]> wimlib.net Git - wimlib/blob - src/dentry.c
Merge branch with pipable WIM support
[wimlib] / src / dentry.c
1 /*
2  * dentry.c
3  *
4  * In the WIM file format, the dentries are stored in the "metadata resource"
5  * section right after the security data.  Each image in the WIM file has its
6  * own metadata resource with its own security data and dentry tree.  Dentries
7  * in different images may share file resources by referring to the same lookup
8  * table entries.
9  */
10
11 /*
12  * Copyright (C) 2012, 2013 Eric Biggers
13  *
14  * This file is part of wimlib, a library for working with WIM files.
15  *
16  * wimlib is free software; you can redistribute it and/or modify it under the
17  * terms of the GNU General Public License as published by the Free Software
18  * Foundation; either version 3 of the License, or (at your option) any later
19  * version.
20  *
21  * wimlib is distributed in the hope that it will be useful, but WITHOUT ANY
22  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
23  * A PARTICULAR PURPOSE. See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License along with
26  * wimlib; if not, see http://www.gnu.org/licenses/.
27  */
28
29 #ifdef HAVE_CONFIG_H
30 #  include "config.h"
31 #endif
32
33 #include "wimlib.h"
34 #include "wimlib/dentry.h"
35 #include "wimlib/encoding.h"
36 #include "wimlib/endianness.h"
37 #include "wimlib/error.h"
38 #include "wimlib/lookup_table.h"
39 #include "wimlib/metadata.h"
40 #include "wimlib/resource.h"
41 #include "wimlib/security.h"
42 #include "wimlib/sha1.h"
43 #include "wimlib/timestamp.h"
44
45 #include <errno.h>
46
47 /* WIM alternate data stream entry (on-disk format) */
48 struct wim_ads_entry_on_disk {
49         /*  Length of the entry, in bytes.  This apparently includes all
50          *  fixed-length fields, plus the stream name and null terminator if
51          *  present, and the padding up to an 8 byte boundary.  wimlib is a
52          *  little less strict when reading the entries, and only requires that
53          *  the number of bytes from this field is at least as large as the size
54          *  of the fixed length fields and stream name without null terminator.
55          *  */
56         le64  length;
57
58         le64  reserved;
59
60         /* SHA1 message digest of the uncompressed stream; or, alternatively,
61          * can be all zeroes if the stream has zero length. */
62         u8 hash[SHA1_HASH_SIZE];
63
64         /* Length of the stream name, in bytes.  0 if the stream is unnamed.  */
65         le16 stream_name_nbytes;
66
67         /* Stream name in UTF-16LE.  It is @stream_name_nbytes bytes long,
68          * excluding the the null terminator.  There is a null terminator
69          * character if @stream_name_nbytes != 0; i.e., if this stream is named.
70          * */
71         utf16lechar stream_name[];
72 } _packed_attribute;
73
74 #define WIM_ADS_ENTRY_DISK_SIZE 38
75
76 /* On-disk format of a WIM dentry (directory entry), located in the metadata
77  * resource for a WIM image.  */
78 struct wim_dentry_on_disk {
79
80         /* Length of this directory entry in bytes, not including any alternate
81          * data stream entries.  Should be a multiple of 8 so that the following
82          * dentry or alternate data stream entry is aligned on an 8-byte
83          * boundary.  (If not, wimlib will round it up.)  It must be at least as
84          * long as the fixed-length fields of the dentry (WIM_DENTRY_DISK_SIZE),
85          * plus the lengths of the file name and/or short name if present.
86          *
87          * It is also possible for this field to be 0.  This situation, which is
88          * undocumented, indicates the end of a list of sibling nodes in a
89          * directory.  It also means the real length is 8, because the dentry
90          * included only the length field, but that takes up 8 bytes.  */
91         le64 length;
92
93         /* Attributes of the file or directory.  This is a bitwise OR of the
94          * FILE_ATTRIBUTE_* constants and should correspond to the value
95          * retrieved by GetFileAttributes() on Windows. */
96         le32 attributes;
97
98         /* A value that specifies the security descriptor for this file or
99          * directory.  If -1, the file or directory has no security descriptor.
100          * Otherwise, it is a 0-based index into the WIM image's table of
101          * security descriptors (see: `struct wim_security_data') */
102         sle32 security_id;
103
104         /* Offset, in bytes, from the start of the uncompressed metadata
105          * resource of this directory's child directory entries, or 0 if this
106          * directory entry does not correspond to a directory or otherwise does
107          * not have any children. */
108         le64 subdir_offset;
109
110         /* Reserved fields */
111         le64 unused_1;
112         le64 unused_2;
113
114
115         /* Creation time, last access time, and last write time, in
116          * 100-nanosecond intervals since 12:00 a.m UTC January 1, 1601.  They
117          * should correspond to the times gotten by calling GetFileTime() on
118          * Windows. */
119         le64 creation_time;
120         le64 last_access_time;
121         le64 last_write_time;
122
123         /* Vaguely, the SHA-1 message digest ("hash") of the file's contents.
124          * More specifically, this is for the "unnamed data stream" rather than
125          * any "alternate data streams".  This hash value is used to look up the
126          * corresponding entry in the WIM's stream lookup table to actually find
127          * the file contents within the WIM.
128          *
129          * If the file has no unnamed data stream (e.g. is a directory), then
130          * this field will be all zeroes.  If the unnamed data stream is empty
131          * (i.e. an "empty file"), then this field is also expected to be all
132          * zeroes.  (It will be if wimlib created the WIM image, at least;
133          * otherwise it can't be ruled out that the SHA-1 message digest of 0
134          * bytes of data is given explicitly.)
135          *
136          * If the file has reparse data, then this field will instead specify
137          * the SHA-1 message digest of the reparse data.  If it is somehow
138          * possible for a file to have both an unnamed data stream and reparse
139          * data, then this is not handled by wimlib.
140          *
141          * As a further special case, if this field is all zeroes but there is
142          * an alternate data stream entry with no name and a nonzero SHA-1
143          * message digest field, then that hash must be used instead of this
144          * one.  (wimlib does not use this quirk on WIM images it creates.)
145          */
146         u8 unnamed_stream_hash[SHA1_HASH_SIZE];
147
148         /* The format of the following data is not yet completely known and they
149          * do not correspond to Microsoft's documentation.
150          *
151          * If this directory entry is for a reparse point (has
152          * FILE_ATTRIBUTE_REPARSE_POINT set in the attributes field), then the
153          * version of the following fields containing the reparse tag is valid.
154          * Furthermore, the field notated as not_rpfixed, as far as I can tell,
155          * is supposed to be set to 1 if reparse point fixups (a.k.a. fixing the
156          * targets of absolute symbolic links) were *not* done, and otherwise 0.
157          *
158          * If this directory entry is not for a reparse point, then the version
159          * of the following fields containing the hard_link_group_id is valid.
160          * All MS says about this field is that "If this file is part of a hard
161          * link set, all the directory entries in the set will share the same
162          * value in this field.".  However, more specifically I have observed
163          * the following:
164          *    - If the file is part of a hard link set of size 1, then the
165          *    hard_link_group_id should be set to either 0, which is treated
166          *    specially as indicating "not hardlinked", or any unique value.
167          *    - The specific nonzero values used to identity hard link sets do
168          *    not matter, as long as they are unique.
169          *    - However, due to bugs in Microsoft's software, it is actually NOT
170          *    guaranteed that directory entries that share the same hard link
171          *    group ID are actually hard linked to each either.  We have to
172          *    handle this by using special code to use distinguishing features
173          *    (which is possible because some information about the underlying
174          *    inode is repeated in each dentry) to split up these fake hard link
175          *    groups into what they actually are supposed to be.
176          */
177         union {
178                 struct {
179                         le32 rp_unknown_1;
180                         le32 reparse_tag;
181                         le16 rp_unknown_2;
182                         le16 not_rpfixed;
183                 } _packed_attribute reparse;
184                 struct {
185                         le32 rp_unknown_1;
186                         le64 hard_link_group_id;
187                 } _packed_attribute nonreparse;
188         };
189
190         /* Number of alternate data stream entries that directly follow this
191          * dentry on-disk. */
192         le16 num_alternate_data_streams;
193
194         /* Length of this file's UTF-16LE encoded short name (8.3 DOS-compatible
195          * name), if present, in bytes, excluding the null terminator.  If this
196          * file has no short name, then this field should be 0.  */
197         le16 short_name_nbytes;
198
199         /* Length of this file's UTF-16LE encoded "long" name, excluding the
200          * null terminator.  If this file has no short name, then this field
201          * should be 0.  It's expected that only the root dentry has this field
202          * set to 0.  */
203         le16 file_name_nbytes;
204
205         /* Followed by variable length file name, in UTF16-LE, if
206          * file_name_nbytes != 0.  Includes null terminator. */
207         /*utf16lechar file_name[];*/
208
209         /* Followed by variable length short name, in UTF16-LE, if
210          * short_name_nbytes != 0.  Includes null terminator. */
211         /*utf16lechar short_name[];*/
212 } _packed_attribute;
213
214 #define WIM_DENTRY_DISK_SIZE 102
215
216 /* Calculates the unaligned length, in bytes, of an on-disk WIM dentry that has
217  * a file name and short name that take the specified numbers of bytes.  This
218  * excludes any alternate data stream entries that may follow the dentry. */
219 static u64
220 _dentry_correct_length_unaligned(u16 file_name_nbytes, u16 short_name_nbytes)
221 {
222         u64 length = sizeof(struct wim_dentry_on_disk);
223         if (file_name_nbytes)
224                 length += file_name_nbytes + 2;
225         if (short_name_nbytes)
226                 length += short_name_nbytes + 2;
227         return length;
228 }
229
230 /* Calculates the unaligned length, in bytes, of an on-disk WIM dentry, based on
231  * the file name length and short name length.  Note that dentry->length is
232  * ignored; also, this excludes any alternate data stream entries that may
233  * follow the dentry. */
234 static u64
235 dentry_correct_length_unaligned(const struct wim_dentry *dentry)
236 {
237         return _dentry_correct_length_unaligned(dentry->file_name_nbytes,
238                                                 dentry->short_name_nbytes);
239 }
240
241 /* Duplicates a string of system-dependent encoding into a UTF-16LE string and
242  * returns the string and its length, in bytes, in the pointer arguments.  Frees
243  * any existing string at the return location before overwriting it. */
244 static int
245 get_utf16le_name(const tchar *name, utf16lechar **name_utf16le_ret,
246                  u16 *name_utf16le_nbytes_ret)
247 {
248         utf16lechar *name_utf16le;
249         size_t name_utf16le_nbytes;
250         int ret;
251 #if TCHAR_IS_UTF16LE
252         name_utf16le_nbytes = tstrlen(name) * sizeof(utf16lechar);
253         name_utf16le = MALLOC(name_utf16le_nbytes + sizeof(utf16lechar));
254         if (!name_utf16le)
255                 return WIMLIB_ERR_NOMEM;
256         memcpy(name_utf16le, name, name_utf16le_nbytes + sizeof(utf16lechar));
257         ret = 0;
258 #else
259
260         ret = tstr_to_utf16le(name, tstrlen(name), &name_utf16le,
261                               &name_utf16le_nbytes);
262         if (ret == 0) {
263                 if (name_utf16le_nbytes > 0xffff) {
264                         FREE(name_utf16le);
265                         ERROR("Multibyte string \"%"TS"\" is too long!", name);
266                         ret = WIMLIB_ERR_INVALID_UTF8_STRING;
267                 }
268         }
269 #endif
270         if (ret == 0) {
271                 FREE(*name_utf16le_ret);
272                 *name_utf16le_ret = name_utf16le;
273                 *name_utf16le_nbytes_ret = name_utf16le_nbytes;
274         }
275         return ret;
276 }
277
278 /* Sets the name of a WIM dentry from a multibyte string. */
279 int
280 set_dentry_name(struct wim_dentry *dentry, const tchar *new_name)
281 {
282         int ret;
283         ret = get_utf16le_name(new_name, &dentry->file_name,
284                                &dentry->file_name_nbytes);
285         if (ret == 0) {
286                 /* Clear the short name and recalculate the dentry length */
287                 if (dentry_has_short_name(dentry)) {
288                         FREE(dentry->short_name);
289                         dentry->short_name = NULL;
290                         dentry->short_name_nbytes = 0;
291                 }
292         }
293         return ret;
294 }
295
296 /* Returns the total length of a WIM alternate data stream entry on-disk,
297  * including the stream name, the null terminator, AND the padding after the
298  * entry to align the next ADS entry or dentry on an 8-byte boundary. */
299 static u64
300 ads_entry_total_length(const struct wim_ads_entry *entry)
301 {
302         u64 len = sizeof(struct wim_ads_entry_on_disk);
303         if (entry->stream_name_nbytes)
304                 len += entry->stream_name_nbytes + 2;
305         return (len + 7) & ~7;
306 }
307
308
309 static u64
310 _dentry_total_length(const struct wim_dentry *dentry, u64 length)
311 {
