32(p, &inode->reparse_tag); p += 4; } else { p = get_u32(p, &inode->reparse_tag); p = get_u64(p, &inode->ino); } /* By the way, the reparse_reserved field does not actually exist (at * least when the file is not a reparse point) */ p = get_u16(p, &inode->num_ads); p = get_u16(p, &short_name_len); p = get_u16(p, &file_name_len); /* We now know the length of the file name and short name. Make sure * the length of the dentry is large enough to actually hold them. * * The calculated length here is unaligned to allow for the possibility * that the dentry->length names an unaligned length, although this * would be unexpected. */ calculated_size = __dentry_correct_length_unaligned(file_name_len, short_name_len); if (dentry->length < calculated_size) { ERROR("Unexpected end of directory entry! (Expected " "at least %"PRIu64" bytes, got %"PRIu64" bytes. " "short_name_len = %hu, file_name_len = %hu)", calculated_size, dentry->length, short_name_len, file_name_len); return WIMLIB_ERR_INVALID_DENTRY; } /* Read the filename if present. Note: if the filename is empty, there * is no null terminator following it. */ if (file_name_len) { file_name = MALLOC(file_name_len); if (!file_name) { ERROR("Failed to allocate %hu bytes for dentry file name", file_name_len); return WIMLIB_ERR_NOMEM; } p = get_bytes(p, file_name_len, file_name); /* Convert filename to UTF-8. */ file_name_utf8 = utf16_to_utf8(file_name, file_name_len, &file_name_utf8_len); if (!file_name_utf8) { ERROR("Failed to allocate memory to convert UTF-16 " "filename (%hu bytes) to UTF-8", file_name_len); ret = WIMLIB_ERR_NOMEM; goto out_free_file_name; } if (*(u16*)p) WARNING("Expected two zero bytes following the file name " "`%s', but found non-zero bytes", file_name_utf8); p += 2; } /* Align the calculated size */ calculated_size = (calculated_size + 7) & ~7; if (dentry->length > calculated_size) { /* Weird; the dentry says it's longer than it should be. Note * that the length field does NOT include the size of the * alternate stream entries. */ /* Strangely, some directory entries inexplicably have a little * over 70 bytes of extra data. The exact amount of data seems * to be 72 bytes, but it is aligned on the next 8-byte * boundary. It does NOT seem to be alternate data stream * entries. Here's an example of the aligned data: * * 01000000 40000000 6c786bba c58ede11 b0bb0026 1870892a b6adb76f * e63a3e46 8fca8653 0d2effa1 6c786bba c58ede11 b0bb0026 1870892a * 00000000 00000000 00000000 00000000 * * Here's one interpretation of how the data is laid out. * * struct unknown { * u32 field1; (always 0x00000001) * u32 field2; (always 0x40000000) * u8 data[48]; (???) * u64 reserved1; (always 0) * u64 reserved2; (always 0) * };*/ DEBUG("Dentry for file or directory `%s' has %zu extra " "bytes of data", file_name_utf8, dentry->length - calculated_size); } /* Read the short filename if present. Note: if there is no short * filename, there is no null terminator following it. */ if (short_name_len) { short_name = MALLOC(short_name_len); if (!short_name) { ERROR("Failed to allocate %hu bytes for short filename", short_name_len); ret = WIMLIB_ERR_NOMEM; goto out_free_file_name_utf8; } p = get_bytes(p, short_name_len, short_name); if (*(u16*)p) WARNING("Expected two zero bytes following the file name " "`%s', but found non-zero bytes", file_name_utf8); p += 2; } /* * Read the alternate data streams, if present. dentry->num_ads tells * us how many they are, and they will directly follow the dentry * on-disk. * * Note that each alternate data stream entry begins on an 8-byte * aligned boundary, and the alternate data stream entries are NOT * included in the dentry->length field for some reason. */ if (inode->num_ads != 0) { if (calculated_size > metadata_resource_len - offset) { ERROR("Not enough space in metadata resource for " "alternate stream entries"); ret = WIMLIB_ERR_INVALID_DENTRY; goto