]> wimlib.net Git - wimlib/blob - src/dentry.c
inode updates
[wimlib] / src / dentry.c
1 /*
2  * dentry.c
3  *
4  * A dentry (directory entry) contains the metadata for a file.  In the WIM file
5  * format, the dentries are stored in the "metadata resource" section right
6  * after the security data.  Each image in the WIM file has its own metadata
7  * resource with its own security data and dentry tree.  Dentries in different
8  * images may share file resources by referring to the same lookup table
9  * entries.
10  */
11
12 /*
13  * Copyright (C) 2012 Eric Biggers
14  *
15  * This file is part of wimlib, a library for working with WIM files.
16  *
17  * wimlib is free software; you can redistribute it and/or modify it under the
18  * terms of the GNU General Public License as published by the Free Software
19  * Foundation; either version 3 of the License, or (at your option) any later
20  * version.
21  *
22  * wimlib is distributed in the hope that it will be useful, but WITHOUT ANY
23  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
24  * A PARTICULAR PURPOSE. See the GNU General Public License for more details.
25  *
26  * You should have received a copy of the GNU General Public License along with
27  * wimlib; if not, see http://www.gnu.org/licenses/.
28  */
29
30 #include <errno.h>
31 #include <sys/stat.h>
32 #include <time.h>
33 #include <unistd.h>
34
35 #include "dentry.h"
36 #include "io.h"
37 #include "lookup_table.h"
38 #include "sha1.h"
39 #include "timestamp.h"
40 #include "wimlib_internal.h"
41
42 /*
43  * Returns true if @dentry has the UTF-8 file name @name that has length
44  * @name_len.
45  */
46 static bool dentry_has_name(const struct dentry *dentry, const char *name, 
47                             size_t name_len)
48 {
49         if (dentry->file_name_utf8_len != name_len)
50                 return false;
51         return memcmp(dentry->file_name_utf8, name, name_len) == 0;
52 }
53
54 static u64 __dentry_correct_length_unaligned(u16 file_name_len,
55                                              u16 short_name_len)
56 {
57         u64 length = WIM_DENTRY_DISK_SIZE;
58         if (file_name_len)
59                 length += file_name_len + 2;
60         if (short_name_len)
61                 length += short_name_len + 2;
62         return length;
63 }
64
65 static u64 dentry_correct_length_unaligned(const struct dentry *dentry)
66 {
67         return __dentry_correct_length_unaligned(dentry->file_name_len,
68                                                  dentry->short_name_len);
69 }
70
71 /* Return the "correct" value to write in the length field of the dentry, based
72  * on the file name length and short name length */
73 static u64 dentry_correct_length(const struct dentry *dentry)
74 {
75         return (dentry_correct_length_unaligned(dentry) + 7) & ~7;
76 }
77
78 static u64 __dentry_total_length(const struct dentry *dentry, u64 length)
79 {
80         const struct inode *inode = dentry->inode;
81         for (u16 i = 0; i < inode->num_ads; i++)
82                 length += ads_entry_total_length(inode->ads_entries[i]);
83         return (length + 7) & ~7;
84 }
85
86 u64 dentry_correct_total_length(const struct dentry *dentry)
87 {
88         return __dentry_total_length(dentry,
89                                      dentry_correct_length_unaligned(dentry));
90 }
91
92 /* Real length of a dentry, including the alternate data stream entries, which
93  * are not included in the dentry->length field... */
94 u64 dentry_total_length(const struct dentry *dentry)
95 {
96         return __dentry_total_length(dentry, dentry->length);
97 }
98
99 /* Transfers file attributes from a `stat' buffer to an inode. */
100 void stbuf_to_inode(const struct stat *stbuf, struct inode *inode)
101 {
102         if (S_ISLNK(stbuf->st_mode)) {
103                 inode->attributes = FILE_ATTRIBUTE_REPARSE_POINT;
104                 inode->reparse_tag = WIM_IO_REPARSE_TAG_SYMLINK;
105         } else if (S_ISDIR(stbuf->st_mode)) {
106                 inode->attributes = FILE_ATTRIBUTE_DIRECTORY;
107         } else {
108                 inode->attributes = FILE_ATTRIBUTE_NORMAL;
109         }
110         if (sizeof(ino_t) >= 8)
111                 inode->ino = (u64)stbuf->st_ino;
112         else
113                 inode->ino = (u64)stbuf->st_ino |
114                                    ((u64)stbuf->st_dev << (sizeof(ino_t) * 8));
115         /* Set timestamps */
116         inode->creation_time = timespec_to_wim_timestamp(&stbuf->st_mtim);
117         inode->last_write_time = timespec_to_wim_timestamp(&stbuf->st_mtim);
118         inode->last_access_time = timespec_to_wim_timestamp(&stbuf->st_atim);
119 }
120
121
122 /* Sets all the timestamp fields of the dentry to the current time. */
123 void inode_update_all_timestamps(struct inode *inode)
124 {
125         u64 now = get_wim_timestamp();
126         inode->creation_time    = now;
127         inode->last_access_time = now;
128         inode->last_write_time  = now;
129 }
130
131 /* Returns the alternate data stream entry belonging to @inode that has the
132  * stream name @stream_name. */
133 struct ads_entry *inode_get_ads_entry(struct inode *inode,
134                                       const char *stream_name)
135 {
136         size_t stream_name_len;
137         if (!stream_name)
138                 return NULL;
139         if (inode->num_ads) {
140                 u16 i = 0;
141                 stream_name_len = strlen(stream_name);
142                 do {
143                         if (ads_entry_has_name(inode->ads_entries[i],
144                                                stream_name, stream_name_len))
145                                 return inode->ads_entries[i];
146                 } while (++i != inode->num_ads);
147         }
148         return NULL;
149 }
150
151
152 static struct ads_entry *new_ads_entry(const char *name)
153 {
154         struct ads_entry *ads_entry = CALLOC(1, sizeof(struct ads_entry));
155         if (!ads_entry)
156                 return NULL;
157         INIT_LIST_HEAD(&ads_entry->lte_group_list.list);
158         ads_entry->lte_group_list.type = STREAM_TYPE_ADS;
159         if (name && *name) {
160                 if (change_ads_name(ads_entry, name)) {
161                         FREE(ads_entry);
162                         return NULL;
163                 }
164         }
165         return ads_entry;
166 }
167
168 /* 
169  * Add an alternate stream entry to an inode and return a pointer to it, or NULL
170  * if memory could not be allocated.
171  */
172 struct ads_entry *inode_add_ads(struct inode *inode, const char *stream_name)
173 {
174         u16 num_ads;
175         struct ads_entry **ads_entries;
176         struct ads_entry *new_entry;
177
178         if (inode->num_ads == 0xffff) {
179                 ERROR("Too many alternate data streams in one inode!");
180                 return NULL;
181         }
182         num_ads = inode->num_ads + 1;
183         ads_entries = REALLOC(inode->ads_entries,
184                               num_ads * sizeof(inode->ads_entries[0]));
185         if (!ads_entries) {
186                 ERROR("Failed to allocate memory for new alternate data stream");
187                 return NULL;
188         }
189         inode->ads_entries = ads_entries;
190
191         new_entry = new_ads_entry(stream_name);
192         if (new_entry)
193                 return NULL;
194         inode->num_ads = num_ads;
195         ads_entries[num_ads - 1] = new_entry;
196         return new_entry;
197 }
198
199
200 /* 
201  * Calls a function on all directory entries in a directory tree.  It is called
202  * on a parent before its children.
203  */
204 int for_dentry_in_tree(struct dentry *root, 
205                        int (*visitor)(struct dentry*, void*), void *arg)
206 {
207         int ret;
208         struct dentry *child;
209
210         ret = visitor(root, arg);
211
212         if (ret != 0)
213                 return ret;
214
215         child = root->children;
216
217         if (!child)
218                 return 0;
219
220         do {
221                 ret = for_dentry_in_tree(child, visitor, arg);
222                 if (ret != 0)
223                         return ret;
224                 child = child->next;
225         } while (child != root->children);
226         return 0;
227 }
228
229 /* 
230  * Like for_dentry_in_tree(), but the visitor function is always called on a
231  * dentry's children before on itself.