312         const struct wim_inode *inode = dentry->d_inode;
313         for (u16 i = 0; i < inode->i_num_ads; i++)
314                 length += ads_entry_total_length(&inode->i_ads_entries[i]);
315         return (length + 7) & ~7;
316 }
317
318 /* Calculate the aligned *total* length of an on-disk WIM dentry.  This includes
319  * all alternate data streams. */
320 u64
321 dentry_correct_total_length(const struct wim_dentry *dentry)
322 {
323         return _dentry_total_length(dentry,
324                                     dentry_correct_length_unaligned(dentry));
325 }
326
327 /* Like dentry_correct_total_length(), but use the existing dentry->length field
328  * instead of calculating its "correct" value. */
329 static u64
330 dentry_total_length(const struct wim_dentry *dentry)
331 {
332         return _dentry_total_length(dentry, dentry->length);
333 }
334
335 int
336 for_dentry_in_rbtree(struct rb_node *root,
337                      int (*visitor)(struct wim_dentry *, void *),
338                      void *arg)
339 {
340         int ret;
341         struct rb_node *node = root;
342         LIST_HEAD(stack);
343         while (1) {
344                 if (node) {
345                         list_add(&rbnode_dentry(node)->tmp_list, &stack);
346                         node = node->rb_left;
347                 } else {
348                         struct list_head *next;
349                         struct wim_dentry *dentry;
350
351                         next = stack.next;
352                         if (next == &stack)
353                                 return 0;
354                         dentry = container_of(next, struct wim_dentry, tmp_list);
355                         list_del(next);
356                         ret = visitor(dentry, arg);
357                         if (ret != 0)
358                                 return ret;
359                         node = dentry->rb_node.rb_right;
360                 }
361         }
362 }
363
364 static int
365 for_dentry_tree_in_rbtree_depth(struct rb_node *node,
366                                 int (*visitor)(struct wim_dentry*, void*),
367                                 void *arg)
368 {
369         int ret;
370         if (node) {
371                 ret = for_dentry_tree_in_rbtree_depth(node->rb_left,
372                                                       visitor, arg);
373                 if (ret != 0)
374                         return ret;
375                 ret = for_dentry_tree_in_rbtree_depth(node->rb_right,
376                                                       visitor, arg);
377                 if (ret != 0)
378                         return ret;
379                 ret = for_dentry_in_tree_depth(rbnode_dentry(node), visitor, arg);
380                 if (ret != 0)
381                         return ret;
382         }
383         return 0;
384 }
385
386 static int
387 for_dentry_tree_in_rbtree(struct rb_node *node,
388                           int (*visitor)(struct wim_dentry*, void*),
389                           void *arg)
390 {
391         int ret;
392         if (node) {
393                 ret = for_dentry_tree_in_rbtree(node->rb_left, visitor, arg);
394                 if (ret)
395                         return ret;
396                 ret = for_dentry_in_tree(rbnode_dentry(node), visitor, arg);
397                 if (ret)
398                         return ret;
399                 ret = for_dentry_tree_in_rbtree(node->rb_right, visitor, arg);
400                 if (ret)
401                         return ret;
402         }
403         return 0;
404 }
405
406 /* Calls a function on all directory entries in a WIM dentry tree.  Logically,
407  * this is a pre-order traversal (the function is called on a parent dentry
408  * before its children), but sibling dentries will be visited in order as well.
409  * */
410 int
411 for_dentry_in_tree(struct wim_dentry *root,
412                    int (*visitor)(struct wim_dentry*, void*), void *arg)
413 {
414         int ret;
415
416         if (!root)
417                 return 0;
418         ret = (*visitor)(root, arg);
419         if (ret)
420                 return ret;
421         return for_dentry_tree_in_rbtree(root->d_inode->i_children.rb_node,
422                                          visitor,
423                                          arg);
424 }
425
426 /* Like for_dentry_in_tree(), but the visitor function is always called on a
427  * dentry's children before on itself. */
428 int
429 for_dentry_in_tree_depth(struct wim_dentry *root,
430                          int (*visitor)(struct wim_dentry*, void*), void *arg)
431 {
432         int ret;
433
434         if (!root)
435                 return 0;
436         ret = for_dentry_tree_in_rbtree_depth(root->d_inode->i_children.rb_node,
437                                               visitor, arg);
438         if (ret)
439                 return ret;
440         return (*visitor)(root, arg);
441 }
442
443 /* Calculate the full path of @dentry.  The full path of its parent must have
444  * already been calculated, or it must be the root dentry. */
445 int
446 calculate_dentry_full_path(struct wim_dentry *dentry)
447 {
448         tchar *full_path;
449         u32 full_path_nbytes;
450         int ret;
451
452         if (dentry->_full_path)
453                 return 0;
454
455         if (dentry_is_root(dentry)) {
456                 static const tchar _root_path[] = {WIM_PATH_SEPARATOR, T('\0')};
457                 full_path = TSTRDUP(_root_path);
458                 if (!full_path)
459                         return WIMLIB_ERR_NOMEM;
460                 full_path_nbytes = 1 * sizeof(tchar);
461         } else {
462                 struct wim_dentry *parent;
463                 tchar *parent_full_path;
464                 u32 parent_full_path_nbytes;
465                 size_t filename_nbytes;
466
467                 parent = dentry->parent;
468                 if (dentry_is_root(parent)) {
469                         parent_full_path = T("");
470                         parent_full_path_nbytes = 0;
471                 } else {
472                         if (!parent->_full_path) {
473                                 ret = calculate_dentry_full_path(parent);
474                                 if (ret)
475                                         return ret;
476                         }
477                         parent_full_path = parent->_full_path;
478                         parent_full_path_nbytes = parent->full_path_nbytes;
479                 }
480
481                 /* Append this dentry's name as a tchar string to the full path
482                  * of the parent followed by the path separator */
483         #if TCHAR_IS_UTF16LE
484                 filename_nbytes = dentry->file_name_nbytes;
485         #else
486                 {
487                         int ret = utf16le_to_tstr_nbytes(dentry->file_name,
488                                                          dentry->file_name_nbytes,
489                                                          &filename_nbytes);
490                         if (ret)
491                                 return ret;
492                 }
493         #endif
494
495                 full_path_nbytes = parent_full_path_nbytes + sizeof(tchar) +
496                                    filename_nbytes;
497                 full_path = MALLOC(full_path_nbytes + sizeof(tchar));
498                 if (!full_path)
499                         return WIMLIB_ERR_NOMEM;
500                 memcpy(full_path, parent_full_path, parent_full_path_nbytes);
501                 full_path[parent_full_path_nbytes / sizeof(tchar)] = WIM_PATH_SEPARATOR;
502         #if TCHAR_IS_UTF16LE
503                 memcpy(&full_path[parent_full_path_nbytes / sizeof(tchar) + 1],
504                        dentry->file_name,
505                        filename_nbytes + sizeof(tchar));
506         #else
507                 utf16le_to_tstr_buf(dentry->file_name,
508                                     dentry->file_name_nbytes,
509                                     &full_path[parent_full_path_nbytes /
510                                                sizeof(tchar) + 1]);
511         #endif
512         }
513         dentry->_full_path = full_path;
514         dentry->full_path_nbytes= full_path_nbytes;
515         return 0;
516 }
517
518 static int
519 do_calculate_dentry_full_path(struct wim_dentry *dentry, void *_ignore)
520 {
521         return calculate_dentry_full_path(dentry);
522 }
523
524 int
525 calculate_dentry_tree_full_paths(struct wim_dentry *root)
526 {
527         return for_dentry_in_tree(root, do_calculate_dentry_full_path, NULL);
528 }
529
530 tchar *
531 dentry_full_path(struct wim_dentry *dentry)
532 {
533         calculate_dentry_full_path(dentry);
534         return dentry->_full_path;
535 }
536
537 static int
538 increment_subdir_offset(struct wim_dentry *dentry, void *subdir_offset_p)
539 {
540         *(u64*)subdir_offset_p += dentry_correct_total_length(dentry);
541         return 0;
542 }
543
544 static int
545 call_calculate_subdir_offsets(struct wim_dentry *dentry, void *subdir_offset_p)
546 {
547         calculate_subdir_offsets(dentry, subdir_offset_p);
548         return 0;
549 }
550
551 /*
552  * Recursively calculates the subdir offsets for a directory tree.
553  *
554  * @dentry:  The root of the directory tree.
555  * @subdir_offset_p:  The current subdirectory offset; i.e., the subdirectory
556  *                    offset for @dentry.
557  */
558 void
559 calculate_subdir_offsets(struct wim_dentry *dentry, u64 *subdir_offset_p)
560 {
561         struct rb_node *node;
562
563         dentry->subdir_offset = *subdir_offset_p;
564         node = dentry->d_inode->i_children.rb_node;
565         if (node) {
566                 /* Advance the subdir offset by the amount of space the children
567                  * of this dentry take up. */
568                 for_dentry_in_rbtree(node, increment_subdir_offset, subdir_offset_p);
569
570                 /* End-of-directory dentry on disk. */
571                 *subdir_offset_p += 8;
572
573                 /* Recursively call calculate_subdir_offsets() on all the
574                  * children. */
575                 for_dentry_in_rbtree(node, call_calculate_subdir_offsets, subdir_offset_p);
576         } else {
577                 /* On disk, childless directories have a valid subdir_offset
578                  * that points to an 8-byte end-of-directory dentry.  Regular
579                  * files or reparse points have a subdir_offset of 0. */
580                 if (dentry_is_directory(dentry))
581                         *subdir_offset_p += 8;
582                 else
583                         dentry->subdir_offset = 0;
584         }
585 }
586
587 /* Case-sensitive UTF-16LE dentry or stream name comparison.  Used on both UNIX
588  * (always) and Windows (sometimes) */
589 static int
590 compare_utf16le_names_case_sensitive(const utf16lechar *name1, size_t nbytes1,
591                                      const utf16lechar *name2, size_t nbytes2)
592 {
593         /* Return the result if the strings differ up to their minimum length.
594          * Note that we cannot use strcmp() or strncmp() here, as the strings
595          * are in UTF-16LE format. */
596         int result = memcmp(name1, name2, min(nbytes1, nbytes2));
597         if (result)
598                 return result;
599
600         /* The strings are the same up to their minimum length, so return a
601          * result based on their lengths. */
602         if (nbytes1 < nbytes2)
603                 return -1;
604         else if (nbytes1 > nbytes2)
605                 return 1;
606         else
607                 return 0;
608 }
609
610 #ifdef __WIN32__
611 /* Windoze: Case-insensitive UTF-16LE dentry or stream name comparison */
612 static int
613 compare_utf16le_names_case_insensitive(const utf16lechar *name1, size_t nbytes1,
614                                        const utf16lechar *name2, size_t nbytes2)
615 {
616         /* Return the result if the strings differ up to their minimum length.
617          * */
618         int result = _wcsnicmp((const wchar_t*)name1, (const wchar_t*)name2,
619                                min(nbytes1 / 2, nbytes2 / 2));
620         if (result)
621                 return result;
622
623         /* The strings are the same up to their minimum length, so return a
624          * result based on their lengths. */
625         if (nbytes1 < nbytes2)
626                 return -1;
627         else if (nbytes1 > nbytes2)
628                 return 1;
629         else
630                 return 0;
631 }
632 #endif /* __WIN32__ */
633
634 #ifdef __WIN32__
635 #  define compare_utf16le_names compare_utf16le_names_case_insensitive
636 #else
637 #  define compare_utf16le_names compare_utf16le_names_case_sensitive
638 #endif
639
640
641 #ifdef __WIN32__
642 static int
643 dentry_compare_names_case_insensitive(const struct wim_dentry *d1,
644                                       const struct wim_dentry *d2)
645 {
646         return compare_utf16le_names_case_insensitive(d1->file_name,
647                                                       d1->file_name_nbytes,
648                                                       d2->file_name,
649                                                       d2->file_name_nbytes);
650 }
651 #endif /* __WIN32__ */
652
653 static int
654 dentry_compare_names_case_sensitive(const struct wim_dentry *d1,
655                                     const struct wim_dentry *d2)
656 {
657         return compare_utf16le_names_case_sensitive(d1->file_name,
658                                                     d1->file_name_nbytes,
659                                                     d2->file_name,
660                                                     d2->file_name_nbytes);
661 }
662
663 #ifdef __WIN32__
664 #  define dentry_compare_names dentry_compare_names_case_insensitive
665 #else
666 #  define dentry_compare_names dentry_compare_names_case_sensitive
667 #endif
668
669 /* Return %true iff the alternate data stream entry @entry has the UTF-16LE
670  * stream name @name that has length @name_nbytes bytes. */
671 static inline bool
672 ads_entry_has_name(const struct wim_ads_entry *entry,
673                    const utf16lechar *name, size_t name_nbytes)
674 {
675         return !compare_utf16le_names(name, name_nbytes,
676                                       entry->stream_name,
677                                       entry->stream_name_nbytes);
678 }
679
680 /* Given a UTF-16LE filename and a directory, look up the dentry for the file.
