]> wimlib.net Git - wimlib/blob - src/dentry.c
Adjust documentation for alternate chunk sizes
[wimlib] / src / dentry.c
1 /*
2  * dentry.c
3  *
4  * In the WIM file format, the dentries are stored in the "metadata resource"
5  * section right after the security data.  Each image in the WIM file has its
6  * own metadata resource with its own security data and dentry tree.  Dentries
7  * in different images may share file resources by referring to the same lookup
8  * table entries.
9  */
10
11 /*
12  * Copyright (C) 2012, 2013 Eric Biggers
13  *
14  * This file is part of wimlib, a library for working with WIM files.
15  *
16  * wimlib is free software; you can redistribute it and/or modify it under the
17  * terms of the GNU General Public License as published by the Free Software
18  * Foundation; either version 3 of the License, or (at your option) any later
19  * version.
20  *
21  * wimlib is distributed in the hope that it will be useful, but WITHOUT ANY
22  * WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
23  * A PARTICULAR PURPOSE. See the GNU General Public License for more details.
24  *
25  * You should have received a copy of the GNU General Public License along with
26  * wimlib; if not, see http://www.gnu.org/licenses/.
27  */
28
29 #ifdef HAVE_CONFIG_H
30 #  include "config.h"
31 #endif
32
33 #include "wimlib.h"
34 #include "wimlib/case.h"
35 #include "wimlib/dentry.h"
36 #include "wimlib/encoding.h"
37 #include "wimlib/endianness.h"
38 #include "wimlib/error.h"
39 #include "wimlib/lookup_table.h"
40 #include "wimlib/metadata.h"
41 #include "wimlib/paths.h"
42 #include "wimlib/resource.h"
43 #include "wimlib/security.h"
44 #include "wimlib/sha1.h"
45 #include "wimlib/timestamp.h"
46
47 #include <errno.h>
48
49 /* On-disk format of a WIM dentry (directory entry), located in the metadata
50  * resource for a WIM image.  */
51 struct wim_dentry_on_disk {
52
53         /* Length of this directory entry in bytes, not including any alternate
54          * data stream entries.  Should be a multiple of 8 so that the following
55          * dentry or alternate data stream entry is aligned on an 8-byte
56          * boundary.  (If not, wimlib will round it up.)  It must be at least as
57          * long as the fixed-length fields of the dentry (WIM_DENTRY_DISK_SIZE),
58          * plus the lengths of the file name and/or short name if present.
59          *
60          * It is also possible for this field to be 0.  This situation, which is
61          * undocumented, indicates the end of a list of sibling nodes in a
62          * directory.  It also means the real length is 8, because the dentry
63          * included only the length field, but that takes up 8 bytes.  */
64         le64 length;
65
66         /* Attributes of the file or directory.  This is a bitwise OR of the
67          * FILE_ATTRIBUTE_* constants and should correspond to the value
68          * retrieved by GetFileAttributes() on Windows. */
69         le32 attributes;
70
71         /* A value that specifies the security descriptor for this file or
72          * directory.  If -1, the file or directory has no security descriptor.
73          * Otherwise, it is a 0-based index into the WIM image's table of
74          * security descriptors (see: `struct wim_security_data') */
75         sle32 security_id;
76
77         /* Offset, in bytes, from the start of the uncompressed metadata
78          * resource of this directory's child directory entries, or 0 if this
79          * directory entry does not correspond to a directory or otherwise does
80          * not have any children. */
81         le64 subdir_offset;
82
83         /* Reserved fields */
84         le64 unused_1;
85         le64 unused_2;
86
87
88         /* Creation time, last access time, and last write time, in
89          * 100-nanosecond intervals since 12:00 a.m UTC January 1, 1601.  They
90          * should correspond to the times gotten by calling GetFileTime() on
91          * Windows. */
92         le64 creation_time;
93         le64 last_access_time;
94         le64 last_write_time;
95
96         /* Vaguely, the SHA-1 message digest ("hash") of the file's contents.
97          * More specifically, this is for the "unnamed data stream" rather than
98          * any "alternate data streams".  This hash value is used to look up the
99          * corresponding entry in the WIM's stream lookup table to actually find
100          * the file contents within the WIM.
101          *
102          * If the file has no unnamed data stream (e.g. is a directory), then
103          * this field will be all zeroes.  If the unnamed data stream is empty
104          * (i.e. an "empty file"), then this field is also expected to be all
105          * zeroes.  (It will be if wimlib created the WIM image, at least;
106          * otherwise it can't be ruled out that the SHA-1 message digest of 0
107          * bytes of data is given explicitly.)
108          *
109          * If the file has reparse data, then this field will instead specify
110          * the SHA-1 message digest of the reparse data.  If it is somehow
111          * possible for a file to have both an unnamed data stream and reparse
112          * data, then this is not handled by wimlib.
113          *
114          * As a further special case, if this field is all zeroes but there is
115          * an alternate data stream entry with no name and a nonzero SHA-1
116          * message digest field, then that hash must be used instead of this
117          * one.  In fact, when named data streams are present, some versions of
118          * Windows PE contain a bug where they only look in the alternate data
119          * stream entries for the unnamed data stream, not here.
120          */
121         u8 unnamed_stream_hash[SHA1_HASH_SIZE];
122
123         /* The format of the following data is not yet completely known and they
124          * do not correspond to Microsoft's documentation.
125          *
126          * If this directory entry is for a reparse point (has
127          * FILE_ATTRIBUTE_REPARSE_POINT set in the attributes field), then the
128          * version of the following fields containing the reparse tag is valid.
129          * Furthermore, the field notated as not_rpfixed, as far as I can tell,
130          * is supposed to be set to 1 if reparse point fixups (a.k.a. fixing the
131          * targets of absolute symbolic links) were *not* done, and otherwise 0.
132          *
133          * If this directory entry is not for a reparse point, then the version
134          * of the following fields containing the hard_link_group_id is valid.
135          * All MS says about this field is that "If this file is part of a hard
136          * link set, all the directory entries in the set will share the same
137          * value in this field.".  However, more specifically I have observed
138          * the following:
139          *    - If the file is part of a hard link set of size 1, then the
140          *    hard_link_group_id should be set to either 0, which is treated
141          *    specially as indicating "not hardlinked", or any unique value.
142          *    - The specific nonzero values used to identity hard link sets do
143          *    not matter, as long as they are unique.
144          *    - However, due to bugs in Microsoft's software, it is actually NOT
145          *    guaranteed that directory entries that share the same hard link
146          *    group ID are actually hard linked to each either.  We have to
147          *    handle this by using special code to use distinguishing features
148          *    (which is possible because some information about the underlying
149          *    inode is repeated in each dentry) to split up these fake hard link
150          *    groups into what they actually are supposed to be.
151          */
152         union {
153                 struct {
154                         le32 rp_unknown_1;
155                         le32 reparse_tag;
156                         le16 rp_unknown_2;
157                         le16 not_rpfixed;
158                 } _packed_attribute reparse;
159                 struct {
160                         le32 rp_unknown_1;
161                         le64 hard_link_group_id;
162                 } _packed_attribute nonreparse;
163         };
164
165         /* Number of alternate data stream entries that directly follow this
166          * dentry on-disk. */
167         le16 num_alternate_data_streams;
168
169         /* Length of this file's UTF-16LE encoded short name (8.3 DOS-compatible
170          * name), if present, in bytes, excluding the null terminator.  If this
171          * file has no short name, then this field should be 0.  */
172         le16 short_name_nbytes;
173
174         /* Length of this file's UTF-16LE encoded "long" name, excluding the
175          * null terminator.  If this file has no short name, then this field
176          * should be 0.  It's expected that only the root dentry has this field
177          * set to 0.  */
178         le16 file_name_nbytes;
179
180         /* Followed by variable length file name, in UTF16-LE, if
181          * file_name_nbytes != 0.  Includes null terminator. */
182         /*utf16lechar file_name[];*/
183
184         /* Followed by variable length short name, in UTF16-LE, if
185          * short_name_nbytes != 0.  Includes null terminator. */
186         /*utf16lechar short_name[];*/
187 } _packed_attribute;
188
189 /* Calculates the unaligned length, in bytes, of an on-disk WIM dentry that has
190  * a file name and short name that take the specified numbers of bytes.  This
191  * excludes any alternate data stream entries that may follow the dentry. */
192 static u64
193 dentry_correct_length_unaligned(u16 file_name_nbytes, u16 short_name_nbytes)
194 {
195         u64 length = sizeof(struct wim_dentry_on_disk);
196         if (file_name_nbytes)
197                 length += file_name_nbytes + 2;
198         if (short_name_nbytes)
199                 length += short_name_nbytes + 2;
200         return length;
201 }
202
203 /* Calculates the unaligned length, in bytes, of an on-disk WIM dentry, based on
204  * the file name length and short name length.  Note that dentry->length is
205  * ignored; also, this excludes any alternate data stream entries that may
206  * follow the dentry. */
207 static u64
208 dentry_correct_length_aligned(const struct wim_dentry *dentry)
209 {
210         u64 len;
211
212         len = dentry_correct_length_unaligned(dentry->file_name_nbytes,
213                                               dentry->short_name_nbytes);
214         return (len + 7) & ~7;
215 }
216
217 /* Sets the name of a WIM dentry from a multibyte string.
