]> wimlib.net Git - wimlib/blob - src/ntfs-capture.c
892b52411df1e8bf403445af9f69a290b6e7225b
[wimlib] / src / ntfs-capture.c
1 /*
2  * ntfs-capture.c
3  *
4  * Capture a WIM image from a NTFS volume.  We capture everything we can,
5  * including security data and alternate data streams.
6  */
7
8 /*
9  * Copyright (C) 2012 Eric Biggers
10  *
11  * This file is part of wimlib, a library for working with WIM files.
12  *
13  * wimlib is free software; you can redistribute it and/or modify it under the
14  * terms of the GNU General Public License as published by the Free
15  * Software Foundation; either version 3 of the License, or (at your option)
16  * any later version.
17  *
18  * wimlib is distributed in the hope that it will be useful, but WITHOUT ANY
19  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
20  * A PARTICULAR PURPOSE. See the GNU General Public License for more
21  * details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with wimlib; if not, see http://www.gnu.org/licenses/.
25  */
26
27 #include "config.h"
28 #include "wimlib_internal.h"
29
30
31 #ifdef WITH_NTFS_3G
32 #include "dentry.h"
33 #include "lookup_table.h"
34 #include "io.h"
35 #include <ntfs-3g/layout.h>
36 #include <ntfs-3g/acls.h>
37 #include <ntfs-3g/attrib.h>
38 #include <ntfs-3g/misc.h>
39 #include <ntfs-3g/reparse.h>
40 #include <ntfs-3g/security.h>
41 #include <ntfs-3g/volume.h>
42 #include <stdlib.h>
43 #include <unistd.h>
44 #include <errno.h>
45
46 extern int ntfs_inode_get_security(ntfs_inode *ni, u32 selection, char *buf,
47                                    u32 buflen, u32 *psize);
48
49 extern int ntfs_inode_get_attributes(ntfs_inode *ni);
50
51 /* Structure that allows searching the security descriptors by SHA1 message
52  * digest. */
53 struct sd_set {
54         struct wim_security_data *sd;
55         struct sd_node *root;
56 };
57
58 /* Binary tree node of security descriptors, indexed by the @hash field. */
59 struct sd_node {
60         int security_id;
61         u8 hash[SHA1_HASH_SIZE];
62         struct sd_node *left;
63         struct sd_node *right;
64 };
65
66 static void free_sd_tree(struct sd_node *root)
67 {
68         if (root) {
69                 free_sd_tree(root->left);
70                 free_sd_tree(root->right);
71                 FREE(root);
72         }
73 }
74 /* Frees a security descriptor index set. */
75 static void destroy_sd_set(struct sd_set *sd_set)
76 {
77         free_sd_tree(sd_set->root);
78 }
79
80 /* Inserts a a new node into the security descriptor index tree. */
81 static void insert_sd_node(struct sd_node *new, struct sd_node *root)
82 {
83         int cmp = hashes_cmp(new->hash, root->hash);
84         if (cmp < 0) {
85                 if (root->left)
86                         insert_sd_node(new, root->left);
87                 else 
88                         root->left = new;
89         } else if (cmp > 0) {
90                 if (root->right)
91                         insert_sd_node(new, root->right);
92                 else 
93                         root->right = new;
94         } else {
95                 wimlib_assert(0);
96         }
97 }
98
99 /* Returns the security ID of the security data having a SHA1 message digest of
100  * @hash in the security descriptor index tree rooted at @root. 
101  *
102  * If not found, return -1. */
103 static int lookup_sd(const u8 hash[SHA1_HASH_SIZE], struct sd_node *root)
104 {
105         int cmp;
106         if (!root)
107                 return -1;
108         cmp = hashes_cmp(hash, root->hash);
109         if (cmp < 0)
110                 return lookup_sd(hash, root->left);
111         else if (cmp > 0)
112                 return lookup_sd(hash, root->right);
113         else
114                 return root->security_id;
115 }
116
117 /*
118  * Adds a security descriptor to the indexed security descriptor set as well as
119  * the corresponding `struct wim_security_data', and returns the new security
120  * ID; or, if there is an existing security descriptor that is the same, return
121  * the security ID for it.  If a new security descriptor cannot be allocated,
122  * return -1.