681  * Return it if found, otherwise NULL.  This is case-sensitive on UNIX and
682  * case-insensitive on Windows. */
683 struct wim_dentry *
684 get_dentry_child_with_utf16le_name(const struct wim_dentry *dentry,
685                                    const utf16lechar *name,
686                                    size_t name_nbytes)
687 {
688         struct rb_node *node;
689
690 #ifdef __WIN32__
691         node = dentry->d_inode->i_children_case_insensitive.rb_node;
692 #else
693         node = dentry->d_inode->i_children.rb_node;
694 #endif
695
696         struct wim_dentry *child;
697         while (node) {
698         #ifdef __WIN32__
699                 child = rb_entry(node, struct wim_dentry, rb_node_case_insensitive);
700         #else
701                 child = rbnode_dentry(node);
702         #endif
703                 int result = compare_utf16le_names(name, name_nbytes,
704                                                    child->file_name,
705                                                    child->file_name_nbytes);
706                 if (result < 0)
707                         node = node->rb_left;
708                 else if (result > 0)
709                         node = node->rb_right;
710                 else {
711                 #ifdef __WIN32__
712                         if (!list_empty(&child->case_insensitive_conflict_list))
713                         {
714                                 WARNING("Result of case-insensitive lookup is ambiguous "
715                                         "(returning \"%ls\" instead of \"%ls\")",
716                                         child->file_name,
717                                         container_of(child->case_insensitive_conflict_list.next,
718                                                      struct wim_dentry,
719                                                      case_insensitive_conflict_list)->file_name);
720                         }
721                 #endif
722                         return child;
723                 }
724         }
725         return NULL;
726 }
727
728 /* Returns the child of @dentry that has the file name @name.  Returns NULL if
729  * no child has the name. */
730 struct wim_dentry *
731 get_dentry_child_with_name(const struct wim_dentry *dentry, const tchar *name)
732 {
733 #if TCHAR_IS_UTF16LE
734         return get_dentry_child_with_utf16le_name(dentry, name,
735                                                   tstrlen(name) * sizeof(tchar));
736 #else
737         utf16lechar *utf16le_name;
738         size_t utf16le_name_nbytes;
739         int ret;
740         struct wim_dentry *child;
741
742         ret = tstr_to_utf16le(name, tstrlen(name) * sizeof(tchar),
743                               &utf16le_name, &utf16le_name_nbytes);
744         if (ret) {
745                 child = NULL;
746         } else {
747                 child = get_dentry_child_with_utf16le_name(dentry,
748                                                            utf16le_name,
749                                                            utf16le_name_nbytes);
750                 FREE(utf16le_name);
751         }
752         return child;
753 #endif
754 }
755
756 static struct wim_dentry *
757 get_dentry_utf16le(WIMStruct *wim, const utf16lechar *path)
758 {
759         struct wim_dentry *cur_dentry, *parent_dentry;
760         const utf16lechar *p, *pp;
761
762         cur_dentry = parent_dentry = wim_root_dentry(wim);
763         if (!cur_dentry) {
764                 errno = ENOENT;
765                 return NULL;
766         }
767         p = path;
768         while (1) {
769                 while (*p == cpu_to_le16(WIM_PATH_SEPARATOR))
770                         p++;
771                 if (*p == cpu_to_le16('\0'))
772                         break;
773                 pp = p;
774                 while (*pp != cpu_to_le16(WIM_PATH_SEPARATOR) &&
775                        *pp != cpu_to_le16('\0'))
776                         pp++;
777
778                 cur_dentry = get_dentry_child_with_utf16le_name(parent_dentry, p,
779                                                                 (void*)pp - (void*)p);
780                 if (cur_dentry == NULL)
781                         break;
782                 p = pp;
783                 parent_dentry = cur_dentry;
784         }
785         if (cur_dentry == NULL) {
786                 if (dentry_is_directory(parent_dentry))
787                         errno = ENOENT;
788                 else
789                         errno = ENOTDIR;
790         }
791         return cur_dentry;
792 }
793
794 /*
795  * Returns the dentry in the currently selected WIM image named by @path
796  * starting from the root of the WIM image, or NULL if there is no such dentry.
797  *
798  * On Windows, the search is done case-insensitively.
799  */
800 struct wim_dentry *
801 get_dentry(WIMStruct *wim, const tchar *path)
802 {
803 #if TCHAR_IS_UTF16LE
804         return get_dentry_utf16le(wim, path);
805 #else
806         utf16lechar *path_utf16le;
807         size_t path_utf16le_nbytes;
808         int ret;
809         struct wim_dentry *dentry;
810
811         ret = tstr_to_utf16le(path, tstrlen(path) * sizeof(tchar),
812                               &path_utf16le, &path_utf16le_nbytes);
813         if (ret)
814                 return NULL;
815         dentry = get_dentry_utf16le(wim, path_utf16le);
816         FREE(path_utf16le);
817         return dentry;
818 #endif
819 }
820
821 struct wim_inode *
822 wim_pathname_to_inode(WIMStruct *wim, const tchar *path)
823 {
824         struct wim_dentry *dentry;
825         dentry = get_dentry(wim, path);
826         if (dentry)
827                 return dentry->d_inode;
828         else
829                 return NULL;
830 }
831
832 /* Takes in a path of length @len in @buf, and transforms it into a string for
833  * the path of its parent directory. */
834 static void
835 to_parent_name(tchar *buf, size_t len)
836 {
837         ssize_t i = (ssize_t)len - 1;
838         while (i >= 0 && buf[i] == WIM_PATH_SEPARATOR)
839                 i--;
840         while (i >= 0 && buf[i] != WIM_PATH_SEPARATOR)
841                 i--;
842         while (i >= 0 && buf[i] == WIM_PATH_SEPARATOR)
843                 i--;
844         buf[i + 1] = T('\0');
845 }
846
847 /* Returns the dentry that corresponds to the parent directory of @path, or NULL
848  * if the dentry is not found. */
849 struct wim_dentry *
850 get_parent_dentry(WIMStruct *wim, const tchar *path)
851 {
852         size_t path_len = tstrlen(path);
853         tchar buf[path_len + 1];
854
855         tmemcpy(buf, path, path_len + 1);
856         to_parent_name(buf, path_len);
857         return get_dentry(wim, buf);
858 }
859
860 /* Prints the full path of a dentry. */
861 int
862 print_dentry_full_path(struct wim_dentry *dentry, void *_ignore)
863 {
864         int ret = calculate_dentry_full_path(dentry);
865         if (ret)
866                 return ret;
867         tprintf(T("%"TS"\n"), dentry->_full_path);
868         return 0;
869 }
870
871 /* We want to be able to show the names of the file attribute flags that are
872  * set. */
873 struct file_attr_flag {
874         u32 flag;
875         const tchar *name;
876 };
877 struct file_attr_flag file_attr_flags[] = {
878         {FILE_ATTRIBUTE_READONLY,           T("READONLY")},
879         {FILE_ATTRIBUTE_HIDDEN,             T("HIDDEN")},
880         {FILE_ATTRIBUTE_SYSTEM,             T("SYSTEM")},
881         {FILE_ATTRIBUTE_DIRECTORY,          T("DIRECTORY")},
882         {FILE_ATTRIBUTE_ARCHIVE,            T("ARCHIVE")},
883         {FILE_ATTRIBUTE_DEVICE,             T("DEVICE")},
884         {FILE_ATTRIBUTE_NORMAL,             T("NORMAL")},
885         {FILE_ATTRIBUTE_TEMPORARY,          T("TEMPORARY")},
886         {FILE_ATTRIBUTE_SPARSE_FILE,        T("SPARSE_FILE")},
887         {FILE_ATTRIBUTE_REPARSE_POINT,      T("REPARSE_POINT")},
888         {FILE_ATTRIBUTE_COMPRESSED,         T("COMPRESSED")},
889         {FILE_ATTRIBUTE_OFFLINE,            T("OFFLINE")},
890         {FILE_ATTRIBUTE_NOT_CONTENT_INDEXED,T("NOT_CONTENT_INDEXED")},
891         {FILE_ATTRIBUTE_ENCRYPTED,          T("ENCRYPTED")},
892         {FILE_ATTRIBUTE_VIRTUAL,            T("VIRTUAL")},
893 };
894
895 /* Prints a directory entry.  @lookup_table is a pointer to the lookup table, if
896  * available.  If the dentry is unresolved and the lookup table is NULL, the
897  * lookup table entries will not be printed.  Otherwise, they will be. */
898 int
899 print_dentry(struct wim_dentry *dentry, void *lookup_table)
900 {
901         const u8 *hash;
902         struct wim_lookup_table_entry *lte;
903         const struct wim_inode *inode = dentry->d_inode;
904         tchar buf[50];
905
906         tprintf(T("[DENTRY]\n"));
907         tprintf(T("Length            = %"PRIu64"\n"), dentry->length);
908         tprintf(T("Attributes        = 0x%x\n"), inode->i_attributes);
909         for (size_t i = 0; i < ARRAY_LEN(file_attr_flags); i++)
910                 if (file_attr_flags[i].flag & inode->i_attributes)
911                         tprintf(T("    FILE_ATTRIBUTE_%"TS" is set\n"),
912                                 file_attr_flags[i].name);
913         tprintf(T("Security ID       = %d\n"), inode->i_security_id);
914         tprintf(T("Subdir offset     = %"PRIu64"\n"), dentry->subdir_offset);
915
916         wim_timestamp_to_str(inode->i_creation_time, buf, sizeof(buf));
917         tprintf(T("Creation Time     = %"TS"\n"), buf);
918
919         wim_timestamp_to_str(inode->i_last_access_time, buf, sizeof(buf));
920         tprintf(T("Last Access Time  = %"TS"\n"), buf);
921
922         wim_timestamp_to_str(inode->i_last_write_time, buf, sizeof(buf));
923         tprintf(T("Last Write Time   = %"TS"\n"), buf);
924
925         if (inode->i_attributes & FILE_ATTRIBUTE_REPARSE_POINT) {
926                 tprintf(T("Reparse Tag       = 0x%"PRIx32"\n"), inode->i_reparse_tag);
927                 tprintf(T("Reparse Point Flags = 0x%"PRIx16"\n"),
928                         inode->i_not_rpfixed);
929                 tprintf(T("Reparse Point Unknown 2 = 0x%"PRIx32"\n"),
930                         inode->i_rp_unknown_2);
931         }
932         tprintf(T("Reparse Point Unknown 1 = 0x%"PRIx32"\n"),
933                 inode->i_rp_unknown_1);
934         tprintf(T("Hard Link Group   = 0x%"PRIx64"\n"), inode->i_ino);
935         tprintf(T("Hard Link Group Size = %"PRIu32"\n"), inode->i_nlink);
936         tprintf(T("Number of Alternate Data Streams = %hu\n"), inode->i_num_ads);
937         if (dentry_has_long_name(dentry))
938                 wimlib_printf(T("Filename = \"%"WS"\"\n"), dentry->file_name);
939         if (dentry_has_short_name(dentry))
940                 wimlib_printf(T("Short Name \"%"WS"\"\n"), dentry->short_name);
941         if (dentry->_full_path)
942                 tprintf(T("Full Path = \"%"TS"\"\n"), dentry->_full_path);
943
944         lte = inode_stream_lte(dentry->d_inode, 0, lookup_table);
945         if (lte) {
946                 print_lookup_table_entry(lte, stdout);
947         } else {
948                 hash = inode_stream_hash(inode, 0);
949                 if (hash) {
950                         tprintf(T("Hash              = 0x"));
951                         print_hash(hash, stdout);
952                         tputchar(T('\n'));
953                         tputchar(T('\n'));
954                 }
955         }
956         for (u16 i = 0; i < inode->i_num_ads; i++) {
957                 tprintf(T("[Alternate Stream Entry %u]\n"), i);
958                 wimlib_printf(T("Name = \"%"WS"\"\n"),
959                               inode->i_ads_entries[i].stream_name);
960                 tprintf(T("Name Length (UTF16 bytes) = %hu\n"),
961                        inode->i_ads_entries[i].stream_name_nbytes);
962                 hash = inode_stream_hash(inode, i + 1);
963                 if (hash) {
964                         tprintf(T("Hash              = 0x"));
965                         print_hash(hash, stdout);
966                         tputchar(T('\n'));
967                 }
968                 print_lookup_table_entry(inode_stream_lte(inode, i + 1, lookup_table),
969                                          stdout);
970         }
971         return 0;
972 }
973
974 /* Initializations done on every `struct wim_dentry'. */
975 static void
976 dentry_common_init(struct wim_dentry *dentry)
977 {
978         memset(dentry, 0, sizeof(struct wim_dentry));
979 }
980
981 struct wim_inode *
982 new_timeless_inode(void)
983 {
984         struct wim_inode *inode = CALLOC(1, sizeof(struct wim_inode));
985         if (inode) {
986                 inode->i_security_id = -1;