218  * Only use this on dentries not inserted into the tree.  Use rename_wim_path()
219  * to do a real rename.  */
220 int
221 dentry_set_name(struct wim_dentry *dentry, const tchar *new_name)
222 {
223         int ret;
224         ret = get_utf16le_string(new_name, &dentry->file_name,
225                                  &dentry->file_name_nbytes);
226         if (ret == 0) {
227                 /* Clear the short name and recalculate the dentry length */
228                 if (dentry_has_short_name(dentry)) {
229                         FREE(dentry->short_name);
230                         dentry->short_name = NULL;
231                         dentry->short_name_nbytes = 0;
232                 }
233         }
234         return ret;
235 }
236
237 /* Returns the total length of a WIM alternate data stream entry on-disk,
238  * including the stream name, the null terminator, AND the padding after the
239  * entry to align the next ADS entry or dentry on an 8-byte boundary. */
240 static u64
241 ads_entry_total_length(const struct wim_ads_entry *entry)
242 {
243         u64 len = sizeof(struct wim_ads_entry_on_disk);
244         if (entry->stream_name_nbytes)
245                 len += entry->stream_name_nbytes + 2;
246         return (len + 7) & ~7;
247 }
248
249 /*
250  * Determine whether to include a "dummy" stream when writing a WIM dentry:
251  *
252  * Some versions of Microsoft's WIM software (the boot driver(s) in WinPE 3.0,
253  * for example) contain a bug where they assume the first alternate data stream
254  * (ADS) entry of a dentry with a nonzero ADS count specifies the unnamed
255  * stream, even if it has a name and the unnamed stream is already specified in
256  * the hash field of the dentry itself.
257  *
258  * wimlib has to work around this behavior by carefully emulating the behavior
259  * of (most versions of) ImageX/WIMGAPI, which move the unnamed stream reference
260  * into the alternate stream entries whenever there are named data streams, even
261  * though there is already a field in the dentry itself for the unnamed stream
262  * reference, which then goes to waste.
263  */
264 static inline bool
265 inode_needs_dummy_stream(const struct wim_inode *inode)
266 {
267         return (inode->i_num_ads > 0 &&
268                 inode->i_num_ads < 0xffff && /* overflow check */
269                 inode->i_canonical_streams); /* assume the dentry is okay if it
270                                                 already had an unnamed ADS entry
271                                                 when it was read in  */
272 }
273
274 /* Calculate the total number of bytes that will be consumed when a WIM dentry
275  * is written.  This includes base dentry and name fields as well as all
276  * alternate data stream entries and alignment bytes.  */
277 u64
278 dentry_out_total_length(const struct wim_dentry *dentry)
279 {
280         u64 length = dentry_correct_length_aligned(dentry);
281         const struct wim_inode *inode = dentry->d_inode;
282
283         if (inode_needs_dummy_stream(inode))
284                 length += ads_entry_total_length(&(struct wim_ads_entry){});
285
286         for (u16 i = 0; i < inode->i_num_ads; i++)
287                 length += ads_entry_total_length(&inode->i_ads_entries[i]);
288
289         return length;
290 }
291
292 /* Calculate the aligned, total length of a dentry, including all alternate data
293  * stream entries.  Uses dentry->length.  */
294 static u64
295 dentry_in_total_length(const struct wim_dentry *dentry)
296 {
297         u64 length = dentry->length;
298         const struct wim_inode *inode = dentry->d_inode;
299         for (u16 i = 0; i < inode->i_num_ads; i++)
300                 length += ads_entry_total_length(&inode->i_ads_entries[i]);
301         return (length + 7) & ~7;
302 }
303
304 int
305 for_dentry_in_rbtree(struct rb_node *root,
306                      int (*visitor)(struct wim_dentry *, void *),
307                      void *arg)
308 {
309         int ret;
310         struct rb_node *node = root;
311         LIST_HEAD(stack);
312         while (1) {
313                 if (node) {
314                         list_add(&rbnode_dentry(node)->tmp_list, &stack);
315                         node = node->rb_left;
316                 } else {
317                         struct list_head *next;
318                         struct wim_dentry *dentry;
319
320                         next = stack.next;
321                         if (next == &stack)
322                                 return 0;
323                         dentry = container_of(next, struct wim_dentry, tmp_list);
324                         list_del(next);
325                         ret = visitor(dentry, arg);
326                         if (ret != 0)
327                                 return ret;
328                         node = dentry->rb_node.rb_right;
329                 }
330         }
331 }
332
333 static int
334 for_dentry_tree_in_rbtree_depth(struct rb_node *node,
335                                 int (*visitor)(struct wim_dentry*, void*),
336                                 void *arg)
337 {
338         int ret;
339         if (node) {
340                 ret = for_dentry_tree_in_rbtree_depth(node->rb_left,
341                                                       visitor, arg);
342                 if (ret != 0)
343                         return ret;
344                 ret = for_dentry_tree_in_rbtree_depth(node->rb_right,
345                                                       visitor, arg);
346                 if (ret != 0)
347                         return ret;
348                 ret = for_dentry_in_tree_depth(rbnode_dentry(node), visitor, arg);
349                 if (ret != 0)
350                         return ret;
351         }
352         return 0;
353 }
354
355 static int
356 for_dentry_tree_in_rbtree(struct rb_node *node,
357                           int (*visitor)(struct wim_dentry*, void*),
358                           void *arg)
359 {
360         int ret;
361         if (node) {
362                 ret = for_dentry_tree_in_rbtree(node->rb_left, visitor, arg);
363                 if (ret)
364                         return ret;
365                 ret = for_dentry_in_tree(rbnode_dentry(node), visitor, arg);
366                 if (ret)
367                         return ret;
368                 ret = for_dentry_tree_in_rbtree(node->rb_right, visitor, arg);
369                 if (ret)
370                         return ret;
371         }
372         return 0;
373 }
374
375 /*
376  * Iterate over all children of @dentry, calling the function @visitor, passing
377  * it a child dentry and the extra argument @arg.
378  *
379  * Note: this function iterates over ALL child dentries, even those with the
380  * same case-insensitive name.
381  *
382  * Note: this function clobbers the tmp_list field of the child dentries.  */
383 int
384 for_dentry_child(const struct wim_dentry *dentry,
385                  int (*visitor)(struct wim_dentry *, void *),
386                  void *arg)
387 {
388         return for_dentry_in_rbtree(dentry->d_inode->i_children.rb_node,
389                                     visitor,
390                                     arg);
391 }
392
393 /* Calls a function on all directory entries in a WIM dentry tree.  Logically,
394  * this is a pre-order traversal (the function is called on a parent dentry
395  * before its children), but sibling dentries will be visited in order as well.
