ads entries
[wimlib] / src / ntfs-capture.c
1 /*
2  * ntfs-capture.c
3  *
4  * Capture a WIM image from a NTFS volume.  We capture everything we can,
5  * including security data and alternate data streams.
6  */
7
8 /*
9  * Copyright (C) 2012 Eric Biggers
10  *
11  * This file is part of wimlib, a library for working with WIM files.
12  *
13  * wimlib is free software; you can redistribute it and/or modify it under the
14  * terms of the GNU General Public License as published by the Free
15  * Software Foundation; either version 3 of the License, or (at your option)
16  * any later version.
17  *
18  * wimlib is distributed in the hope that it will be useful, but WITHOUT ANY
19  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
20  * A PARTICULAR PURPOSE. See the GNU General Public License for more
21  * details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with wimlib; if not, see http://www.gnu.org/licenses/.
25  */
26
27
28 #include "config.h"
29
30 #ifdef WITH_NTFS_3G
31 #include <ntfs-3g/endians.h>
32 #include <ntfs-3g/types.h>
33 #endif
34
35 #include "wimlib_internal.h"
36
37
38 #ifdef WITH_NTFS_3G
39 #include "dentry.h"
40 #include "lookup_table.h"
41 #include "io.h"
42 #include <ntfs-3g/layout.h>
43 #include <ntfs-3g/acls.h>
44 #include <ntfs-3g/attrib.h>
45 #include <ntfs-3g/misc.h>
46 #include <ntfs-3g/reparse.h>
47 #include <ntfs-3g/security.h> /* security.h before xattrs.h */
48 #include <ntfs-3g/xattrs.h>
49 #include <ntfs-3g/volume.h>
50 #include <stdlib.h>
51 #include <unistd.h>
52 #include <errno.h>
53
54 /* Structure that allows searching the security descriptors by SHA1 message
55  * digest. */
56 struct sd_set {
57         struct wim_security_data *sd;
58         struct sd_node *root;
59 };
60
61 /* Binary tree node of security descriptors, indexed by the @hash field. */
62 struct sd_node {
63         int security_id;
64         u8 hash[SHA1_HASH_SIZE];
65         struct sd_node *left;
66         struct sd_node *right;
67 };
68
69 static void free_sd_tree(struct sd_node *root)
70 {
71         if (root) {
72                 free_sd_tree(root->left);
73                 free_sd_tree(root->right);
74                 FREE(root);
75         }
76 }
77 /* Frees a security descriptor index set. */
78 static void destroy_sd_set(struct sd_set *sd_set)
79 {
80         free_sd_tree(sd_set->root);
81 }
82
83 /* Inserts a a new node into the security descriptor index tree. */
84 static void insert_sd_node(struct sd_node *new, struct sd_node *root)
85 {
86         int cmp = hashes_cmp(new->hash, root->hash);
87         if (cmp < 0) {
88                 if (root->left)
89                         insert_sd_node(new, root->left);
90                 else 
91                         root->left = new;
92         } else if (cmp > 0) {
93                 if (root->right)
94                         insert_sd_node(new, root->right);
95                 else 
96                         root->right = new;
97         } else {
98                 wimlib_assert(0);
99         }
100 }
101
102 /* Returns the security ID of the security data having a SHA1 message digest of
103  * @hash in the security descriptor index tree rooted at @root. 
104  *
105  * If not found, return -1. */
106 static int lookup_sd(const u8 hash[SHA1_HASH_SIZE], struct sd_node *root)
107 {
108         int cmp;
109         if (!root)
110                 return -1;
111         cmp = hashes_cmp(hash, root->hash);
112         if (cmp < 0)
113                 return lookup_sd(hash, root->left);
114         else if (cmp > 0)
115                 return lookup_sd(hash, root->right);
116         else
117                 return root->security_id;
118 }
119
120 /*
121  * Adds a security descriptor to the indexed security descriptor set as well as
122  * the corresponding `struct wim_security_data', and returns the new security
123  * ID; or, if there is an existing security descriptor that is the same, return
124  * the security ID for it.  If a new security descriptor cannot be allocated,
125  * return -1.
