]> wimlib.net Git - wimlib/blob - src/dentry.c
Don't hold d_unused fields in memory
[wimlib] / src / dentry.c
1 /*
2  * dentry.c
3  *
4  * In the WIM file format, the dentries are stored in the "metadata resource"
5  * section right after the security data.  Each image in the WIM file has its
6  * own metadata resource with its own security data and dentry tree.  Dentries
7  * in different images may share file resources by referring to the same lookup
8  * table entries.
9  */
10
11 /*
12  * Copyright (C) 2012, 2013 Eric Biggers
13  *
14  * This file is part of wimlib, a library for working with WIM files.
15  *
16  * wimlib is free software; you can redistribute it and/or modify it under the
17  * terms of the GNU General Public License as published by the Free Software
18  * Foundation; either version 3 of the License, or (at your option) any later
19  * version.
20  *
21  * wimlib is distributed in the hope that it will be useful, but WITHOUT ANY
22  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
23  * A PARTICULAR PURPOSE. See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License along with
26  * wimlib; if not, see http://www.gnu.org/licenses/.
27  */
28
29 #ifdef HAVE_CONFIG_H
30 #  include "config.h"
31 #endif
32
33 #include "wimlib.h"
34 #include "wimlib/case.h"
35 #include "wimlib/dentry.h"
36 #include "wimlib/encoding.h"
37 #include "wimlib/endianness.h"
38 #include "wimlib/error.h"
39 #include "wimlib/lookup_table.h"
40 #include "wimlib/metadata.h"
41 #include "wimlib/paths.h"
42 #include "wimlib/resource.h"
43 #include "wimlib/security.h"
44 #include "wimlib/sha1.h"
45 #include "wimlib/timestamp.h"
46
47 #include <errno.h>
48
49 /* On-disk format of a WIM dentry (directory entry), located in the metadata
50  * resource for a WIM image.  */
51 struct wim_dentry_on_disk {
52
53         /* Length of this directory entry in bytes, not including any alternate
54          * data stream entries.  Should be a multiple of 8 so that the following
55          * dentry or alternate data stream entry is aligned on an 8-byte
56          * boundary.  (If not, wimlib will round it up.)  It must be at least as
57          * long as the fixed-length fields of the dentry (WIM_DENTRY_DISK_SIZE),
58          * plus the lengths of the file name and/or short name if present.
59          *
60          * It is also possible for this field to be 0.  This situation, which is
61          * undocumented, indicates the end of a list of sibling nodes in a
62          * directory.  It also means the real length is 8, because the dentry
63          * included only the length field, but that takes up 8 bytes.  */
64         le64 length;
65
66         /* Attributes of the file or directory.  This is a bitwise OR of the
67          * FILE_ATTRIBUTE_* constants and should correspond to the value
68          * retrieved by GetFileAttributes() on Windows. */
69         le32 attributes;
70
71         /* A value that specifies the security descriptor for this file or
72          * directory.  If -1, the file or directory has no security descriptor.
73          * Otherwise, it is a 0-based index into the WIM image's table of
74          * security descriptors (see: `struct wim_security_data') */
75         sle32 security_id;
76
77         /* Offset, in bytes, from the start of the uncompressed metadata
78          * resource of this directory's child directory entries, or 0 if this
79          * directory entry does not correspond to a directory or otherwise does
80          * not have any children. */
81         le64 subdir_offset;
82
83         /* Reserved fields */
84         le64 unused_1;
85         le64 unused_2;
86
87
88         /* Creation time, last access time, and last write time, in
89          * 100-nanosecond intervals since 12:00 a.m UTC January 1, 1601.  They
90          * should correspond to the times gotten by calling GetFileTime() on
91          * Windows. */
92         le64 creation_time;
93         le64 last_access_time;
94         le64 last_write_time;
95
96         /* Vaguely, the SHA-1 message digest ("hash") of the file's contents.
97          * More specifically, this is for the "unnamed data stream" rather than
98          * any "alternate data streams".  This hash value is used to look up the
99          * corresponding entry in the WIM's stream lookup table to actually find
100          * the file contents within the WIM.
101          *
102          * If the file has no unnamed data stream (e.g. is a directory), then
103          * this field will be all zeroes.  If the unnamed data stream is empty
104          * (i.e. an "empty file"), then this field is also expected to be all
105          * zeroes.  (It will be if wimlib created the WIM image, at least;
106          * otherwise it can't be ruled out that the SHA-1 message digest of 0
107          * bytes of data is given explicitly.)
108          *
109          * If the file has reparse data, then this field will instead specify
110          * the SHA-1 message digest of the reparse data.  If it is somehow
111          * possible for a file to have both an unnamed data stream and reparse
112          * data, then this is not handled by wimlib.
113          *
114          * As a further special case, if this field is all zeroes but there is
115          * an alternate data stream entry with no name and a nonzero SHA-1
116          * message digest field, then that hash must be used instead of this
117          * one.  In fact, when named data streams are present, some versions of
118          * Windows PE contain a bug where they only look in the alternate data
119          * stream entries for the unnamed data stream, not here.
120          */
121         u8 unnamed_stream_hash[SHA1_HASH_SIZE];
122
123         /* The format of the following data is not yet completely known and they
124          * do not correspond to Microsoft's documentation.
125          *
126          * If this directory entry is for a reparse point (has
127          * FILE_ATTRIBUTE_REPARSE_POINT set in the attributes field), then the
128          * version of the following fields containing the reparse tag is valid.
129          * Furthermore, the field notated as not_rpfixed, as far as I can tell,
130          * is supposed to be set to 1 if reparse point fixups (a.k.a. fixing the
131          * targets of absolute symbolic links) were *not* done, and otherwise 0.
132          *
133          * If this directory entry is not for a reparse point, then the version
134          * of the following fields containing the hard_link_group_id is valid.
135          * All MS says about this field is that "If this file is part of a hard
136          * link set, all the directory entries in the set will share the same
137          * value in this field.".  However, more specifically I have observed
138          * the following:
139          *    - If the file is part of a hard link set of size 1, then the
140          *    hard_link_group_id should be set to either 0, which is treated
141          *    specially as indicating "not hardlinked", or any unique value.
142          *    - The specific nonzero values used to identity hard link sets do
143          *    not matter, as long as they are unique.
144          *    - However, due to bugs in Microsoft's software, it is actually NOT
145          *    guaranteed that directory entries that share the same hard link
146          *    group ID are actually hard linked to each either.  We have to
147          *    handle this by using special code to use distinguishing features
148          *    (which is possible because some information about the underlying
149          *    inode is repeated in each dentry) to split up these fake hard link
150          *    groups into what they actually are supposed to be.
151          */
152         union {
153                 struct {
154                         le32 rp_unknown_1;
155                         le32 reparse_tag;
156                         le16 rp_unknown_2;
157                         le16 not_rpfixed;
158                 } _packed_attribute reparse;
159                 struct {
160                         le32 rp_unknown_1;
161                         le64 hard_link_group_id;
162                 } _packed_attribute nonreparse;
163         };
164
165         /* Number of alternate data stream entries that directly follow this
166          * dentry on-disk. */
167         le16 num_alternate_data_streams;
168
169         /* Length of this file's UTF-16LE encoded short name (8.3 DOS-compatible
170          * name), if present, in bytes, excluding the null terminator.  If this
171          * file has no short name, then this field should be 0.  */
172         le16 short_name_nbytes;
173
174         /* Length of this file's UTF-16LE encoded "long" name, excluding the
175          * null terminator.  If this file has no short name, then this field
176          * should be 0.  It's expected that only the root dentry has this field
177          * set to 0.  */
178         le16 file_name_nbytes;
179
180         /* Followed by variable length file name, in UTF16-LE, if
181          * file_name_nbytes != 0.  Includes null terminator. */
182         /*utf16lechar file_name[];*/
183
184         /* Followed by variable length short name, in UTF16-LE, if
185          * short_name_nbytes != 0.  Includes null terminator. */
186         /*utf16lechar short_name[];*/
187 } _packed_attribute;
188
189 /* Calculates the unaligned length, in bytes, of an on-disk WIM dentry that has
190  * a file name and short name that take the specified numbers of bytes.  This
191  * excludes any alternate data stream entries that may follow the dentry. */
192 static u64
193 dentry_correct_length_unaligned(u16 file_name_nbytes, u16 short_name_nbytes)
194 {
195         u64 length = sizeof(struct wim_dentry_on_disk);
196         if (file_name_nbytes)
197                 length += file_name_nbytes + 2;
198         if (short_name_nbytes)
199                 length += short_name_nbytes + 2;
200         return length;
201 }
202
203 /* Calculates the unaligned length, in bytes, of an on-disk WIM dentry, based on
204  * the file name length and short name length.  Note that dentry->length is
205  * ignored; also, this excludes any alternate data stream entries that may
206  * follow the dentry. */
207 static u64
208 dentry_correct_length_aligned(const struct wim_dentry *dentry)
209 {
210         u64 len;
211
212         len = dentry_correct_length_unaligned(dentry->file_name_nbytes,
213                                               dentry->short_name_nbytes);
214         return (len + 7) & ~7;
215 }
216
217 /* Sets the name of a WIM dentry from a multibyte string.