396  * */
397 int
398 for_dentry_in_tree(struct wim_dentry *root,
399                    int (*visitor)(struct wim_dentry*, void*), void *arg)
400 {
401         int ret;
402
403         if (root == NULL)
404                 return 0;
405         ret = (*visitor)(root, arg);
406         if (ret)
407                 return ret;
408         return for_dentry_tree_in_rbtree(root->d_inode->i_children.rb_node,
409                                          visitor,
410                                          arg);
411 }
412
413 /* Like for_dentry_in_tree(), but the visitor function is always called on a
414  * dentry's children before on itself. */
415 int
416 for_dentry_in_tree_depth(struct wim_dentry *root,
417                          int (*visitor)(struct wim_dentry*, void*), void *arg)
418 {
419         int ret;
420
421         if (root == NULL)
422                 return 0;
423         ret = for_dentry_tree_in_rbtree_depth(root->d_inode->i_children.rb_node,
424                                               visitor, arg);
425         if (ret)
426                 return ret;
427         return (*visitor)(root, arg);
428 }
429
430 /* Calculate the full path of @dentry.  The full path of its parent must have
431  * already been calculated, or it must be the root dentry. */
432 int
433 calculate_dentry_full_path(struct wim_dentry *dentry)
434 {
435         tchar *full_path;
436         u32 full_path_nbytes;
437         int ret;
438
439         if (dentry->_full_path)
440                 return 0;
441
442         if (dentry_is_root(dentry)) {
443                 static const tchar _root_path[] = {WIM_PATH_SEPARATOR, T('\0')};
444                 full_path = TSTRDUP(_root_path);
445                 if (full_path == NULL)
446                         return WIMLIB_ERR_NOMEM;
447                 full_path_nbytes = 1 * sizeof(tchar);
448         } else {
449                 struct wim_dentry *parent;
450                 tchar *parent_full_path;
451                 u32 parent_full_path_nbytes;
452                 size_t filename_nbytes;
453
454                 parent = dentry->parent;
455                 if (dentry_is_root(parent)) {
456                         parent_full_path = T("");
457                         parent_full_path_nbytes = 0;
458                 } else {
459                         if (parent->_full_path == NULL) {
460                                 ret = calculate_dentry_full_path(parent);
461                                 if (ret)
462                                         return ret;
463                         }
464                         parent_full_path = parent->_full_path;
465                         parent_full_path_nbytes = parent->full_path_nbytes;
466                 }
467
468                 /* Append this dentry's name as a tchar string to the full path
469                  * of the parent followed by the path separator */
470         #if TCHAR_IS_UTF16LE
471                 filename_nbytes = dentry->file_name_nbytes;
472         #else
473                 {
474                         int ret = utf16le_to_tstr_nbytes(dentry->file_name,
475                                                          dentry->file_name_nbytes,
476                                                          &filename_nbytes);
477                         if (ret)
478                                 return ret;
479                 }
480         #endif
481
482                 full_path_nbytes = parent_full_path_nbytes + sizeof(tchar) +
483                                    filename_nbytes;
484                 full_path = MALLOC(full_path_nbytes + sizeof(tchar));
485                 if (full_path == NULL)
486                         return WIMLIB_ERR_NOMEM;
487                 memcpy(full_path, parent_full_path, parent_full_path_nbytes);
488                 full_path[parent_full_path_nbytes / sizeof(tchar)] = WIM_PATH_SEPARATOR;
489         #if TCHAR_IS_UTF16LE
490                 memcpy(&full_path[parent_full_path_nbytes / sizeof(tchar) + 1],
491                        dentry->file_name,
492                        filename_nbytes + sizeof(tchar));
493         #else
494                 utf16le_to_tstr_buf(dentry->file_name,
495                                     dentry->file_name_nbytes,
496                                     &full_path[parent_full_path_nbytes /
497                                                sizeof(tchar) + 1]);
498         #endif
499         }
500         dentry->_full_path = full_path;
501         dentry->full_path_nbytes= full_path_nbytes;
502         return 0;
503 }
504
505 static int
506 do_calculate_dentry_full_path(struct wim_dentry *dentry, void *_ignore)
507 {
508         return calculate_dentry_full_path(dentry);
509 }
510
511 int
512 calculate_dentry_tree_full_paths(struct wim_dentry *root)
513 {
514         return for_dentry_in_tree(root, do_calculate_dentry_full_path, NULL);
515 }
516
517 tchar *
518 dentry_full_path(struct wim_dentry *dentry)
519 {
520         calculate_dentry_full_path(dentry);
521         return dentry->_full_path;
522 }
523
524 static int
525 increment_subdir_offset(struct wim_dentry *dentry, void *subdir_offset_p)
526 {
527         *(u64*)subdir_offset_p += dentry_out_total_length(dentry);
528         return 0;
529 }
530
531 static int
532 call_calculate_subdir_offsets(struct wim_dentry *dentry, void *subdir_offset_p)
533 {
534         calculate_subdir_offsets(dentry, subdir_offset_p);
535         return 0;
536 }
537
538 /*
539  * Recursively calculates the subdir offsets for a directory tree.
540  *
541  * @dentry:  The root of the directory tree.
542  * @subdir_offset_p:  The current subdirectory offset; i.e., the subdirectory
543  *                    offset for @dentry.
544  */
545 void
546 calculate_subdir_offsets(struct wim_dentry *dentry, u64 *subdir_offset_p)
547 {
548         struct rb_node *node;
549
550         dentry->subdir_offset = *subdir_offset_p;
551         node = dentry->d_inode->i_children.rb_node;
552         if (node) {
553                 /* Advance the subdir offset by the amount of space the children
554                  * of this dentry take up. */
555                 for_dentry_in_rbtree(node, increment_subdir_offset, subdir_offset_p);
556
557                 /* End-of-directory dentry on disk. */
558                 *subdir_offset_p += 8;
559
560                 /* Recursively call calculate_subdir_offsets() on all the
561                  * children. */
562                 for_dentry_in_rbtree(node, call_calculate_subdir_offsets, subdir_offset_p);
563         } else {
564                 /* On disk, childless directories have a valid subdir_offset
565                  * that points to an 8-byte end-of-directory dentry.  Regular
566                  * files or reparse points have a subdir_offset of 0. */
567                 if (dentry_is_directory(dentry))
568                         *subdir_offset_p += 8;
569                 else
570                         dentry->subdir_offset = 0;
571         }
572 }
573
574 static int
575 dentry_compare_names_case_insensitive(const struct wim_dentry *d1,
576                                       const struct wim_dentry *d2)
577 {
578         return cmp_utf16le_strings(d1->file_name,
579                                    d1->file_name_nbytes / 2,
580                                    d2->file_name,
581                                    d2->file_name_nbytes / 2,
582                                    true);
583 }
584
585 static int
586 dentry_compare_names_case_sensitive(const struct wim_dentry *d1,
587                                     const struct wim_dentry *d2)
588 {
589         return cmp_utf16le_strings(d1->file_name,
590                                    d1->file_name_nbytes / 2,
591                                    d2->file_name,
592                                    d2->file_name_nbytes / 2,
593                                    false);
594 }
595
596 /* Default case sensitivity behavior for searches with
597  * WIMLIB_CASE_PLATFORM_DEFAULT specified.  This can be modified by
598  * wimlib_global_init().  */
599 bool default_ignore_case =
600 #ifdef __WIN32__
601         true
602 #else
603         false
604 #endif
605 ;
606
607 /* Given a UTF-16LE filename and a directory, look up the dentry for the file.