123  */
124 static int sd_set_add_sd(struct sd_set *sd_set, const char descriptor[],
125                          size_t size)
126 {
127         u8 hash[SHA1_HASH_SIZE];
128         int security_id;
129         struct sd_node *new;
130         u8 **descriptors;
131         u64 *sizes;
132         u8 *descr_copy;
133         struct wim_security_data *sd;
134
135         sha1_buffer((const u8*)descriptor, size, hash);
136
137         security_id = lookup_sd(hash, sd_set->root);
138         if (security_id >= 0)
139                 return security_id;
140
141         new = MALLOC(sizeof(*new));
142         if (!new)
143                 goto out;
144         descr_copy = MALLOC(size);
145         if (!descr_copy)
146                 goto out_free_node;
147
148         sd = sd_set->sd;
149
150         memcpy(descr_copy, descriptor, size);
151         new->security_id = sd->num_entries;
152         new->left = NULL;
153         new->right = NULL;
154         copy_hash(new->hash, hash);
155
156
157         descriptors = REALLOC(sd->descriptors,
158                               (sd->num_entries + 1) * sizeof(sd->descriptors[0]));
159         if (!descriptors)
160                 goto out_free_descr;
161         sd->descriptors = descriptors;
162         sizes = REALLOC(sd->sizes,
163                         (sd->num_entries + 1) * sizeof(sd->sizes[0]));
164         if (!sizes)
165                 goto out_free_descr;
166         sd->sizes = sizes;
167         sd->descriptors[sd->num_entries] = descr_copy;
168         sd->sizes[sd->num_entries] = size;
169         sd->num_entries++;
170         DEBUG("There are now %d security descriptors", sd->num_entries);
171         sd->total_length += size + sizeof(sd->sizes[0]);
172
173         if (sd_set->root)
174                 insert_sd_node(new, sd_set->root);
175         else
176                 sd_set->root = new;
177         return new->security_id;
178 out_free_descr:
179         FREE(descr_copy);
180 out_free_node:
181         FREE(new);
182 out:
183         return -1;
184 }
185
186 static inline ntfschar *attr_record_name(ATTR_RECORD *ar)
187 {
188         return (ntfschar*)((u8*)ar + le16_to_cpu(ar->name_offset));
189 }
190
191 /* Calculates the SHA1 message digest of a NTFS attribute. 
192  *
193  * @ni:  The NTFS inode containing the attribute.
194  * @ar:  The ATTR_RECORD describing the attribute.
195  * @md:  If successful, the returned SHA1 message digest.
196  * @reparse_tag_ret:    Optional pointer into which the first 4 bytes of the
197  *                              attribute will be written (to get the reparse
198  *                              point ID)
199  *
200  * Return 0 on success or nonzero on error.
201  */
202 static int ntfs_attr_sha1sum(ntfs_inode *ni, ATTR_RECORD *ar,
203                              u8 md[SHA1_HASH_SIZE],
204                              u32 *reparse_tag_ret)
205 {
206         s64 pos = 0;
207         s64 bytes_remaining;
208         char buf[4096];
209         ntfs_attr *na;
210         SHA_CTX ctx;
211
212         na = ntfs_attr_open(ni, ar->type, attr_record_name(ar),
213                             ar->name_length);
214         if (!na) {
215                 ERROR_WITH_ERRNO("Failed to open NTFS attribute");
216                 return WIMLIB_ERR_NTFS_3G;
217         }
218
219         bytes_remaining = na->data_size;
220         sha1_init(&ctx);
221
222         DEBUG2("Calculating SHA1 message digest (%"PRIu64" bytes)",
223                bytes_remaining);
224
225         while (bytes_remaining) {
226                 s64 to_read = min(bytes_remaining, sizeof(buf));
227                 if (ntfs_attr_pread(na, pos, to_read, buf) != to_read) {
228                         ERROR_WITH_ERRNO("Error reading NTFS attribute");
229                         return WIMLIB_ERR_NTFS_3G;
230                 }
231                 if (bytes_remaining == na->data_size && reparse_tag_ret)
232                         *reparse_tag_ret = le32_to_cpu(*(u32*)buf);
233                 sha1_update(&ctx, buf, to_read);
234                 pos += to_read;
235                 bytes_remaining -= to_read;
236         }
237         sha1_final(md, &ctx);
238         ntfs_attr_close(na);
239         return 0;
240 }
241
242 /* Load the streams from a WIM file or reparse point in the NTFS volume into the
243  * WIM lookup table */
244 static int capture_ntfs_streams(struct dentry *dentry, ntfs_inode *ni,
245                                 char path[], size_t path_len,
246                                 struct lookup_table *lookup_table,
247                                 ntfs_volume **ntfs_vol_p,
248                                 ATTR_TYPES type)
249 {
250
251         ntfs_attr_search_ctx *actx;
252         u8 attr_hash[SHA1_HASH_SIZE];
253         struct ntfs_location *ntfs_loc = NULL;
254         int ret = 0;
255         struct lookup_table_entry *lte;
256
257         DEBUG2("Capturing NTFS data streams from `%s'", path);
258
259         /* Get context to search the streams of the NTFS file. */
260         actx = ntfs_attr_get_search_ctx(ni, NULL);
261         if (!actx) {