218  * Only use this on dentries not inserted into the tree.  Use rename_wim_path()
219  * to do a real rename.  */
220 int
221 dentry_set_name(struct wim_dentry *dentry, const tchar *new_name)
222 {
223         int ret;
224         ret = get_utf16le_string(new_name, &dentry->file_name,
225                                  &dentry->file_name_nbytes);
226         if (ret == 0) {
227                 /* Clear the short name and recalculate the dentry length */
228                 if (dentry_has_short_name(dentry)) {
229                         FREE(dentry->short_name);
230                         dentry->short_name = NULL;
231                         dentry->short_name_nbytes = 0;
232                 }
233         }
234         return ret;
235 }
236
237 /* Returns the total length of a WIM alternate data stream entry on-disk,
238  * including the stream name, the null terminator, AND the padding after the
239  * entry to align the next ADS entry or dentry on an 8-byte boundary. */
240 static u64
241 ads_entry_total_length(const struct wim_ads_entry *entry)
242 {
243         u64 len = sizeof(struct wim_ads_entry_on_disk);
244         if (entry->stream_name_nbytes)
245                 len += entry->stream_name_nbytes + 2;
246         return (len + 7) & ~7;
247 }
248
249 /*
250  * Determine whether to include a "dummy" stream when writing a WIM dentry:
251  *
252  * Some versions of Microsoft's WIM software (the boot driver(s) in WinPE 3.0,
253  * for example) contain a bug where they assume the first alternate data stream
254  * (ADS) entry of a dentry with a nonzero ADS count specifies the unnamed
255  * stream, even if it has a name and the unnamed stream is already specified in
256  * the hash field of the dentry itself.
257  *
258  * wimlib has to work around this behavior by carefully emulating the behavior
259  * of (most versions of) ImageX/WIMGAPI, which move the unnamed stream reference
260  * into the alternate stream entries whenever there are named data streams, even
261  * though there is already a field in the dentry itself for the unnamed stream
262  * reference, which then goes to waste.
263  */
264 static inline bool
265 inode_needs_dummy_stream(const struct wim_inode *inode)
266 {
267         return (inode->i_num_ads > 0 &&
268                 inode->i_num_ads < 0xffff && /* overflow check */
269                 inode->i_canonical_streams); /* assume the dentry is okay if it
270                                                 already had an unnamed ADS entry
271                                                 when it was read in  */
272 }
273
274 /* Calculate the total number of bytes that will be consumed when a WIM dentry
275  * is written.  This includes base dentry and name fields as well as all
276  * alternate data stream entries and alignment bytes.  */
277 u64
278 dentry_out_total_length(const struct wim_dentry *dentry)
279 {
280         u64 length = dentry_correct_length_aligned(dentry);
281         const struct wim_inode *inode = dentry->d_inode;
282
283         if (inode_needs_dummy_stream(inode))
284                 length += ads_entry_total_length(&(struct wim_ads_entry){});
285
286         for (u16 i = 0; i < inode->i_num_ads; i++)
287                 length += ads_entry_total_length(&inode->i_ads_entries[i]);
288
289         return length;
290 }
291
292 /* Calculate the aligned, total length of a dentry, including all alternate data
293  * stream entries.  Uses dentry->length.  */
294 static u64
295 dentry_in_total_length(const struct wim_dentry *dentry)
296 {
297         u64 length = dentry->length;
298         const struct wim_inode *inode = dentry->d_inode;
299         for (u16 i = 0; i < inode->i_num_ads; i++)
300                 length += ads_entry_total_length(&inode->i_ads_entries[i]);
301         return (length + 7) & ~7;
302 }
303
304 int
305 for_dentry_in_rbtree(struct rb_node *root,
306                      int (*visitor)(struct wim_dentry *, void *),
307                      void *arg)
308 {
309         int ret;
310         struct rb_node *node = root;
311         LIST_HEAD(stack);
312         while (1) {
313                 if (node) {
314                         list_add(&rbnode_dentry(node)->tmp_list, &stack);
315                         node = node->rb_left;
316                 } else {
317                         struct list_head *next;
318                         struct wim_dentry *dentry;
319
320                         next = stack.next;
321                         if (next == &stack)
322                                 return 0;
323                         dentry = container_of(next, struct wim_dentry, tmp_list);
324                         list_del(next);
325                         ret = visitor(dentry, arg);
326                         if (ret != 0)
327                                 return ret;
328                         node = dentry->rb_node.rb_right;
329                 }
330         }
331 }
332
333 static int
334 for_dentry_tree_in_rbtree_depth(struct rb_node *node,
335                                 int (*visitor)(struct wim_dentry*, void*),
336                                 void *arg)
337 {
338         int ret;
339         if (node) {
340                 ret = for_dentry_tree_in_rbtree_depth(node->rb_left,
341                                                       visitor, arg);
342                 if (ret != 0)
343                         return ret;
344                 ret = for_dentry_tree_in_rbtree_depth(node->rb_right,
345                                                       visitor, arg);
346                 if (ret != 0)
347                         return ret;
348                 ret = for_dentry_in_tree_depth(rbnode_dentry(node), visitor, arg);
349                 if (ret != 0)
350                         return ret;
351         }
352         return 0;
353 }
354
355 static int
356 for_dentry_tree_in_rbtree(struct rb_node *node,
357                           int (*visitor)(struct wim_dentry*, void*),
358                           void *arg)
359 {
360         int ret;
361         if (node) {
362                 ret = for_dentry_tree_in_rbtree(node->rb_left, visitor, arg);
363                 if (ret)
364                         return ret;
365                 ret = for_dentry_in_tree(rbnode_dentry(node), visitor, arg);
366                 if (ret)
367                         return ret;
368                 ret = for_dentry_tree_in_rbtree(node->rb_right, visitor, arg);
369                 if (ret)
370                         return ret;
371         }
372         return 0;
373 }
374
375 /*
376  * Iterate over all children of @dentry, calling the function @visitor, passing
377  * it a child dentry and the extra argument @arg.
378  *
379  * Note: this function iterates over ALL child dentries, even those with the
380  * same case-insensitive name.
381  *
382  * Note: this function clobbers the tmp_list field of the child dentries.  */
383 int
384 for_dentry_child(const struct wim_dentry *dentry,
385                  int (*visitor)(struct wim_dentry *, void *),
386                  void *arg)
387 {
388         return for_dentry_in_rbtree(dentry->d_inode->i_children.rb_node,
389                                     visitor,
390                                     arg);
391 }
392
393 /* Calls a function on all directory entries in a WIM dentry tree.  Logically,
394  * this is a pre-order traversal (the function is called on a parent dentry
395  * before its children), but sibling dentries will be visited in order as well.