608  * Return it if found, otherwise NULL.  This is case-sensitive on UNIX and
609  * case-insensitive on Windows. */
610 struct wim_dentry *
611 get_dentry_child_with_utf16le_name(const struct wim_dentry *dentry,
612                                    const utf16lechar *name,
613                                    size_t name_nbytes,
614                                    CASE_SENSITIVITY_TYPE case_ctype)
615 {
616         struct rb_node *node;
617
618         bool ignore_case = will_ignore_case(case_ctype);
619
620         if (ignore_case)
621                 node = dentry->d_inode->i_children_case_insensitive.rb_node;
622         else
623                 node = dentry->d_inode->i_children.rb_node;
624
625         struct wim_dentry *child;
626         while (node) {
627                 if (ignore_case)
628                         child = rb_entry(node, struct wim_dentry, rb_node_case_insensitive);
629                 else
630                         child = rb_entry(node, struct wim_dentry, rb_node);
631
632                 int result = cmp_utf16le_strings(name,
633                                                  name_nbytes / 2,
634                                                  child->file_name,
635                                                  child->file_name_nbytes / 2,
636                                                  ignore_case);
637                 if (result < 0) {
638                         node = node->rb_left;
639                 } else if (result > 0) {
640                         node = node->rb_right;
641                 } else if (!ignore_case ||
642                         list_empty(&child->case_insensitive_conflict_list)) {
643                         return child;
644                 } else {
645                         /* Multiple dentries have the same case-insensitive
646                          * name, and a case-insensitive lookup is being
647                          * performed.  Choose the dentry with the same
648                          * case-sensitive name, if one exists; otherwise print a
649                          * warning and choose one arbitrarily.  */
650                         struct wim_dentry *alt = child;
651                         size_t num_alts = 0;
652
653                         do {
654                                 num_alts++;
655                                 if (0 == cmp_utf16le_strings(name,
656                                                              name_nbytes / 2,
657                                                              alt->file_name,
658                                                              alt->file_name_nbytes / 2,
659                                                              false))
660                                         return alt;
661                                 alt = list_entry(alt->case_insensitive_conflict_list.next,
662                                                  struct wim_dentry,
663                                                  case_insensitive_conflict_list);
664                         } while (alt != child);
665
666                         WARNING("Result of case-insensitive lookup is ambiguous\n"
667                                 "          (returning \"%"TS"\" of %zu "
668                                 "possible files, including \"%"TS"\")",
669                                 dentry_full_path(child),
670                                 num_alts,
671                                 dentry_full_path(list_entry(child->case_insensitive_conflict_list.next,
672                                                             struct wim_dentry,
673                                                             case_insensitive_conflict_list)));
674                         return child;
675                 }
676         }
677         return NULL;
678 }
679
680 /* Returns the child of @dentry that has the file name @name.  Returns NULL if
681  * no child has the name. */
682 struct wim_dentry *
683 get_dentry_child_with_name(const struct wim_dentry *dentry, const tchar *name,
684                            CASE_SENSITIVITY_TYPE case_type)
685 {
686 #if TCHAR_IS_UTF16LE
687         return get_dentry_child_with_utf16le_name(dentry, name,
688                                                   tstrlen(name) * sizeof(tchar),
689                                                   case_type);
690 #else
691         utf16lechar *utf16le_name;
692         size_t utf16le_name_nbytes;
693         int ret;
694         struct wim_dentry *child;
695
696         ret = tstr_to_utf16le(name, tstrlen(name) * sizeof(tchar),
697                               &utf16le_name, &utf16le_name_nbytes);
698         if (ret) {
699                 child = NULL;
700         } else {
701                 child = get_dentry_child_with_utf16le_name(dentry,
702                                                            utf16le_name,
703                                                            utf16le_name_nbytes,
704                                                            case_type);
705                 FREE(utf16le_name);
706         }
707         return child;
708 #endif
709 }
710
711 static struct wim_dentry *
712 get_dentry_utf16le(WIMStruct *wim, const utf16lechar *path,
713                    CASE_SENSITIVITY_TYPE case_type)
714 {
715         struct wim_dentry *cur_dentry;
716         const utf16lechar *name_start, *name_end;
717
718         /* Start with the root directory of the image.  Note: this will be NULL
719          * if an image has been added directly with wimlib_add_empty_image() but
720          * no files have been added yet; in that case we fail with ENOENT.  */
721         cur_dentry = wim_root_dentry(wim);
722
723         name_start = path;
724         for (;;) {
725                 if (cur_dentry == NULL) {
726                         errno = ENOENT;
727                         return NULL;
728                 }
729
730                 if (*name_start && !dentry_is_directory(cur_dentry)) {
731                         errno = ENOTDIR;
732                         return NULL;
733                 }
734
735                 while (*name_start == cpu_to_le16(WIM_PATH_SEPARATOR))
736                         name_start++;
737
738                 if (!*name_start)
739                         return cur_dentry;
740
741                 name_end = name_start;
742                 do {
743                         ++name_end;
744                 } while (*name_end != cpu_to_le16(WIM_PATH_SEPARATOR) && *name_end);
745
746                 cur_dentry = get_dentry_child_with_utf16le_name(cur_dentry,
747                                                                 name_start,
748                                                                 (u8*)name_end - (u8*)name_start,
749                                                                 case_type);
750                 name_start = name_end;
751         }
752 }
753
754 /*
755  * WIM path lookup: translate a path in the currently selected WIM image to the
756  * corresponding dentry, if it exists.
757  *
758  * @wim
759  *      The WIMStruct for the WIM.  The search takes place in the currently
760  *      selected image.
761  *
762  * @path
763  *      The path to look up, given relative to the root of the WIM image.
764  *      Characters with value WIM_PATH_SEPARATOR are taken to be path
765  *      separators.  Leading path separators are ignored, whereas one or more
766  *      trailing path separators cause the path to only match a directory.
767  *
768  * @case_type
769  *      The case-sensitivity behavior of this function, as one of the following
770  *      constants:
771  *
772  *    - WIMLIB_CASE_SENSITIVE:  Perform the search case sensitively.  This means
773  *      that names must match exactly.
774  *
775  *    - WIMLIB_CASE_INSENSITIVE:  Perform the search case insensitively.  This
776  *      means that names are considered to match if they are equal when
777  *      transformed to upper case.  If a path component matches multiple names
778  *      case-insensitively, the name that matches the path component
779  *      case-sensitively is chosen, if existent; otherwise one
780  *      case-insensitively matching name is chosen arbitrarily.
781  *
782  *    - WIMLIB_CASE_PLATFORM_DEFAULT:  Perform either case-sensitive or
783  *      case-insensitive search, depending on the value of the global variable
784  *      default_ignore_case.
785  *
786  *    In any case, no Unicode normalization is done before comparing strings.
787  *
788  * Returns a pointer to the dentry that is the result of the lookup, or NULL if
789  * no such dentry exists.  If NULL is returned, errno is set to one of the
790  * following values:
791  *
792  *      ENOTDIR if one of the path components used as a directory existed but
793  *      was not, in fact, a directory.
794  *
795  *      ENOENT otherwise.
796  *
797  * Additional notes:
798  *
799  *    - This function does not consider a reparse point to be a directory, even
800  *      if it has FILE_ATTRIBUTE_DIRECTORY set.
801  *
802  *    - This function does not dereference symbolic links or junction points
803  *      when performing the search.
804  *
805  *    - Since this function ignores leading slashes, the empty path is valid and
806  *      names the root directory of the WIM image.
807  *
808  *    - An image added with wimlib_add_empty_image() does not have a root
809  *      directory yet, and this function will fail with ENOENT for any path on
810  *      such an image.
811  */
812 struct wim_dentry *
813 get_dentry(WIMStruct *wim, const tchar *path, CASE_SENSITIVITY_TYPE case_type)
814 {
815 #if TCHAR_IS_UTF16LE
816         return get_dentry_utf16le(wim, path, case_type);
817 #else
818         utf16lechar *path_utf16le;
819         size_t path_utf16le_nbytes;
820         int ret;
821         struct wim_dentry *dentry;
822
823         ret = tstr_to_utf16le(path, tstrlen(path) * sizeof(tchar),
824                               &path_utf16le, &path_utf16le_nbytes);
825         if (ret)
826                 return NULL;
827         dentry = get_dentry_utf16le(wim, path_utf16le, case_type);
828         FREE(path_utf16le);
829         return dentry;
830 #endif
831 }
832
833 /* Takes in a path of length @len in @buf, and transforms it into a string for
834  * the path of its parent directory. */
835 static void
836 to_parent_name(tchar *buf, size_t len)
837 {
838         ssize_t i = (ssize_t)len - 1;
839         while (i >= 0 && buf[i] == WIM_PATH_SEPARATOR)
840                 i--;
841         while (i >= 0 && buf[i] != WIM_PATH_SEPARATOR)
842                 i--;
843         while (i >= 0 && buf[i] == WIM_PATH_SEPARATOR)
844                 i--;
845         buf[i + 1] = T('\0');
846 }
847
848 /* Similar to get_dentry(), but returns the dentry named by @path with the last
849  * component stripped off.
850  *
851  * Note: The returned dentry is NOT guaranteed to be a directory.  */
852 struct wim_dentry *
853 get_parent_dentry(WIMStruct *wim, const tchar *path,
854                   CASE_SENSITIVITY_TYPE case_type)
855 {
856         size_t path_len = tstrlen(path);
857         tchar buf[path_len + 1];
858
859         tmemcpy(buf, path, path_len + 1);
860         to_parent_name(buf, path_len);
861         return get_dentry(wim, buf, case_type);
862 }
863
864 #ifdef WITH_FUSE
865 /* Finds the dentry, lookup table entry, and stream index for a WIM file stream,
866  * given a path name.