262                 ERROR_WITH_ERRNO("Cannot get NTFS attribute search "
263                                  "context");
264                 return WIMLIB_ERR_NTFS_3G;
265         }
266
267         /* Capture each data stream or reparse data stream. */
268         while (!ntfs_attr_lookup(type, NULL, 0,
269                                  CASE_SENSITIVE, 0, NULL, 0, actx))
270         {
271                 char *stream_name_utf8;
272                 size_t stream_name_utf16_len;
273                 u32 reparse_tag;
274                 u64 data_size = ntfs_get_attribute_value_length(actx->attr);
275                 u64 name_length = actx->attr->name_length;
276
277                 if (data_size == 0) { 
278                         if (errno != 0) {
279                                 ERROR_WITH_ERRNO("Failed to get size of attribute of "
280                                                  "`%s'", path);
281                                 ret = WIMLIB_ERR_NTFS_3G;
282                                 goto out_put_actx;
283                         }
284                         /* Empty stream.  No lookup table entry is needed. */
285                         lte = NULL;
286                 } else {
287                         if (type == AT_REPARSE_POINT && data_size < 8) {
288                                 ERROR("`%s': reparse point buffer too small");
289                                 ret = WIMLIB_ERR_NTFS_3G;
290                                 goto out_put_actx;
291                         }
292                         /* Checksum the stream. */
293                         ret = ntfs_attr_sha1sum(ni, actx->attr, attr_hash, &reparse_tag);
294                         if (ret != 0)
295                                 goto out_put_actx;
296
297                         /* Make a lookup table entry for the stream, or use an existing
298                          * one if there's already an identical stream. */
299                         lte = __lookup_resource(lookup_table, attr_hash);
300                         ret = WIMLIB_ERR_NOMEM;
301                         if (lte) {
302                                 lte->refcnt++;
303                         } else {
304                                 ntfs_loc = CALLOC(1, sizeof(*ntfs_loc));
305                                 if (!ntfs_loc)
306                                         goto out_put_actx;
307                                 ntfs_loc->ntfs_vol_p = ntfs_vol_p;
308                                 ntfs_loc->path_utf8 = MALLOC(path_len + 1);
309                                 if (!ntfs_loc->path_utf8)
310                                         goto out_free_ntfs_loc;
311                                 memcpy(ntfs_loc->path_utf8, path, path_len + 1);
312                                 if (name_length) {
313                                         ntfs_loc->stream_name_utf16 = MALLOC(name_length * 2);
314                                         if (!ntfs_loc->stream_name_utf16)
315                                                 goto out_free_ntfs_loc;
316                                         memcpy(ntfs_loc->stream_name_utf16,
317                                                attr_record_name(actx->attr),
318                                                actx->attr->name_length * 2);
319                                         ntfs_loc->stream_name_utf16_num_chars = name_length;
320                                 }
321
322                                 lte = new_lookup_table_entry();
323                                 if (!lte)
324                                         goto out_free_ntfs_loc;
325                                 lte->ntfs_loc = ntfs_loc;
326                                 lte->resource_location = RESOURCE_IN_NTFS_VOLUME;
327                                 if (type == AT_REPARSE_POINT) {
328                                         dentry->reparse_tag = reparse_tag;
329                                         ntfs_loc->is_reparse_point = true;
330                                         lte->resource_entry.original_size = data_size - 8;
331                                         lte->resource_entry.size = data_size - 8;
332                                 } else {
333                                         ntfs_loc->is_reparse_point = false;
334                                         lte->resource_entry.original_size = data_size;
335                                         lte->resource_entry.size = data_size;
336                                 }
337                                 ntfs_loc = NULL;
338                                 DEBUG("Add resource for `%s' (size = %zu)",
339                                       dentry->file_name_utf8,
340                                       lte->resource_entry.original_size);
341                                 copy_hash(lte->hash, attr_hash);
342                                 lookup_table_insert(lookup_table, lte);
343                         }
344                 }
345                 if (name_length == 0) {
346                         /* Unnamed data stream.  Put the reference to it in the
347                          * dentry. */