396  * */
397 int
398 for_dentry_in_tree(struct wim_dentry *root,
399                    int (*visitor)(struct wim_dentry*, void*), void *arg)
400 {
401         int ret;
402
403         if (root == NULL)
404                 return 0;
405         ret = (*visitor)(root, arg);
406         if (ret)
407                 return ret;
408         return for_dentry_tree_in_rbtree(root->d_inode->i_children.rb_node,
409                                          visitor,
410                                          arg);
411 }
412
413 /* Like for_dentry_in_tree(), but the visitor function is always called on a
414  * dentry's children before on itself. */
415 int
416 for_dentry_in_tree_depth(struct wim_dentry *root,
417                          int (*visitor)(struct wim_dentry*, void*), void *arg)
418 {
419         int ret;
420
421         if (root == NULL)
422                 return 0;
423         ret = for_dentry_tree_in_rbtree_depth(root->d_inode->i_children.rb_node,
424                                               visitor, arg);
425         if (ret)
426                 return ret;
427         return (*visitor)(root, arg);
428 }
429
430 /* Calculate the full path of @dentry.  The full path of its parent must have
431  * already been calculated, or it must be the root dentry. */
432 int
433 calculate_dentry_full_path(struct wim_dentry *dentry)
434 {
435         tchar *full_path;
436         u32 full_path_nbytes;
437         int ret;
438
439         if (dentry->_full_path)
440                 return 0;
441
442         if (dentry_is_root(dentry)) {
443                 static const tchar _root_path[] = {WIM_PATH_SEPARATOR, T('\0')};
444                 full_path = TSTRDUP(_root_path);
445                 if (full_path == NULL)
446                         return WIMLIB_ERR_NOMEM;
447                 full_path_nbytes = 1 * sizeof(tchar);
448         } else {
449                 struct wim_dentry *parent;
450                 tchar *parent_full_path;
451                 u32 parent_full_path_nbytes;
452                 size_t filename_nbytes;
453
454                 parent = dentry->parent;
455                 if (dentry_is_root(parent)) {
456                         parent_full_path = T("");
457                         parent_full_path_nbytes = 0;
458                 } else {
459                         if (parent->_full_path == NULL) {
460                                 ret = calculate_dentry_full_path(parent);
461                                 if (ret)
462                                         return ret;
463                         }
464                         parent_full_path = parent->_full_path;
465                         parent_full_path_nbytes = parent->full_path_nbytes;
466                 }
467
468                 /* Append this dentry's name as a tchar string to the full path
469                  * of the parent followed by the path separator */
470         #if TCHAR_IS_UTF16LE
471                 filename_nbytes = dentry->file_name_nbytes;
472         #else
473                 {
474                         int ret = utf16le_to_tstr_nbytes(dentry->file_name,
475                                                          dentry->file_name_nbytes,
476                                                          &filename_nbytes);
477                         if (ret)
478                                 return ret;
479                 }
480         #endif
481
482                 full_path_nbytes = parent_full_path_nbytes + sizeof(tchar) +
483                                    filename_nbytes;
484                 full_path = MALLOC(full_path_nbytes + sizeof(tchar));
485                 if (full_path == NULL)
486                         return WIMLIB_ERR_NOMEM;
487                 memcpy(full_path, parent_full_path, parent_full_path_nbytes);
488                 full_path[parent_full_path_nbytes / sizeof(tchar)] = WIM_PATH_SEPARATOR;
489         #if TCHAR_IS_UTF16LE
490                 memcpy(&full_path[parent_full_path_nbytes / sizeof(tchar) + 1],
491                        dentry->file_name,
492                        filename_nbytes + sizeof(tchar));
493         #else
494                 utf16le_to_tstr_buf(dentry->file_name,
495                                     dentry->file_name_nbytes,
496                                     &full_path[parent_full_path_nbytes /
497                                                sizeof(tchar) + 1]);
498         #endif
499         }
500         dentry->_full_path = full_path;
501         dentry->full_path_nbytes= full_path_nbytes;
502         return 0;
503 }
504
505 static int
506 do_calculate_dentry_full_path(struct wim_dentry *dentry, void *_ignore)
507 {
508         return calculate_dentry_full_path(dentry);
509 }
510
511 int
512 calculate_dentry_tree_full_paths(struct wim_dentry *root)
513 {
514         return for_dentry_in_tree(root, do_calculate_dentry_full_path, NULL);
515 }
516
517 tchar *
518 dentry_full_path(struct wim_dentry *dentry)
519 {
520         calculate_dentry_full_path(dentry);
521         return dentry->_full_path;
522 }
523
524 static int
525 increment_subdir_offset(struct wim_dentry *dentry, void *subdir_offset_p)
526 {
527         *(u64*)subdir_offset_p += dentry_out_total_length(dentry);
528         return 0;
529 }
530
531 static int
532 call_calculate_subdir_offsets(struct wim_dentry *dentry, void *subdir_offset_p)
533 {
534         calculate_subdir_offsets(dentry, subdir_offset_p);
535         return 0;
536 }
537
538 /*
539  * Recursively calculates the subdir offsets for a directory tree.
540  *
541  * @dentry:  The root of the directory tree.
542  * @subdir_offset_p:  The current subdirectory offset; i.e., the subdirectory
543  *                    offset for @dentry.
544  */
545 void
546 calculate_subdir_offsets(struct wim_dentry *dentry, u64 *subdir_offset_p)
547 {
548         struct rb_node *node;
549
550         dentry->subdir_offset = *subdir_offset_p;
551         node = dentry->d_inode->i_children.rb_node;
552         if (node) {
553                 /* Advance the subdir offset by the amount of space the children
554                  * of this dentry take up. */
555                 for_dentry_in_rbtree(node, increment_subdir_offset, subdir_offset_p);
556
557                 /* End-of-directory dentry on disk. */
558                 *subdir_offset_p += 8;
559
560                 /* Recursively call calculate_subdir_offsets() on all the
561                  * children. */
562                 for_dentry_in_rbtree(node, call_calculate_subdir_offsets, subdir_offset_p);
563         } else {
564                 /* On disk, childless directories have a valid subdir_offset
565                  * that points to an 8-byte end-of-directory dentry.  Regular
566                  * files or reparse points have a subdir_offset of 0. */
567                 if (dentry_is_directory(dentry))
568                         *subdir_offset_p += 8;
569                 else
570                         dentry->subdir_offset = 0;
571         }
572 }
573
574 static int
575 dentry_compare_names_case_insensitive(const struct wim_dentry *d1,
576                                       const struct wim_dentry *d2)
577 {
578         return cmp_utf16le_strings(d1->file_name,
579                                    d1->file_name_nbytes / 2,
580                                    d2->file_name,
581                                    d2->file_name_nbytes / 2,
582                                    true);
583 }
584
585 static int
586 dentry_compare_names_case_sensitive(const struct wim_dentry *d1,
587                                     const struct wim_dentry *d2)
588 {
589         return cmp_utf16le_strings(d1->file_name,
590                                    d1->file_name_nbytes / 2,
591                                    d2->file_name,
592                                    d2->file_name_nbytes / 2,
593                                    false);
594 }
595
596 /* Default case sensitivity behavior for searches with
597  * WIMLIB_CASE_PLATFORM_DEFAULT specified.  This can be modified by
598  * wimlib_global_init().  */
599 bool default_ignore_case =
600 #ifdef __WIN32__
601         true
602 #else
603         false
604 #endif
605 ;
606
607 /* Given a UTF-16LE filename and a directory, look up the dentry for the file.
608  * Return it if found, otherwise NULL.  This is case-sensitive on UNIX and
609  * case-insensitive on Windows. */
610 struct wim_dentry *
611 get_dentry_child_with_utf16le_name(const struct wim_dentry *dentry,
612                                    const utf16lechar *name,
613                                    size_t name_nbytes,
614                                    CASE_SENSITIVITY_TYPE case_ctype)
615 {
616         struct rb_node *node;
617
618         bool ignore_case = will_ignore_case(case_ctype);
619
620         if (ignore_case)
621                 node = dentry->d_inode->i_children_case_insensitive.rb_node;
622         else
623                 node = dentry->d_inode->i_children.rb_node;
624
625         struct wim_dentry *child;
626         while (node) {
627                 if (ignore_case)
628                         child = rb_entry(node, struct wim_dentry, rb_node_case_insensitive);
629                 else
630                         child = rb_entry(node, struct wim_dentry, rb_node);
631
632                 int result = cmp_utf16le_strings(name,
633                                                  name_nbytes / 2,
634                                                  child->file_name,
635                                                  child->file_name_nbytes / 2,
636                                                  ignore_case);
637                 if (result < 0) {
638                         node = node->rb_left;
639                 } else if (result > 0) {
640                         node = node->rb_right;
641                 } else if (!ignore_case ||
642                         list_empty(&child->case_insensitive_conflict_list)) {
643                         return child;
644                 } else {
645                         /* Multiple dentries have the same case-insensitive
646                          * name, and a case-insensitive lookup is being
647                          * performed.  Choose the dentry with the same
648                          * case-sensitive name, if one exists; otherwise print a
649                          * warning and choose one arbitrarily.  */
650                         struct wim_dentry *alt = child;
651                         size_t num_alts = 0;
652
653                         do {
654                                 num_alts++;
655                                 if (0 == cmp_utf16le_strings(name,
656                                                              name_nbytes / 2,
657                                                              alt->file_name,
658                                                              alt->file_name_nbytes / 2,
659                                                              false))
660                                         return alt;
661                                 alt = list_entry(alt->case_insensitive_conflict_list.next,
662                                                  struct wim_dentry,
663                                                  case_insensitive_conflict_list);
664                         } while (alt != child);
665
666                         WARNING("Result of case-insensitive lookup is ambiguous\n"
667                                 "          (returning \"%"TS"\" of %zu "
668                                 "possible files, including \"%"TS"\")",
669                                 dentry_full_path(child),
670                                 num_alts,
671                                 dentry_full_path(list_entry(child->case_insensitive_conflict_list.next,
672                                                             struct wim_dentry,
673                                                             case_insensitive_conflict_list)));
674                         return child;
675                 }
676         }
677         return NULL;
678 }
679
680 /* Returns the child of @dentry that has the file name @name.  Returns NULL if
681  * no child has the name. */
682 struct wim_dentry *
683 get_dentry_child_with_name(const struct wim_dentry *dentry, const tchar *name,
684                            CASE_SENSITIVITY_TYPE case_type)
685 {
686 #if TCHAR_IS_UTF16LE
687         return get_dentry_child_with_utf16le_name(dentry, name,
688                                                   tstrlen(name) * sizeof(tchar),
689                                                   case_type);
690 #else
691         utf16lechar *utf16le_name;
692         size_t utf16le_name_nbytes;
693         int ret;
694         struct wim_dentry *child;
695
696         ret = tstr_to_utf16le(name, tstrlen(name) * sizeof(tchar),
697                               &utf16le_name, &utf16le_name_nbytes);
698         if (ret) {
699                 child = NULL;
700         } else {
701                 child = get_dentry_child_with_utf16le_name(dentry,
702                                                            utf16le_name,
703                                                            utf16le_name_nbytes,
704                                                            case_type);
705                 FREE(utf16le_name);
706         }
707         return child;
708 #endif
709 }
710
711 static struct wim_dentry *
712 get_dentry_utf16le(WIMStruct *wim, const utf16lechar *path,
713                    CASE_SENSITIVITY_TYPE case_type)
714 {
715         struct wim_dentry *cur_dentry;
716         const utf16lechar *name_start, *name_end;
717
718         /* Start with the root directory of the image.  Note: this will be NULL
719          * if an image has been added directly with wimlib_add_empty_image() but
720          * no files have been added yet; in that case we fail with ENOENT.  */
721         cur_dentry = wim_root_dentry(wim);
722
723         name_start = path;
724         for (;;) {
725                 if (cur_dentry == NULL) {
726                         errno = ENOENT;
727                         return NULL;
728                 }
729
730                 if (*name_start && !dentry_is_directory(cur_dentry)) {
731                         errno = ENOTDIR;
732                         return NULL;
733                 }
734
735                 while (*name_start == cpu_to_le16(WIM_PATH_SEPARATOR))
736                         name_start++;
737
738                 if (!*name_start)
739                         return cur_dentry;
740
741                 name_end = name_start;
742                 do {
743                         ++name_end;
744                 } while (*name_end != cpu_to_le16(WIM_PATH_SEPARATOR) && *name_end);
745
746                 cur_dentry = get_dentry_child_with_utf16le_name(cur_dentry,
747                                                                 name_start,
748                                                                 (u8*)name_end - (u8*)name_start,
749                                                                 case_type);
750                 name_start = name_end;
751         }
752 }
753
754 /*
755  * WIM path lookup: translate a path in the currently selected WIM image to the
756  * corresponding dentry, if it exists.