867  *
868  * Currently, lookups of this type are only needed if FUSE is enabled.  */
869 int
870 wim_pathname_to_stream(WIMStruct *wim,
871                        const tchar *path,
872                        int lookup_flags,
873                        struct wim_dentry **dentry_ret,
874                        struct wim_lookup_table_entry **lte_ret,
875                        u16 *stream_idx_ret)
876 {
877         struct wim_dentry *dentry;
878         struct wim_lookup_table_entry *lte;
879         u16 stream_idx;
880         const tchar *stream_name = NULL;
881         struct wim_inode *inode;
882         tchar *p = NULL;
883
884         if (lookup_flags & LOOKUP_FLAG_ADS_OK) {
885                 stream_name = path_stream_name(path);
886                 if (stream_name) {
887                         p = (tchar*)stream_name - 1;
888                         *p = T('\0');
889                 }
890         }
891
892         dentry = get_dentry(wim, path, WIMLIB_CASE_SENSITIVE);
893         if (p)
894                 *p = T(':');
895         if (!dentry)
896                 return -errno;
897
898         inode = dentry->d_inode;
899
900         if (!inode->i_resolved)
901                 if (inode_resolve_streams(inode, wim->lookup_table, false))
902                         return -EIO;
903
904         if (!(lookup_flags & LOOKUP_FLAG_DIRECTORY_OK)
905               && inode_is_directory(inode))
906                 return -EISDIR;
907
908         if (stream_name) {
909                 struct wim_ads_entry *ads_entry;
910                 u16 ads_idx;
911                 ads_entry = inode_get_ads_entry(inode, stream_name,
912                                                 &ads_idx);
913                 if (ads_entry) {
914                         stream_idx = ads_idx + 1;
915                         lte = ads_entry->lte;
916                         goto out;
917                 } else {
918                         return -ENOENT;
919                 }
920         } else {
921                 lte = inode_unnamed_stream_resolved(inode, &stream_idx);
922         }
923 out:
924         if (dentry_ret)
925                 *dentry_ret = dentry;
926         if (lte_ret)
927                 *lte_ret = lte;
928         if (stream_idx_ret)
929                 *stream_idx_ret = stream_idx;
930         return 0;
931 }
932 #endif /* WITH_FUSE  */
933
934 /* Prints the full path of a dentry. */
935 int
936 print_dentry_full_path(struct wim_dentry *dentry, void *_ignore)
937 {
938         int ret = calculate_dentry_full_path(dentry);
939         if (ret)
940                 return ret;
941         tprintf(T("%"TS"\n"), dentry->_full_path);
942         return 0;
943 }
944
945 /* We want to be able to show the names of the file attribute flags that are
946  * set. */
947 struct file_attr_flag {
948         u32 flag;
949         const tchar *name;
950 };
951 struct file_attr_flag file_attr_flags[] = {
952         {FILE_ATTRIBUTE_READONLY,           T("READONLY")},
953         {FILE_ATTRIBUTE_HIDDEN,             T("HIDDEN")},
954         {FILE_ATTRIBUTE_SYSTEM,             T("SYSTEM")},
955         {FILE_ATTRIBUTE_DIRECTORY,          T("DIRECTORY")},
956         {FILE_ATTRIBUTE_ARCHIVE,            T("ARCHIVE")},
957         {FILE_ATTRIBUTE_DEVICE,             T("DEVICE")},
958         {FILE_ATTRIBUTE_NORMAL,             T("NORMAL")},
959         {FILE_ATTRIBUTE_TEMPORARY,          T("TEMPORARY")},
960         {FILE_ATTRIBUTE_SPARSE_FILE,        T("SPARSE_FILE")},
961         {FILE_ATTRIBUTE_REPARSE_POINT,      T("REPARSE_POINT")},
962         {FILE_ATTRIBUTE_COMPRESSED,         T("COMPRESSED")},
963         {FILE_ATTRIBUTE_OFFLINE,            T("OFFLINE")},
964         {FILE_ATTRIBUTE_NOT_CONTENT_INDEXED,T("NOT_CONTENT_INDEXED")},
965         {FILE_ATTRIBUTE_ENCRYPTED,          T("ENCRYPTED")},
966         {FILE_ATTRIBUTE_VIRTUAL,            T("VIRTUAL")},
967 };
968
969 /* Prints a directory entry.  @lookup_table is a pointer to the lookup table, if
970  * available.  If the dentry is unresolved and the lookup table is NULL, the
971  * lookup table entries will not be printed.  Otherwise, they will be. */
972 int
973 print_dentry(struct wim_dentry *dentry, void *lookup_table)
974 {
975         const u8 *hash;
976         struct wim_lookup_table_entry *lte;
977         const struct wim_inode *inode = dentry->d_inode;
978         tchar buf[50];
979
980         tprintf(T("[DENTRY]\n"));
981         tprintf(T("Length            = %"PRIu64"\n"), dentry->length);
982         tprintf(T("Attributes        = 0x%x\n"), inode->i_attributes);
983         for (size_t i = 0; i < ARRAY_LEN(file_attr_flags); i++)
984                 if (file_attr_flags[i].flag & inode->i_attributes)
985                         tprintf(T("    FILE_ATTRIBUTE_%"TS" is set\n"),
986                                 file_attr_flags[i].name);
987         tprintf(T("Security ID       = %d\n"), inode->i_security_id);
988         tprintf(T("Subdir offset     = %"PRIu64"\n"), dentry->subdir_offset);
989
990         wim_timestamp_to_str(inode->i_creation_time, buf, sizeof(buf));
991         tprintf(T("Creation Time     = %"TS"\n"), buf);
992
993         wim_timestamp_to_str(inode->i_last_access_time, buf, sizeof(buf));
994         tprintf(T("Last Access Time  = %"TS"\n"), buf);
995
996         wim_timestamp_to_str(inode->i_last_write_time, buf, sizeof(buf));
997         tprintf(T("Last Write Time   = %"TS"\n"), buf);
998
999         if (inode->i_attributes & FILE_ATTRIBUTE_REPARSE_POINT) {
1000                 tprintf(T("Reparse Tag       = 0x%"PRIx32"\n"), inode->i_reparse_tag);
1001                 tprintf(T("Reparse Point Flags = 0x%"PRIx16"\n"),
1002                         inode->i_not_rpfixed);
1003                 tprintf(T("Reparse Point Unknown 2 = 0x%"PRIx32"\n"),
1004                         inode->i_rp_unknown_2);
1005         }
1006         tprintf(T("Reparse Point Unknown 1 = 0x%"PRIx32"\n"),
1007                 inode->i_rp_unknown_1);
1008         tprintf(T("Hard Link Group   = 0x%"PRIx64"\n"), inode->i_ino);
1009         tprintf(T("Hard Link Group Size = %"PRIu32"\n"), inode->i_nlink);
1010         tprintf(T("Number of Alternate Data Streams = %hu\n"), inode->i_num_ads);
1011         if (dentry_has_long_name(dentry))
1012                 wimlib_printf(T("Filename = \"%"WS"\"\n"), dentry->file_name);
1013         if (dentry_has_short_name(dentry))
1014                 wimlib_printf(T("Short Name \"%"WS"\"\n"), dentry->short_name);
1015         if (dentry->_full_path)
1016                 tprintf(T("Full Path = \"%"TS"\"\n"), dentry->_full_path);
1017
1018         lte = inode_stream_lte(dentry->d_inode, 0, lookup_table);
1019         if (lte) {
1020                 print_lookup_table_entry(lte, stdout);
1021         } else {
1022                 hash = inode_stream_hash(inode, 0);
1023                 if (hash) {
1024                         tprintf(T("Hash              = 0x"));
1025                         print_hash(hash, stdout);
1026                         tputchar(T('\n'));
1027                         tputchar(T('\n'));
1028                 }
1029         }
1030         for (u16 i = 0; i < inode->i_num_ads; i++) {
1031                 tprintf(T("[Alternate Stream Entry %u]\n"), i);
1032                 wimlib_printf(T("Name = \"%"WS"\"\n"),
1033                               inode->i_ads_entries[i].stream_name);