348                         if (dentry->lte) {
349                                 ERROR("Found two un-named data streams for "
350                                       "`%s'", path);
351                                 ret = WIMLIB_ERR_NTFS_3G;
352                                 goto out_free_lte;
353                         }
354                         dentry->lte = lte;
355                 } else {
356                         /* Named data stream.  Put the reference to it in the
357                          * alternate data stream entries */
358                         struct ads_entry *new_ads_entry;
359                         size_t stream_name_utf8_len;
360                         stream_name_utf8 = utf16_to_utf8((const char*)attr_record_name(actx->attr),
361                                                          name_length * 2,
362                                                          &stream_name_utf8_len);
363                         if (!stream_name_utf8)
364                                 goto out_free_lte;
365                         new_ads_entry = dentry_add_ads(dentry, stream_name_utf8);
366                         FREE(stream_name_utf8);
367                         if (!new_ads_entry)
368                                 goto out_free_lte;
369
370                         wimlib_assert(new_ads_entry->stream_name_len == name_length * 2);
371                                 
372                         new_ads_entry->lte = lte;
373                 }
374         }
375         ret = 0;
376         goto out_put_actx;
377 out_free_lte:
378         free_lookup_table_entry(lte);
379 out_free_ntfs_loc:
380         if (ntfs_loc) {
381                 FREE(ntfs_loc->path_utf8);
382                 FREE(ntfs_loc->stream_name_utf16);
383                 FREE(ntfs_loc);
384         }
385 out_put_actx:
386         ntfs_attr_put_search_ctx(actx);
387         if (ret == 0)
388                 DEBUG2("Successfully captured NTFS streams from `%s'", path);
389         else
390                 ERROR("Failed to capture NTFS streams from `%s", path);
391         return ret;
392 }
393
394 struct readdir_ctx {
395         struct dentry       *parent;
396         ntfs_inode          *dir_ni;
397         char                *path;
398         size_t               path_len;
399         struct lookup_table *lookup_table;
400         struct sd_set       *sd_set;
401         const struct capture_config *config;
402         ntfs_volume        **ntfs_vol_p;
403         int                  flags;
404 };
405
406 static int
407 build_dentry_tree_ntfs_recursive(struct dentry **root_p, ntfs_inode *ni,
408                                  char path[], size_t path_len,
409                                  struct lookup_table *lookup_table,
410                                  struct sd_set *sd_set,
411                                  const struct capture_config *config,
412                                  ntfs_volume **ntfs_vol_p,
413                                  int flags);
414
415 static int wim_ntfs_capture_filldir(void *dirent, const ntfschar *name,
416                                     const int name_len, const int name_type,
417                                     const s64 pos, const MFT_REF mref,
418                                     const unsigned dt_type)
419 {
420         struct readdir_ctx *ctx;
421         size_t utf8_name_len;
422         char *utf8_name;
423         struct dentry *child = NULL;
424         int ret;
425         size_t path_len;
426
427         if (name_type == FILE_NAME_DOS)
428                 return 0;
429
430         ret = -1;
431
432         utf8_name = utf16_to_utf8((const char*)name, name_len * 2,
433                                   &utf8_name_len);
434         if (!utf8_name)
435                 goto out;
436
437         if (utf8_name[0] == '.' &&
438              (utf8_name[1] == '\0' ||
439               (utf8_name[1] == '.' && utf8_name[2] == '\0'))) {
440                 ret = 0;
441                 goto out_free_utf8_name;
442         }
443
444         ctx = dirent;
445
446         ntfs_inode *ni = ntfs_inode_open(ctx->dir_ni->vol, mref);
447         if (!ni) {
448                 ERROR_WITH_ERRNO("Failed to open NTFS inode");
449                 ret = 1;
450         }
451         path_len = ctx->path_len;
452         if (path_len != 1)
453                 ctx->path[path_len++] = '/';
454         memcpy(ctx->path + path_len, utf8_name, utf8_name_len + 1);
455         path_len += utf8_name_len;
456         ret = build_dentry_tree_ntfs_recursive(&child, ni, ctx->path, path_len,
457                                                ctx->lookup_table, ctx->sd_set,
458                                                ctx->config, ctx->ntfs_vol_p,
459                                                ctx->flags);
460
461         if (child)
462                 link_dentry(child, ctx->parent);
463
464         ntfs_inode_close(ni);
465 out_free_utf8_name:
466         FREE(utf8_name);
467 out:
468         return ret;
469 }
470
471 /* Recursively build a WIM dentry tree corresponding to a NTFS volume.