757  *
758  * @wim
759  *      The WIMStruct for the WIM.  The search takes place in the currently
760  *      selected image.
761  *
762  * @path
763  *      The path to look up, given relative to the root of the WIM image.
764  *      Characters with value WIM_PATH_SEPARATOR are taken to be path
765  *      separators.  Leading path separators are ignored, whereas one or more
766  *      trailing path separators cause the path to only match a directory.
767  *
768  * @case_type
769  *      The case-sensitivity behavior of this function, as one of the following
770  *      constants:
771  *
772  *    - WIMLIB_CASE_SENSITIVE:  Perform the search case sensitively.  This means
773  *      that names must match exactly.
774  *
775  *    - WIMLIB_CASE_INSENSITIVE:  Perform the search case insensitively.  This
776  *      means that names are considered to match if they are equal when
777  *      transformed to upper case.  If a path component matches multiple names
778  *      case-insensitively, the name that matches the path component
779  *      case-sensitively is chosen, if existent; otherwise one
780  *      case-insensitively matching name is chosen arbitrarily.
781  *
782  *    - WIMLIB_CASE_PLATFORM_DEFAULT:  Perform either case-sensitive or
783  *      case-insensitive search, depending on the value of the global variable
784  *      default_ignore_case.
785  *
786  *    In any case, no Unicode normalization is done before comparing strings.
787  *
788  * Returns a pointer to the dentry that is the result of the lookup, or NULL if
789  * no such dentry exists.  If NULL is returned, errno is set to one of the
790  * following values:
791  *
792  *      ENOTDIR if one of the path components used as a directory existed but
793  *      was not, in fact, a directory.
794  *
795  *      ENOENT otherwise.
796  *
797  * Additional notes:
798  *
799  *    - This function does not consider a reparse point to be a directory, even
800  *      if it has FILE_ATTRIBUTE_DIRECTORY set.
801  *
802  *    - This function does not dereference symbolic links or junction points
803  *      when performing the search.
804  *
805  *    - Since this function ignores leading slashes, the empty path is valid and
806  *      names the root directory of the WIM image.
807  *
808  *    - An image added with wimlib_add_empty_image() does not have a root
809  *      directory yet, and this function will fail with ENOENT for any path on
810  *      such an image.
811  */
812 struct wim_dentry *
813 get_dentry(WIMStruct *wim, const tchar *path, CASE_SENSITIVITY_TYPE case_type)
814 {
815 #if TCHAR_IS_UTF16LE
816         return get_dentry_utf16le(wim, path, case_type);
817 #else
818         utf16lechar *path_utf16le;
819         size_t path_utf16le_nbytes;
820         int ret;
821         struct wim_dentry *dentry;
822
823         ret = tstr_to_utf16le(path, tstrlen(path) * sizeof(tchar),
824                               &path_utf16le, &path_utf16le_nbytes);
825         if (ret)
826                 return NULL;
827         dentry = get_dentry_utf16le(wim, path_utf16le, case_type);
828         FREE(path_utf16le);
829         return dentry;
830 #endif
831 }
832
833 /* Takes in a path of length @len in @buf, and transforms it into a string for
834  * the path of its parent directory. */
835 static void
836 to_parent_name(tchar *buf, size_t len)
837 {
838         ssize_t i = (ssize_t)len - 1;
839         while (i >= 0 && buf[i] == WIM_PATH_SEPARATOR)
840                 i--;
841         while (i >= 0 && buf[i] != WIM_PATH_SEPARATOR)
842                 i--;
843         while (i >= 0 && buf[i] == WIM_PATH_SEPARATOR)
844                 i--;
845         buf[i + 1] = T('\0');
846 }
847
848 /* Similar to get_dentry(), but returns the dentry named by @path with the last
849  * component stripped off.
850  *
851  * Note: The returned dentry is NOT guaranteed to be a directory.  */
852 struct wim_dentry *
853 get_parent_dentry(WIMStruct *wim, const tchar *path,
854                   CASE_SENSITIVITY_TYPE case_type)
855 {
856         size_t path_len = tstrlen(path);
857         tchar buf[path_len + 1];
858
859         tmemcpy(buf, path, path_len + 1);
860         to_parent_name(buf, path_len);
861         return get_dentry(wim, buf, case_type);
862 }
863
864 #ifdef WITH_FUSE
865 /* Finds the dentry, lookup table entry, and stream index for a WIM file stream,
866  * given a path name.
867  *
868  * Currently, lookups of this type are only needed if FUSE is enabled.  */
869 int
870 wim_pathname_to_stream(WIMStruct *wim,
871                        const tchar *path,
872                        int lookup_flags,
873                        struct wim_dentry **dentry_ret,
874                        struct wim_lookup_table_entry **lte_ret,
875                        u16 *stream_idx_ret)
876 {
877         struct wim_dentry *dentry;
878         struct wim_lookup_table_entry *lte;
879         u16 stream_idx;
880         const tchar *stream_name = NULL;
881         struct wim_inode *inode;
882         tchar *p = NULL;
883
884         if (lookup_flags & LOOKUP_FLAG_ADS_OK) {
885                 stream_name = path_stream_name(path);
886                 if (stream_name) {
887                         p = (tchar*)stream_name - 1;
888                         *p = T('\0');
889                 }
890         }
891
892         dentry = get_dentry(wim, path, WIMLIB_CASE_SENSITIVE);
893         if (p)
894                 *p = T(':');
895         if (!dentry)
896                 return -errno;
897
898         inode = dentry->d_inode;
899
900         if (!inode->i_resolved)
901                 if (inode_resolve_streams(inode, wim->lookup_table, false))
902                         return -EIO;
903
904         if (!(lookup_flags & LOOKUP_FLAG_DIRECTORY_OK)
905               && inode_is_directory(inode))
906                 return -EISDIR;
907
908         if (stream_name) {
909                 struct wim_ads_entry *ads_entry;
910                 u16 ads_idx;
911                 ads_entry = inode_get_ads_entry(inode, stream_name,
912                                                 &ads_idx);
913                 if (ads_entry) {
914                         stream_idx = ads_idx + 1;
915                         lte = ads_entry->lte;
916                         goto out;
917                 } else {
918                         return -ENOENT;
919                 }
920         } else {
921                 lte = inode_unnamed_stream_resolved(inode, &stream_idx);
922         }
923 out:
924         if (dentry_ret)
925                 *dentry_ret = dentry;
926         if (lte_ret)
927                 *lte_ret = lte;
928         if (stream_idx_ret)
929                 *stream_idx_ret = stream_idx;
930         return 0;
931 }
932 #endif /* WITH_FUSE  */
933
934 /* Initializations done on every `struct wim_dentry'. */
935 static void
936 dentry_common_init(struct wim_dentry *dentry)
937 {
938         memset(dentry, 0, sizeof(struct wim_dentry));
939 }
940
941 /* Creates an unlinked directory entry. */
942 int
943 new_dentry(const tchar *name, struct wim_dentry **dentry_ret)
944 {
945         struct wim_dentry *dentry;
946         int ret;
947
948         dentry = MALLOC(sizeof(struct wim_dentry));
949         if (dentry == NULL)
950                 return WIMLIB_ERR_NOMEM;
951
952         dentry_common_init(dentry);
953         if (*name) {
954                 ret = dentry_set_name(dentry, name);
955                 if (ret) {
956                         FREE(dentry);
957                         ERROR("Failed to set name on new dentry with name \"%"TS"\"",
958                               name);
959                         return ret;
960                 }
961         }
962         dentry->parent = dentry;
963         *dentry_ret = dentry;
964         return 0;
965 }
966
967 static int
968 _new_dentry_with_inode(const tchar *name, struct wim_dentry **dentry_ret,
969                         bool timeless)
970 {
971         struct wim_dentry *dentry;
972         int ret;
973
974         ret = new_dentry(name, &dentry);
975         if (ret)
976                 return ret;
977
978         if (timeless)
979                 dentry->d_inode = new_timeless_inode();
980         else
981                 dentry->d_inode = new_inode();
982         if (dentry->d_inode == NULL) {
983                 free_dentry(dentry);
984                 return WIMLIB_ERR_NOMEM;
985         }
986
987         inode_add_dentry(dentry, dentry->d_inode);
988         *dentry_ret = dentry;
989         return 0;
990 }
991
992 int
993 new_dentry_with_timeless_inode(const tchar *name, struct wim_dentry **dentry_ret)
994 {
995         return _new_dentry_with_inode(name, dentry_ret, true);
996 }
997
998 int
999 new_dentry_with_inode(const tchar *name, struct wim_dentry **dentry_ret)
1000 {
1001         return _new_dentry_with_inode(name, dentry_ret, false);
1002 }
1003
1004 int
1005 new_filler_directory(const tchar *name, struct wim_dentry **dentry_ret)
1006 {
1007         int ret;
1008         struct wim_dentry *dentry;
1009
1010         DEBUG("Creating filler directory \"%"TS"\"", name);
1011         ret = new_dentry_with_inode(name, &dentry);
1012         if (ret)
1013                 return ret;
1014         /* Leave the inode number as 0; this is allowed for non
1015          * hard-linked files. */
1016         dentry->d_inode->i_resolved = 1;
1017         dentry->d_inode->i_attributes = FILE_ATTRIBUTE_DIRECTORY;
1018         *dentry_ret = dentry;
1019         return 0;
1020 }
1021
1022 static int
1023 dentry_clear_inode_visited(struct wim_dentry *dentry, void *_ignore)
1024 {
1025         dentry->d_inode->i_visited = 0;
1026         return 0;
1027 }
1028
1029 void
1030 dentry_tree_clear_inode_visited(struct wim_dentry *root)
1031 {
1032         for_dentry_in_tree(root, dentry_clear_inode_visited, NULL);
1033 }
1034
1035 /* Frees a WIM dentry.