1034                 tprintf(T("Name Length (UTF16 bytes) = %hu\n"),
1035                        inode->i_ads_entries[i].stream_name_nbytes);
1036                 hash = inode_stream_hash(inode, i + 1);
1037                 if (hash) {
1038                         tprintf(T("Hash              = 0x"));
1039                         print_hash(hash, stdout);
1040                         tputchar(T('\n'));
1041                 }
1042                 print_lookup_table_entry(inode_stream_lte(inode, i + 1, lookup_table),
1043                                          stdout);
1044         }
1045         return 0;
1046 }
1047
1048 /* Initializations done on every `struct wim_dentry'. */
1049 static void
1050 dentry_common_init(struct wim_dentry *dentry)
1051 {
1052         memset(dentry, 0, sizeof(struct wim_dentry));
1053 }
1054
1055 /* Creates an unlinked directory entry. */
1056 int
1057 new_dentry(const tchar *name, struct wim_dentry **dentry_ret)
1058 {
1059         struct wim_dentry *dentry;
1060         int ret;
1061
1062         dentry = MALLOC(sizeof(struct wim_dentry));
1063         if (dentry == NULL)
1064                 return WIMLIB_ERR_NOMEM;
1065
1066         dentry_common_init(dentry);
1067         ret = dentry_set_name(dentry, name);
1068         if (ret == 0) {
1069                 dentry->parent = dentry;
1070                 *dentry_ret = dentry;
1071         } else {
1072                 FREE(dentry);
1073                 ERROR("Failed to set name on new dentry with name \"%"TS"\"",
1074                       name);
1075         }
1076         return ret;
1077 }
1078
1079 static int
1080 _new_dentry_with_inode(const tchar *name, struct wim_dentry **dentry_ret,
1081                         bool timeless)
1082 {
1083         struct wim_dentry *dentry;
1084         int ret;
1085
1086         ret = new_dentry(name, &dentry);
1087         if (ret)
1088                 return ret;
1089
1090         if (timeless)
1091                 dentry->d_inode = new_timeless_inode();
1092         else
1093                 dentry->d_inode = new_inode();
1094         if (dentry->d_inode == NULL) {
1095                 free_dentry(dentry);
1096                 return WIMLIB_ERR_NOMEM;
1097         }
1098
1099         inode_add_dentry(dentry, dentry->d_inode);
1100         *dentry_ret = dentry;
1101         return 0;
1102 }
1103
1104 int
1105 new_dentry_with_timeless_inode(const tchar *name, struct wim_dentry **dentry_ret)
1106 {
1107         return _new_dentry_with_inode(name, dentry_ret, true);
1108 }
1109
1110 int
1111 new_dentry_with_inode(const tchar *name, struct wim_dentry **dentry_ret)
1112 {
1113         return _new_dentry_with_inode(name, dentry_ret, false);
1114 }
1115
1116 int
1117 new_filler_directory(const tchar *name, struct wim_dentry **dentry_ret)
1118 {
1119         int ret;
1120         struct wim_dentry *dentry;
1121
1122         DEBUG("Creating filler directory \"%"TS"\"", name);
1123         ret = new_dentry_with_inode(name, &dentry);
1124         if (ret)
1125                 return ret;
1126         /* Leave the inode number as 0; this is allowed for non
1127          * hard-linked files. */
1128         dentry->d_inode->i_resolved = 1;
1129         dentry->d_inode->i_attributes = FILE_ATTRIBUTE_DIRECTORY;
1130         *dentry_ret = dentry;
1131         return 0;
1132 }
1133
1134 static int
1135 dentry_clear_inode_visited(struct wim_dentry *dentry, void *_ignore)
1136 {
1137         dentry->d_inode->i_visited = 0;
1138         return 0;
1139 }
1140
1141 void
1142 dentry_tree_clear_inode_visited(struct wim_dentry *root)
1143 {
1144         for_dentry_in_tree(root, dentry_clear_inode_visited, NULL);
1145 }
1146
1147 /* Frees a WIM dentry.
1148  *
1149  * The corresponding inode (if any) is freed only if its link count is
1150  * decremented to 0.  */
1151 void
1152 free_dentry(struct wim_dentry *dentry)
1153 {
1154         if (dentry) {
1155                 FREE(dentry->file_name);
1156                 FREE(dentry->short_name);
1157                 FREE(dentry->_full_path);
1158                 if (dentry->d_inode)
1159                         put_inode(dentry->d_inode);
1160                 FREE(dentry);
1161         }
1162 }
1163
1164 /* This function is passed as an argument to for_dentry_in_tree_depth() in order
1165  * to free a directory tree. */
1166 static int
1167 do_free_dentry(struct wim_dentry *dentry, void *_lookup_table)
1168 {
1169         struct wim_lookup_table *lookup_table = _lookup_table;
1170
1171         if (lookup_table) {
1172                 struct wim_inode *inode = dentry->d_inode;
1173                 for (unsigned i = 0; i <= inode->i_num_ads; i++) {
1174                         struct wim_lookup_table_entry *lte;
1175
1176                         lte = inode_stream_lte(inode, i, lookup_table);
1177                         if (lte)
1178                                 lte_decrement_refcnt(lte, lookup_table);
1179                 }
1180         }
1181         free_dentry(dentry);
1182         return 0;
1183 }
1184
1185 /*
1186  * Unlinks and frees a dentry tree.
1187  *
1188  * @root:
1189  *      The root of the tree.
1190  *
1191  * @lookup_table:
1192  *      The lookup table for dentries.  If non-NULL, the reference counts in the
1193  *      lookup table for the lookup table entries corresponding to the dentries
1194  *      will be decremented.
1195  */
1196 void
1197 free_dentry_tree(struct wim_dentry *root, struct wim_lookup_table *lookup_table)
1198 {
1199         for_dentry_in_tree_depth(root, do_free_dentry, lookup_table);
1200 }
1201
1202 /* Insert a dentry into the case insensitive index for a directory.
1203  *
1204  * This is a red-black tree, but when multiple dentries share the same
1205  * case-insensitive name, only one is inserted into the tree itself; the rest
1206  * are connected in a list.
1207  */
1208 static struct wim_dentry *
1209 dentry_add_child_case_insensitive(struct wim_dentry *parent,
1210                                   struct wim_dentry *child)
1211 {
1212         struct rb_root *root;
1213         struct rb_node **new;
1214         struct rb_node *rb_parent;
1215
1216         root = &parent->d_inode->i_children_case_insensitive;
1217         new = &root->rb_node;
1218         rb_parent = NULL;
1219         while (*new) {
1220                 struct wim_dentry *this = container_of(*new, struct wim_dentry,
1221                                                        rb_node_case_insensitive);
1222                 int result = dentry_compare_names_case_insensitive(child, this);
1223
1224                 rb_parent = *new;
1225
1226                 if (result < 0)
1227                         new = &((*new)->rb_left);
1228                 else if (result > 0)
1229                         new = &((*new)->rb_right);
1230                 else
1231                         return this;
1232         }
1233         rb_link_node(&child->rb_node_case_insensitive, rb_parent, new);
1234         rb_insert_color(&child->rb_node_case_insensitive, root);
1235         return NULL;
1236 }
1237
1238 /*
1239  * Links a dentry into the directory tree.
1240  *
1241  * @parent: The dentry that will be the parent of @child.
1242  * @child: The dentry to link.
1243  *
1244  * Returns NULL if successful.  If @parent already contains a dentry with the
1245  * same case-sensitive name as @child, the pointer to this duplicate dentry is
1246  * returned.