232  */
233 int for_dentry_in_tree_depth(struct dentry *root, 
234                              int (*visitor)(struct dentry*, void*), void *arg)
235 {
236         int ret;
237         struct dentry *child;
238         struct dentry *next;
239
240         child = root->children;
241         if (child) {
242                 do {
243                         next = child->next;
244                         ret = for_dentry_in_tree_depth(child, visitor, arg);
245                         if (ret != 0)
246                                 return ret;
247                         child = next;
248                 } while (child != root->children);
249         }
250         return visitor(root, arg);
251 }
252
253 /* 
254  * Calculate the full path of @dentry, based on its parent's full path and on
255  * its UTF-8 file name. 
256  */
257 int calculate_dentry_full_path(struct dentry *dentry, void *ignore)
258 {
259         char *full_path;
260         u32 full_path_len;
261         if (dentry_is_root(dentry)) {
262                 full_path = MALLOC(2);
263                 if (!full_path)
264                         goto oom;
265                 full_path[0] = '/';
266                 full_path[1] = '\0';
267                 full_path_len = 1;
268         } else {
269                 char *parent_full_path;
270                 u32 parent_full_path_len;
271                 const struct dentry *parent = dentry->parent;
272
273                 if (dentry_is_root(parent)) {
274                         parent_full_path = "";
275                         parent_full_path_len = 0;
276                 } else {
277                         parent_full_path = parent->full_path_utf8;
278                         parent_full_path_len = parent->full_path_utf8_len;
279                 }
280
281                 full_path_len = parent_full_path_len + 1 +
282                                 dentry->file_name_utf8_len;
283                 full_path = MALLOC(full_path_len + 1);
284                 if (!full_path)
285                         goto oom;
286
287                 memcpy(full_path, parent_full_path, parent_full_path_len);
288                 full_path[parent_full_path_len] = '/';
289                 memcpy(full_path + parent_full_path_len + 1,
290                        dentry->file_name_utf8,
291                        dentry->file_name_utf8_len);
292                 full_path[full_path_len] = '\0';
293         }
294         FREE(dentry->full_path_utf8);
295         dentry->full_path_utf8 = full_path;
296         dentry->full_path_utf8_len = full_path_len;
297         return 0;
298 oom:
299         ERROR("Out of memory while calculating dentry full path");
300         return WIMLIB_ERR_NOMEM;
301 }
302
303 /* 
304  * Recursively calculates the subdir offsets for a directory tree. 
305  *
306  * @dentry:  The root of the directory tree.
307  * @subdir_offset_p:  The current subdirectory offset; i.e., the subdirectory
308  *      offset for @dentry. 
309  */
310 void calculate_subdir_offsets(struct dentry *dentry, u64 *subdir_offset_p)
311 {
312         struct dentry *child;
313
314         child = dentry->children;
315         dentry->subdir_offset = *subdir_offset_p;
316
317         if (child) {
318                 /* Advance the subdir offset by the amount of space the children
319                  * of this dentry take up. */
320                 do {
321                         *subdir_offset_p += dentry_correct_total_length(child);
322                         child = child->next;
323                 } while (child != dentry->children);
324
325                 /* End-of-directory dentry on disk. */
326                 *subdir_offset_p += 8;
327
328                 /* Recursively call calculate_subdir_offsets() on all the
329                  * children. */
330                 do {
331                         calculate_subdir_offsets(child, subdir_offset_p);
332                         child = child->next;
333                 } while (child != dentry->children);
334         } else {
335                 /* On disk, childless directories have a valid subdir_offset
336                  * that points to an 8-byte end-of-directory dentry.  Regular
337                  * files or reparse points have a subdir_offset of 0. */
338                 if (dentry_is_directory(dentry))
339                         *subdir_offset_p += 8;
340                 else
341                         dentry->subdir_offset = 0;
342         }
343 }
344
345
346 /* Returns the child of @dentry that has the file name @name.  
347  * Returns NULL if no child has the name. */
348 struct dentry *get_dentry_child_with_name(const struct dentry *dentry, 
349                                           const char *name)
350 {
351         struct dentry *child;
352         size_t name_len;
353         
354         child = dentry->children;
355         if (child) {
356                 name_len = strlen(name);
357                 do {
358                         if (dentry_has_name(child, name, name_len))
359                                 return child;
360                         child = child->next;
361                 } while (child != dentry->children);
362         }
363         return NULL;
364 }
365
366 /* Retrieves the dentry that has the UTF-8 @path relative to the dentry
367  * @cur_dir.  Returns NULL if no dentry having the path is found. */
368 static struct dentry *get_dentry_relative_path(struct dentry *cur_dir,
369                                                const char *path)
370 {
371         struct dentry *child;
372         size_t base_len;
373         const char *new_path;
374
375         if (*path == '\0')
376                 return cur_dir;
377
378         child = cur_dir->children;
379         if (child) {
380                 new_path = path_next_part(path, &base_len);
381                 do {
382                         if (dentry_has_name(child, path, base_len))
383                                 return get_dentry_relative_path(child, new_path);
384                         child = child->next;
385                 } while (child != cur_dir->children);
386         }
387         return NULL;
388 }
389
390 /* Returns the dentry corresponding to the UTF-8 @path, or NULL if there is no
391  * such dentry. */
392 struct dentry *get_dentry(WIMStruct *w, const char *path)
393 {
394         struct dentry *root = wim_root_dentry(w);
395         while (*path == '/')
396                 path++;
397         return get_dentry_relative_path(root, path);
398 }
399
400 /* Returns the dentry that corresponds to the parent directory of @path, or NULL
401  * if the dentry is not found. */
402 struct dentry *get_parent_dentry(WIMStruct *w, const char *path)
403 {
404         size_t path_len = strlen(path);
405         char buf[path_len + 1];
406
407         memcpy(buf, path, path_len + 1);
408
409         to_parent_name(buf, path_len);
410
411         return get_dentry(w, buf);
412 }
413
414 /* Prints the full path of a dentry. */
415 int print_dentry_full_path(struct dentry *dentry, void *ignore)
416 {
417         if (dentry->full_path_utf8)
418                 puts(dentry->full_path_utf8);
419         return 0;
420 }
421
422 /* We want to be able to show the names of the file attribute flags that are
423  * set. */
424 struct file_attr_flag {
425         u32 flag;
426         const char *name;
427 };
428 struct file_attr_flag file_attr_flags[] = {
429         {FILE_ATTRIBUTE_READONLY,           "READONLY"},
430         {FILE_ATTRIBUTE_HIDDEN,             "HIDDEN"},
431         {FILE_ATTRIBUTE_SYSTEM,             "SYSTEM"},
432         {FILE_ATTRIBUTE_DIRECTORY,          "DIRECTORY"},
433         {FILE_ATTRIBUTE_ARCHIVE,            "ARCHIVE"},
434         {FILE_ATTRIBUTE_DEVICE,             "DEVICE"},
435         {FILE_ATTRIBUTE_NORMAL,             "NORMAL"},
436         {FILE_ATTRIBUTE_TEMPORARY,          "TEMPORARY"},
437         {FILE_ATTRIBUTE_SPARSE_FILE,        "SPARSE_FILE"},
438         {FILE_ATTRIBUTE_REPARSE_POINT,      "REPARSE_POINT"},
439         {FILE_ATTRIBUTE_COMPRESSED,         "COMPRESSED"},
440         {FILE_ATTRIBUTE_OFFLINE,            "OFFLINE"},
441         {FILE_ATTRIBUTE_NOT_CONTENT_INDEXED,"NOT_CONTENT_INDEXED"},
442         {FILE_ATTRIBUTE_ENCRYPTED,          "ENCRYPTED"},
443         {FILE_ATTRIBUTE_VIRTUAL,            "VIRTUAL"},
444 };
445
446 /* Prints a directory entry.  @lookup_table is a pointer to the lookup table, if
447  * available.  If the dentry is unresolved and the lookup table is NULL, the
448  * lookup table entries will not be printed.  Otherwise, they will be. */
449 int print_dentry(struct dentry *dentry, void *lookup_table)
450 {
451         const u8 *hash;
452         struct lookup_table_entry *lte;
453         const struct inode *inode = dentry->inode;
454         time_t time;
455         char *p;
456
457         printf("[DENTRY]\n");
458         printf("Length            = %"PRIu64"\n", dentry->length);