1036  *
1037  * The corresponding inode (if any) is freed only if its link count is
1038  * decremented to 0.  */
1039 void
1040 free_dentry(struct wim_dentry *dentry)
1041 {
1042         if (dentry) {
1043                 FREE(dentry->file_name);
1044                 FREE(dentry->short_name);
1045                 FREE(dentry->_full_path);
1046                 if (dentry->d_inode)
1047                         put_inode(dentry->d_inode);
1048                 FREE(dentry);
1049         }
1050 }
1051
1052 /* This function is passed as an argument to for_dentry_in_tree_depth() in order
1053  * to free a directory tree. */
1054 static int
1055 do_free_dentry(struct wim_dentry *dentry, void *_lookup_table)
1056 {
1057         struct wim_lookup_table *lookup_table = _lookup_table;
1058
1059         if (lookup_table) {
1060                 struct wim_inode *inode = dentry->d_inode;
1061                 for (unsigned i = 0; i <= inode->i_num_ads; i++) {
1062                         struct wim_lookup_table_entry *lte;
1063
1064                         lte = inode_stream_lte(inode, i, lookup_table);
1065                         if (lte)
1066                                 lte_decrement_refcnt(lte, lookup_table);
1067                 }
1068         }
1069         free_dentry(dentry);
1070         return 0;
1071 }
1072
1073 /*
1074  * Unlinks and frees a dentry tree.
1075  *
1076  * @root:
1077  *      The root of the tree.
1078  *
1079  * @lookup_table:
1080  *      The lookup table for dentries.  If non-NULL, the reference counts in the
1081  *      lookup table for the lookup table entries corresponding to the dentries
1082  *      will be decremented.
1083  */
1084 void
1085 free_dentry_tree(struct wim_dentry *root, struct wim_lookup_table *lookup_table)
1086 {
1087         for_dentry_in_tree_depth(root, do_free_dentry, lookup_table);
1088 }
1089
1090 /* Insert a dentry into the case insensitive index for a directory.
1091  *
1092  * This is a red-black tree, but when multiple dentries share the same
1093  * case-insensitive name, only one is inserted into the tree itself; the rest
1094  * are connected in a list.
1095  */
1096 static struct wim_dentry *
1097 dentry_add_child_case_insensitive(struct wim_dentry *parent,
1098                                   struct wim_dentry *child)
1099 {
1100         struct rb_root *root;
1101         struct rb_node **new;
1102         struct rb_node *rb_parent;
1103
1104         root = &parent->d_inode->i_children_case_insensitive;
1105         new = &root->rb_node;
1106         rb_parent = NULL;
1107         while (*new) {
1108                 struct wim_dentry *this = container_of(*new, struct wim_dentry,
1109                                                        rb_node_case_insensitive);
1110                 int result = dentry_compare_names_case_insensitive(child, this);
1111
1112                 rb_parent = *new;
1113
1114                 if (result < 0)
1115                         new = &((*new)->rb_left);
1116                 else if (result > 0)
1117                         new = &((*new)->rb_right);
1118                 else
1119                         return this;
1120         }
1121         rb_link_node(&child->rb_node_case_insensitive, rb_parent, new);
1122         rb_insert_color(&child->rb_node_case_insensitive, root);
1123         return NULL;
1124 }
1125
1126 /*
1127  * Links a dentry into the directory tree.
1128  *
1129  * @parent: The dentry that will be the parent of @child.
1130  * @child: The dentry to link.
1131  *
1132  * Returns NULL if successful.  If @parent already contains a dentry with the
1133  * same case-sensitive name as @child, the pointer to this duplicate dentry is
1134  * returned.
1135  */
1136 struct wim_dentry *
1137 dentry_add_child(struct wim_dentry * restrict parent,
1138                  struct wim_dentry * restrict child)
1139 {
1140         struct rb_root *root;
1141         struct rb_node **new;
1142         struct rb_node *rb_parent;
1143
1144         wimlib_assert(dentry_is_directory(parent));
1145         wimlib_assert(parent != child);
1146
1147         /* Case sensitive child dentry index */
1148         root = &parent->d_inode->i_children;
1149         new = &root->rb_node;
1150         rb_parent = NULL;
1151         while (*new) {
1152                 struct wim_dentry *this = rbnode_dentry(*new);
1153                 int result = dentry_compare_names_case_sensitive(child, this);
1154
1155                 rb_parent = *new;
1156
1157                 if (result < 0)
1158                         new = &((*new)->rb_left);
1159                 else if (result > 0)
1160                         new = &((*new)->rb_right);
1161                 else
1162                         return this;
1163         }
1164         child->parent = parent;
1165         rb_link_node(&child->rb_node, rb_parent, new);
1166         rb_insert_color(&child->rb_node, root);
1167
1168         /* Case insensitive child dentry index */
1169         {
1170                 struct wim_dentry *existing;
1171                 existing = dentry_add_child_case_insensitive(parent, child);
1172                 if (existing) {
1173                         list_add(&child->case_insensitive_conflict_list,
1174                                  &existing->case_insensitive_conflict_list);
1175                         child->rb_node_case_insensitive.__rb_parent_color = 0;
1176                 } else {
1177                         INIT_LIST_HEAD(&child->case_insensitive_conflict_list);
1178                 }
1179         }
1180         return NULL;
1181 }
1182
1183 /* Unlink a WIM dentry from the directory entry tree. */
1184 void
1185 unlink_dentry(struct wim_dentry *dentry)
1186 {
1187         struct wim_dentry *parent = dentry->parent;
1188
1189         if (parent == dentry)
1190                 return;
1191         rb_erase(&dentry->rb_node, &parent->d_inode->i_children);
1192
1193         if (dentry->rb_node_case_insensitive.__rb_parent_color) {
1194                 /* This dentry was in the case-insensitive red-black tree. */
1195                 rb_erase(&dentry->rb_node_case_insensitive,
1196                          &parent->d_inode->i_children_case_insensitive);
1197                 if (!list_empty(&dentry->case_insensitive_conflict_list)) {
1198                         /* Make a different case-insensitively-the-same dentry
1199                          * be the "representative" in the red-black tree. */
1200                         struct list_head *next;
1201                         struct wim_dentry *other;
1202                         struct wim_dentry *existing;
1203
1204                         next = dentry->case_insensitive_conflict_list.next;
1205                         other = list_entry(next, struct wim_dentry, case_insensitive_conflict_list);
1206                         existing = dentry_add_child_case_insensitive(parent, other);
1207                         wimlib_assert(existing == NULL);
1208                 }
1209         }
1210         list_del(&dentry->case_insensitive_conflict_list);
1211 }
1212
1213 static int
1214 free_dentry_full_path(struct wim_dentry *dentry, void *_ignore)
1215 {
1216         FREE(dentry->_full_path);
1217         dentry->_full_path = NULL;
1218         return 0;
1219 }
1220
1221 /* Rename a file or directory in the WIM.  */
1222 int
1223 rename_wim_path(WIMStruct *wim, const tchar *from, const tchar *to,
1224                 CASE_SENSITIVITY_TYPE case_type)
1225 {
1226         struct wim_dentry *src;
1227         struct wim_dentry *dst;
1228         struct wim_dentry *parent_of_dst;
1229         int ret;
1230
1231         /* This rename() implementation currently only supports actual files
1232          * (not alternate data streams) */
1233