126  */
127 static int sd_set_add_sd(struct sd_set *sd_set, const char descriptor[],
128                          size_t size)
129 {
130         u8 hash[SHA1_HASH_SIZE];
131         int security_id;
132         struct sd_node *new;
133         u8 **descriptors;
134         u64 *sizes;
135         u8 *descr_copy;
136         struct wim_security_data *sd;
137
138         sha1_buffer((const u8*)descriptor, size, hash);
139
140         security_id = lookup_sd(hash, sd_set->root);
141         if (security_id >= 0)
142                 return security_id;
143
144         new = MALLOC(sizeof(*new));
145         if (!new)
146                 goto out;
147         descr_copy = MALLOC(size);
148         if (!descr_copy)
149                 goto out_free_node;
150
151         sd = sd_set->sd;
152
153         memcpy(descr_copy, descriptor, size);
154         new->security_id = sd->num_entries;
155         new->left = NULL;
156         new->right = NULL;
157         copy_hash(new->hash, hash);
158
159
160         descriptors = REALLOC(sd->descriptors,
161                               (sd->num_entries + 1) * sizeof(sd->descriptors[0]));
162         if (!descriptors)
163                 goto out_free_descr;
164         sd->descriptors = descriptors;
165         sizes = REALLOC(sd->sizes,
166                         (sd->num_entries + 1) * sizeof(sd->sizes[0]));
167         if (!sizes)
168                 goto out_free_descr;
169         sd->sizes = sizes;
170         sd->descriptors[sd->num_entries] = descr_copy;
171         sd->sizes[sd->num_entries] = size;
172         sd->num_entries++;
173         DEBUG("There are now %d security descriptors", sd->num_entries);
174         sd->total_length += size + sizeof(sd->sizes[0]);
175
176         if (sd_set->root)
177                 insert_sd_node(new, sd_set->root);
178         else
179                 sd_set->root = new;
180         return new->security_id;
181 out_free_descr:
182         FREE(descr_copy);
183 out_free_node:
184         FREE(new);
185 out:
186         return -1;
187 }
188
189 static inline ntfschar *attr_record_name(ATTR_RECORD *ar)
190 {
191         return (ntfschar*)((u8*)ar + le16_to_cpu(ar->name_offset));
192 }
193
194 /* Calculates the SHA1 message digest of a NTFS attribute. 
195  *
196  * @ni:  The NTFS inode containing the attribute.
197  * @ar:  The ATTR_RECORD describing the attribute.
198  * @md:  If successful, the returned SHA1 message digest.
199  * @reparse_tag_ret:    Optional pointer into which the first 4 bytes of the
200  *                              attribute will be written (to get the reparse
201  *                              point ID)
202  *
203  * Return 0 on success or nonzero on error.
204  */
205 static int ntfs_attr_sha1sum(ntfs_inode *ni, ATTR_RECORD *ar,
206                              u8 md[SHA1_HASH_SIZE],
207                              u32 *reparse_tag_ret)
208 {
209         s64 pos = 0;
210         s64 bytes_remaining;
211         char buf[4096];
212         ntfs_attr *na;
213         SHA_CTX ctx;
214
215         na = ntfs_attr_open(ni, ar->type, attr_record_name(ar),
216                             ar->name_length);
217         if (!na) {
218                 ERROR_WITH_ERRNO("Failed to open NTFS attribute");
219                 return WIMLIB_ERR_NTFS_3G;
220         }
221
222         bytes_remaining = na->data_size;
223         sha1_init(&ctx);
224
225         DEBUG2("Calculating SHA1 message digest (%"PRIu64" bytes)",
226                bytes_remaining);
227
228         while (bytes_remaining) {
229                 s64 to_read = min(bytes_remaining, sizeof(buf));
230                 if (ntfs_attr_pread(na, pos, to_read, buf) != to_read) {
231                         ERROR_WITH_ERRNO("Error reading NTFS attribute");
232                         return WIMLIB_ERR_NTFS_3G;
233                 }
234                 if (bytes_remaining == na->data_size && reparse_tag_ret)
235                         *reparse_tag_ret = le32_to_cpu(*(u32*)buf);
236                 sha1_update(&ctx, buf, to_read);
237                 pos += to_read;
238                 bytes_remaining -= to_read;
239         }
240         sha1_final(md, &ctx);
241         ntfs_attr_close(na);
242         return 0;
243 }
244
245 /* Load the streams from a WIM file or reparse point in the NTFS volume into the
246  * WIM lookup table */
247 static int capture_ntfs_streams(struct dentry *dentry, ntfs_inode *ni,
248                                 char path[], size_t path_len,
249                                 struct lookup_table *lookup_table,
250                                 ntfs_volume **ntfs_vol_p,
251                                 ATTR_TYPES type)