459         printf("Attributes        = 0x%x\n", inode->attributes);
460         for (unsigned i = 0; i < ARRAY_LEN(file_attr_flags); i++)
461                 if (file_attr_flags[i].flag & inode->attributes)
462                         printf("    FILE_ATTRIBUTE_%s is set\n",
463                                 file_attr_flags[i].name);
464         printf("Security ID       = %d\n", inode->security_id);
465         printf("Subdir offset     = %"PRIu64"\n", dentry->subdir_offset);
466
467         /* Translate the timestamps into something readable */
468         time = wim_timestamp_to_unix(inode->creation_time);
469         p = asctime(gmtime(&time));
470         *(strrchr(p, '\n')) = '\0';
471         printf("Creation Time     = %s UTC\n", p);
472
473         time = wim_timestamp_to_unix(inode->last_access_time);
474         p = asctime(gmtime(&time));
475         *(strrchr(p, '\n')) = '\0';
476         printf("Last Access Time  = %s UTC\n", p);
477
478         time = wim_timestamp_to_unix(inode->last_write_time);
479         p = asctime(gmtime(&time));
480         *(strrchr(p, '\n')) = '\0';
481         printf("Last Write Time   = %s UTC\n", p);
482
483         printf("Reparse Tag       = 0x%"PRIx32"\n", inode->reparse_tag);
484         printf("Hard Link Group   = 0x%"PRIx64"\n", inode->ino);
485         printf("Hard Link Group Size = %"PRIu32"\n", inode->link_count);
486         printf("Number of Alternate Data Streams = %hu\n", inode->num_ads);
487         printf("Filename          = \"");
488         print_string(dentry->file_name, dentry->file_name_len);
489         puts("\"");
490         printf("Filename Length   = %hu\n", dentry->file_name_len);
491         printf("Filename (UTF-8)  = \"%s\"\n", dentry->file_name_utf8);
492         printf("Filename (UTF-8) Length = %hu\n", dentry->file_name_utf8_len);
493         printf("Short Name        = \"");
494         print_string(dentry->short_name, dentry->short_name_len);
495         puts("\"");
496         printf("Short Name Length = %hu\n", dentry->short_name_len);
497         printf("Full Path (UTF-8) = \"%s\"\n", dentry->full_path_utf8);
498         lte = inode_stream_lte(dentry->inode, 0, lookup_table);
499         if (lte) {
500                 print_lookup_table_entry(lte);
501         } else {
502                 hash = inode_stream_hash(inode, 0);
503                 if (hash) {
504                         printf("Hash              = 0x"); 
505                         print_hash(hash);
506                         putchar('\n');
507                         putchar('\n');
508                 }
509         }
510         for (u16 i = 0; i < inode->num_ads; i++) {
511                 printf("[Alternate Stream Entry %u]\n", i);
512                 printf("Name = \"%s\"\n", inode->ads_entries[i]->stream_name_utf8);
513                 printf("Name Length (UTF-16) = %u\n",
514                         inode->ads_entries[i]->stream_name_len);
515                 hash = inode_stream_hash(inode, i + 1);
516                 if (hash) {
517                         printf("Hash              = 0x"); 
518                         print_hash(hash);
519                         putchar('\n');
520                 }
521                 print_lookup_table_entry(inode_stream_lte(inode, i + 1,
522                                                           lookup_table));
523         }
524         return 0;
525 }
526
527 /* Initializations done on every `struct dentry'. */
528 static void dentry_common_init(struct dentry *dentry)
529 {
530         memset(dentry, 0, sizeof(struct dentry));
531         dentry->refcnt = 1;
532 }
533
534 struct inode *new_timeless_inode()
535 {
536         struct inode *inode = CALLOC(1, sizeof(struct inode));
537         if (!inode)
538                 return NULL;
539         inode->security_id = -1;
540         inode->link_count = 1;
541         INIT_LIST_HEAD(&inode->dentry_list);
542         return inode;
543 }
544
545 struct inode *new_inode()
546 {
547         struct inode *inode = new_timeless_inode();
548         if (!inode)
549                 return NULL;
550         u64 now = get_wim_timestamp();
551         inode->creation_time = now;
552         inode->last_access_time = now;
553         inode->last_write_time = now;
554         return inode;
555 }
556
557 /* 
558  * Creates an unlinked directory entry.
559  *
560  * @name:  The UTF-8 filename of the new dentry.
561  *
562  * Returns a pointer to the new dentry, or NULL if out of memory.
563  */
564 struct dentry *new_dentry(const char *name)
565 {
566         struct dentry *dentry;
567         
568         dentry = MALLOC(sizeof(struct dentry));
569         if (!dentry)
570                 goto err;
571
572         dentry_common_init(dentry);
573         if (change_dentry_name(dentry, name) != 0)
574                 goto err;
575
576         dentry->next   = dentry;
577         dentry->prev   = dentry;
578         dentry->parent = dentry;
579
580         return dentry;
581 err:
582         FREE(dentry);
583         ERROR("Failed to allocate new dentry");
584         return NULL;
585 }
586
587 struct dentry *new_dentry_with_inode(const char *name)
588 {
589         struct dentry *dentry;
590         dentry = new_dentry(name);
591         if (dentry) {
592                 dentry->inode = new_inode();
593                 if (dentry->inode) {
594                         list_add(&dentry->inode_dentry_list,
595                                  &dentry->inode->dentry_list);
596                 } else {
597                         free_dentry(dentry);
598                         dentry = NULL;
599                 }
600         }
601         return dentry;
602 }
603
604 static void free_ads_entry(struct ads_entry *entry)
605 {
606         if (entry) {
607                 FREE(entry->stream_name);
608                 FREE(entry->stream_name_utf8);
609                 FREE(entry);
610         }
611 }
612
613
614 #ifdef WITH_FUSE
615 /* Remove an alternate data stream from a dentry.
616  *
617  * The corresponding lookup table entry for the stream is NOT changed.
618  *
619  * @dentry:     The dentry
620  * @ads_entry:  The alternate data stream entry (it MUST be one of the
621  *                 ads_entry's in the array dentry->ads_entries).
622  */
623 void dentry_remove_ads(struct dentry *dentry, struct ads_entry *ads_entry)
624 {
625         u16 idx;
626         u16 following;
627
628         wimlib_assert(dentry->num_ads);
629         idx = ads_entry - dentry->ads_entries;
630         wimlib_assert(idx < dentry->num_ads);
631         following = dentry->num_ads - idx - 1;
632
633         destroy_ads_entry(ads_entry);
634         memcpy(ads_entry, ads_entry + 1, following * sizeof(struct ads_entry));
635
636         /* We moved the ADS entries.  Adjust the stream lists. */
637         for (u16 i = 0; i < following; i++) {
638                 struct list_head *cur = &ads_entry[i].lte_group_list.list;
639                 struct list_head *prev = cur->prev;
640                 struct list_head *next;
641                 if ((u8*)prev >= (u8*)(ads_entry + 1)
642                     && (u8*)prev < (u8*)(ads_entry + following + 1)) {
643                         cur->prev = (struct list_head*)((u8*)prev - sizeof(struct ads_entry));
644                 } else {
645                         prev->next = cur;
646                 }
647                 next = cur->next;
648                 if ((u8*)next >= (u8*)(ads_entry + 1)
649                     && (u8*)next < (u8*)(ads_entry + following + 1)) {
650                         cur->next = (struct list_head*)((u8*)next - sizeof(struct ads_entry));
651                 } else {
652                         next->prev = cur;
653                 }
654         }
655         dentry->num_ads--;
656 }
657 #endif
658
659 static void inode_free_ads_entries(struct inode *inode)
660 {
661         if (inode->ads_entries) {
662                 for (u16 i = 0; i < inode->num_ads; i++)
663                         free_ads_entry(inode->ads_entries[i]);
664                 FREE(inode->ads_entries);
665         }
666 }
667
668 void free_inode(struct inode *inode)
669 {
670         if (inode) {
671                 inode_free_ads_entries(inode);
672                 FREE(inode);
673         }
674 }
675
676 void put_inode(struct inode *inode)
677 {
678         if (inode) {
679                 wimlib_assert(inode->link_count);
680                 if (--inode->link_count)
681                         free_inode(inode);
682         }
683 }
684
685 /* Frees a WIM dentry. */
686 void free_dentry(struct dentry *dentry)
687 {
688         wimlib_assert(dentry);
689
690         FREE(dentry->file_name);
691         FREE(dentry->file_name_utf8);
692         FREE(dentry->short_name);
693         FREE(dentry->full_path_utf8);
694         put_inode(dentry->inode);
695         FREE(dentry);
696 }
697
698 /* Partically clones a dentry.