472  * At the same time, update the WIM lookup table with lookup table entries for
473  * the NTFS streams, and build an array of security descriptors.
474  */
475 static int build_dentry_tree_ntfs_recursive(struct dentry **root_p,
476                                             ntfs_inode *ni,
477                                             char path[],
478                                             size_t path_len,
479                                             struct lookup_table *lookup_table,
480                                             struct sd_set *sd_set,
481                                             const struct capture_config *config,
482                                             ntfs_volume **ntfs_vol_p,
483                                             int flags)
484 {
485         u32 attributes;
486         int mrec_flags;
487         u32 sd_size = 0;
488         int ret = 0;
489         struct dentry *root;
490
491         mrec_flags = ni->mrec->flags;
492         attributes = ntfs_inode_get_attributes(ni);
493
494         if (exclude_path(path, config, false)) {
495                 if (flags & WIMLIB_ADD_IMAGE_FLAG_VERBOSE) {
496                         const char *file_type;
497                         if (attributes & MFT_RECORD_IS_DIRECTORY)
498                                 file_type = "directory";
499                         else
500                                 file_type = "file";
501                         printf("Excluding %s `%s' from capture\n",
502                                file_type, path);
503                 }
504                 *root_p = NULL;
505                 return 0;
506         }
507
508         if (flags & WIMLIB_ADD_IMAGE_FLAG_VERBOSE)
509                 printf("Scanning `%s'\n", path);
510
511         root = new_dentry(path_basename(path));
512         if (!root)
513                 return WIMLIB_ERR_NOMEM;
514
515         *root_p = root;
516         root->creation_time    = le64_to_cpu(ni->creation_time);
517         root->last_write_time  = le64_to_cpu(ni->last_data_change_time);
518         root->last_access_time = le64_to_cpu(ni->last_access_time);
519         root->attributes       = le32_to_cpu(attributes);
520         root->link_group_id    = ni->mft_no;
521         root->resolved         = true;
522
523         if (attributes & FILE_ATTR_REPARSE_POINT) {
524                 /* Junction point, symbolic link, or other reparse point */
525                 ret = capture_ntfs_streams(root, ni, path, path_len,
526                                            lookup_table, ntfs_vol_p,
527                                            AT_REPARSE_POINT);
528         } else if (mrec_flags & MFT_RECORD_IS_DIRECTORY) {
529
530                 /* Normal directory */
531                 s64 pos = 0;
532                 struct readdir_ctx ctx = {
533                         .parent       = root,
534                         .dir_ni       = ni,
535                         .path         = path,
536                         .path_len     = path_len,
537                         .lookup_table = lookup_table,
538                         .sd_set       = sd_set,
539                         .config       = config,
540                         .ntfs_vol_p   = ntfs_vol_p,
541                         .flags        = flags,
542                 };
543                 ret = ntfs_readdir(ni, &pos, &ctx, wim_ntfs_capture_filldir);
544                 if (ret != 0) {
545                         ERROR_WITH_ERRNO("ntfs_readdir()");
546                         ret = WIMLIB_ERR_NTFS_3G;
547                 }
548         } else {
549                 /* Normal file */
550                 ret = capture_ntfs_streams(root, ni, path, path_len,
551                                            lookup_table, ntfs_vol_p,
552                                            AT_DATA);
553         }
554         if (ret != 0)
555                 return ret;
556
557         ret = ntfs_inode_get_security(ni,
558                                       OWNER_SECURITY_INFORMATION |
559                                       GROUP_SECURITY_INFORMATION |
560                                       DACL_SECURITY_INFORMATION  |
561                                       SACL_SECURITY_INFORMATION,
562                                       NULL, 0, &sd_size);
563         char sd[sd_size];
564         ret = ntfs_inode_get_security(ni,
565                                       OWNER_SECURITY_INFORMATION |
566                                       GROUP_SECURITY_INFORMATION |
567                                       DACL_SECURITY_INFORMATION  |
568                                       SACL_SECURITY_INFORMATION,
569                                       sd, sd_size, &sd_size);
570         if (ret == 0) {
571                 ERROR_WITH_ERRNO("Failed to get security information from "
572                                  "`%s'", path);
573                 ret = WIMLIB_ERR_NTFS_3G;
574         } else {
575                 if (ret > 0) {
576                         /*print_security_descriptor(sd, sd_size);*/
577                         root->security_id = sd_set_add_sd(sd_set, sd, sd_size);