1247  */
1248 struct wim_dentry *
1249 dentry_add_child(struct wim_dentry * restrict parent,
1250                  struct wim_dentry * restrict child)
1251 {
1252         struct rb_root *root;
1253         struct rb_node **new;
1254         struct rb_node *rb_parent;
1255
1256         wimlib_assert(dentry_is_directory(parent));
1257         wimlib_assert(parent != child);
1258
1259         /* Case sensitive child dentry index */
1260         root = &parent->d_inode->i_children;
1261         new = &root->rb_node;
1262         rb_parent = NULL;
1263         while (*new) {
1264                 struct wim_dentry *this = rbnode_dentry(*new);
1265                 int result = dentry_compare_names_case_sensitive(child, this);
1266
1267                 rb_parent = *new;
1268
1269                 if (result < 0)
1270                         new = &((*new)->rb_left);
1271                 else if (result > 0)
1272                         new = &((*new)->rb_right);
1273                 else
1274                         return this;
1275         }
1276         child->parent = parent;
1277         rb_link_node(&child->rb_node, rb_parent, new);
1278         rb_insert_color(&child->rb_node, root);
1279
1280         /* Case insensitive child dentry index */
1281         {
1282                 struct wim_dentry *existing;
1283                 existing = dentry_add_child_case_insensitive(parent, child);
1284                 if (existing) {
1285                         list_add(&child->case_insensitive_conflict_list,
1286                                  &existing->case_insensitive_conflict_list);
1287                         child->rb_node_case_insensitive.__rb_parent_color = 0;
1288                 } else {
1289                         INIT_LIST_HEAD(&child->case_insensitive_conflict_list);
1290                 }
1291         }
1292         return NULL;
1293 }
1294
1295 /* Unlink a WIM dentry from the directory entry tree. */
1296 void
1297 unlink_dentry(struct wim_dentry *dentry)
1298 {
1299         struct wim_dentry *parent = dentry->parent;
1300
1301         if (parent == dentry)
1302                 return;
1303         rb_erase(&dentry->rb_node, &parent->d_inode->i_children);
1304
1305         if (dentry->rb_node_case_insensitive.__rb_parent_color) {
1306                 /* This dentry was in the case-insensitive red-black tree. */
1307                 rb_erase(&dentry->rb_node_case_insensitive,
1308                          &parent->d_inode->i_children_case_insensitive);
1309                 if (!list_empty(&dentry->case_insensitive_conflict_list)) {
1310                         /* Make a different case-insensitively-the-same dentry
1311                          * be the "representative" in the red-black tree. */
1312                         struct list_head *next;
1313                         struct wim_dentry *other;
1314                         struct wim_dentry *existing;
1315
1316                         next = dentry->case_insensitive_conflict_list.next;
1317                         other = list_entry(next, struct wim_dentry, case_insensitive_conflict_list);
1318                         existing = dentry_add_child_case_insensitive(parent, other);
1319                         wimlib_assert(existing == NULL);
1320                 }
1321         }
1322         list_del(&dentry->case_insensitive_conflict_list);
1323 }
1324
1325 static int
1326 free_dentry_full_path(struct wim_dentry *dentry, void *_ignore)
1327 {
1328         FREE(dentry->_full_path);
1329         dentry->_full_path = NULL;
1330         return 0;
1331 }
1332
1333 /* Rename a file or directory in the WIM.  */
1334 int
1335 rename_wim_path(WIMStruct *wim, const tchar *from, const tchar *to,
1336                 CASE_SENSITIVITY_TYPE case_type)
1337 {
1338         struct wim_dentry *src;
1339         struct wim_dentry *dst;
1340         struct wim_dentry *parent_of_dst;
1341         int ret;
1342
1343         /* This rename() implementation currently only supports actual files
1344          * (not alternate data streams) */
1345
1346         src = get_dentry(wim, from, case_type);
1347         if (!src)
1348                 return -errno;
1349
1350         dst = get_dentry(wim, to, case_type);
1351
1352         if (dst) {
1353                 /* Destination file exists */
1354
1355                 if (src == dst) /* Same file */
1356                         return 0;
1357
1358                 if (!dentry_is_directory(src)) {
1359                         /* Cannot rename non-directory to directory. */
1360                         if (dentry_is_directory(dst))
1361                                 return -EISDIR;
1362                 } else {
1363                         /* Cannot rename directory to a non-directory or a non-empty
1364                          * directory */
1365                         if (!dentry_is_directory(dst))
1366                                 return -ENOTDIR;
1367                         if (dentry_has_children(dst))
1368                                 return -ENOTEMPTY;
1369                 }
1370                 parent_of_dst = dst->parent;
1371         } else {
1372                 /* Destination does not exist */
1373                 parent_of_dst = get_parent_dentry(wim, to, case_type);
1374                 if (!parent_of_dst)
1375                         return -errno;
1376
1377                 if (!dentry_is_directory(parent_of_dst))
1378                         return -ENOTDIR;
1379         }
1380
1381         ret = dentry_set_name(src, path_basename(to));
1382         if (ret)
1383                 return -ENOMEM;
1384         if (dst) {
1385                 unlink_dentry(dst);
1386                 free_dentry_tree(dst, wim->lookup_table);
1387         }
1388         unlink_dentry(src);
1389         dentry_add_child(parent_of_dst, src);
1390         if (src->_full_path)
1391                 for_dentry_in_tree(src, free_dentry_full_path, NULL);
1392         return 0;
1393 }
1394
1395 /*
1396  * Reads a WIM directory entry, including all alternate data stream entries that
1397  * follow it, from the WIM image's metadata resource.
1398  *
1399  * @metadata_resource:
1400  *              Pointer to the metadata resource buffer.
1401  *
1402  * @metadata_resource_len:
1403  *              Length of the metadata resource buffer, in bytes.
1404  *
1405  * @offset:     Offset of the dentry within the metadata resource.
1406  *
1407  * @dentry:     A `struct wim_dentry' that will be filled in by this function.
1408  *
1409  * Return 0 on success or nonzero on failure.  On failure, @dentry will have
1410  * been modified, but it will not be left with pointers to any allocated
1411  * buffers.  On success, the dentry->length field must be examined.  If zero,
1412  * this was a special "end of directory" dentry and not a real dentry.  If
1413  * nonzero, this was a real dentry.
1414  *
1415  * Return values:
1416  *      WIMLIB_ERR_SUCCESS (0)
1417  *      WIMLIB_ERR_INVALID_METADATA_RESOURCE
1418  *      WIMLIB_ERR_NOMEM
1419  */
1420 int
1421 read_dentry(const u8 * restrict metadata_resource, u64 metadata_resource_len,
1422             u64 offset, struct wim_dentry * restrict dentry)
1423 {
1424
1425         u64 calculated_size;
1426         utf16lechar *file_name;
1427         utf16lechar *short_name;
1428         u16 short_name_nbytes;
1429         u16 file_name_nbytes;
1430         int ret;
1431         struct wim_inode *inode;
1432         const u8 *p = &metadata_resource[offset];
1433         const struct wim_dentry_on_disk *disk_dentry =
1434                         (const struct wim_dentry_on_disk*)p;
1435
1436         BUILD_BUG_ON(sizeof(struct wim_dentry_on_disk) != WIM_DENTRY_DISK_SIZE);
1437
1438         if ((uintptr_t)p & 7)
1439                 WARNING("WIM dentry is not 8-byte aligned");
1440
1441         dentry_common_init(dentry);
1442
1443         /* Before reading the whole dentry, we need to read just the length.
1444          * This is because a dentry of length 8 (that is, just the length field)
1445          * terminates the list of sibling directory entries. */
1446         if (offset + sizeof(u64) > metadata_resource_len ||
1447             offset + sizeof(u64) < offset)
1448         {
1449                 ERROR("Directory entry starting at %"PRIu64" ends past the "
1450                       "end of the metadata resource (size %"PRIu64")",
1451                       offset, metadata_resource_len);
1452                 return WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1453         }
1454         dentry->length = le64_to_cpu(disk_dentry->length);
1455
1456         /* A zero length field (really a length of 8, since that's how big the
1457          * directory entry is...) indicates that this is the end of directory
1458          * dentry.  We do not read it into memory as an actual dentry, so just
1459          * return successfully in this case. */
1460         if (dentry->length == 8)
1461                 dentry->length = 0;
1462         if (dentry->length == 0)
1463                 return 0;
1464
1465         /* Now that we have the actual length provided in the on-disk structure,
1466          * again make sure it doesn't overflow the metadata resource buffer. */
1467         if (offset + dentry->length > metadata_resource_len ||
1468             offset + dentry->length < offset)
1469         {
1470                 ERROR("Directory entry at offset %"PRIu64" and with size "
1471                       "%"PRIu64" ends past the end of the metadata resource "
1472                       "(size %"PRIu64")",
1473                       offset, dentry->length, metadata_resource_len);
1474                 return WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1475         }
1476
1477         /* Make sure the dentry length is at least as large as the number of
1478          * fixed-length fields */
1479         if (dentry->length < sizeof(struct wim_dentry_on_disk)) {
1480                 ERROR("Directory entry has invalid length of %"PRIu64" bytes",
1481                       dentry->length);
1482                 return WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1483         }
1484
1485         /* Allocate a `struct wim_inode' for this `struct wim_dentry'. */
1486         inode = new_timeless_inode();
1487         if (inode == NULL)
1488                 return WIMLIB_ERR_NOMEM;
1489
1490         /* Read more fields; some into the dentry, and some into the inode. */
1491
1492         inode->i_attributes = le32_to_cpu(disk_dentry->attributes);
1493         inode->i_security_id = le32_to_cpu(disk_dentry->security_id);
1494         dentry->subdir_offset = le64_to_cpu(disk_dentry->subdir_offset);
1495         dentry->d_unused_1 = le64_to_cpu(disk_dentry->unused_1);
1496         dentry->d_unused_2 = le64_to_cpu(disk_dentry->unused_2);
1497         inode->i_creation_time = le64_to_cpu(disk_dentry->creation_time);
1498         inode->i_last_access_time = le64_to_cpu(disk_dentry->last_access_time);
1499         inode->i_last_write_time = le64_to_cpu(disk_dentry->last_write_time);
1500         copy_hash(inode->i_hash, disk_dentry->unnamed_stream_hash);
1501
1502         /* I don't know what's going on here.  It seems like M$ screwed up the
1503          * reparse points, then put the fields in the same place and didn't
1504          * document it.  So we have some fields we read for reparse points, and
1505          * some fields in the same place for non-reparse-point.s */
1506         if (inode->i_attributes & FILE_ATTRIBUTE_REPARSE_POINT) {
1507                 inode->i_rp_unknown_1 = le32_to_cpu(disk_dentry->reparse.rp_unknown_1);
1508                 inode->i_reparse_tag = le32_to_cpu(disk_dentry->reparse.reparse_tag);
1509                 inode->i_rp_unknown_2 = le16_to_cpu(disk_dentry->reparse.rp_unknown_2);
1510                 inode->i_not_rpfixed = le16_to_cpu(disk_dentry->reparse.not_rpfixed);
1511                 /* Leave inode->i_ino at 0.  Note that this means the WIM file
1512                  * cannot archive hard-linked reparse points.  Such a thing
1513                  * doesn't really make sense anyway, although I believe it's
1514                  * theoretically possible to have them on NTFS. */
1515         } else {
1516                 inode->i_rp_unknown_1 = le32_to_cpu(disk_dentry->nonreparse.rp_unknown_1);
1517                 inode->i_ino = le64_to_cpu(disk_dentry->nonreparse.hard_link_group_id);
1518         }
1519
1520         inode->i_num_ads = le16_to_cpu(disk_dentry->num_alternate_data_streams);
1521
1522         short_name_nbytes = le16_to_cpu(disk_dentry->short_name_nbytes);
1523         file_name_nbytes = le16_to_cpu(disk_dentry->file_name_nbytes);
1524
1525         if ((short_name_nbytes & 1) | (file_name_nbytes & 1))
1526         {
1527                 ERROR("Dentry name is not valid UTF-16LE (odd number of bytes)!");
1528                 ret = WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1529                 goto out_free_inode;
1530         }
1531
1532         /* We now know the length of the file name and short name.  Make sure
1533          * the length of the dentry is large enough to actually hold them.