1234         src = get_dentry(wim, from, case_type);
1235         if (!src)
1236                 return -errno;
1237
1238         dst = get_dentry(wim, to, case_type);
1239
1240         if (dst) {
1241                 /* Destination file exists */
1242
1243                 if (src == dst) /* Same file */
1244                         return 0;
1245
1246                 if (!dentry_is_directory(src)) {
1247                         /* Cannot rename non-directory to directory. */
1248                         if (dentry_is_directory(dst))
1249                                 return -EISDIR;
1250                 } else {
1251                         /* Cannot rename directory to a non-directory or a non-empty
1252                          * directory */
1253                         if (!dentry_is_directory(dst))
1254                                 return -ENOTDIR;
1255                         if (dentry_has_children(dst))
1256                                 return -ENOTEMPTY;
1257                 }
1258                 parent_of_dst = dst->parent;
1259         } else {
1260                 /* Destination does not exist */
1261                 parent_of_dst = get_parent_dentry(wim, to, case_type);
1262                 if (!parent_of_dst)
1263                         return -errno;
1264
1265                 if (!dentry_is_directory(parent_of_dst))
1266                         return -ENOTDIR;
1267         }
1268
1269         ret = dentry_set_name(src, path_basename(to));
1270         if (ret)
1271                 return -ENOMEM;
1272         if (dst) {
1273                 unlink_dentry(dst);
1274                 free_dentry_tree(dst, wim->lookup_table);
1275         }
1276         unlink_dentry(src);
1277         dentry_add_child(parent_of_dst, src);
1278         if (src->_full_path)
1279                 for_dentry_in_tree(src, free_dentry_full_path, NULL);
1280         return 0;
1281 }
1282
1283 /* Reads a WIM directory entry, including all alternate data stream entries that
1284  * follow it, from the WIM image's metadata resource.  */
1285 static int
1286 read_dentry(const u8 * restrict buf, size_t buf_len,
1287             u64 offset, struct wim_dentry **dentry_ret)
1288 {
1289         u64 length;
1290         const u8 *p;
1291         const struct wim_dentry_on_disk *disk_dentry;
1292         struct wim_dentry *dentry;
1293         struct wim_inode *inode;
1294         u16 short_name_nbytes;
1295         u16 file_name_nbytes;
1296         u64 calculated_size;
1297         int ret;
1298
1299         BUILD_BUG_ON(sizeof(struct wim_dentry_on_disk) != WIM_DENTRY_DISK_SIZE);
1300
1301         /* Before reading the whole dentry, we need to read just the length.
1302          * This is because a dentry of length 8 (that is, just the length field)
1303          * terminates the list of sibling directory entries. */
1304
1305         /* Check for buffer overrun.  */
1306         if (unlikely(offset + sizeof(u64) > buf_len ||
1307                      offset + sizeof(u64) < offset))
1308         {
1309                 ERROR("Directory entry starting at %"PRIu64" ends past the "
1310                       "end of the metadata resource (size %zu)",
1311                       offset, buf_len);
1312                 return WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1313         }
1314
1315         /* Get pointer to the dentry data.  */
1316         p = &buf[offset];
1317         disk_dentry = (const struct wim_dentry_on_disk*)p;
1318
1319         if (unlikely((uintptr_t)p & 7))
1320                 WARNING("WIM dentry is not 8-byte aligned");
1321
1322         /* Get dentry length.  */
1323         length = le64_to_cpu(disk_dentry->length);
1324
1325         /* Check for end-of-directory.  */
1326         if (length <= 8) {
1327                 *dentry_ret = NULL;
1328                 return 0;
1329         }
1330
1331         /* Validate dentry length.  */
1332         if (unlikely(length < sizeof(struct wim_dentry_on_disk))) {
1333                 ERROR("Directory entry has invalid length of %"PRIu64" bytes",
1334                       length);
1335                 return WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1336         }
1337
1338         /* Check for buffer overrun.  */
1339         if (unlikely(offset + length > buf_len ||
1340                      offset + length < offset))
1341         {
1342                 ERROR("Directory entry at offset %"PRIu64" and with size "
1343                       "%"PRIu64" ends past the end of the metadata resource "
1344                       "(size %zu)", offset, length, buf_len);
1345                 return WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1346         }
1347
1348         /* Allocate new dentry structure, along with a preliminary inode.  */
1349         ret = new_dentry_with_timeless_inode(T(""), &dentry);
1350         if (ret)
1351                 return ret;
1352
1353         dentry->length = length;
1354         inode = dentry->d_inode;
1355
1356         /* Read more fields: some into the dentry, and some into the inode.  */
1357         inode->i_attributes = le32_to_cpu(disk_dentry->attributes);
1358         inode->i_security_id = le32_to_cpu(disk_dentry->security_id);
1359         dentry->subdir_offset = le64_to_cpu(disk_dentry->subdir_offset);
1360         inode->i_creation_time = le64_to_cpu(disk_dentry->creation_time);
1361         inode->i_last_access_time = le64_to_cpu(disk_dentry->last_access_time);
1362         inode->i_last_write_time = le64_to_cpu(disk_dentry->last_write_time);
1363         copy_hash(inode->i_hash, disk_dentry->unnamed_stream_hash);
1364
1365         /* I don't know what's going on here.  It seems like M$ screwed up the
1366          * reparse points, then put the fields in the same place and didn't
1367          * document it.  So we have some fields we read for reparse points, and
1368          * some fields in the same place for non-reparse-points.  */
1369         if (inode->i_attributes & FILE_ATTRIBUTE_REPARSE_POINT) {
1370                 inode->i_rp_unknown_1 = le32_to_cpu(disk_dentry->reparse.rp_unknown_1);
1371                 inode->i_reparse_tag = le32_to_cpu(disk_dentry->reparse.reparse_tag);
1372                 inode->i_rp_unknown_2 = le16_to_cpu(disk_dentry->reparse.rp_unknown_2);
1373                 inode->i_not_rpfixed = le16_to_cpu(disk_dentry->reparse.not_rpfixed);
1374                 /* Leave inode->i_ino at 0.  Note that this means the WIM file
1375                  * cannot archive hard-linked reparse points.  Such a thing
1376                  * doesn't really make sense anyway, although I believe it's
1377                  * theoretically possible to have them on NTFS.  */
1378         } else {
1379                 inode->i_rp_unknown_1 = le32_to_cpu(disk_dentry->nonreparse.rp_unknown_1);
1380                 inode->i_ino = le64_to_cpu(disk_dentry->nonreparse.hard_link_group_id);
1381         }
1382         inode->i_num_ads = le16_to_cpu(disk_dentry->num_alternate_data_streams);
1383
1384         /* Now onto reading the names.  There are two of them: the (long) file
1385          * name, and the short name.  */
1386
1387         short_name_nbytes = le16_to_cpu(disk_dentry->short_name_nbytes);
1388         file_name_nbytes = le16_to_cpu(disk_dentry->file_name_nbytes);
1389
1390         if (unlikely((short_name_nbytes & 1) | (file_name_nbytes & 1))) {
1391                 ERROR("Dentry name is not valid UTF-16 (odd number of bytes)!");
1392                 ret = WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1393                 goto err_free_dentry;
1394         }
1395
1396         /* We now know the length of the file name and short name.  Make sure
1397          * the length of the dentry is large enough to actually hold them.