699  *
700  * Beware:
701  *      - memory for file names is not cloned (the pointers are all set to NULL
702  *        and the lengths are set to zero)
703  *      - next, prev, and children pointers and not touched
704  */
705 struct dentry *clone_dentry(struct dentry *old)
706 {
707         struct dentry *new = MALLOC(sizeof(struct dentry));
708         if (!new)
709                 return NULL;
710         memcpy(new, old, sizeof(struct dentry));
711         new->file_name          = NULL;
712         new->file_name_len      = 0;
713         new->file_name_utf8     = NULL;
714         new->file_name_utf8_len = 0;
715         new->short_name         = NULL;
716         new->short_name_len     = 0;
717         return new;
718 }
719
720 /* 
721  * This function is passed as an argument to for_dentry_in_tree_depth() in order
722  * to free a directory tree.  __args is a pointer to a `struct free_dentry_args'.
723  */
724 static int do_free_dentry(struct dentry *dentry, void *__lookup_table)
725 {
726         struct lookup_table *lookup_table = __lookup_table;
727         struct lookup_table_entry *lte;
728         struct inode *inode = dentry->inode;
729         unsigned i;
730
731         if (lookup_table) {
732                 for (i = 0; i <= inode->num_ads; i++) {
733                         lte = inode_stream_lte(inode, i, lookup_table);
734                         lte_decrement_refcnt(lte, lookup_table);
735                 }
736         }
737
738         wimlib_assert(dentry->refcnt != 0);
739         if (--dentry->refcnt == 0)
740                 free_dentry(dentry);
741         return 0;
742 }
743
744 /* 
745  * Unlinks and frees a dentry tree.
746  *
747  * @root:               The root of the tree.
748  * @lookup_table:       The lookup table for dentries.  If non-NULL, the
749  *                      reference counts in the lookup table for the lookup
750  *                      table entries corresponding to the dentries will be
751  *                      decremented.
752  */
753 void free_dentry_tree(struct dentry *root, struct lookup_table *lookup_table)
754 {
755         if (!root || !root->parent)
756                 return;
757         for_dentry_in_tree_depth(root, do_free_dentry, lookup_table);
758 }
759
760 int increment_dentry_refcnt(struct dentry *dentry, void *ignore)
761 {
762         dentry->refcnt++;
763         return 0;
764 }
765
766 /* 
767  * Links a dentry into the directory tree.
768  *
769  * @dentry: The dentry to link.
770  * @parent: The dentry that will be the parent of @dentry.
771  */
772 void link_dentry(struct dentry *dentry, struct dentry *parent)
773 {
774         wimlib_assert(dentry_is_directory(parent));
775         dentry->parent = parent;
776         if (parent->children) {
777                 /* Not an only child; link to siblings. */
778                 dentry->next = parent->children;
779                 dentry->prev = parent->children->prev;
780                 dentry->next->prev = dentry;
781                 dentry->prev->next = dentry;
782         } else {
783                 /* Only child; link to parent. */
784                 parent->children = dentry;
785                 dentry->next = dentry;
786                 dentry->prev = dentry;
787         }
788 }
789
790
791 /* Unlink a dentry from the directory tree. 
792  *
793  * Note: This merely removes it from the in-memory tree structure.  See
794  * remove_dentry() in mount.c for a function implemented on top of this one that
795  * frees the dentry and implements reference counting for the lookup table
796  * entries. */
797 void unlink_dentry(struct dentry *dentry)
798 {
799         if (dentry_is_root(dentry))
800                 return;
801         if (dentry_is_only_child(dentry)) {
802                 dentry->parent->children = NULL;
803         } else {
804                 if (dentry_is_first_sibling(dentry))
805                         dentry->parent->children = dentry->next;
806                 dentry->next->prev = dentry->prev;
807                 dentry->prev->next = dentry->next;
808         }
809 }
810
811 /* Duplicates a UTF-8 name into UTF-8 and UTF-16 strings and returns the strings
812  * and their lengths in the pointer arguments */
813 int get_names(char **name_utf16_ret, char **name_utf8_ret,
814               u16 *name_utf16_len_ret, u16 *name_utf8_len_ret,
815               const char *name)
816 {
817         size_t utf8_len;
818         size_t utf16_len;
819         char *name_utf16, *name_utf8;
820
821         utf8_len = strlen(name);
822
823         name_utf16 = utf8_to_utf16(name, utf8_len, &utf16_len);
824
825         if (!name_utf16)
826                 return WIMLIB_ERR_NOMEM;
827
828         name_utf8 = MALLOC(utf8_len + 1);
829         if (!name_utf8) {
830                 FREE(name_utf8);
831                 return WIMLIB_ERR_NOMEM;
832         }
833         memcpy(name_utf8, name, utf8_len + 1);
834         FREE(*name_utf8_ret);
835         FREE(*name_utf16_ret);
836         *name_utf8_ret      = name_utf8;
837         *name_utf16_ret     = name_utf16;
838         *name_utf8_len_ret  = utf8_len;
839         *name_utf16_len_ret = utf16_len;
840         return 0;
841 }
842
843 /* Changes the name of a dentry to @new_name.  Only changes the file_name and
844  * file_name_utf8 fields; does not change the short_name, short_name_utf8, or
845  * full_path_utf8 fields.  Also recalculates its length. */
846 int change_dentry_name(struct dentry *dentry, const char *new_name)
847 {
848         int ret;
849
850         ret = get_names(&dentry->file_name, &dentry->file_name_utf8,
851                         &dentry->file_name_len, &dentry->file_name_utf8_len,
852                          new_name);
853         FREE(dentry->short_name);
854         dentry->short_name_len = 0;
855         if (ret == 0)
856                 dentry->length = dentry_correct_length(dentry);
857         return ret;
858 }
859
860 /*
861  * Changes the name of an alternate data stream */
862 int change_ads_name(struct ads_entry *entry, const char *new_name)
863 {
864         return get_names(&entry->stream_name, &entry->stream_name_utf8,
865                          &entry->stream_name_len,
866                          &entry->stream_name_utf8_len,
867                          new_name);
868 }
869
870 /* Parameters for calculate_dentry_statistics(). */
871 struct image_statistics {
872         struct lookup_table *lookup_table;
873         u64 *dir_count;
874         u64 *file_count;
875         u64 *total_bytes;
876         u64 *hard_link_bytes;
877 };
878
879 static int calculate_dentry_statistics(struct dentry *dentry, void *arg)
880 {
881         struct image_statistics *stats;
882         struct lookup_table_entry *lte; 
883         
884         stats = arg;
885
886         if (dentry_is_directory(dentry) && !dentry_is_root(dentry))
887                 ++*stats->dir_count;
888         else
889                 ++*stats->file_count;
890
891         for (unsigned i = 0; i <= dentry->inode->num_ads; i++) {
892                 lte = inode_stream_lte(dentry->inode, i, stats->lookup_table);
893                 if (lte) {
894                         *stats->total_bytes += wim_resource_size(lte);
895                         if (++lte->out_refcnt == 1)
896                                 *stats->hard_link_bytes += wim_resource_size(lte);
897                 }
898         }
899         return 0;
900 }
901
902 /* Calculates some statistics about a dentry tree. */
903 void calculate_dir_tree_statistics(struct dentry *root, struct lookup_table *table, 
904                                    u64 *dir_count_ret, u64 *file_count_ret, 
905                                    u64 *total_bytes_ret, 
906                                    u64 *hard_link_bytes_ret)
907 {
908         struct image_statistics stats;
909         *dir_count_ret         = 0;
910         *file_count_ret        = 0;
911         *total_bytes_ret       = 0;
912         *hard_link_bytes_ret   = 0;
913         stats.lookup_table     = table;
914         stats.dir_count       = dir_count_ret;
915         stats.file_count      = file_count_ret;
916         stats.total_bytes     = total_bytes_ret;
917         stats.hard_link_bytes = hard_link_bytes_ret;
918         for_lookup_table_entry(table, zero_out_refcnts, NULL);
919         for_dentry_in_tree(root, calculate_dentry_statistics, &stats);
920 }
921
922
923 /* 
924  * Reads the alternate data stream entries for a dentry.