987                 inode->i_nlink = 1;
988                 inode->i_next_stream_id = 1;
989                 inode->i_not_rpfixed = 1;
990                 INIT_LIST_HEAD(&inode->i_list);
991                 INIT_LIST_HEAD(&inode->i_dentry);
992         }
993         return inode;
994 }
995
996 static struct wim_inode *
997 new_inode(void)
998 {
999         struct wim_inode *inode = new_timeless_inode();
1000         if (inode) {
1001                 u64 now = get_wim_timestamp();
1002                 inode->i_creation_time = now;
1003                 inode->i_last_access_time = now;
1004                 inode->i_last_write_time = now;
1005         }
1006         return inode;
1007 }
1008
1009 /* Creates an unlinked directory entry. */
1010 int
1011 new_dentry(const tchar *name, struct wim_dentry **dentry_ret)
1012 {
1013         struct wim_dentry *dentry;
1014         int ret;
1015
1016         dentry = MALLOC(sizeof(struct wim_dentry));
1017         if (!dentry)
1018                 return WIMLIB_ERR_NOMEM;
1019
1020         dentry_common_init(dentry);
1021         ret = set_dentry_name(dentry, name);
1022         if (ret == 0) {
1023                 dentry->parent = dentry;
1024                 *dentry_ret = dentry;
1025         } else {
1026                 FREE(dentry);
1027                 ERROR("Failed to set name on new dentry with name \"%"TS"\"",
1028                       name);
1029         }
1030         return ret;
1031 }
1032
1033
1034 static int
1035 _new_dentry_with_inode(const tchar *name, struct wim_dentry **dentry_ret,
1036                         bool timeless)
1037 {
1038         struct wim_dentry *dentry;
1039         int ret;
1040
1041         ret = new_dentry(name, &dentry);
1042         if (ret)
1043                 return ret;
1044
1045         if (timeless)
1046                 dentry->d_inode = new_timeless_inode();
1047         else
1048                 dentry->d_inode = new_inode();
1049         if (!dentry->d_inode) {
1050                 free_dentry(dentry);
1051                 return WIMLIB_ERR_NOMEM;
1052         }
1053
1054         inode_add_dentry(dentry, dentry->d_inode);
1055         *dentry_ret = dentry;
1056         return 0;
1057 }
1058
1059 int
1060 new_dentry_with_timeless_inode(const tchar *name, struct wim_dentry **dentry_ret)
1061 {
1062         return _new_dentry_with_inode(name, dentry_ret, true);
1063 }
1064
1065 int
1066 new_dentry_with_inode(const tchar *name, struct wim_dentry **dentry_ret)
1067 {
1068         return _new_dentry_with_inode(name, dentry_ret, false);
1069 }
1070
1071 int
1072 new_filler_directory(const tchar *name, struct wim_dentry **dentry_ret)
1073 {
1074         int ret;
1075         struct wim_dentry *dentry;
1076
1077         DEBUG("Creating filler directory \"%"TS"\"", name);
1078         ret = new_dentry_with_inode(name, &dentry);
1079         if (ret)
1080                 return ret;
1081         /* Leave the inode number as 0; this is allowed for non
1082          * hard-linked files. */
1083         dentry->d_inode->i_resolved = 1;
1084         dentry->d_inode->i_attributes = FILE_ATTRIBUTE_DIRECTORY;
1085         *dentry_ret = dentry;
1086         return 0;
1087 }
1088
1089 static int
1090 init_ads_entry(struct wim_ads_entry *ads_entry, const void *name,
1091                size_t name_nbytes, bool is_utf16le)
1092 {
1093         int ret = 0;
1094         memset(ads_entry, 0, sizeof(*ads_entry));
1095
1096         if (is_utf16le) {
1097                 utf16lechar *p = MALLOC(name_nbytes + sizeof(utf16lechar));
1098                 if (!p)
1099                         return WIMLIB_ERR_NOMEM;
1100                 memcpy(p, name, name_nbytes);
1101                 p[name_nbytes / 2] = cpu_to_le16(0);
1102                 ads_entry->stream_name = p;
1103                 ads_entry->stream_name_nbytes = name_nbytes;
1104         } else {
1105                 if (name && *(const tchar*)name != T('\0')) {
1106                         ret = get_utf16le_name(name, &ads_entry->stream_name,
1107                                                &ads_entry->stream_name_nbytes);
1108                 }
1109         }
1110         return ret;
1111 }
1112
1113 static void
1114 destroy_ads_entry(struct wim_ads_entry *ads_entry)
1115 {
1116         FREE(ads_entry->stream_name);
1117 }
1118
1119 /* Frees an inode. */
1120 void
1121 free_inode(struct wim_inode *inode)
1122 {
1123         if (inode) {
1124                 if (inode->i_ads_entries) {
1125                         for (u16 i = 0; i < inode->i_num_ads; i++)
1126                                 destroy_ads_entry(&inode->i_ads_entries[i]);
1127                         FREE(inode->i_ads_entries);
1128                 }
1129                 /* HACK: This may instead delete the inode from i_list, but the
1130                  * hlist_del() behaves the same as list_del(). */
1131                 if (!hlist_unhashed(&inode->i_hlist))
1132                         hlist_del(&inode->i_hlist);
1133                 FREE(inode);
1134         }
1135 }
1136
1137 /* Decrements link count on an inode and frees it if the link count reaches 0.
1138  * */
1139 static void
1140 put_inode(struct wim_inode *inode)
1141 {
1142         wimlib_assert(inode->i_nlink != 0);
1143         if (--inode->i_nlink == 0) {
1144         #ifdef WITH_FUSE
1145                 if (inode->i_num_opened_fds == 0)
1146         #endif
1147                 {
1148                         free_inode(inode);
1149                 }
1150         }
1151 }
1152
1153 /* Frees a WIM dentry.
1154  *
1155  * The corresponding inode (if any) is freed only if its link count is
1156  * decremented to 0.
1157  */
1158 void
1159 free_dentry(struct wim_dentry *dentry)
1160 {
1161         if (dentry) {
1162                 FREE(dentry->file_name);
1163                 FREE(dentry->short_name);
1164                 FREE(dentry->_full_path);
1165                 if (dentry->d_inode)
1166                         put_inode(dentry->d_inode);
1167                 FREE(dentry);
1168         }
1169 }
1170
1171 /* This function is passed as an argument to for_dentry_in_tree_depth() in order
1172  * to free a directory tree. */
1173 static int
1174 do_free_dentry(struct wim_dentry *dentry, void *_lookup_table)
1175 {
1176         struct wim_lookup_table *lookup_table = _lookup_table;
1177
1178         if (lookup_table) {
1179                 struct wim_inode *inode = dentry->d_inode;
1180                 for (unsigned i = 0; i <= inode->i_num_ads; i++) {
1181                         struct wim_lookup_table_entry *lte;
1182
1183                         lte = inode_stream_lte(inode, i, lookup_table);
1184                         if (lte)
1185                                 lte_decrement_refcnt(lte, lookup_table);
1186                 }
1187         }
1188         free_dentry(dentry);
1189         return 0;
1190 }
1191
1192 /*
1193  * Unlinks and frees a dentry tree.
1194  *
1195  * @root:
1196  *      The root of the tree.
1197  *
1198  * @lookup_table:
1199  *      The lookup table for dentries.  If non-NULL, the reference counts in the
1200  *      lookup table for the lookup table entries corresponding to the dentries
1201  *      will be decremented.
1202  */
1203 void
1204 free_dentry_tree(struct wim_dentry *root, struct wim_lookup_table *lookup_table)
1205 {
1206         for_dentry_in_tree_depth(root, do_free_dentry, lookup_table);
1207 }
1208
1209 #ifdef __WIN32__
1210
1211 /* Insert a dentry into the case insensitive index for a directory.
1212  *
1213  * This is a red-black tree, but when multiple dentries share the same
1214  * case-insensitive name, only one is inserted into the tree itself; the rest
1215  * are connected in a list.
1216  */
1217 static struct wim_dentry *
1218 dentry_add_child_case_insensitive(struct wim_dentry *parent,
1219                                   struct wim_dentry *child)
1220 {
1221         struct rb_root *root;
1222         struct rb_node **new;
1223         struct rb_node *rb_parent;
1224
1225         root = &parent->d_inode->i_children_case_insensitive;
1226         new = &root->rb_node;
1227         rb_parent = NULL;
1228         while (*new) {
1229                 struct wim_dentry *this = container_of(*new, struct wim_dentry,
1230                                                        rb_node_case_insensitive);
1231                 int result = dentry_compare_names_case_insensitive(child, this);
1232
1233                 rb_parent = *new;
1234
1235                 if (result < 0)
1236                         new = &((*new)->rb_left);
1237                 else if (result > 0)
1238                         new = &((*new)->rb_right);
1239                 else
1240                         return this;
1241         }
1242         rb_link_node(&child->rb_node_case_insensitive, rb_parent, new);
1243         rb_insert_color(&child->rb_node_case_insensitive, root);
1244         return NULL;
1245 }
1246 #endif
1247
1248 /*
1249  * Links a dentry into the directory tree.
1250  *
1251  * @parent: The dentry that will be the parent of @child.
1252  * @child: The dentry to link.
1253  *
1254  * Returns NULL if successful.  If @parent already contains a dentry with the
1255  * same case-sensitive name as @child, the pointer to this duplicate dentry is
1256  * returned.
1257  */
1258 struct wim_dentry *
1259 dentry_add_child(struct wim_dentry * restrict parent,
1260                  struct wim_dentry * restrict child)
1261 {
1262         struct rb_root *root;
1263         struct rb_node **new;
1264         struct rb_node *rb_parent;
1265
1266         wimlib_assert(dentry_is_directory(parent));
1267         wimlib_assert(parent != child);
1268
1269         /* Case sensitive child dentry index */
1270         root = &parent->d_inode->i_children;
1271         new = &root->rb_node;
1272         rb_parent = NULL;
1273         while (*new) {
1274                 struct wim_dentry *this = rbnode_dentry(*new);
1275                 int result = dentry_compare_names_case_sensitive(child, this);
1276
1277                 rb_parent = *new;
1278
1279                 if (result < 0)
1280                         new = &((*new)->rb_left);
1281                 else if (result > 0)
1282                         new = &((*new)->rb_right);
1283                 else
1284                         return this;
1285         }
1286         child->parent = parent;
1287         rb_link_node(&child->rb_node, rb_parent, new);
1288         rb_insert_color(&child->rb_node, root);
1289
1290 #ifdef __WIN32__
1291         {
1292                 struct wim_dentry *existing;
1293                 existing = dentry_add_child_case_insensitive(parent, child);
1294                 if (existing) {
1295                         list_add(&child->case_insensitive_conflict_list,
1296                                  &existing->case_insensitive_conflict_list);
1297                         child->rb_node_case_insensitive.__rb_parent_color = 0;
1298                 } else {
1299                         INIT_LIST_HEAD(&child->case_insensitive_conflict_list);
1300                 }
1301         }
1302 #endif
1303         return NULL;
1304 }
1305
1306 /* Unlink a WIM dentry from the directory entry tree. */
1307 void
1308 unlink_dentry(struct wim_dentry *dentry)
1309 {
1310         struct wim_dentry *parent = dentry->parent;
1311
1312         if (parent == dentry)
1313                 return;
1314         rb_erase(&dentry->rb_node, &parent->d_inode->i_children);
1315 #ifdef __WIN32__
1316         if (dentry->rb_node_case_insensitive.__rb_parent_color) {
1317                 /* This dentry was in the case-insensitive red-black tree. */
1318                 rb_erase(&dentry->rb_node_case_insensitive,
1319                          &parent->d_inode->i_children_case_insensitive);
1320                 if (!list_empty(&dentry->case_insensitive_conflict_list)) {
1321                         /* Make a different case-insensitively-the-same dentry
1322                          * be the "representative" in the red-black tree. */
1323                         struct list_head *next;
1324                         struct wim_dentry *other;
1325                         struct wim_dentry *existing;
1326
1327                         next = dentry->case_insensitive_conflict_list.next;
1328                         other = list_entry(next, struct wim_dentry, case_insensitive_conflict_list);
1329                         existing = dentry_add_child_case_insensitive(parent, other);
1330                         wimlib_assert(existing == NULL);
1331                 }
1332         }
1333         list_del(&dentry->case_insensitive_conflict_list);
1334 #endif
1335 }
1336
1337 /*
1338  * Returns the alternate data stream entry belonging to @inode that has the
1339  * stream name @stream_name.