252 {
253         ntfs_attr_search_ctx *actx;
254         u8 attr_hash[SHA1_HASH_SIZE];
255         struct ntfs_location *ntfs_loc = NULL;
256         int ret = 0;
257         struct lookup_table_entry *lte;
258
259         DEBUG2("Capturing NTFS data streams from `%s'", path);
260
261         /* Get context to search the streams of the NTFS file. */
262         actx = ntfs_attr_get_search_ctx(ni, NULL);
263         if (!actx) {
264                 ERROR_WITH_ERRNO("Cannot get NTFS attribute search "
265                                  "context");
266                 return WIMLIB_ERR_NTFS_3G;
267         }
268
269         /* Capture each data stream or reparse data stream. */
270         while (!ntfs_attr_lookup(type, NULL, 0,
271                                  CASE_SENSITIVE, 0, NULL, 0, actx))
272         {
273                 char *stream_name_utf8;
274                 size_t stream_name_utf16_len;
275                 u32 reparse_tag;
276                 u64 data_size = ntfs_get_attribute_value_length(actx->attr);
277                 u64 name_length = actx->attr->name_length;
278
279                 if (data_size == 0) { 
280                         if (errno != 0) {
281                                 ERROR_WITH_ERRNO("Failed to get size of attribute of "
282                                                  "`%s'", path);
283                                 ret = WIMLIB_ERR_NTFS_3G;
284                                 goto out_put_actx;
285                         }
286                         /* Empty stream.  No lookup table entry is needed. */
287                         lte = NULL;
288                 } else {
289                         if (type == AT_REPARSE_POINT && data_size < 8) {
290                                 ERROR("`%s': reparse point buffer too small",
291                                       path);
292                                 ret = WIMLIB_ERR_NTFS_3G;
293                                 goto out_put_actx;
294                         }
295                         /* Checksum the stream. */
296                         ret = ntfs_attr_sha1sum(ni, actx->attr, attr_hash, &reparse_tag);
297                         if (ret != 0)
298                                 goto out_put_actx;
299
300                         /* Make a lookup table entry for the stream, or use an existing
301                          * one if there's already an identical stream. */
302                         lte = __lookup_resource(lookup_table, attr_hash);
303                         ret = WIMLIB_ERR_NOMEM;
304                         if (lte) {
305                                 lte->refcnt++;
306                         } else {
307                                 ntfs_loc = CALLOC(1, sizeof(*ntfs_loc));
308                                 if (!ntfs_loc)
309                                         goto out_put_actx;
310                                 ntfs_loc->ntfs_vol_p = ntfs_vol_p;
311                                 ntfs_loc->path_utf8 = MALLOC(path_len + 1);
312                                 if (!ntfs_loc->path_utf8)
313                                         goto out_free_ntfs_loc;
314                                 memcpy(ntfs_loc->path_utf8, path, path_len + 1);
315                                 if (name_length) {
316                                         ntfs_loc->stream_name_utf16 = MALLOC(name_length * 2);
317                                         if (!ntfs_loc->stream_name_utf16)
318                                                 goto out_free_ntfs_loc;
319                                         memcpy(ntfs_loc->stream_name_utf16,
320                                                attr_record_name(actx->attr),
321                                                actx->attr->name_length * 2);
322                                         ntfs_loc->stream_name_utf16_num_chars = name_length;
323                                 }
324
325                                 lte = new_lookup_table_entry();
326                                 if (!lte)
327                                         goto out_free_ntfs_loc;
328                                 lte->ntfs_loc = ntfs_loc;
329                                 lte->resource_location = RESOURCE_IN_NTFS_VOLUME;
330                                 if (type == AT_REPARSE_POINT) {
331                                         dentry->inode->reparse_tag = reparse_tag;
332                                         ntfs_loc->is_reparse_point = true;
333                                         lte->resource_entry.original_size = data_size - 8;
334                                         lte->resource_entry.size = data_size - 8;