925  *
926  * @p:  Pointer to buffer that starts with the first alternate stream entry.
927  *
928  * @inode:      Inode to load the alternate data streams into.
929  *                      @inode->num_ads must have been set to the number of
930  *                      alternate data streams that are expected.
931  *
932  * @remaining_size:     Number of bytes of data remaining in the buffer pointed
933  *                              to by @p.
934  *
935  * The format of the on-disk alternate stream entries is as follows:
936  *
937  * struct ads_entry_on_disk {
938  *      u64  length;          // Length of the entry, in bytes.  This includes
939  *                                  all fields (including the stream name and 
940  *                                  null terminator if present, AND the padding!).
941  *      u64  reserved;        // Seems to be unused
942  *      u8   hash[20];        // SHA1 message digest of the uncompressed stream
943  *      u16  stream_name_len; // Length of the stream name, in bytes
944  *      char stream_name[];   // Stream name in UTF-16LE, @stream_name_len bytes long,
945  *                                  not including null terminator
946  *      u16  zero;            // UTF-16 null terminator for the stream name, NOT
947  *                                  included in @stream_name_len.  Based on what
948  *                                  I've observed from filenames in dentries,
949  *                                  this field should not exist when
950  *                                  (@stream_name_len == 0), but you can't
951  *                                  actually tell because of the padding anyway
952  *                                  (provided that the padding is zeroed, which
953  *                                  it always seems to be).
954  *      char padding[];       // Padding to make the size a multiple of 8 bytes.
955  * };
956  *
957  * In addition, the entries are 8-byte aligned.
958  *
959  * Return 0 on success or nonzero on failure.  On success, inode->ads_entries
960  * is set to an array of `struct ads_entry's of length inode->num_ads.  On
961  * failure, @inode is not modified.
962  */
963 static int read_ads_entries(const u8 *p, struct inode *inode,
964                             u64 remaining_size)
965 {
966         u16 num_ads;
967         struct ads_entry **ads_entries;
968         int ret;
969
970         num_ads = inode->num_ads;
971         ads_entries = CALLOC(num_ads, sizeof(inode->ads_entries[0]));
972         if (!ads_entries) {
973                 ERROR("Could not allocate memory for %"PRIu16" "
974                       "alternate data stream entries", num_ads);
975                 return WIMLIB_ERR_NOMEM;
976         }
977
978         for (u16 i = 0; i < num_ads; i++) {
979                 struct ads_entry *cur_entry;
980                 u64 length;
981                 u64 length_no_padding;
982                 u64 total_length;
983                 size_t utf8_len;
984                 const u8 *p_save = p;
985
986                 cur_entry = new_ads_entry(NULL);
987                 if (!cur_entry) {
988                         ret = WIMLIB_ERR_NOMEM;
989                         goto out_free_ads_entries;
990                 }
991
992                 ads_entries[i] = cur_entry;
993
994                 /* Read the base stream entry, excluding the stream name. */
995                 if (remaining_size < WIM_ADS_ENTRY_DISK_SIZE) {
996                         ERROR("Stream entries go past end of metadata resource");
997                         ERROR("(remaining_size = %"PRIu64")", remaining_size);
998                         ret = WIMLIB_ERR_INVALID_DENTRY;
999                         goto out_free_ads_entries;
1000                 }
1001
1002                 p = get_u64(p, &length);
1003                 p += 8; /* Skip the reserved field */
1004                 p = get_bytes(p, SHA1_HASH_SIZE, (u8*)cur_entry->hash);
1005                 p = get_u16(p, &cur_entry->stream_name_len);
1006
1007                 cur_entry->stream_name = NULL;
1008                 cur_entry->stream_name_utf8 = NULL;
1009
1010                 /* Length including neither the null terminator nor the padding
1011                  * */
1012                 length_no_padding = WIM_ADS_ENTRY_DISK_SIZE +
1013                                     cur_entry->stream_name_len;
1014
1015                 /* Length including the null terminator and the padding */
1016                 total_length = ((length_no_padding + 2) + 7) & ~7;
1017
1018                 wimlib_assert(total_length == ads_entry_total_length(cur_entry));
1019
1020                 if (remaining_size < length_no_padding) {
1021                         ERROR("Stream entries go past end of metadata resource");
1022                         ERROR("(remaining_size = %"PRIu64" bytes, "
1023                               "length_no_padding = %"PRIu64" bytes)",
1024                               remaining_size, length_no_padding);
1025                         ret = WIMLIB_ERR_INVALID_DENTRY;
1026                         goto out_free_ads_entries;
1027                 }
1028
1029                 /* The @length field in the on-disk ADS entry is expected to be
1030                  * equal to @total_length, which includes all of the entry and
1031                  * the padding that follows it to align the next ADS entry to an
1032                  * 8-byte boundary.  However, to be safe, we'll accept the
1033                  * length field as long as it's not less than the un-padded
1034                  * total length and not more than the padded total length. */
1035                 if (length < length_no_padding || length > total_length) {
1036                         ERROR("Stream entry has unexpected length "
1037                               "field (length field = %"PRIu64", "
1038                               "unpadded total length = %"PRIu64", "
1039                               "padded total length = %"PRIu64")",
1040                               length, length_no_padding, total_length);
1041                         ret = WIMLIB_ERR_INVALID_DENTRY;
1042                         goto out_free_ads_entries;
1043                 }
1044
1045                 if (cur_entry->stream_name_len) {
1046                         cur_entry->stream_name = MALLOC(cur_entry->stream_name_len);
1047                         if (!cur_entry->stream_name) {
1048                                 ret = WIMLIB_ERR_NOMEM;
1049                                 goto out_free_ads_entries;
1050                         }
1051                         get_bytes(p, cur_entry->stream_name_len,
1052                                   (u8*)cur_entry->stream_name);
1053                         cur_entry->stream_name_utf8 = utf16_to_utf8(cur_entry->stream_name,
1054                                                                     cur_entry->stream_name_len,
1055                                                                     &utf8_len);
1056                         cur_entry->stream_name_utf8_len = utf8_len;
1057
1058                         if (!cur_entry->stream_name_utf8) {
1059                                 ret = WIMLIB_ERR_NOMEM;
1060                                 goto out_free_ads_entries;
1061                         }
1062                 }
1063                 /* It's expected that the size of every ADS entry is a multiple
1064                  * of 8.  However, to be safe, I'm allowing the possibility of
1065                  * an ADS entry at the very end of the metadata resource ending
1066                  * un-aligned.  So although we still need to increment the input
1067                  * pointer by @total_length to reach the next ADS entry, it's
1068                  * possible that less than @total_length is actually remaining
1069                  * in the metadata resource. We should set the remaining size to
1070                  * 0 bytes if this happens. */
1071                 p = p_save + total_length;
1072                 if (remaining_size < total_length)
1073                         remaining_size = 0;
1074                 else
1075                         remaining_size -= total_length;
1076         }
1077         inode->ads_entries = ads_entries;
1078         return 0;
1079 out_free_ads_entries:
1080         for (u16 i = 0; i < num_ads; i++)
1081                 free_ads_entry(ads_entries[i]);
1082         FREE(ads_entries);
1083         return ret;
1084 }
1085
1086 /* 
1087  * Reads a directory entry, including all alternate data stream entries that
1088  * follow it, from the WIM image's metadata resource.