1340  */
1341 struct wim_ads_entry *
1342 inode_get_ads_entry(struct wim_inode *inode, const tchar *stream_name,
1343                     u16 *idx_ret)
1344 {
1345         if (inode->i_num_ads == 0) {
1346                 return NULL;
1347         } else {
1348                 size_t stream_name_utf16le_nbytes;
1349                 u16 i;
1350                 struct wim_ads_entry *result;
1351
1352         #if TCHAR_IS_UTF16LE
1353                 const utf16lechar *stream_name_utf16le;
1354
1355                 stream_name_utf16le = stream_name;
1356                 stream_name_utf16le_nbytes = tstrlen(stream_name) * sizeof(tchar);
1357         #else
1358                 utf16lechar *stream_name_utf16le;
1359
1360                 {
1361                         int ret = tstr_to_utf16le(stream_name,
1362                                                   tstrlen(stream_name) *
1363                                                       sizeof(tchar),
1364                                                   &stream_name_utf16le,
1365                                                   &stream_name_utf16le_nbytes);
1366                         if (ret)
1367                                 return NULL;
1368                 }
1369         #endif
1370                 i = 0;
1371                 result = NULL;
1372                 do {
1373                         if (ads_entry_has_name(&inode->i_ads_entries[i],
1374                                                stream_name_utf16le,
1375                                                stream_name_utf16le_nbytes))
1376                         {
1377                                 if (idx_ret)
1378                                         *idx_ret = i;
1379                                 result = &inode->i_ads_entries[i];
1380                                 break;
1381                         }
1382                 } while (++i != inode->i_num_ads);
1383         #if !TCHAR_IS_UTF16LE
1384                 FREE(stream_name_utf16le);
1385         #endif
1386                 return result;
1387         }
1388 }
1389
1390 static struct wim_ads_entry *
1391 do_inode_add_ads(struct wim_inode *inode, const void *stream_name,
1392                  size_t stream_name_nbytes, bool is_utf16le)
1393 {
1394         u16 num_ads;
1395         struct wim_ads_entry *ads_entries;
1396         struct wim_ads_entry *new_entry;
1397
1398         if (inode->i_num_ads >= 0xfffe) {
1399                 ERROR("Too many alternate data streams in one inode!");
1400                 return NULL;
1401         }
1402         num_ads = inode->i_num_ads + 1;
1403         ads_entries = REALLOC(inode->i_ads_entries,
1404                               num_ads * sizeof(inode->i_ads_entries[0]));
1405         if (!ads_entries) {
1406                 ERROR("Failed to allocate memory for new alternate data stream");
1407                 return NULL;
1408         }
1409         inode->i_ads_entries = ads_entries;
1410
1411         new_entry = &inode->i_ads_entries[num_ads - 1];
1412         if (init_ads_entry(new_entry, stream_name, stream_name_nbytes, is_utf16le))
1413                 return NULL;
1414         new_entry->stream_id = inode->i_next_stream_id++;
1415         inode->i_num_ads = num_ads;
1416         return new_entry;
1417 }
1418
1419 struct wim_ads_entry *
1420 inode_add_ads_utf16le(struct wim_inode *inode,
1421                       const utf16lechar *stream_name,
1422                       size_t stream_name_nbytes)
1423 {
1424         DEBUG("Add alternate data stream \"%"WS"\"", stream_name);
1425         return do_inode_add_ads(inode, stream_name, stream_name_nbytes, true);
1426 }
1427
1428 /*
1429  * Add an alternate stream entry to a WIM inode and return a pointer to it, or
1430  * NULL if memory could not be allocated.
1431  */
1432 struct wim_ads_entry *
1433 inode_add_ads(struct wim_inode *inode, const tchar *stream_name)
1434 {
1435         DEBUG("Add alternate data stream \"%"TS"\"", stream_name);
1436         return do_inode_add_ads(inode, stream_name,
1437                                 tstrlen(stream_name) * sizeof(tchar),
1438                                 TCHAR_IS_UTF16LE);
1439 }
1440
1441 static struct wim_lookup_table_entry *
1442 add_stream_from_data_buffer(const void *buffer, size_t size,
1443                             struct wim_lookup_table *lookup_table)
1444 {
1445         u8 hash[SHA1_HASH_SIZE];
1446         struct wim_lookup_table_entry *lte, *existing_lte;
1447
1448         sha1_buffer(buffer, size, hash);
1449         existing_lte = __lookup_resource(lookup_table, hash);
1450         if (existing_lte) {
1451                 wimlib_assert(wim_resource_size(existing_lte) == size);
1452                 lte = existing_lte;
1453                 lte->refcnt++;
1454         } else {
1455                 void *buffer_copy;
1456                 lte = new_lookup_table_entry();
1457                 if (!lte)
1458                         return NULL;
1459                 buffer_copy = memdup(buffer, size);
1460                 if (!buffer_copy) {
1461                         free_lookup_table_entry(lte);
1462                         return NULL;
1463                 }
1464                 lte->resource_location            = RESOURCE_IN_ATTACHED_BUFFER;
1465                 lte->attached_buffer              = buffer_copy;
1466                 lte->resource_entry.original_size = size;
1467                 copy_hash(lte->hash, hash);
1468                 lookup_table_insert(lookup_table, lte);
1469         }
1470         return lte;
1471 }
1472
1473 int
1474 inode_add_ads_with_data(struct wim_inode *inode, const tchar *name,
1475                         const void *value, size_t size,
1476                         struct wim_lookup_table *lookup_table)
1477 {
1478         struct wim_ads_entry *new_ads_entry;
1479
1480         wimlib_assert(inode->i_resolved);
1481
1482         new_ads_entry = inode_add_ads(inode, name);
1483         if (!new_ads_entry)
1484                 return WIMLIB_ERR_NOMEM;
1485
1486         new_ads_entry->lte = add_stream_from_data_buffer(value, size,
1487                                                          lookup_table);
1488         if (!new_ads_entry->lte) {
1489                 inode_remove_ads(inode, new_ads_entry - inode->i_ads_entries,
1490                                  lookup_table);
1491                 return WIMLIB_ERR_NOMEM;
1492         }
1493         return 0;
1494 }
1495
1496 bool
1497 inode_has_named_stream(const struct wim_inode *inode)
1498 {
1499         for (u16 i = 0; i < inode->i_num_ads; i++)
1500                 if (ads_entry_is_named_stream(&inode->i_ads_entries[i]))
1501                         return true;
1502         return false;
1503 }
1504
1505 /* Set the unnamed stream of a WIM inode, given a data buffer containing the
1506  * stream contents. */
1507 int
1508 inode_set_unnamed_stream(struct wim_inode *inode, const void *data, size_t len,
1509                          struct wim_lookup_table *lookup_table)
1510 {
1511         inode->i_lte = add_stream_from_data_buffer(data, len, lookup_table);
1512         if (!inode->i_lte)
1513                 return WIMLIB_ERR_NOMEM;
1514         inode->i_resolved = 1;
1515         return 0;
1516 }
1517
1518 /* Remove an alternate data stream from a WIM inode  */
1519 void
1520 inode_remove_ads(struct wim_inode *inode, u16 idx,
1521                  struct wim_lookup_table *lookup_table)
1522 {
1523         struct wim_ads_entry *ads_entry;
1524         struct wim_lookup_table_entry *lte;
1525
1526         wimlib_assert(idx < inode->i_num_ads);
1527         wimlib_assert(inode->i_resolved);
1528
1529         ads_entry = &inode->i_ads_entries[idx];
1530
1531         DEBUG("Remove alternate data stream \"%"WS"\"", ads_entry->stream_name);
1532
1533         lte = ads_entry->lte;
1534         if (lte)
1535                 lte_decrement_refcnt(lte, lookup_table);
1536
1537         destroy_ads_entry(ads_entry);
1538
1539         memmove(&inode->i_ads_entries[idx],
1540                 &inode->i_ads_entries[idx + 1],
1541                 (inode->i_num_ads - idx - 1) * sizeof(inode->i_ads_entries[0]));
1542         inode->i_num_ads--;
1543 }
1544
1545 bool
1546 inode_has_unix_data(const struct wim_inode *inode)
1547 {
1548         for (u16 i = 0; i < inode->i_num_ads; i++)
1549                 if (ads_entry_is_unix_data(&inode->i_ads_entries[i]))
1550                         return true;
1551         return false;
1552 }
1553
1554 #ifndef __WIN32__
1555 int
1556 inode_get_unix_data(const struct wim_inode *inode,
1557                     struct wimlib_unix_data *unix_data,
1558                     u16 *stream_idx_ret)
1559 {
1560         const struct wim_ads_entry *ads_entry;
1561         const struct wim_lookup_table_entry *lte;
1562         size_t size;
1563         int ret;
1564
1565         wimlib_assert(inode->i_resolved);
1566
1567         ads_entry = inode_get_ads_entry((struct wim_inode*)inode,
1568                                         WIMLIB_UNIX_DATA_TAG, NULL);
1569         if (!ads_entry)
1570                 return NO_UNIX_DATA;
1571
1572         if (stream_idx_ret)
1573                 *stream_idx_ret = ads_entry - inode->i_ads_entries;
1574
1575         lte = ads_entry->lte;
1576         if (!lte)
1577                 return NO_UNIX_DATA;
1578
1579         size = wim_resource_size(lte);
1580         if (size != sizeof(struct wimlib_unix_data))
1581                 return BAD_UNIX_DATA;
1582
1583         ret = read_full_resource_into_buf(lte, unix_data);
1584         if (ret)
1585                 return ret;
1586
1587         if (unix_data->version != 0)
1588                 return BAD_UNIX_DATA;
1589         return 0;
1590 }
1591
1592 int
1593 inode_set_unix_data(struct wim_inode *inode, uid_t uid, gid_t gid, mode_t mode,
1594                     struct wim_lookup_table *lookup_table, int which)
1595 {
1596         struct wimlib_unix_data unix_data;
1597         int ret;
1598         bool have_good_unix_data = false;
1599         bool have_unix_data = false;
1600         u16 stream_idx;
1601
1602         if (!(which & UNIX_DATA_CREATE)) {
1603                 ret = inode_get_unix_data(inode, &unix_data, &stream_idx);
1604                 if (ret == 0 || ret == BAD_UNIX_DATA || ret > 0)
1605                         have_unix_data = true;
1606                 if (ret == 0)
1607                         have_good_unix_data = true;
1608         }
1609         unix_data.version = 0;
1610         if (which & UNIX_DATA_UID || !have_good_unix_data)
1611                 unix_data.uid = uid;
1612         if (which & UNIX_DATA_GID || !have_good_unix_data)
1613                 unix_data.gid = gid;
1614         if (which & UNIX_DATA_MODE || !have_good_unix_data)
1615                 unix_data.mode = mode;
1616         ret = inode_add_ads_with_data(inode, WIMLIB_UNIX_DATA_TAG,
1617                                       &unix_data,
1618                                       sizeof(struct wimlib_unix_data),
1619                                       lookup_table);
1620         if (ret == 0 && have_unix_data)
1621                 inode_remove_ads(inode, stream_idx, lookup_table);
1622         return ret;
1623 }
1624 #endif /* !__WIN32__ */
1625
1626 /*
1627  * Reads the alternate data stream entries of a WIM dentry.