out_free_short_name; } ret = read_ads_entries(&metadata_resource[offset + calculated_size], inode, metadata_resource_len - offset - calculated_size); if (ret != 0) goto out_free_short_name; } /* We've read all the data for this dentry. Set the names and their * lengths, and we've done. */ dentry->d_inode = inode; dentry->file_name = file_name; dentry->file_name_utf8 = file_name_utf8; dentry->short_name = short_name; dentry->file_name_len = file_name_len; dentry->file_name_utf8_len = file_name_utf8_len; dentry->short_name_len = short_name_len; return 0; out_free_short_name: FREE(short_name); out_free_file_name_utf8: FREE(file_name_utf8); out_free_file_name: FREE(file_name); out_free_inode: free_inode(inode); return ret; } /* Reads the children of a dentry, and all their children, ..., etc. from the * metadata resource and into the dentry tree. * * @metadata_resource: An array that contains the uncompressed metadata * resource for the WIM file. * * @metadata_resource_len: The length of the uncompressed metadata resource, in * bytes. * * @dentry: A pointer to a `struct dentry' that is the root of the directory * tree and has already been read from the metadata resource. It * does not need to be the real root because this procedure is * called recursively. * * @return: Zero on success, nonzero on failure. */ int read_dentry_tree(const u8 metadata_resource[], u64 metadata_resource_len, struct dentry *dentry) { u64 cur_offset = dentry->subdir_offset; struct dentry *prev_child = NULL; struct dentry *first_child = NULL; struct dentry *child; struct dentry cur_child; int ret; /* * If @dentry has no child dentries, nothing more needs to be done for * this branch. This is the case for regular files, symbolic links, and * *possibly* empty directories (although an empty directory may also * have one child dentry that is the special end-of-directory dentry) */ if (cur_offset == 0) return 0; /* Find and read all the children of @dentry. */ while (1) { /* Read next child of @dentry into @cur_child. */ ret = read_dentry(metadata_resource, metadata_resource_len, cur_offset, &cur_child); if (ret != 0) break; /* Check for end of directory. */ if (cur_child.length == 0) break; /* Not end of directory. Allocate this child permanently and * link it to the parent and previous child. */ child = MALLOC(sizeof(struct dentry)); if (!child) { ERROR("Failed to allocate %zu bytes for new dentry", sizeof(struct dentry)); ret = WIMLIB_ERR_NOMEM; break; } memcpy(child, &cur_child, sizeof(struct dentry)); if (prev_child) { prev_child->next = child; child->prev = prev_child; } else { first_child = child; } child->parent = dentry; prev_child = child; inode_add_dentry(child, child->d_inode); /* If there are children of this child, call this procedure * recursively. */ if (child->subdir_offset != 0) { ret = read_dentry_tree(metadata_resource, metadata_resource_len, child); if (ret != 0) break; } /* Advance to the offset of the next child. Note: We need to * advance by the TOTAL length of the dentry, not by the length * child->length, which although it does take into account the * padding, it DOES NOT take into account alternate stream * entries. */ cur_offset += dentry_total_length(child); } /* Link last child to first one, and set parent's children pointer to * the first child. */ if (prev_child) { prev_child->next = first_child; first_child->prev = prev_child; } dentry->d_inode->children = first_child; return ret; } /* * Writes a WIM dentry to an output buffer. * * @dentry: The dentry structure. * @p: The memory location to write the data to. * @return: Pointer to the byte after the last byte we wrote as part of the * dentry. */ static u8 *write_dentry(const struct dentry *dentry, u8 *p) { u8 *orig_p = p; const u8 *hash; const struct inode *inode = dentry->d_inode; /* We calculate the correct length of the dentry ourselves because the * dentry->length field may been