1089  *
1090  * @metadata_resource:  Buffer containing the uncompressed metadata resource.
1091  * @metadata_resource_len:   Length of the metadata resource.
1092  * @offset:     Offset of this directory entry in the metadata resource.
1093  * @dentry:     A `struct dentry' that will be filled in by this function.
1094  *
1095  * Return 0 on success or nonzero on failure.  On failure, @dentry have been
1096  * modified, bu it will be left with no pointers to any allocated buffers.
1097  * On success, the dentry->length field must be examined.  If zero, this was a
1098  * special "end of directory" dentry and not a real dentry.  If nonzero, this
1099  * was a real dentry.
1100  */
1101 int read_dentry(const u8 metadata_resource[], u64 metadata_resource_len, 
1102                 u64 offset, struct dentry *dentry)
1103 {
1104         const u8 *p;
1105         u64 calculated_size;
1106         char *file_name = NULL;
1107         char *file_name_utf8 = NULL;
1108         char *short_name = NULL;
1109         u16 short_name_len;
1110         u16 file_name_len;
1111         size_t file_name_utf8_len = 0;
1112         int ret;
1113         struct inode *inode = NULL;
1114
1115         dentry_common_init(dentry);
1116
1117         /*Make sure the dentry really fits into the metadata resource.*/
1118         if (offset + 8 > metadata_resource_len || offset + 8 < offset) {
1119                 ERROR("Directory entry starting at %"PRIu64" ends past the "
1120                       "end of the metadata resource (size %"PRIu64")",
1121                       offset, metadata_resource_len);
1122                 return WIMLIB_ERR_INVALID_DENTRY;
1123         }
1124
1125         /* Before reading the whole dentry, we need to read just the length.
1126          * This is because a dentry of length 8 (that is, just the length field)
1127          * terminates the list of sibling directory entries. */
1128
1129         p = get_u64(&metadata_resource[offset], &dentry->length);
1130
1131         /* A zero length field (really a length of 8, since that's how big the
1132          * directory entry is...) indicates that this is the end of directory
1133          * dentry.  We do not read it into memory as an actual dentry, so just
1134          * return successfully in that case. */
1135         if (dentry->length == 0)
1136                 return 0;
1137
1138         /* If the dentry does not overflow the metadata resource buffer and is
1139          * not too short, read the rest of it (excluding the alternate data
1140          * streams, but including the file name and short name variable-length
1141          * fields) into memory. */
1142         if (offset + dentry->length >= metadata_resource_len
1143             || offset + dentry->length < offset)
1144         {
1145                 ERROR("Directory entry at offset %"PRIu64" and with size "
1146                       "%"PRIu64" ends past the end of the metadata resource "
1147                       "(size %"PRIu64")",
1148                       offset, dentry->length, metadata_resource_len);
1149                 return WIMLIB_ERR_INVALID_DENTRY;
1150         }
1151
1152         if (dentry->length < WIM_DENTRY_DISK_SIZE) {
1153                 ERROR("Directory entry has invalid length of %"PRIu64" bytes",
1154                       dentry->length);
1155                 return WIMLIB_ERR_INVALID_DENTRY;
1156         }
1157
1158         inode = new_timeless_inode();
1159         if (!inode)
1160                 return WIMLIB_ERR_NOMEM;
1161
1162         p = get_u32(p, &inode->attributes);
1163         p = get_u32(p, (u32*)&inode->security_id);
1164         p = get_u64(p, &dentry->subdir_offset);
1165
1166         /* 2 unused fields */
1167         p += 2 * sizeof(u64);
1168         /*p = get_u64(p, &dentry->unused1);*/
1169         /*p = get_u64(p, &dentry->unused2);*/
1170
1171         p = get_u64(p, &inode->creation_time);
1172         p = get_u64(p, &inode->last_access_time);
1173         p = get_u64(p, &inode->last_write_time);
1174
1175         p = get_bytes(p, SHA1_HASH_SIZE, inode->hash);
1176         
1177         /*
1178          * I don't know what's going on here.  It seems like M$ screwed up the
1179          * reparse points, then put the fields in the same place and didn't
1180          * document it.  The WIM_HDR_FLAG_RP_FIX flag in the WIM header might
1181          * have something to do with this, but it's not documented.
1182          */
1183         if (inode->attributes & FILE_ATTRIBUTE_REPARSE_POINT) {
1184                 /* ??? */
1185                 p += 4;
1186                 p = get_u32(p, &inode->reparse_tag);
1187                 p += 4;
1188         } else {
1189                 p = get_u32(p, &inode->reparse_tag);
1190                 p = get_u64(p, &inode->ino);
1191         }
1192
1193         /* By the way, the reparse_reserved field does not actually exist (at
1194          * least when the file is not a reparse point) */
1195         
1196         p = get_u16(p, &inode->num_ads);
1197
1198         p = get_u16(p, &short_name_len);
1199         p = get_u16(p, &file_name_len);
1200
1201         /* We now know the length of the file name and short name.  Make sure
1202          * the length of the dentry is large enough to actually hold them. 
1203          *
1204          * The calculated length here is unaligned to allow for the possibility
1205          * that the dentry->length names an unaligned length, although this
1206          * would be unexpected. */
1207         calculated_size = __dentry_correct_length_unaligned(file_name_len,
1208                                                             short_name_len);
1209
1210         if (dentry->length < calculated_size) {
1211                 ERROR("Unexpected end of directory entry! (Expected "
1212                       "at least %"PRIu64" bytes, got %"PRIu64" bytes. "
1213                       "short_name_len = %hu, file_name_len = %hu)", 
1214                       calculated_size, dentry->length,
1215                       short_name_len, file_name_len);
1216                 return WIMLIB_ERR_INVALID_DENTRY;
1217         }
1218
1219         /* Read the filename if present.  Note: if the filename is empty, there
1220          * is no null terminator following it. */
1221         if (file_name_len) {
1222                 file_name = MALLOC(file_name_len);
1223                 if (!file_name) {
1224                         ERROR("Failed to allocate %hu bytes for dentry file name",
1225                               file_name_len);
1226                         return WIMLIB_ERR_NOMEM;
1227                 }
1228                 p = get_bytes(p, file_name_len, file_name);
1229
1230                 /* Convert filename to UTF-8. */
1231                 file_name_utf8 = utf16_to_utf8(file_name, file_name_len, 
1232                                                &file_name_utf8_len);
1233
1234                 if (!file_name_utf8) {
1235                         ERROR("Failed to allocate memory to convert UTF-16 "
1236                               "filename (%hu bytes) to UTF-8", file_name_len);
1237                         ret = WIMLIB_ERR_NOMEM;
1238                         goto out_free_file_name;
1239                 }
1240                 if (*(u16*)p)
1241                         WARNING("Expected two zero bytes following the file name "
1242                                 "`%s', but found non-zero bytes", file_name_utf8);
1243                 p += 2;
1244         }
1245
1246         /* Align the calculated size */
1247         calculated_size = (calculated_size + 7) & ~7;
1248
1249         if (dentry->length > calculated_size) {
1250                 /* Weird; the dentry says it's longer than it should be.  Note
1251                  * that the length field does NOT include the size of the
1252                  * alternate stream entries. */
1253
1254                 /* Strangely, some directory entries inexplicably have a little
1255                  * over 70 bytes of extra data.  The exact amount of data seems
1256                  * to be 72 bytes, but it is aligned on the next 8-byte
1257                  * boundary.  It does NOT seem to be alternate data stream
1258                  * entries.  Here's an example of the aligned data:
1259                  *
1260                  * 01000000 40000000 6c786bba c58ede11 b0bb0026 1870892a b6adb76f
1261                  * e63a3e46 8fca8653 0d2effa1 6c786bba c58ede11 b0bb0026 1870892a
1262                  * 00000000 00000000 00000000 00000000
1263                  *
1264                  * Here's one interpretation of how the data is laid out.