335                                 } else {
336                                         ntfs_loc->is_reparse_point = false;
337                                         lte->resource_entry.original_size = data_size;
338                                         lte->resource_entry.size = data_size;
339                                 }
340                                 ntfs_loc = NULL;
341                                 DEBUG("Add resource for `%s' (size = %zu)",
342                                       dentry->file_name_utf8,
343                                       lte->resource_entry.original_size);
344                                 copy_hash(lte->hash, attr_hash);
345                                 lookup_table_insert(lookup_table, lte);
346                         }
347                 }
348                 if (name_length == 0) {
349                         /* Unnamed data stream.  Put the reference to it in the
350                          * dentry's inode. */
351                         if (dentry->inode->lte) {
352                                 ERROR("Found two un-named data streams for "
353                                       "`%s'", path);
354                                 ret = WIMLIB_ERR_NTFS_3G;
355                                 goto out_free_lte;
356                         }
357                         dentry->inode->lte = lte;
358                 } else {
359                         /* Named data stream.  Put the reference to it in the
360                          * alternate data stream entries */
361                         struct ads_entry *new_ads_entry;
362                         size_t stream_name_utf8_len;
363                         stream_name_utf8 = utf16_to_utf8((const char*)attr_record_name(actx->attr),
364                                                          name_length * 2,
365                                                          &stream_name_utf8_len);
366                         if (!stream_name_utf8)
367                                 goto out_free_lte;
368                         new_ads_entry = inode_add_ads(dentry->inode, stream_name_utf8);
369                         FREE(stream_name_utf8);
370                         if (!new_ads_entry)
371                                 goto out_free_lte;
372
373                         wimlib_assert(new_ads_entry->stream_name_len == name_length * 2);
374                                 
375                         new_ads_entry->lte = lte;
376                 }
377         }
378         ret = 0;
379         goto out_put_actx;
380 out_free_lte:
381         free_lookup_table_entry(lte);
382 out_free_ntfs_loc:
383         if (ntfs_loc) {
384                 FREE(ntfs_loc->path_utf8);
385                 FREE(ntfs_loc->stream_name_utf16);
386                 FREE(ntfs_loc);
387         }
388 out_put_actx:
389         ntfs_attr_put_search_ctx(actx);
390         if (ret == 0)
391                 DEBUG2("Successfully captured NTFS streams from `%s'", path);
392         else
393                 ERROR("Failed to capture NTFS streams from `%s", path);
394         return ret;
395 }
396
397 struct readdir_ctx {
398         struct dentry       *parent;
399         ntfs_inode          *dir_ni;
400         char                *path;
401         size_t               path_len;
402         struct lookup_table *lookup_table;
403         struct sd_set       *sd_set;
404         const struct capture_config *config;
405         ntfs_volume        **ntfs_vol_p;
406         int                  flags;
407 };
408
409 static int
410 build_dentry_tree_ntfs_recursive(struct dentry **root_p, ntfs_inode *dir_ni,
411                                  ntfs_inode *ni, char path[], size_t path_len,
412                                  int name_type,
413                                  struct lookup_table *lookup_table,
414                                  struct sd_set *sd_set,
415                                  const struct capture_config *config,
416                                  ntfs_volume **ntfs_vol_p,
417                                  int flags);
418
419 static int wim_ntfs_capture_filldir(void *dirent, const ntfschar *name,
420                                     const int name_len, const int name_type,
421                                     const s64 pos, const MFT_REF mref,
422                                     const unsigned dt_type)
423 {
424         struct readdir_ctx *ctx;
425         size_t utf8_name_len;
426         char *utf8_name;
427         struct dentry *child = NULL;
428         int ret;
429         size_t path_len;
430
431         if (name_type == FILE_NAME_DOS)
432                 return 0;