set to an unexpected value from when we * read the dentry in (for example, there may have been unknown data * appended to the end of the dentry...) */ u64 length = dentry_correct_length(dentry); p = put_u64(p, length); p = put_u32(p, inode->attributes); p = put_u32(p, inode->security_id); p = put_u64(p, dentry->subdir_offset); p = put_u64(p, 0); /* unused1 */ p = put_u64(p, 0); /* unused2 */ p = put_u64(p, inode->creation_time); p = put_u64(p, inode->last_access_time); p = put_u64(p, inode->last_write_time); hash = inode_stream_hash(inode, 0); p = put_bytes(p, SHA1_HASH_SIZE, hash); if (inode->attributes & FILE_ATTRIBUTE_REPARSE_POINT) { p = put_zeroes(p, 4); p = put_u32(p, inode->reparse_tag); p = put_zeroes(p, 4); } else { u64 link_group_id; p = put_u32(p, 0); if (inode->link_count == 1) link_group_id = 0; else link_group_id = inode->ino; p = put_u64(p, link_group_id); } p = put_u16(p, inode->num_ads); p = put_u16(p, dentry->short_name_len); p = put_u16(p, dentry->file_name_len); if (dentry->file_name_len) { p = put_bytes(p, dentry->file_name_len, (u8*)dentry->file_name); p = put_u16(p, 0); /* filename padding, 2 bytes. */ } if (dentry->short_name) { p = put_bytes(p, dentry->short_name_len, (u8*)dentry->short_name); p = put_u16(p, 0); /* short name padding, 2 bytes */ } /* Align to 8-byte boundary */ wimlib_assert(length >= (p - orig_p) && length - (p - orig_p) <= 7); p = put_zeroes(p, length - (p - orig_p)); /* Write the alternate data streams, if there are any. Please see * read_ads_entries() for comments about the format of the on-disk * alternate data stream entries. */ for (u16 i = 0; i < inode->num_ads; i++) { p = put_u64(p, ads_entry_total_length(&inode->ads_entries[i])); p = put_u64(p, 0); /* Unused */ hash = inode_stream_hash(inode, i + 1); p = put_bytes(p, SHA1_HASH_SIZE, hash); p = put_u16(p, inode->ads_entries[i].stream_name_len); if (inode->ads_entries[i].stream_name_len) { p = put_bytes(p, inode->ads_entries[i].stream_name_len, (u8*)inode->ads_entries[i].stream_name); p = put_u16(p, 0); } p = put_zeroes(p, (8 - (p - orig_p) % 8) % 8); } wimlib_assert(p - orig_p == __dentry_total_length(dentry, length)); return p; } /* Recursive function that writes a dentry tree rooted at @parent, not including * @parent itself, which has already been written. */ static u8 *write_dentry_tree_recursive(const struct dentry *parent, u8 *p) { const struct dentry *child; /* Nothing to do if this dentry has no children. */ if (parent->subdir_offset == 0) return p; /* Write child dentries and end-of-directory entry. * * Note: we need to write all of this dentry's children before * recursively writing the directory trees rooted at each of the child * dentries, since the on-disk dentries for a dentry's children are * always located at consecutive positions in the metadata resource! */ child = parent->d_inode->children; if (child) { do { p = write_dentry(child, p); child = child->next; } while (child != parent->d_inode->children); } /* write end of directory entry */ p = put_u64(p, 0); /* Recurse on children. */ if (child) { do { p = write_dentry_tree_recursive(child, p); child = child->next; } while (child != parent->d_inode->children); } return p; } /* Writes a directory tree to the metadata resource. * * @root: Root of the dentry tree. * @p: Pointer to a buffer with enough space for the dentry tree. * * Returns pointer to the byte after the last byte we wrote. */ u8 *write_dentry_tree(const struct dentry *root, u8 *p) { wimlib_assert(dentry_is_root(root)); /* If we're the root dentry, we have no parent that already * wrote us, so we need to write ourselves. */ p = write_dentry(root, p); /* Write end of directory entry after the root dentry just to be safe; * however the root dentry obviously cannot have any siblings. */ p = put_u64(p, 0); /* Recursively write the rest of the dentry tree. */ return write_dentry_tree_recursive(root, p); }