1265                  *
1266                  * struct unknown {
1267                  *      u32 field1; (always 0x00000001)
1268                  *      u32 field2; (always 0x40000000)
1269                  *      u8  data[48]; (???)
1270                  *      u64 reserved1; (always 0)
1271                  *      u64 reserved2; (always 0)
1272                  * };*/
1273                 DEBUG("Dentry for file or directory `%s' has %zu extra "
1274                       "bytes of data",
1275                       file_name_utf8, dentry->length - calculated_size);
1276         }
1277
1278         /* Read the short filename if present.  Note: if there is no short
1279          * filename, there is no null terminator following it. */
1280         if (short_name_len) {
1281                 short_name = MALLOC(short_name_len);
1282                 if (!short_name) {
1283                         ERROR("Failed to allocate %hu bytes for short filename",
1284                               short_name_len);
1285                         ret = WIMLIB_ERR_NOMEM;
1286                         goto out_free_file_name_utf8;
1287                 }
1288
1289                 p = get_bytes(p, short_name_len, short_name);
1290                 if (*(u16*)p)
1291                         WARNING("Expected two zero bytes following the file name "
1292                                 "`%s', but found non-zero bytes", file_name_utf8);
1293                 p += 2;
1294         }
1295
1296         /* 
1297          * Read the alternate data streams, if present.  dentry->num_ads tells
1298          * us how many they are, and they will directly follow the dentry
1299          * on-disk.
1300          *
1301          * Note that each alternate data stream entry begins on an 8-byte
1302          * aligned boundary, and the alternate data stream entries are NOT
1303          * included in the dentry->length field for some reason.
1304          */
1305         if (inode->num_ads != 0) {
1306                 if (calculated_size > metadata_resource_len - offset) {
1307                         ERROR("Not enough space in metadata resource for "
1308                               "alternate stream entries");
1309                         ret = WIMLIB_ERR_INVALID_DENTRY;
1310                         goto out_free_short_name;
1311                 }
1312                 ret = read_ads_entries(&metadata_resource[offset + calculated_size],
1313                                        inode,
1314                                        metadata_resource_len - offset - calculated_size);
1315                 if (ret != 0)
1316                         goto out_free_short_name;
1317         }
1318
1319         /* We've read all the data for this dentry.  Set the names and their
1320          * lengths, and we've done. */
1321         dentry->inode              = inode;
1322         dentry->file_name          = file_name;
1323         dentry->file_name_utf8     = file_name_utf8;
1324         dentry->short_name         = short_name;
1325         dentry->file_name_len      = file_name_len;
1326         dentry->file_name_utf8_len = file_name_utf8_len;
1327         dentry->short_name_len     = short_name_len;
1328         return 0;
1329 out_free_short_name:
1330         FREE(short_name);
1331 out_free_file_name_utf8:
1332         FREE(file_name_utf8);
1333 out_free_file_name:
1334         FREE(file_name);
1335 out_free_inode:
1336         free_inode(inode);
1337         return ret;
1338 }
1339
1340 /* Run some miscellaneous verifications on a WIM dentry */
1341 int verify_dentry(struct dentry *dentry, void *wim)
1342 {
1343         const WIMStruct *w = wim;
1344         const struct lookup_table *table = w->lookup_table;
1345         const struct wim_security_data *sd = wim_const_security_data(w);
1346         const struct inode *inode = dentry->inode;
1347         int ret = WIMLIB_ERR_INVALID_DENTRY;
1348
1349         /* Check the security ID */
1350         if (inode->security_id < -1) {
1351                 ERROR("Dentry `%s' has an invalid security ID (%d)",
1352                         dentry->full_path_utf8, inode->security_id);
1353                 goto out;
1354         }
1355         if (inode->security_id >= sd->num_entries) {
1356                 ERROR("Dentry `%s' has an invalid security ID (%d) "
1357                       "(there are only %u entries in the security table)",
1358                         dentry->full_path_utf8, inode->security_id,
1359                         sd->num_entries);
1360                 goto out;
1361         }
1362
1363         /* Check that lookup table entries for all the resources exist, except
1364          * if the SHA1 message digest is all 0's, which indicates there is
1365          * intentionally no resource there.  */
1366         if (w->hdr.total_parts == 1) {
1367                 for (unsigned i = 0; i <= inode->num_ads; i++) {
1368                         struct lookup_table_entry *lte;
1369                         const u8 *hash;
1370                         hash = inode_stream_hash_unresolved(inode, i);
1371                         lte = __lookup_resource(table, hash);
1372                         if (!lte && !is_zero_hash(hash)) {
1373                                 ERROR("Could not find lookup table entry for stream "
1374                                       "%u of dentry `%s'", i, dentry->full_path_utf8);
1375                                 goto out;
1376                         }
1377                 }
1378         }
1379
1380         /* Make sure there is only one un-named stream. */
1381         unsigned num_unnamed_streams = 0;
1382         for (unsigned i = 0; i <= inode->num_ads; i++) {
1383                 const u8 *hash;
1384                 hash = inode_stream_hash_unresolved(inode, i);
1385                 if (!inode_stream_name_len(inode, i) && !is_zero_hash(hash))
1386                         num_unnamed_streams++;
1387         }
1388         if (num_unnamed_streams > 1) {
1389                 ERROR("Dentry `%s' has multiple (%u) un-named streams", 
1390                       dentry->full_path_utf8, num_unnamed_streams);
1391                 goto out;
1392         }
1393
1394         /* Cannot have a short name but no long name */
1395         if (dentry->short_name_len && !dentry->file_name_len) {
1396                 ERROR("Dentry `%s' has a short name but no long name",
1397                       dentry->full_path_utf8);
1398                 goto out;
1399         }
1400
1401         /* Make sure root dentry is unnamed */
1402         if (dentry_is_root(dentry)) {
1403                 if (dentry->file_name_len) {
1404                         ERROR("The root dentry is named `%s', but it must "
1405                               "be unnamed", dentry->file_name_utf8);
1406                         goto out;
1407                 }
1408         }
1409
1410 #if 0
1411         /* Check timestamps */
1412         if (inode->last_access_time < inode->creation_time ||
1413             inode->last_write_time < inode->creation_time) {
1414                 WARNING("Dentry `%s' was created after it was last accessed or "
1415                       "written to", dentry->full_path_utf8);
1416         }
1417 #endif
1418
1419         ret = 0;
1420 out:
1421         return ret;
1422 }
1423
1424 /* 
1425  * Writes a WIM dentry to an output buffer.
1426  *
1427  * @dentry:  The dentry structure.
1428  * @p:       The memory location to write the data to.
1429  * @return:  Pointer to the byte after the last byte we wrote as part of the
1430  *              dentry.