433
434         ret = -1;
435
436         utf8_name = utf16_to_utf8((const char*)name, name_len * 2,
437                                   &utf8_name_len);
438         if (!utf8_name)
439                 goto out;
440
441         if (utf8_name[0] == '.' &&
442              (utf8_name[1] == '\0' ||
443               (utf8_name[1] == '.' && utf8_name[2] == '\0'))) {
444                 ret = 0;
445                 goto out_free_utf8_name;
446         }
447
448         ctx = dirent;
449
450         ntfs_inode *ni = ntfs_inode_open(ctx->dir_ni->vol, mref);
451         if (!ni) {
452                 ERROR_WITH_ERRNO("Failed to open NTFS inode");
453                 goto out_free_utf8_name;
454         }
455         path_len = ctx->path_len;
456         if (path_len != 1)
457                 ctx->path[path_len++] = '/';
458         memcpy(ctx->path + path_len, utf8_name, utf8_name_len + 1);
459         path_len += utf8_name_len;
460         ret = build_dentry_tree_ntfs_recursive(&child, ctx->dir_ni,
461                                                ni, ctx->path, path_len, name_type,
462                                                ctx->lookup_table, ctx->sd_set,
463                                                ctx->config, ctx->ntfs_vol_p,
464                                                ctx->flags);
465
466         if (child)
467                 link_dentry(child, ctx->parent);
468
469         ntfs_inode_close(ni);
470 out_free_utf8_name:
471         FREE(utf8_name);
472 out:
473         return ret;
474 }
475
476 static int change_dentry_short_name(struct dentry *dentry,
477                                     const char short_name_utf8[],
478                                     int short_name_utf8_len)
479 {
480         size_t short_name_utf16_len;
481         char *short_name_utf16;
482         short_name_utf16 = utf8_to_utf16(short_name_utf8, short_name_utf8_len,
483                                          &short_name_utf16_len);
484         if (!short_name_utf16) {
485                 ERROR_WITH_ERRNO("Failed to convert short name to UTF-16");
486                 return WIMLIB_ERR_NOMEM;
487         }
488         dentry->short_name = short_name_utf16;
489         dentry->short_name_len = short_name_utf16_len;
490         return 0;
491 }
492
493 /* Recursively build a WIM dentry tree corresponding to a NTFS volume.
494  * At the same time, update the WIM lookup table with lookup table entries for
495  * the NTFS streams, and build an array of security descriptors.
496  */
497 static int build_dentry_tree_ntfs_recursive(struct dentry **root_p,
498                                             ntfs_inode *dir_ni,
499                                             ntfs_inode *ni,
500                                             char path[],
501                                             size_t path_len,
502                                             int name_type,
503                                             struct lookup_table *lookup_table,
504                                             struct sd_set *sd_set,
505                                             const struct capture_config *config,
506                                             ntfs_volume **ntfs_vol_p,
507                                             int flags)
508 {
509         u32 attributes;
510         int mrec_flags;
511         u32 sd_size = 0;
512         int ret;
513         char dos_name_utf8[64];
514         struct dentry *root;
515
516         mrec_flags = ni->mrec->flags;
517         struct SECURITY_CONTEXT ctx;
518         memset(&ctx, 0, sizeof(ctx));
519         ctx.vol = ni->vol;
520         ret = ntfs_xattr_system_getxattr(&ctx, XATTR_NTFS_ATTRIB,
521                                          ni, dir_ni, (char *)&attributes,
522                                          sizeof(u32));
523         if (ret != 4) {
524                 ERROR_WITH_ERRNO("Failed to get NTFS attributes from `%s'",
525                                  path);
526                 return WIMLIB_ERR_NTFS_3G;
527         }
528
529         if (exclude_path(path, config, false)) {
530                 if (flags & WIMLIB_ADD_IMAGE_FLAG_VERBOSE) {
531                         const char *file_type;
532                         if (attributes & MFT_RECORD_IS_DIRECTORY)
533                                 file_type = "directory";
534                         else
535                                 file_type = "file";
536                         printf("Excluding %s `%s' from capture\n",
537                                file_type, path);
538                 }
539                 *root_p = NULL;
540                 return 0;
541         }
542