1628  *
1629  * @p:
1630  *      Pointer to buffer that starts with the first alternate stream entry.
1631  *
1632  * @inode:
1633  *      Inode to load the alternate data streams into.  @inode->i_num_ads must
1634  *      have been set to the number of alternate data streams that are expected.
1635  *
1636  * @remaining_size:
1637  *      Number of bytes of data remaining in the buffer pointed to by @p.
1638  *
1639  * On success, inode->i_ads_entries is set to an array of `struct
1640  * wim_ads_entry's of length inode->i_num_ads.  On failure, @inode is not
1641  * modified.
1642  *
1643  * Return values:
1644  *      WIMLIB_ERR_SUCCESS (0)
1645  *      WIMLIB_ERR_INVALID_METADATA_RESOURCE
1646  *      WIMLIB_ERR_NOMEM
1647  */
1648 static int
1649 read_ads_entries(const u8 * restrict p, struct wim_inode * restrict inode,
1650                  size_t nbytes_remaining)
1651 {
1652         u16 num_ads;
1653         struct wim_ads_entry *ads_entries;
1654         int ret;
1655
1656         BUILD_BUG_ON(sizeof(struct wim_ads_entry_on_disk) != WIM_ADS_ENTRY_DISK_SIZE);
1657
1658         /* Allocate an array for our in-memory representation of the alternate
1659          * data stream entries. */
1660         num_ads = inode->i_num_ads;
1661         ads_entries = CALLOC(num_ads, sizeof(inode->i_ads_entries[0]));
1662         if (!ads_entries)
1663                 goto out_of_memory;
1664
1665         /* Read the entries into our newly allocated buffer. */
1666         for (u16 i = 0; i < num_ads; i++) {
1667                 u64 length;
1668                 struct wim_ads_entry *cur_entry;
1669                 const struct wim_ads_entry_on_disk *disk_entry =
1670                         (const struct wim_ads_entry_on_disk*)p;
1671
1672                 cur_entry = &ads_entries[i];
1673                 ads_entries[i].stream_id = i + 1;
1674
1675                 /* Do we have at least the size of the fixed-length data we know
1676                  * need? */
1677                 if (nbytes_remaining < sizeof(struct wim_ads_entry_on_disk))
1678                         goto out_invalid;
1679
1680                 /* Read the length field */
1681                 length = le64_to_cpu(disk_entry->length);
1682
1683                 /* Make sure the length field is neither so small it doesn't
1684                  * include all the fixed-length data nor so large it overflows
1685                  * the metadata resource buffer. */
1686                 if (length < sizeof(struct wim_ads_entry_on_disk) ||
1687                     length > nbytes_remaining)
1688                         goto out_invalid;
1689
1690                 /* Read the rest of the fixed-length data. */
1691
1692                 cur_entry->reserved = le64_to_cpu(disk_entry->reserved);
1693                 copy_hash(cur_entry->hash, disk_entry->hash);
1694                 cur_entry->stream_name_nbytes = le16_to_cpu(disk_entry->stream_name_nbytes);
1695
1696                 /* If stream_name_nbytes != 0, this is a named stream.
1697                  * Otherwise this is an unnamed stream, or in some cases (bugs
1698                  * in Microsoft's software I guess) a meaningless entry
1699                  * distinguished from the real unnamed stream entry, if any, by
1700                  * the fact that the real unnamed stream entry has a nonzero
1701                  * hash field. */
1702                 if (cur_entry->stream_name_nbytes) {
1703                         /* The name is encoded in UTF16-LE, which uses 2-byte
1704                          * coding units, so the length of the name had better be
1705                          * an even number of bytes... */
1706                         if (cur_entry->stream_name_nbytes & 1)
1707                                 goto out_invalid;
1708
1709                         /* Add the length of the stream name to get the length
1710                          * we actually need to read.  Make sure this isn't more
1711                          * than the specified length of the entry. */
1712                         if (sizeof(struct wim_ads_entry_on_disk) +
1713                             cur_entry->stream_name_nbytes > length)
1714                                 goto out_invalid;
1715
1716                         cur_entry->stream_name = MALLOC(cur_entry->stream_name_nbytes + 2);
1717                         if (!cur_entry->stream_name)
1718                                 goto out_of_memory;
1719
1720                         memcpy(cur_entry->stream_name,
1721                                disk_entry->stream_name,
1722                                cur_entry->stream_name_nbytes);
1723                         cur_entry->stream_name[cur_entry->stream_name_nbytes / 2] = cpu_to_le16(0);
1724                 }
1725
1726                 /* It's expected that the size of every ADS entry is a multiple
1727                  * of 8.  However, to be safe, I'm allowing the possibility of
1728                  * an ADS entry at the very end of the metadata resource ending
1729                  * un-aligned.  So although we still need to increment the input
1730                  * pointer by @length to reach the next ADS entry, it's possible
1731                  * that less than @length is actually remaining in the metadata
1732                  * resource. We should set the remaining bytes to 0 if this
1733                  * happens. */
1734                 length = (length + 7) & ~(u64)7;
1735                 p += length;
1736                 if (nbytes_remaining < length)
1737                         nbytes_remaining = 0;
1738                 else
1739                         nbytes_remaining -= length;
1740         }
1741         inode->i_ads_entries = ads_entries;
1742         inode->i_next_stream_id = inode->i_num_ads + 1;
1743         ret = 0;
1744         goto out;
1745 out_of_memory:
1746         ret = WIMLIB_ERR_NOMEM;
1747         goto out_free_ads_entries;
1748 out_invalid:
1749         ERROR("An alternate data stream entry is invalid");
1750         ret = WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1751 out_free_ads_entries:
1752         if (ads_entries) {
1753                 for (u16 i = 0; i < num_ads; i++)
1754                         destroy_ads_entry(&ads_entries[i]);
1755                 FREE(ads_entries);
1756         }
1757 out:
1758         return ret;
1759 }
1760
1761 /*
1762  * Reads a WIM directory entry, including all alternate data stream entries that
1763  * follow it, from the WIM image's metadata resource.
1764  *
1765  * @metadata_resource:
1766  *              Pointer to the metadata resource buffer.
1767  *
1768  * @metadata_resource_len:
1769  *              Length of the metadata resource buffer, in bytes.
1770  *
1771  * @offset:     Offset of the dentry within the metadata resource.
1772  *
1773  * @dentry:     A `struct wim_dentry' that will be filled in by this function.
1774  *
1775  * Return 0 on success or nonzero on failure.  On failure, @dentry will have
1776  * been modified, but it will not be left with pointers to any allocated
1777  * buffers.  On success, the dentry->length field must be examined.  If zero,
1778  * this was a special "end of directory" dentry and not a real dentry.  If
1779  * nonzero, this was a real dentry.
1780  *
1781  * Return values:
1782  *      WIMLIB_ERR_SUCCESS (0)
1783  *      WIMLIB_ERR_INVALID_METADATA_RESOURCE
1784  *      WIMLIB_ERR_NOMEM
1785  */
1786 int
1787 read_dentry(const u8 * restrict metadata_resource, u64 metadata_resource_len,
1788             u64 offset, struct wim_dentry * restrict dentry)
1789 {
1790
1791         u64 calculated_size;
1792         utf16lechar *file_name;
1793         utf16lechar *short_name;
1794         u16 short_name_nbytes;
1795         u16 file_name_nbytes;
1796         int ret;
1797         struct wim_inode *inode;
1798         const u8 *p = &metadata_resource[offset];
1799         const struct wim_dentry_on_disk *disk_dentry =
1800                         (const struct wim_dentry_on_disk*)p;
1801
1802         BUILD_BUG_ON(sizeof(struct wim_dentry_on_disk) != WIM_DENTRY_DISK_SIZE);
1803
1804         if ((uintptr_t)p & 7)
1805                 WARNING("WIM dentry is not 8-byte aligned");
1806
1807         dentry_common_init(dentry);
1808
1809         /* Before reading the whole dentry, we need to read just the length.
1810          * This is because a dentry of length 8 (that is, just the length field)
1811          * terminates the list of sibling directory entries. */
1812         if (offset + sizeof(u64) > metadata_resource_len ||
1813             offset + sizeof(u64) < offset)
1814         {
1815                 ERROR("Directory entry starting at %"PRIu64" ends past the "
1816                       "end of the metadata resource (size %"PRIu64")",
1817                       offset, metadata_resource_len);
1818                 return WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1819         }
1820         dentry->length = le64_to_cpu(disk_dentry->length);
1821
1822         /* A zero length field (really a length of 8, since that's how big the
1823          * directory entry is...) indicates that this is the end of directory
1824          * dentry.  We do not read it into memory as an actual dentry, so just
1825          * return successfully in this case. */
1826         if (dentry->length == 8)
1827                 dentry->length = 0;
1828         if (dentry->length == 0)
1829                 return 0;
1830
1831         /* Now that we have the actual length provided in the on-disk structure,
1832          * again make sure it doesn't overflow the metadata resource buffer. */
1833         if (offset + dentry->length > metadata_resource_len ||
1834             offset + dentry->length < offset)
1835         {
1836                 ERROR("Directory entry at offset %"PRIu64" and with size "
1837                       "%"PRIu64" ends past the end of the metadata resource "
1838                       "(size %"PRIu64")",
1839                       offset, dentry->length, metadata_resource_len);
1840                 return WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1841         }
1842
1843         /* Make sure the dentry length is at least as large as the number of
1844          * fixed-length fields */
1845         if (dentry->length < sizeof(struct wim_dentry_on_disk)) {
1846                 ERROR("Directory entry has invalid length of %"PRIu64" bytes",
1847                       dentry->length);
1848                 return WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1849         }
1850
1851         /* Allocate a `struct wim_inode' for this `struct wim_dentry'. */
1852         inode = new_timeless_inode();
1853         if (!inode)
1854                 return WIMLIB_ERR_NOMEM;
1855
1856         /* Read more fields; some into the dentry, and some into the inode. */
1857
1858         inode->i_attributes = le32_to_cpu(disk_dentry->attributes);
1859         inode->i_security_id = le32_to_cpu(disk_dentry->security_id);
1860         dentry->subdir_offset = le64_to_cpu(disk_dentry->subdir_offset);
1861         dentry->d_unused_1 = le64_to_cpu(disk_dentry->unused_1);
1862         dentry->d_unused_2 = le64_to_cpu(disk_dentry->unused_2);
1863         inode->i_creation_time = le64_to_cpu(disk_dentry->creation_time);
1864         inode->i_last_access_time = le64_to_cpu(disk_dentry->last_access_time);
1865         inode->i_last_write_time = le64_to_cpu(disk_dentry->last_write_time);
1866         copy_hash(inode->i_hash, disk_dentry->unnamed_stream_hash);
1867
1868         /* I don't know what's going on here.  It seems like M$ screwed up the
1869          * reparse points, then put the fields in the same place and didn't
1870          * document it.  So we have some fields we read for reparse points, and
1871          * some fields in the same place for non-reparse-point.s */
1872         if (inode->i_attributes & FILE_ATTRIBUTE_REPARSE_POINT) {
1873                 inode->i_rp_unknown_1 = le32_to_cpu(disk_dentry->reparse.rp_unknown_1);
1874                 inode->i_reparse_tag = le32_to_cpu(disk_dentry->reparse.reparse_tag);
1875                 inode->i_rp_unknown_2 = le16_to_cpu(disk_dentry->reparse.rp_unknown_2);
1876                 inode->i_not_rpfixed = le16_to_cpu(disk_dentry->reparse.not_rpfixed);
1877                 /* Leave inode->i_ino at 0.  Note that this means the WIM file
1878                  * cannot archive hard-linked reparse points.  Such a thing
1879                  * doesn't really make sense anyway, although I believe it's
1880                  * theoretically possible to have them on NTFS. */
1881         } else {
1882                 inode->i_rp_unknown_1 = le32_to_cpu(disk_dentry->nonreparse.rp_unknown_1);
1883                 inode->i_ino = le64_to_cpu(disk_dentry->nonreparse.hard_link_group_id);
1884         }
1885
1886         inode->i_num_ads = le16_to_cpu(disk_dentry->num_alternate_data_streams);
1887
1888         short_name_nbytes = le16_to_cpu(disk_dentry->short_name_nbytes);
1889         file_name_nbytes = le16_to_cpu(disk_dentry->file_name_nbytes);
1890
1891         if ((short_name_nbytes & 1) | (file_name_nbytes & 1))
1892         {
1893                 ERROR("Dentry name is not valid UTF-16LE (odd number of bytes)!");
1894                 ret = WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1895                 goto out_free_inode;
1896         }
1897
1898         /* We now know the length of the file name and short name.  Make sure
1899          * the length of the dentry is large enough to actually hold them.