1431  */
1432 static u8 *write_dentry(const struct dentry *dentry, u8 *p)
1433 {
1434         u8 *orig_p = p;
1435         const u8 *hash;
1436         const struct inode *inode = dentry->inode;
1437
1438         /* We calculate the correct length of the dentry ourselves because the
1439          * dentry->length field may been set to an unexpected value from when we
1440          * read the dentry in (for example, there may have been unknown data
1441          * appended to the end of the dentry...) */
1442         u64 length = dentry_correct_length(dentry);
1443
1444         p = put_u64(p, length);
1445         p = put_u32(p, inode->attributes);
1446         p = put_u32(p, inode->security_id);
1447         p = put_u64(p, dentry->subdir_offset);
1448         p = put_u64(p, 0); /* unused1 */
1449         p = put_u64(p, 0); /* unused2 */
1450         p = put_u64(p, inode->creation_time);
1451         p = put_u64(p, inode->last_access_time);
1452         p = put_u64(p, inode->last_write_time);
1453         hash = inode_stream_hash(inode, 0);
1454         p = put_bytes(p, SHA1_HASH_SIZE, hash);
1455         if (inode->attributes & FILE_ATTRIBUTE_REPARSE_POINT) {
1456                 p = put_zeroes(p, 4);
1457                 p = put_u32(p, inode->reparse_tag);
1458                 p = put_zeroes(p, 4);
1459         } else {
1460                 u64 link_group_id;
1461                 p = put_u32(p, 0);
1462                 if (inode->link_count == 1)
1463                         link_group_id = 0;
1464                 else
1465                         link_group_id = inode->ino;
1466                 p = put_u64(p, link_group_id);
1467         }
1468         p = put_u16(p, inode->num_ads);
1469         p = put_u16(p, dentry->short_name_len);
1470         p = put_u16(p, dentry->file_name_len);
1471         if (dentry->file_name_len) {
1472                 p = put_bytes(p, dentry->file_name_len, (u8*)dentry->file_name);
1473                 p = put_u16(p, 0); /* filename padding, 2 bytes. */
1474         }
1475         if (dentry->short_name) {
1476                 p = put_bytes(p, dentry->short_name_len, (u8*)dentry->short_name);
1477                 p = put_u16(p, 0); /* short name padding, 2 bytes */
1478         }
1479
1480         /* Align to 8-byte boundary */
1481         wimlib_assert(length >= (p - orig_p)
1482                         && length - (p - orig_p) <= 7);
1483         p = put_zeroes(p, length - (p - orig_p));
1484
1485         /* Write the alternate data streams, if there are any.  Please see
1486          * read_ads_entries() for comments about the format of the on-disk
1487          * alternate data stream entries. */
1488         for (u16 i = 0; i < inode->num_ads; i++) {
1489                 p = put_u64(p, ads_entry_total_length(inode->ads_entries[i]));
1490                 p = put_u64(p, 0); /* Unused */
1491                 hash = inode_stream_hash(inode, i + 1);
1492                 p = put_bytes(p, SHA1_HASH_SIZE, hash);
1493                 p = put_u16(p, inode->ads_entries[i]->stream_name_len);
1494                 if (inode->ads_entries[i]->stream_name_len) {
1495                         p = put_bytes(p, inode->ads_entries[i]->stream_name_len,
1496                                          (u8*)inode->ads_entries[i]->stream_name);
1497                         p = put_u16(p, 0);
1498                 }
1499                 p = put_zeroes(p, (8 - (p - orig_p) % 8) % 8);
1500         }
1501 #ifdef ENABLE_ASSERTIONS
1502         wimlib_assert(p - orig_p == __dentry_total_length(dentry, length));
1503 #endif
1504         return p;
1505 }
1506
1507 /* Recursive function that writes a dentry tree rooted at @parent, not including
1508  * @parent itself, which has already been written. */
1509 static u8 *write_dentry_tree_recursive(const struct dentry *parent, u8 *p)
1510 {
1511         const struct dentry *child;
1512
1513         /* Nothing to do if this dentry has no children. */
1514         if (parent->subdir_offset == 0)
1515                 return p;
1516
1517         /* Write child dentries and end-of-directory entry. 
1518          *
1519          * Note: we need to write all of this dentry's children before
1520          * recursively writing the directory trees rooted at each of the child
1521          * dentries, since the on-disk dentries for a dentry's children are
1522          * always located at consecutive positions in the metadata resource! */
1523         child = parent->children;
1524         if (child) {
1525                 do {
1526                         p = write_dentry(child, p);
1527                         child = child->next;
1528                 } while (child != parent->children);
1529         }
1530
1531         /* write end of directory entry */
1532         p = put_u64(p, 0);
1533
1534         /* Recurse on children. */
1535         if (child) {
1536                 do {
1537                         p = write_dentry_tree_recursive(child, p);
1538                         child = child->next;
1539                 } while (child != parent->children);
1540         }
1541         return p;
1542 }
1543
1544 /* Writes a directory tree to the metadata resource.
1545  *
1546  * @root:       Root of the dentry tree.
1547  * @p:          Pointer to a buffer with enough space for the dentry tree.
1548  *
1549  * Returns pointer to the byte after the last byte we wrote.
1550  */
1551 u8 *write_dentry_tree(const struct dentry *root, u8 *p)
1552 {
1553         wimlib_assert(dentry_is_root(root));
1554
1555         /* If we're the root dentry, we have no parent that already
1556          * wrote us, so we need to write ourselves. */
1557         p = write_dentry(root, p);
1558
1559         /* Write end of directory entry after the root dentry just to be safe;
1560          * however the root dentry obviously cannot have any siblings. */
1561         p = put_u64(p, 0);
1562
1563         /* Recursively write the rest of the dentry tree. */
1564         return write_dentry_tree_recursive(root, p);
1565 }
1566
1567 /* Reads the children of a dentry, and all their children, ..., etc. from the
1568  * metadata resource and into the dentry tree.
1569  *
1570  * @metadata_resource:  An array that contains the uncompressed metadata
1571  *                      resource for the WIM file.
1572  *
1573  * @metadata_resource_len:  The length of the uncompressed metadata resource, in
1574  *                          bytes.
1575  *
1576  * @dentry:     A pointer to a `struct dentry' that is the root of the directory
1577  *              tree and has already been read from the metadata resource.  It
1578  *              does not need to be the real root because this procedure is
1579  *              called recursively.
1580  *
1581  * @return:     Zero on success, nonzero on failure.
1582  */
1583 int read_dentry_tree(const u8 metadata_resource[], u64 metadata_resource_len,
1584                      struct dentry *dentry)
1585 {
1586         u64 cur_offset = dentry->subdir_offset;
1587         struct dentry *prev_child = NULL;
1588         struct dentry *first_child = NULL;
1589         struct dentry *child;
1590         struct dentry cur_child;
1591         int ret;
1592
1593         /* 
1594          * If @dentry has no child dentries, nothing more needs to be done for
1595          * this branch.  This is the case for regular files, symbolic links, and
1596          * *possibly* empty directories (although an empty directory may also
1597          * have one child dentry that is the special end-of-directory dentry)
1598          */
1599         if (cur_offset == 0)
1600                 return 0;
1601
1602         /* Find and read all the children of @dentry. */
1603         while (1) {
1604
1605                 /* Read next child of @dentry into @cur_child. */
1606                 ret = read_dentry(metadata_resource, metadata_resource_len, 
1607                                   cur_offset, &cur_child);
1608                 if (ret != 0)
1609                         break;
1610
1611                 /* Check for end of directory. */
1612                 if (cur_child.length == 0)
1613                         break;
1614
1615                 /* Not end of directory.  Allocate this child permanently and
1616                  * link it to the parent and previous child. */
1617                 child = MALLOC(sizeof(struct dentry));
1618                 if (!child) {
1619                         ERROR("Failed to allocate %zu bytes for new dentry",
1620                               sizeof(struct dentry));
1621                         ret = WIMLIB_ERR_NOMEM;
1622                         break;
1623                 }
1624                 memcpy(child, &cur_child, sizeof(struct dentry));
1625
1626                 if (prev_child) {
1627                         prev_child->next = child;
1628                         child->prev = prev_child;
1629                 } else {
1630                         first_child = child;
1631                 }
1632
1633                 child->parent = dentry;
1634                 prev_child = child;
1635                 list_add(&child->inode_dentry_list, &child->inode->dentry_list);
1636
1637                 /* If there are children of this child, call this procedure
1638                  * recursively. */
1639                 if (child->subdir_offset != 0) {
1640                         ret = read_dentry_tree(metadata_resource, 
1641                                                metadata_resource_len, child);
1642                         if (ret != 0)
1643                                 break;
1644                 }
1645
1646                 /* Advance to the offset of the next child.  Note: We need to
1647                  * advance by the TOTAL length of the dentry, not by the length
1648                  * child->length, which although it does take into account the
1649                  * padding, it DOES NOT take into account alternate stream
1650                  * entries. */
1651                 cur_offset += dentry_total_length(child);
1652         }
1653
1654         /* Link last child to first one, and set parent's children pointer to
1655          * the first child.  */
1656         if (prev_child) {
1657                 prev_child->next = first_child;
1658                 first_child->prev = prev_child;
1659         }
1660         dentry->children = first_child;
1661         return ret;
1662 }