543         if (flags & WIMLIB_ADD_IMAGE_FLAG_VERBOSE)
544                 printf("Scanning `%s'\n", path);
545
546         root = new_dentry_with_timeless_inode(path_basename(path));
547         if (!root)
548                 return WIMLIB_ERR_NOMEM;
549         *root_p = root;
550
551         if (dir_ni && (name_type == FILE_NAME_WIN32_AND_DOS
552                        || name_type == FILE_NAME_WIN32))
553         {
554                 ret = ntfs_get_ntfs_dos_name(ni, dir_ni, dos_name_utf8,
555                                              sizeof(dos_name_utf8));
556                 if (ret > 0) {
557                         DEBUG("Changing short name of `%s'", path);
558                         ret = change_dentry_short_name(root, dos_name_utf8,
559                                                        ret);
560                         if (ret != 0)
561                                 return ret;
562                 } else {
563                 #ifdef ENODATA
564                         if (errno != ENODATA) {
565                                 ERROR_WITH_ERRNO("Error getting DOS name "
566                                                  "of `%s'", path);
567                                 return WIMLIB_ERR_NTFS_3G;
568                         }
569                 #endif
570                 }
571         }
572
573         root->inode->creation_time    = le64_to_cpu(ni->creation_time);
574         root->inode->last_write_time  = le64_to_cpu(ni->last_data_change_time);
575         root->inode->last_access_time = le64_to_cpu(ni->last_access_time);
576         root->inode->attributes       = le32_to_cpu(attributes);
577         root->inode->ino              = ni->mft_no;
578         root->inode->resolved         = true;
579
580         if (attributes & FILE_ATTR_REPARSE_POINT) {
581                 /* Junction point, symbolic link, or other reparse point */
582                 ret = capture_ntfs_streams(root, ni, path, path_len,
583                                            lookup_table, ntfs_vol_p,
584                                            AT_REPARSE_POINT);
585         } else if (mrec_flags & MFT_RECORD_IS_DIRECTORY) {
586
587                 /* Normal directory */
588                 s64 pos = 0;
589                 struct readdir_ctx ctx = {
590                         .parent       = root,
591                         .dir_ni       = ni,
592                         .path         = path,
593                         .path_len     = path_len,
594                         .lookup_table = lookup_table,
595                         .sd_set       = sd_set,
596                         .config       = config,
597                         .ntfs_vol_p   = ntfs_vol_p,
598                         .flags        = flags,
599                 };
600                 ret = ntfs_readdir(ni, &pos, &ctx, wim_ntfs_capture_filldir);
601                 if (ret != 0) {
602                         ERROR_WITH_ERRNO("ntfs_readdir()");
603                         ret = WIMLIB_ERR_NTFS_3G;
604                 }
605         } else {
606                 /* Normal file */
607                 ret = capture_ntfs_streams(root, ni, path, path_len,
608                                            lookup_table, ntfs_vol_p,
609                                            AT_DATA);
610         }
611         if (ret != 0)
612                 return ret;
613
614         char _sd[1];
615         char *sd = _sd;
616         errno = 0;
617         ret = ntfs_xattr_system_getxattr(&ctx, XATTR_NTFS_ACL,
618                                          ni, dir_ni, sd,
619                                          sizeof(sd));
620         if (ret > sizeof(sd)) {
621                 sd = alloca(ret);
622                 ret = ntfs_xattr_system_getxattr(&ctx, XATTR_NTFS_ACL,
623                                                  ni, dir_ni, sd, ret);
624         }
625         if (ret > 0) {
626                 root->inode->security_id = sd_set_add_sd(sd_set, sd, ret);
627                 if (root->inode->security_id == -1) {
628                         ERROR("Out of memory");
629                         return WIMLIB_ERR_NOMEM;
630                 }
631                 DEBUG("Added security ID = %u for `%s'",
632                       root->inode->security_id, path);
633                 ret = 0;
634         } else if (ret < 0) {
635                 ERROR_WITH_ERRNO("Failed to get security information from "
636                                  "`%s'", path);
637                 ret = WIMLIB_ERR_NTFS_3G;
638         } else {
639                 root->inode->security_id = -1;
640                 DEBUG("No security ID for `%s'", path);