1900          *
1901          * The calculated length here is unaligned to allow for the possibility
1902          * that the dentry->length names an unaligned length, although this
1903          * would be unexpected. */
1904         calculated_size = _dentry_correct_length_unaligned(file_name_nbytes,
1905                                                            short_name_nbytes);
1906
1907         if (dentry->length < calculated_size) {
1908                 ERROR("Unexpected end of directory entry! (Expected "
1909                       "at least %"PRIu64" bytes, got %"PRIu64" bytes.)",
1910                       calculated_size, dentry->length);
1911                 ret = WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1912                 goto out_free_inode;
1913         }
1914
1915         p += sizeof(struct wim_dentry_on_disk);
1916
1917         /* Read the filename if present.  Note: if the filename is empty, there
1918          * is no null terminator following it. */
1919         if (file_name_nbytes) {
1920                 file_name = MALLOC(file_name_nbytes + 2);
1921                 if (!file_name) {
1922                         ERROR("Failed to allocate %d bytes for dentry file name",
1923                               file_name_nbytes + 2);
1924                         ret = WIMLIB_ERR_NOMEM;
1925                         goto out_free_inode;
1926                 }
1927                 memcpy(file_name, p, file_name_nbytes);
1928                 p += file_name_nbytes + 2;
1929                 file_name[file_name_nbytes / 2] = cpu_to_le16(0);
1930         } else {
1931                 file_name = NULL;
1932         }
1933
1934
1935         /* Read the short filename if present.  Note: if there is no short
1936          * filename, there is no null terminator following it. */
1937         if (short_name_nbytes) {
1938                 short_name = MALLOC(short_name_nbytes + 2);
1939                 if (!short_name) {
1940                         ERROR("Failed to allocate %d bytes for dentry short name",
1941                               short_name_nbytes + 2);
1942                         ret = WIMLIB_ERR_NOMEM;
1943                         goto out_free_file_name;
1944                 }
1945                 memcpy(short_name, p, short_name_nbytes);
1946                 p += short_name_nbytes + 2;
1947                 short_name[short_name_nbytes / 2] = cpu_to_le16(0);
1948         } else {
1949                 short_name = NULL;
1950         }
1951
1952         /* Align the dentry length */
1953         dentry->length = (dentry->length + 7) & ~7;
1954
1955         /*
1956          * Read the alternate data streams, if present.  dentry->num_ads tells
1957          * us how many they are, and they will directly follow the dentry
1958          * on-disk.
1959          *
1960          * Note that each alternate data stream entry begins on an 8-byte
1961          * aligned boundary, and the alternate data stream entries seem to NOT
1962          * be included in the dentry->length field for some reason.
1963          */
1964         if (inode->i_num_ads != 0) {
1965                 ret = WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1966                 if (offset + dentry->length > metadata_resource_len ||
1967                     (ret = read_ads_entries(&metadata_resource[offset + dentry->length],
1968                                             inode,
1969                                             metadata_resource_len - offset - dentry->length)))
1970                 {
1971                         ERROR("Failed to read alternate data stream "
1972                               "entries of WIM dentry \"%"WS"\"", file_name);
1973                         goto out_free_short_name;
1974                 }
1975         }
1976         /* We've read all the data for this dentry.  Set the names and their
1977          * lengths, and we've done. */
1978         dentry->d_inode           = inode;
1979         dentry->file_name         = file_name;
1980         dentry->short_name        = short_name;
1981         dentry->file_name_nbytes  = file_name_nbytes;
1982         dentry->short_name_nbytes = short_name_nbytes;
1983         ret = 0;
1984         goto out;
1985 out_free_short_name:
1986         FREE(short_name);
1987 out_free_file_name:
1988         FREE(file_name);
1989 out_free_inode:
1990         free_inode(inode);
1991 out:
1992         return ret;
1993 }
1994
1995 static const tchar *
1996 dentry_get_file_type_string(const struct wim_dentry *dentry)
1997 {
1998         const struct wim_inode *inode = dentry->d_inode;
1999         if (inode_is_directory(inode))
2000                 return T("directory");
2001         else if (inode_is_symlink(inode))
2002                 return T("symbolic link");
2003         else
2004                 return T("file");
2005 }
2006
2007 /* Reads the children of a dentry, and all their children, ..., etc. from the
2008  * metadata resource and into the dentry tree.
2009  *
2010  * @metadata_resource:
2011  *      An array that contains the uncompressed metadata resource for the WIM
2012  *      file.
2013  *
2014  * @metadata_resource_len:
2015  *      The length of the uncompressed metadata resource, in bytes.
2016  *
2017  * @dentry:
2018  *      A pointer to a `struct wim_dentry' that is the root of the directory
2019  *      tree and has already been read from the metadata resource.  It does not
2020  *      need to be the real root because this procedure is called recursively.
2021  *
2022  * Return values:
2023  *      WIMLIB_ERR_SUCCESS (0)
2024  *      WIMLIB_ERR_INVALID_METADATA_RESOURCE
2025  *      WIMLIB_ERR_NOMEM
2026  */
2027 int
2028 read_dentry_tree(const u8 * restrict metadata_resource,
2029                  u64 metadata_resource_len,
2030                  struct wim_dentry * restrict dentry)
2031 {
2032         u64 cur_offset = dentry->subdir_offset;
2033         struct wim_dentry *child;
2034         struct wim_dentry *duplicate;
2035         struct wim_dentry *parent;
2036         struct wim_dentry cur_child;
2037         int ret;
2038
2039         /*
2040          * If @dentry has no child dentries, nothing more needs to be done for
2041          * this branch.  This is the case for regular files, symbolic links, and
2042          * *possibly* empty directories (although an empty directory may also
2043          * have one child dentry that is the special end-of-directory dentry)
2044          */
2045         if (cur_offset == 0)
2046                 return 0;
2047
2048         /* Check for cyclic directory structure */
2049         for (parent = dentry->parent; !dentry_is_root(parent); parent = parent->parent)
2050         {
2051                 if (unlikely(parent->subdir_offset == cur_offset)) {
2052                         ERROR("Cyclic directory structure directed: children "
2053                               "of \"%"TS"\" coincide with children of \"%"TS"\"",
2054                               dentry_full_path(dentry),
2055                               dentry_full_path(parent));
2056                         return WIMLIB_ERR_INVALID_METADATA_RESOURCE;
2057                 }
2058         }
2059
2060         /* Find and read all the children of @dentry. */
2061         for (;;) {
2062
2063                 /* Read next child of @dentry into @cur_child. */
2064                 ret = read_dentry(metadata_resource, metadata_resource_len,
2065                                   cur_offset, &cur_child);
2066                 if (ret)
2067                         break;
2068
2069                 /* Check for end of directory. */
2070                 if (cur_child.length == 0)
2071                         break;
2072
2073                 /* Not end of directory.  Allocate this child permanently and
2074                  * link it to the parent and previous child. */
2075                 child = memdup(&cur_child, sizeof(struct wim_dentry));
2076                 if (!child) {
2077                         ERROR("Failed to allocate new dentry!");
2078                         ret = WIMLIB_ERR_NOMEM;
2079                         break;
2080                 }
2081
2082                 /* Advance to the offset of the next child.  Note: We need to
2083                  * advance by the TOTAL length of the dentry, not by the length
2084                  * cur_child.length, which although it does take into account
2085                  * the padding, it DOES NOT take into account alternate stream
2086                  * entries. */
2087                 cur_offset += dentry_total_length(child);
2088
2089                 if (unlikely(!dentry_has_long_name(child))) {
2090                         WARNING("Ignoring unnamed dentry in "
2091                                 "directory \"%"TS"\"",
2092                                 dentry_full_path(dentry));
2093                         free_dentry(child);
2094                         continue;
2095                 }
2096
2097                 duplicate = dentry_add_child(dentry, child);
2098                 if (unlikely(duplicate)) {
2099                         const tchar *child_type, *duplicate_type;
2100                         child_type = dentry_get_file_type_string(child);
2101                         duplicate_type = dentry_get_file_type_string(duplicate);
2102                         WARNING("Ignoring duplicate %"TS" \"%"TS"\" "
2103                                 "(the WIM image already contains a %"TS" "
2104                                 "at that path with the exact same name)",
2105                                 child_type, dentry_full_path(duplicate),
2106                                 duplicate_type);
2107                         free_dentry(child);
2108                         continue;
2109                 }
2110
2111                 inode_add_dentry(child, child->d_inode);
2112                 /* If there are children of this child, call this
2113                  * procedure recursively. */
2114                 if (child->subdir_offset != 0) {
2115                         if (likely(dentry_is_directory(child))) {
2116                                 ret = read_dentry_tree(metadata_resource,
2117                                                        metadata_resource_len,
2118                                                        child);
2119                                 if (ret)
2120                                         break;
2121                         } else {
2122                                 WARNING("Ignoring children of non-directory \"%"TS"\"",
2123                                         dentry_full_path(child));
2124                         }
2125                 }
2126         }
2127         return ret;
2128 }
2129
2130 /*
2131  * Writes a WIM dentry to an output buffer.
2132  *
2133  * @dentry:  The dentry structure.
2134  * @p:       The memory location to write the data to.
2135  *
2136  * Returns the pointer to the byte after the last byte we wrote as part of the
2137  * dentry, including any alternate data stream entries.
2138  */
2139 static u8 *
2140 write_dentry(const struct wim_dentry * restrict dentry, u8 * restrict p)
2141 {
2142         const struct wim_inode *inode;
2143         struct wim_dentry_on_disk *disk_dentry;
2144         const u8 *orig_p;
2145         const u8 *hash;
2146
2147         wimlib_assert(((uintptr_t)p & 7) == 0); /* 8 byte aligned */
2148         orig_p = p;
2149
2150         inode = dentry->d_inode;
2151         disk_dentry = (struct wim_dentry_on_disk*)p;
2152
2153         disk_dentry->attributes = cpu_to_le32(inode->i_attributes);
2154         disk_dentry->security_id = cpu_to_le32(inode->i_security_id);
2155         disk_dentry->subdir_offset = cpu_to_le64(dentry->subdir_offset);
2156         disk_dentry->unused_1 = cpu_to_le64(dentry->d_unused_1);
2157         disk_dentry->unused_2 = cpu_to_le64(dentry->d_unused_2);
2158         disk_dentry->creation_time = cpu_to_le64(inode->i_creation_time);
2159         disk_dentry->last_access_time = cpu_to_le64(inode->i_last_access_time);
2160         disk_dentry->last_write_time = cpu_to_le64(inode->i_last_write_time);
2161         hash = inode_stream_hash(inode, 0);
2162         copy_hash(disk_dentry->unnamed_stream_hash, hash);
2163         if (inode->i_attributes & FILE_ATTRIBUTE_REPARSE_POINT) {
2164                 disk_dentry->reparse.rp_unknown_1 = cpu_to_le32(inode->i_rp_unknown_1);
2165                 disk_dentry->reparse.reparse_tag = cpu_to_le32(inode->i_reparse_tag);
2166                 disk_dentry->reparse.rp_unknown_2 = cpu_to_le16(inode->i_rp_unknown_2);
2167                 disk_dentry->reparse.not_rpfixed = cpu_to_le16(inode->i_not_rpfixed);
2168         } else {
2169                 disk_dentry->nonreparse.rp_unknown_1 = cpu_to_le32(inode->i_rp_unknown_1);
2170                 disk_dentry->nonreparse.hard_link_group_id =
2171                         cpu_to_le64((inode->i_nlink == 1) ? 0 : inode->i_ino);
2172         }
2173         disk_dentry->num_alternate_data_streams = cpu_to_le16(inode->i_num_ads);
2174         disk_dentry->short_name_nbytes = cpu_to_le16(dentry->short_name_nbytes);
2175         disk_dentry->file_name_nbytes = cpu_to_le16(dentry->file_name_nbytes);
2176         p += sizeof(struct wim_dentry_on_disk);
2177
2178         wimlib_assert(dentry_is_root(dentry) != dentry_has_long_name(dentry));
2179
2180         if (dentry_has_long_name(dentry))
2181                 p = mempcpy(p, dentry->file_name, dentry->file_name_nbytes + 2);
2182
2183         if (dentry_has_short_name(dentry))
2184                 p = mempcpy(p, dentry->short_name, dentry->short_name_nbytes + 2);
2185
2186         /* Align to 8-byte boundary */
2187         while ((uintptr_t)p & 7)
2188                 *p++ = 0;
2189
2190         /* We calculate the correct length of the dentry ourselves because the
2191          * dentry->length field may been set to an unexpected value from when we
2192          * read the dentry in (for example, there may have been unknown data
2193          * appended to the end of the dentry...).  Furthermore, the dentry may
2194          * have been renamed, thus changing its needed length. */
2195         disk_dentry->length = cpu_to_le64(p - orig_p);
2196
2197         /* Write the alternate data streams entries, if any. */
2198         for (u16 i = 0; i < inode->i_num_ads; i++) {
2199                 const struct wim_ads_entry *ads_entry =
2200                                 &inode->i_ads_entries[i];
2201                 struct wim_ads_entry_on_disk *disk_ads_entry =
2202                                 (struct wim_ads_entry_on_disk*)p;
2203                 orig_p = p;
2204
2205                 disk_ads_entry->reserved = cpu_to_le64(ads_entry->reserved);
2206
2207                 hash = inode_stream_hash(inode, i + 1);
2208                 copy_hash(disk_ads_entry->hash, hash);
2209                 disk_ads_entry->stream_name_nbytes = cpu_to_le16(ads_entry->stream_name_nbytes);
2210                 p += sizeof(struct wim_ads_entry_on_disk);
2211                 if (ads_entry->stream_name_nbytes) {
2212                         p = mempcpy(p, ads_entry->stream_name,
2213                                     ads_entry->stream_name_nbytes + 2);
2214                 }
2215                 /* Align to 8-byte boundary */
2216                 while ((uintptr_t)p & 7)
2217                         *p++ = 0;
2218                 disk_ads_entry->length = cpu_to_le64(p - orig_p);
2219         }
2220         return p;
2221 }
2222
2223 static int
2224 write_dentry_cb(struct wim_dentry *dentry, void *_p)
2225 {
2226         u8 **p = _p;
2227         *p = write_dentry(dentry, *p);
2228         return 0;
2229 }
2230
2231 static u8 *
2232 write_dentry_tree_recursive(const struct wim_dentry *parent, u8 *p);
2233
2234 static int
2235 write_dentry_tree_recursive_cb(struct wim_dentry *dentry, void *_p)
2236 {
2237         u8 **p = _p;
2238         *p = write_dentry_tree_recursive(dentry, *p);
2239         return 0;
2240 }
2241
2242 /* Recursive function that writes a dentry tree rooted at @parent, not including
2243  * @parent itself, which has already been written. */
2244 static u8 *
2245 write_dentry_tree_recursive(const struct wim_dentry *parent, u8 *p)
2246 {
2247         /* Nothing to do if this dentry has no children. */
2248         if (parent->subdir_offset == 0)
2249                 return p;
2250
2251         /* Write child dentries and end-of-directory entry.