578                         if (root->security_id == -1) {
579                                 ERROR("Out of memory");
580                                 return WIMLIB_ERR_NOMEM;
581                         }
582                         DEBUG("Added security ID = %u for `%s'",
583                               root->security_id, path);
584                 } else { 
585                         root->security_id = -1;
586                         DEBUG("No security ID for `%s'", path);
587                 }
588                 ret = 0;
589         }
590         return ret;
591 }
592
593 static int build_dentry_tree_ntfs(struct dentry **root_p,
594                                   const char *device,
595                                   struct lookup_table *lookup_table,
596                                   struct wim_security_data *sd,
597                                   const struct capture_config *config,
598                                   int flags,
599                                   void *extra_arg)
600 {
601         ntfs_volume *vol;
602         ntfs_inode *root_ni;
603         int ret = 0;
604         struct sd_set sd_set = {
605                 .sd = sd,
606                 .root = NULL,
607         };
608         ntfs_volume **ntfs_vol_p = extra_arg;
609
610         DEBUG("Mounting NTFS volume `%s' read-only", device);
611         
612         vol = ntfs_mount(device, MS_RDONLY);
613         if (!vol) {
614                 ERROR_WITH_ERRNO("Failed to mount NTFS volume `%s' read-only",
615                                  device);
616                 return WIMLIB_ERR_NTFS_3G;
617         }
618         ntfs_open_secure(vol);
619
620         /* We don't want to capture the special NTFS files such as $Bitmap.  Not
621          * to be confused with "hidden" or "system" files which are real files
622          * that we do need to capture.  */
623         NVolClearShowSysFiles(vol);
624
625         DEBUG("Opening root NTFS dentry");
626         root_ni = ntfs_inode_open(vol, FILE_root);
627         if (!root_ni) {
628                 ERROR_WITH_ERRNO("Failed to open root inode of NTFS volume "
629                                  "`%s'", device);
630                 ret = WIMLIB_ERR_NTFS_3G;
631                 goto out;
632         }
633
634         /* Currently we assume that all the UTF-8 paths fit into this length and
635          * there is no check for overflow. */
636         char *path = MALLOC(32768);
637         if (!path) {
638                 ERROR("Could not allocate memory for NTFS pathname");
639                 goto out_cleanup;
640         }
641
642         path[0] = '/';
643         path[1] = '\0';
644         ret = build_dentry_tree_ntfs_recursive(root_p, root_ni, path, 1,
645                                                lookup_table, &sd_set,
646                                                config, ntfs_vol_p, flags);
647 out_cleanup:
648         FREE(path);
649         ntfs_inode_close(root_ni);
650         destroy_sd_set(&sd_set);
651
652 out:
653         if (ret) {
654                 if (ntfs_umount(vol, FALSE) != 0) {
655                         ERROR_WITH_ERRNO("Failed to unmount NTFS volume `%s'",
656                                          device);
657                         if (ret == 0)
658                                 ret = WIMLIB_ERR_NTFS_3G;
659                 }
660         } else {
661                 /* We need to leave the NTFS volume mounted so that we can read
662                  * the NTFS files again when we are actually writing the WIM */
663                 *ntfs_vol_p = vol;
664         }
665         return ret;
666 }
667
668
669
670 WIMLIBAPI int wimlib_add_image_from_ntfs_volume(WIMStruct *w,
671                                                 const char *device,
672                                                 const char *name,
673                                                 const char *config_str,
674                                                 size_t config_len,
675                                                 int flags)
676 {
677         if (flags & (WIMLIB_ADD_IMAGE_FLAG_DEREFERENCE)) {
678                 ERROR("Cannot dereference files when capturing directly from NTFS");
679                 return WIMLIB_ERR_INVALID_PARAM;
680         }
681         return do_add_image(w, device, name, config_str, config_len, flags,
682                             build_dentry_tree_ntfs, &w->ntfs_vol);
683 }
684
685 #else /* WITH_NTFS_3G */
686 WIMLIBAPI int wimlib_add_image_from_ntfs_volume(WIMStruct *w,
687                                                 const char *device,
688                                                 const char *name,
689                                                 const char *config_str,
690                                                 size_t config_len,
691                                                 int flags)
692 {
693         ERROR("wimlib was compiled without support for NTFS-3g, so");
694         ERROR("we cannot capture a WIM image directly from a NTFS volume");
695         return WIMLIB_ERR_UNSUPPORTED;
696 }
697 #endif /* WITH_NTFS_3G */