1398          *
1399          * The calculated length here is unaligned to allow for the possibility
1400          * that the dentry->length names an unaligned length, although this
1401          * would be unexpected.  */
1402         calculated_size = dentry_correct_length_unaligned(file_name_nbytes,
1403                                                           short_name_nbytes);
1404
1405         if (unlikely(dentry->length < calculated_size)) {
1406                 ERROR("Unexpected end of directory entry! (Expected "
1407                       "at least %"PRIu64" bytes, got %"PRIu64" bytes.)",
1408                       calculated_size, dentry->length);
1409                 ret = WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1410                 goto err_free_dentry;
1411         }
1412
1413         /* Advance p to point past the base dentry, to the first name.  */
1414         p += sizeof(struct wim_dentry_on_disk);
1415
1416         /* Read the filename if present.  Note: if the filename is empty, there
1417          * is no null terminator following it.  */
1418         if (file_name_nbytes) {
1419                 dentry->file_name = MALLOC(file_name_nbytes + 2);
1420                 if (dentry->file_name == NULL) {
1421                         ret = WIMLIB_ERR_NOMEM;
1422                         goto err_free_dentry;
1423                 }
1424                 dentry->file_name_nbytes = file_name_nbytes;
1425                 memcpy(dentry->file_name, p, file_name_nbytes);
1426                 p += file_name_nbytes + 2;
1427                 dentry->file_name[file_name_nbytes / 2] = cpu_to_le16(0);
1428         }
1429
1430         /* Read the short filename if present.  Note: if there is no short
1431          * filename, there is no null terminator following it. */
1432         if (short_name_nbytes) {
1433                 dentry->short_name = MALLOC(short_name_nbytes + 2);
1434                 if (dentry->short_name == NULL) {
1435                         ret = WIMLIB_ERR_NOMEM;
1436                         goto err_free_dentry;
1437                 }
1438                 dentry->short_name_nbytes = short_name_nbytes;
1439                 memcpy(dentry->short_name, p, short_name_nbytes);
1440                 p += short_name_nbytes + 2;
1441                 dentry->short_name[short_name_nbytes / 2] = cpu_to_le16(0);
1442         }
1443
1444         /* Align the dentry length.  */
1445         dentry->length = (dentry->length + 7) & ~7;
1446
1447         /* Read the alternate data streams, if present.  inode->i_num_ads tells
1448          * us how many they are, and they will directly follow the dentry in the
1449          * metadata resource buffer.
1450          *
1451          * Note that each alternate data stream entry begins on an 8-byte
1452          * aligned boundary, and the alternate data stream entries seem to NOT
1453          * be included in the dentry->length field for some reason.  */
1454         if (unlikely(inode->i_num_ads != 0)) {
1455                 ret = WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1456                 if (offset + dentry->length > buf_len ||
1457                     (ret = read_ads_entries(&buf[offset + dentry->length],
1458                                             inode,
1459                                             buf_len - offset - dentry->length)))
1460                 {
1461                         ERROR("Failed to read alternate data stream "
1462                               "entries of WIM dentry \"%"WS"\"",
1463                               dentry->file_name);
1464                         goto err_free_dentry;
1465                 }
1466         }
1467
1468         *dentry_ret = dentry;
1469         return 0;
1470
1471 err_free_dentry:
1472         free_dentry(dentry);
1473         return ret;
1474 }
1475
1476 static const tchar *
1477 dentry_get_file_type_string(const struct wim_dentry *dentry)
1478 {
1479         const struct wim_inode *inode = dentry->d_inode;
1480         if (inode_is_directory(inode))
1481                 return T("directory");
1482         else if (inode_is_symlink(inode))
1483                 return T("symbolic link");
1484         else
1485                 return T("file");
1486 }
1487
1488 static bool
1489 dentry_is_dot_or_dotdot(const struct wim_dentry *dentry)
1490 {
1491         if (dentry->file_name_nbytes <= 4) {
1492                 if (dentry->file_name_nbytes == 4) {
1493                         if (dentry->file_name[0] == cpu_to_le16('.') &&
1494                             dentry->file_name[1] == cpu_to_le16('.'))
1495                                 return true;
1496                 } else if (dentry->file_name_nbytes == 2) {
1497                         if (dentry->file_name[0] == cpu_to_le16('.'))
1498                                 return true;
1499                 }
1500         }
1501         return false;
1502 }
1503
1504 static int
1505 read_dentry_tree_recursive(const u8 * restrict buf, size_t buf_len,
1506                            struct wim_dentry * restrict dir)
1507 {
1508         u64 cur_offset = dir->subdir_offset;
1509
1510         /* Check for cyclic directory structure, which would cause infinite
1511          * recursion if not handled.  */
1512         for (struct wim_dentry *d = dir->parent;
1513              !dentry_is_root(d); d = d->parent)
1514         {
1515                 if (unlikely(d->subdir_offset == cur_offset)) {
1516                         ERROR("Cyclic directory structure detected: children "
1517                               "of \"%"TS"\" coincide with children of \"%"TS"\"",
1518                               dentry_full_path(dir), dentry_full_path(d));
1519                         return WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1520                 }
1521         }
1522
1523         for (;;) {
1524                 struct wim_dentry *child;
1525                 struct wim_dentry *duplicate;
1526                 int ret;
1527
1528                 /* Read next child of @dir.  */
1529                 ret = read_dentry(buf, buf_len, cur_offset, &child);
1530                 if (ret)
1531                         return ret;
1532
1533                 /* Check for end of directory.  */
1534                 if (child == NULL)
1535                         return 0;
1536
1537                 /* Advance to the offset of the next child.  Note: We need to
1538                  * advance by the TOTAL length of the dentry, not by the length
1539                  * child->length, which although it does take into account the
1540                  * padding, it DOES NOT take into account alternate stream
1541                  * entries.  */
1542                 cur_offset += dentry_in_total_length(child);
1543
1544                 /* All dentries except the root should be named.  */
1545                 if (unlikely(!dentry_has_long_name(child))) {
1546                         WARNING("Ignoring unnamed dentry in "
1547                                 "directory \"%"TS"\"", dentry_full_path(dir));
1548                         free_dentry(child);
1549                         continue;
1550                 }
1551
1552                 /* Don't allow files named "." or "..".  */
1553                 if (unlikely(dentry_is_dot_or_dotdot(child))) {
1554                         WARNING("Ignoring file named \".\" or \"..\"; "
1555                                 "potentially malicious archive!!!");
1556                         free_dentry(child);
1557                         continue;
1558                 }
1559
1560                 /* Link the child into the directory.  */
1561                 duplicate = dentry_add_child(dir, child);
1562                 if (unlikely(duplicate)) {
1563                         /* We already found a dentry with this same
1564                          * case-sensitive long name.  Only keep the first one.
1565                          */
1566                         const tchar *child_type, *duplicate_type;
1567                         child_type = dentry_get_file_type_string(child);
1568                         duplicate_type = dentry_get_file_type_string(duplicate);
1569                         WARNING("Ignoring duplicate %"TS" \"%"TS"\" "
1570                                 "(the WIM image already contains a %"TS" "
1571                                 "at that path with the exact same name)",
1572                                 child_type, dentry_full_path(duplicate),
1573                                 duplicate_type);
1574                         free_dentry(child);
1575                         continue;
1576                 }
1577
1578                 /* If this child is a directory that itself has children, call
1579                  * this procedure recursively.  */
1580                 if (child->subdir_offset != 0) {
1581                         if (likely(dentry_is_directory(child))) {
1582                                 ret = read_dentry_tree_recursive(buf,
1583                                                                  buf_len,
1584                                                                  child);
1585                                 if (ret)
1586                                         return ret;
1587                         } else {
1588                                 WARNING("Ignoring children of "
1589                                         "non-directory file \"%"TS"\"",
1590                                         dentry_full_path(child));
1591                         }
1592                 }
1593         }
1594 }
1595
1596 /*
1597  * Read a tree of dentries (directory entries) from a WIM metadata resource.
1598  *
1599  * @buf:
1600  *      Buffer containing an uncompressed WIM metadata resource.
1601  *
1602  * @buf_len:
1603  *      Length of the uncompressed metadata resource, in bytes.
1604  *
1605  * @root_offset
1606  *      Offset in the metadata resource of the root of the dentry tree.
1607  *
1608  * @root_ret:
1609  *      On success, either NULL or a pointer to the root dentry is written to
1610  *      this location.  The former case only occurs in the unexpected case that
1611  *      the tree began with an end-of-directory entry.
1612  *
1613  * Return values:
1614  *      WIMLIB_ERR_SUCCESS (0)
1615  *      WIMLIB_ERR_INVALID_METADATA_RESOURCE
1616  *      WIMLIB_ERR_NOMEM
1617  */
1618 int
1619 read_dentry_tree(const u8 *buf, size_t buf_len,
1620                  u64 root_offset, struct wim_dentry **root_ret)
1621 {
1622         int ret;
1623         struct wim_dentry *root;
1624
1625         DEBUG("Reading dentry tree (root_offset=%"PRIu64")", root_offset);
1626
1627         ret = read_dentry(buf, buf_len, root_offset, &root);
1628         if (ret)
1629                 return ret;
1630
1631         if (likely(root != NULL)) {
1632                 if (unlikely(dentry_has_long_name(root) ||
1633                              dentry_has_short_name(root)))
1634                 {
1635                         WARNING("The root directory has a nonempty name; "
1636                                 "removing it.");
1637                         FREE(root->file_name);
1638                         FREE(root->short_name);
1639                         root->file_name = NULL;
1640                         root->short_name = NULL;
1641                         root->file_name_nbytes = 0;
1642                         root->short_name_nbytes = 0;
1643                 }
1644
1645                 if (unlikely(!dentry_is_directory(root))) {
1646                         ERROR("The root of the WIM image is not a directory!");
1647                         ret = WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1648                         goto err_free_dentry_tree;
1649                 }
1650
1651                 if (likely(root->subdir_offset != 0)) {
1652                         ret = read_dentry_tree_recursive(buf, buf_len, root);
1653                         if (ret)
1654                                 goto err_free_dentry_tree;
1655                 }
1656         } else {
1657                 WARNING("The metadata resource has no directory entries; "
1658                         "treating as an empty image.");
1659         }
1660         *root_ret = root;
1661         return 0;
1662
1663 err_free_dentry_tree:
1664         free_dentry_tree(root, NULL);
1665         return ret;
1666 }
1667
1668 /*
1669  * Writes a WIM alternate data stream (ADS) entry to an output buffer.