2252          *
2253          * Note: we need to write all of this dentry's children before
2254          * recursively writing the directory trees rooted at each of the child
2255          * dentries, since the on-disk dentries for a dentry's children are
2256          * always located at consecutive positions in the metadata resource! */
2257         for_dentry_child(parent, write_dentry_cb, &p);
2258
2259         /* write end of directory entry */
2260         *(le64*)p = cpu_to_le64(0);
2261         p += 8;
2262
2263         /* Recurse on children. */
2264         for_dentry_child(parent, write_dentry_tree_recursive_cb, &p);
2265         return p;
2266 }
2267
2268 /* Writes a directory tree to the metadata resource.
2269  *
2270  * @root:       Root of the dentry tree.
2271  * @p:          Pointer to a buffer with enough space for the dentry tree.
2272  *
2273  * Returns pointer to the byte after the last byte we wrote.
2274  */
2275 u8 *
2276 write_dentry_tree(const struct wim_dentry * restrict root, u8 * restrict p)
2277 {
2278         DEBUG("Writing dentry tree.");
2279         wimlib_assert(dentry_is_root(root));
2280
2281         /* If we're the root dentry, we have no parent that already
2282          * wrote us, so we need to write ourselves. */
2283         p = write_dentry(root, p);
2284
2285         /* Write end of directory entry after the root dentry just to be safe;
2286          * however the root dentry obviously cannot have any siblings. */
2287         *(le64*)p = cpu_to_le64(0);
2288         p += 8;
2289
2290         /* Recursively write the rest of the dentry tree. */
2291         return write_dentry_tree_recursive(root, p);
2292 }
2293
2294
2295 static int
2296 init_wimlib_dentry(struct wimlib_dir_entry *wdentry,
2297                    struct wim_dentry *dentry,
2298                    const WIMStruct *wim)
2299 {
2300         int ret;
2301         size_t dummy;
2302         const struct wim_inode *inode = dentry->d_inode;
2303         struct wim_lookup_table_entry *lte;
2304
2305 #if TCHAR_IS_UTF16LE
2306         wdentry->filename = dentry->file_name;
2307         wdentry->dos_name = dentry->short_name;
2308 #else
2309         if (dentry_has_long_name(dentry)) {
2310                 ret = utf16le_to_tstr(dentry->file_name,
2311                                       dentry->file_name_nbytes,
2312                                       (tchar**)&wdentry->filename,
2313                                       &dummy);
2314                 if (ret)
2315                         return ret;
2316         }
2317         if (dentry_has_short_name(dentry)) {
2318                 ret = utf16le_to_tstr(dentry->short_name,
2319                                       dentry->short_name_nbytes,
2320                                       (tchar**)&wdentry->dos_name,
2321                                       &dummy);
2322                 if (ret)
2323                         return ret;
2324         }
2325 #endif
2326         ret = calculate_dentry_full_path(dentry);
2327         if (ret)
2328                 return ret;
2329         wdentry->full_path = dentry->_full_path;
2330
2331         for (struct wim_dentry *d = dentry; !dentry_is_root(d); d = d->parent)
2332                 wdentry->depth++;
2333
2334         if (inode->i_security_id >= 0) {
2335                 const struct wim_security_data *sd = wim_const_security_data(wim);
2336                 wdentry->security_descriptor = sd->descriptors[inode->i_security_id];
2337                 wdentry->security_descriptor_size = sd->sizes[inode->i_security_id];
2338         }
2339         wdentry->reparse_tag = inode->i_reparse_tag;
2340         wdentry->num_links = inode->i_nlink;
2341         wdentry->attributes = inode->i_attributes;
2342         wdentry->hard_link_group_id = inode->i_ino;
2343         wdentry->creation_time = wim_timestamp_to_timespec(inode->i_creation_time);
2344         wdentry->last_write_time = wim_timestamp_to_timespec(inode->i_last_write_time);
2345         wdentry->last_access_time = wim_timestamp_to_timespec(inode->i_last_access_time);
2346
2347         lte = inode_unnamed_lte(inode, wim->lookup_table);
2348         if (lte)
2349                 lte_to_wimlib_resource_entry(lte, &wdentry->streams[0].resource);
2350
2351         for (unsigned i = 0; i < inode->i_num_ads; i++) {
2352                 if (inode->i_ads_entries[i].stream_name == NULL)
2353                         continue;
2354                 lte = inode_stream_lte(inode, i + 1, wim->lookup_table);
2355                 wdentry->num_named_streams++;
2356                 if (lte) {
2357                         lte_to_wimlib_resource_entry(lte, &wdentry->streams[
2358                                                                 wdentry->num_named_streams].resource);
2359                 }
2360         #if TCHAR_IS_UTF16LE
2361                 wdentry->streams[wdentry->num_named_streams].stream_name =
2362                                 inode->i_ads_entries[i].stream_name;
2363         #else
2364                 size_t dummy;
2365
2366                 ret = utf16le_to_tstr(inode->i_ads_entries[i].stream_name,
2367                                       inode->i_ads_entries[i].stream_name_nbytes,
2368                                       (tchar**)&wdentry->streams[
2369                                                 wdentry->num_named_streams].stream_name,
2370                                       &dummy);
2371                 if (ret)
2372                         return ret;
2373         #endif
2374         }
2375         return 0;
2376 }
2377
2378 static void
2379 free_wimlib_dentry(struct wimlib_dir_entry *wdentry)
2380 {
2381 #if !TCHAR_IS_UTF16LE
2382         FREE((tchar*)wdentry->filename);
2383         FREE((tchar*)wdentry->dos_name);
2384         for (unsigned i = 1; i <= wdentry->num_named_streams; i++)
2385                 FREE((tchar*)wdentry->streams[i].stream_name);
2386 #endif
2387         FREE(wdentry);
2388 }
2389
2390 struct iterate_dir_tree_ctx {
2391         WIMStruct *wim;
2392         int flags;
2393         wimlib_iterate_dir_tree_callback_t cb;
2394         void *user_ctx;
2395 };
2396
2397 static int
2398 do_iterate_dir_tree(WIMStruct *wim,
2399                     struct wim_dentry *dentry, int flags,
2400                     wimlib_iterate_dir_tree_callback_t cb,
2401                     void *user_ctx);
2402
2403 static int
2404 call_do_iterate_dir_tree(struct wim_dentry *dentry, void *_ctx)
2405 {
2406         struct iterate_dir_tree_ctx *ctx = _ctx;
2407         return do_iterate_dir_tree(ctx->wim, dentry, ctx->flags,
2408                                    ctx->cb, ctx->user_ctx);
2409 }
2410
2411 static int
2412 do_iterate_dir_tree(WIMStruct *wim,
2413                     struct wim_dentry *dentry, int flags,
2414                     wimlib_iterate_dir_tree_callback_t cb,
2415                     void *user_ctx)
2416 {
2417         struct wimlib_dir_entry *wdentry;
2418         int ret = WIMLIB_ERR_NOMEM;
2419
2420
2421         wdentry = CALLOC(1, sizeof(struct wimlib_dir_entry) +
2422                                   (1 + dentry->d_inode->i_num_ads) *
2423                                         sizeof(struct wimlib_stream_entry));
2424         if (!wdentry)
2425                 goto out;
2426
2427         ret = init_wimlib_dentry(wdentry, dentry, wim);
2428         if (ret)
2429                 goto out_free_wimlib_dentry;
2430
2431         if (!(flags & WIMLIB_ITERATE_DIR_TREE_FLAG_CHILDREN)) {
2432                 ret = (*cb)(wdentry, user_ctx);
2433                 if (ret)
2434                         goto out_free_wimlib_dentry;
2435         }
2436
2437         if (flags & (WIMLIB_ITERATE_DIR_TREE_FLAG_RECURSIVE |
2438                      WIMLIB_ITERATE_DIR_TREE_FLAG_CHILDREN))
2439         {
2440                 struct iterate_dir_tree_ctx ctx = {
2441                         .wim      = wim,
2442                         .flags    = flags &= ~WIMLIB_ITERATE_DIR_TREE_FLAG_CHILDREN,
2443                         .cb       = cb,
2444                         .user_ctx = user_ctx,
2445                 };
2446                 ret = for_dentry_child(dentry, call_do_iterate_dir_tree, &ctx);
2447         }
2448 out_free_wimlib_dentry:
2449         free_wimlib_dentry(wdentry);
2450 out:
2451         return ret;
2452 }
2453
2454 struct image_iterate_dir_tree_ctx {
2455         const tchar *path;
2456         int flags;
2457         wimlib_iterate_dir_tree_callback_t cb;
2458         void *user_ctx;
2459 };
2460
2461
2462 static int
2463 image_do_iterate_dir_tree(WIMStruct *wim)
2464 {
2465         struct image_iterate_dir_tree_ctx *ctx = wim->private;
2466         struct wim_dentry *dentry;
2467
2468         dentry = get_dentry(wim, ctx->path);
2469         if (!dentry)
2470                 return WIMLIB_ERR_PATH_DOES_NOT_EXIST;
2471         return do_iterate_dir_tree(wim, dentry, ctx->flags, ctx->cb, ctx->user_ctx);
2472 }
2473
2474 /* API function documented in wimlib.h  */
2475 WIMLIBAPI int
2476 wimlib_iterate_dir_tree(WIMStruct *wim, int image, const tchar *path,
2477                         int flags,
2478                         wimlib_iterate_dir_tree_callback_t cb, void *user_ctx)
2479 {
2480         struct image_iterate_dir_tree_ctx ctx = {
2481                 .path = path,
2482                 .flags = flags,
2483                 .cb = cb,
2484                 .user_ctx = user_ctx,
2485         };
2486         wim->private = &ctx;
2487         return for_image(wim, image, image_do_iterate_dir_tree);
2488 }