641         }
642         return ret;
643 }
644
645 static int build_dentry_tree_ntfs(struct dentry **root_p,
646                                   const char *device,
647                                   struct lookup_table *lookup_table,
648                                   struct wim_security_data *sd,
649                                   const struct capture_config *config,
650                                   int flags,
651                                   void *extra_arg)
652 {
653         ntfs_volume *vol;
654         ntfs_inode *root_ni;
655         int ret = 0;
656         struct sd_set sd_set = {
657                 .sd = sd,
658                 .root = NULL,
659         };
660         ntfs_volume **ntfs_vol_p = extra_arg;
661
662         DEBUG("Mounting NTFS volume `%s' read-only", device);
663         
664         vol = ntfs_mount(device, MS_RDONLY);
665         if (!vol) {
666                 ERROR_WITH_ERRNO("Failed to mount NTFS volume `%s' read-only",
667                                  device);
668                 return WIMLIB_ERR_NTFS_3G;
669         }
670         ntfs_open_secure(vol);
671
672         /* We don't want to capture the special NTFS files such as $Bitmap.  Not
673          * to be confused with "hidden" or "system" files which are real files
674          * that we do need to capture.  */
675         NVolClearShowSysFiles(vol);
676
677         DEBUG("Opening root NTFS dentry");
678         root_ni = ntfs_inode_open(vol, FILE_root);
679         if (!root_ni) {
680                 ERROR_WITH_ERRNO("Failed to open root inode of NTFS volume "
681                                  "`%s'", device);
682                 ret = WIMLIB_ERR_NTFS_3G;
683                 goto out;
684         }
685
686         /* Currently we assume that all the UTF-8 paths fit into this length and
687          * there is no check for overflow. */
688         char *path = MALLOC(32768);
689         if (!path) {
690                 ERROR("Could not allocate memory for NTFS pathname");
691                 goto out_cleanup;
692         }
693
694         path[0] = '/';
695         path[1] = '\0';
696         ret = build_dentry_tree_ntfs_recursive(root_p, NULL, root_ni, path, 1,
697                                                FILE_NAME_POSIX, lookup_table,
698                                                &sd_set, config, ntfs_vol_p,
699                                                flags);
700 out_cleanup:
701         FREE(path);
702         ntfs_inode_close(root_ni);
703         destroy_sd_set(&sd_set);
704
705 out:
706         if (ret) {
707                 if (ntfs_umount(vol, FALSE) != 0) {
708                         ERROR_WITH_ERRNO("Failed to unmount NTFS volume `%s'",
709                                          device);
710                         if (ret == 0)
711                                 ret = WIMLIB_ERR_NTFS_3G;
712                 }
713         } else {
714                 /* We need to leave the NTFS volume mounted so that we can read
715                  * the NTFS files again when we are actually writing the WIM */
716                 *ntfs_vol_p = vol;
717         }
718         return ret;
719 }
720
721
722
723 WIMLIBAPI int wimlib_add_image_from_ntfs_volume(WIMStruct *w,
724                                                 const char *device,
725                                                 const char *name,
726                                                 const char *config_str,
727                                                 size_t config_len,
728                                                 int flags)
729 {
730         if (flags & (WIMLIB_ADD_IMAGE_FLAG_DEREFERENCE)) {
731                 ERROR("Cannot dereference files when capturing directly from NTFS");
732                 return WIMLIB_ERR_INVALID_PARAM;
733         }
734         return do_add_image(w, device, name, config_str, config_len, flags,
735                             build_dentry_tree_ntfs, &w->ntfs_vol);
736 }
737
738 #else /* WITH_NTFS_3G */
739 WIMLIBAPI int wimlib_add_image_from_ntfs_volume(WIMStruct *w,
740                                                 const char *device,
741                                                 const char *name,
742                                                 const char *config_str,
743                                                 size_t config_len,
744                                                 int flags)
745 {
746         ERROR("wimlib was compiled without support for NTFS-3g, so");
747         ERROR("we cannot capture a WIM image directly from a NTFS volume");
748         return WIMLIB_ERR_UNSUPPORTED;
749 }
750 #endif /* WITH_NTFS_3G */