1670  *
1671  * @ads_entry:  The ADS entry structure.
1672  * @hash:       The hash field to use (instead of the one in the ADS entry).
1673  * @p:          The memory location to write the data to.
1674  *
1675  * Returns a pointer to the byte after the last byte written.
1676  */
1677 static u8 *
1678 write_ads_entry(const struct wim_ads_entry *ads_entry,
1679                 const u8 *hash, u8 * restrict p)
1680 {
1681         struct wim_ads_entry_on_disk *disk_ads_entry =
1682                         (struct wim_ads_entry_on_disk*)p;
1683         u8 *orig_p = p;
1684
1685         disk_ads_entry->reserved = cpu_to_le64(ads_entry->reserved);
1686         copy_hash(disk_ads_entry->hash, hash);
1687         disk_ads_entry->stream_name_nbytes = cpu_to_le16(ads_entry->stream_name_nbytes);
1688         p += sizeof(struct wim_ads_entry_on_disk);
1689         if (ads_entry->stream_name_nbytes) {
1690                 p = mempcpy(p, ads_entry->stream_name,
1691                             ads_entry->stream_name_nbytes + 2);
1692         }
1693         /* Align to 8-byte boundary */
1694         while ((uintptr_t)p & 7)
1695                 *p++ = 0;
1696         disk_ads_entry->length = cpu_to_le64(p - orig_p);
1697         return p;
1698 }
1699
1700 /*
1701  * Writes a WIM dentry to an output buffer.
1702  *
1703  * @dentry:  The dentry structure.
1704  * @p:       The memory location to write the data to.
1705  *
1706  * Returns the pointer to the byte after the last byte we wrote as part of the
1707  * dentry, including any alternate data stream entries.
1708  */
1709 static u8 *
1710 write_dentry(const struct wim_dentry * restrict dentry, u8 * restrict p)
1711 {
1712         const struct wim_inode *inode;
1713         struct wim_dentry_on_disk *disk_dentry;
1714         const u8 *orig_p;
1715         const u8 *hash;
1716         bool use_dummy_stream;
1717         u16 num_ads;
1718
1719         wimlib_assert(((uintptr_t)p & 7) == 0); /* 8 byte aligned */
1720         orig_p = p;
1721
1722         inode = dentry->d_inode;
1723         use_dummy_stream = inode_needs_dummy_stream(inode);
1724         disk_dentry = (struct wim_dentry_on_disk*)p;
1725
1726         disk_dentry->attributes = cpu_to_le32(inode->i_attributes);
1727         disk_dentry->security_id = cpu_to_le32(inode->i_security_id);
1728         disk_dentry->subdir_offset = cpu_to_le64(dentry->subdir_offset);
1729         disk_dentry->unused_1 = cpu_to_le64(0);
1730         disk_dentry->unused_2 = cpu_to_le64(0);
1731         disk_dentry->creation_time = cpu_to_le64(inode->i_creation_time);
1732         disk_dentry->last_access_time = cpu_to_le64(inode->i_last_access_time);
1733         disk_dentry->last_write_time = cpu_to_le64(inode->i_last_write_time);
1734         if (use_dummy_stream)
1735                 hash = zero_hash;
1736         else
1737                 hash = inode_stream_hash(inode, 0);
1738         copy_hash(disk_dentry->unnamed_stream_hash, hash);
1739         if (inode->i_attributes & FILE_ATTRIBUTE_REPARSE_POINT) {
1740                 disk_dentry->reparse.rp_unknown_1 = cpu_to_le32(inode->i_rp_unknown_1);
1741                 disk_dentry->reparse.reparse_tag = cpu_to_le32(inode->i_reparse_tag);
1742                 disk_dentry->reparse.rp_unknown_2 = cpu_to_le16(inode->i_rp_unknown_2);
1743                 disk_dentry->reparse.not_rpfixed = cpu_to_le16(inode->i_not_rpfixed);
1744         } else {
1745                 disk_dentry->nonreparse.rp_unknown_1 = cpu_to_le32(inode->i_rp_unknown_1);
1746                 disk_dentry->nonreparse.hard_link_group_id =
1747                         cpu_to_le64((inode->i_nlink == 1) ? 0 : inode->i_ino);
1748         }
1749         num_ads = inode->i_num_ads;
1750         if (use_dummy_stream)
1751                 num_ads++;
1752         disk_dentry->num_alternate_data_streams = cpu_to_le16(num_ads);
1753         disk_dentry->short_name_nbytes = cpu_to_le16(dentry->short_name_nbytes);
1754         disk_dentry->file_name_nbytes = cpu_to_le16(dentry->file_name_nbytes);
1755         p += sizeof(struct wim_dentry_on_disk);
1756
1757         wimlib_assert(dentry_is_root(dentry) != dentry_has_long_name(dentry));
1758
1759         if (dentry_has_long_name(dentry))
1760                 p = mempcpy(p, dentry->file_name, dentry->file_name_nbytes + 2);
1761
1762         if (dentry_has_short_name(dentry))
1763                 p = mempcpy(p, dentry->short_name, dentry->short_name_nbytes + 2);
1764
1765         /* Align to 8-byte boundary */
1766         while ((uintptr_t)p & 7)
1767                 *p++ = 0;
1768
1769         /* We calculate the correct length of the dentry ourselves because the
1770          * dentry->length field may been set to an unexpected value from when we
1771          * read the dentry in (for example, there may have been unknown data
1772          * appended to the end of the dentry...).  Furthermore, the dentry may
1773          * have been renamed, thus changing its needed length. */
1774         disk_dentry->length = cpu_to_le64(p - orig_p);
1775
1776         if (use_dummy_stream) {
1777                 hash = inode_unnamed_stream_hash(inode);
1778                 p = write_ads_entry(&(struct wim_ads_entry){}, hash, p);
1779         }
1780
1781         /* Write the alternate data streams entries, if any. */
1782         for (u16 i = 0; i < inode->i_num_ads; i++) {
1783                 hash = inode_stream_hash(inode, i + 1);
1784                 p = write_ads_entry(&inode->i_ads_entries[i], hash, p);
1785         }
1786
1787         return p;
1788 }
1789
1790 static int
1791 write_dentry_cb(struct wim_dentry *dentry, void *_p)
1792 {
1793         u8 **p = _p;
1794         *p = write_dentry(dentry, *p);
1795         return 0;
1796 }
1797
1798 static u8 *
1799 write_dentry_tree_recursive(const struct wim_dentry *parent, u8 *p);
1800
1801 static int
1802 write_dentry_tree_recursive_cb(struct wim_dentry *dentry, void *_p)
1803 {
1804         u8 **p = _p;
1805         *p = write_dentry_tree_recursive(dentry, *p);
1806         return 0;
1807 }
1808
1809 /* Recursive function that writes a dentry tree rooted at @parent, not including
1810  * @parent itself, which has already been written. */
1811 static u8 *
1812 write_dentry_tree_recursive(const struct wim_dentry *parent, u8 *p)
1813 {
1814         /* Nothing to do if this dentry has no children. */
1815         if (parent->subdir_offset == 0)
1816                 return p;
1817
1818         /* Write child dentries and end-of-directory entry.
1819          *
1820          * Note: we need to write all of this dentry's children before
1821          * recursively writing the directory trees rooted at each of the child
1822          * dentries, since the on-disk dentries for a dentry's children are
1823          * always located at consecutive positions in the metadata resource! */
1824         for_dentry_child(parent, write_dentry_cb, &p);
1825
1826         /* write end of directory entry */
1827         *(le64*)p = cpu_to_le64(0);
1828         p += 8;
1829
1830         /* Recurse on children. */
1831         for_dentry_child(parent, write_dentry_tree_recursive_cb, &p);
1832         return p;
1833 }
1834
1835 /* Writes a directory tree to the metadata resource.
1836  *
1837  * @root:       Root of the dentry tree.
1838  * @p:          Pointer to a buffer with enough space for the dentry tree.
1839  *
1840  * Returns pointer to the byte after the last byte we wrote.
1841  */
1842 u8 *
1843 write_dentry_tree(const struct wim_dentry * restrict root, u8 * restrict p)
1844 {
1845         DEBUG("Writing dentry tree.");
1846         wimlib_assert(dentry_is_root(root));
1847
1848         /* If we're the root dentry, we have no parent that already
1849          * wrote us, so we need to write ourselves. */
1850         p = write_dentry(root, p);
1851
1852         /* Write end of directory entry after the root dentry just to be safe;
1853          * however the root dentry obviously cannot have any siblings. */
1854         *(le64*)p = cpu_to_le64(0);
1855         p += 8;
1856
1857         /* Recursively write the rest of the dentry tree. */
1858         return write_dentry_tree_recursive(root, p);
1859 }