1534          *
1535          * The calculated length here is unaligned to allow for the possibility
1536          * that the dentry->length names an unaligned length, although this
1537          * would be unexpected. */
1538         calculated_size = dentry_correct_length_unaligned(file_name_nbytes,
1539                                                           short_name_nbytes);
1540
1541         if (dentry->length < calculated_size) {
1542                 ERROR("Unexpected end of directory entry! (Expected "
1543                       "at least %"PRIu64" bytes, got %"PRIu64" bytes.)",
1544                       calculated_size, dentry->length);
1545                 ret = WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1546                 goto out_free_inode;
1547         }
1548
1549         p += sizeof(struct wim_dentry_on_disk);
1550
1551         /* Read the filename if present.  Note: if the filename is empty, there
1552          * is no null terminator following it. */
1553         if (file_name_nbytes) {
1554                 file_name = MALLOC(file_name_nbytes + 2);
1555                 if (file_name == NULL) {
1556                         ERROR("Failed to allocate %d bytes for dentry file name",
1557                               file_name_nbytes + 2);
1558                         ret = WIMLIB_ERR_NOMEM;
1559                         goto out_free_inode;
1560                 }
1561                 memcpy(file_name, p, file_name_nbytes);
1562                 p += file_name_nbytes + 2;
1563                 file_name[file_name_nbytes / 2] = cpu_to_le16(0);
1564         } else {
1565                 file_name = NULL;
1566         }
1567
1568
1569         /* Read the short filename if present.  Note: if there is no short
1570          * filename, there is no null terminator following it. */
1571         if (short_name_nbytes) {
1572                 short_name = MALLOC(short_name_nbytes + 2);
1573                 if (short_name == NULL) {
1574                         ERROR("Failed to allocate %d bytes for dentry short name",
1575                               short_name_nbytes + 2);
1576                         ret = WIMLIB_ERR_NOMEM;
1577                         goto out_free_file_name;
1578                 }
1579                 memcpy(short_name, p, short_name_nbytes);
1580                 p += short_name_nbytes + 2;
1581                 short_name[short_name_nbytes / 2] = cpu_to_le16(0);
1582         } else {
1583                 short_name = NULL;
1584         }
1585
1586         /* Align the dentry length */
1587         dentry->length = (dentry->length + 7) & ~7;
1588
1589         /*
1590          * Read the alternate data streams, if present.  dentry->num_ads tells
1591          * us how many they are, and they will directly follow the dentry
1592          * on-disk.
1593          *
1594          * Note that each alternate data stream entry begins on an 8-byte
1595          * aligned boundary, and the alternate data stream entries seem to NOT
1596          * be included in the dentry->length field for some reason.
1597          */
1598         if (inode->i_num_ads != 0) {
1599                 ret = WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1600                 if (offset + dentry->length > metadata_resource_len ||
1601                     (ret = read_ads_entries(&metadata_resource[offset + dentry->length],
1602                                             inode,
1603                                             metadata_resource_len - offset - dentry->length)))
1604                 {
1605                         ERROR("Failed to read alternate data stream "
1606                               "entries of WIM dentry \"%"WS"\"", file_name);
1607                         goto out_free_short_name;
1608                 }
1609         }
1610         /* We've read all the data for this dentry.  Set the names and their
1611          * lengths, and we've done. */
1612         dentry->d_inode           = inode;
1613         dentry->file_name         = file_name;
1614         dentry->short_name        = short_name;
1615         dentry->file_name_nbytes  = file_name_nbytes;
1616         dentry->short_name_nbytes = short_name_nbytes;
1617         ret = 0;
1618         goto out;
1619 out_free_short_name:
1620         FREE(short_name);
1621 out_free_file_name:
1622         FREE(file_name);
1623 out_free_inode:
1624         free_inode(inode);
1625 out:
1626         return ret;
1627 }
1628
1629 static const tchar *
1630 dentry_get_file_type_string(const struct wim_dentry *dentry)
1631 {
1632         const struct wim_inode *inode = dentry->d_inode;
1633         if (inode_is_directory(inode))
1634                 return T("directory");
1635         else if (inode_is_symlink(inode))
1636                 return T("symbolic link");
1637         else
1638                 return T("file");
1639 }
1640
1641 /* Reads the children of a dentry, and all their children, ..., etc. from the
1642  * metadata resource and into the dentry tree.
1643  *
1644  * @metadata_resource:
1645  *      An array that contains the uncompressed metadata resource for the WIM
1646  *      file.
1647  *
1648  * @metadata_resource_len:
1649  *      The length of the uncompressed metadata resource, in bytes.
1650  *
1651  * @dentry:
1652  *      A pointer to a `struct wim_dentry' that is the root of the directory
1653  *      tree and has already been read from the metadata resource.  It does not
1654  *      need to be the real root because this procedure is called recursively.
1655  *
1656  * Return values:
1657  *      WIMLIB_ERR_SUCCESS (0)
1658  *      WIMLIB_ERR_INVALID_METADATA_RESOURCE
1659  *      WIMLIB_ERR_NOMEM
1660  */
1661 int
1662 read_dentry_tree(const u8 * restrict metadata_resource,
1663                  u64 metadata_resource_len,
1664                  struct wim_dentry * restrict dentry)
1665 {
1666         u64 cur_offset = dentry->subdir_offset;
1667         struct wim_dentry *child;
1668         struct wim_dentry *duplicate;
1669         struct wim_dentry *parent;
1670         struct wim_dentry cur_child;
1671         int ret;
1672
1673         /*
1674          * If @dentry has no child dentries, nothing more needs to be done for
1675          * this branch.  This is the case for regular files, symbolic links, and
1676          * *possibly* empty directories (although an empty directory may also
1677          * have one child dentry that is the special end-of-directory dentry)
1678          */
1679         if (cur_offset == 0)
1680                 return 0;
1681
1682         /* Check for cyclic directory structure */
1683         for (parent = dentry->parent; !dentry_is_root(parent); parent = parent->parent)
1684         {
1685                 if (unlikely(parent->subdir_offset == cur_offset)) {
1686                         ERROR("Cyclic directory structure detected: children "
1687                               "of \"%"TS"\" coincide with children of \"%"TS"\"",
1688                               dentry_full_path(dentry),
1689                               dentry_full_path(parent));
1690                         return WIMLIB_ERR_INVALID_METADATA_RESOURCE;
1691                 }
1692         }
1693
1694         /* Find and read all the children of @dentry. */
1695         for (;;) {
1696
1697                 /* Read next child of @dentry into @cur_child. */
1698                 ret = read_dentry(metadata_resource, metadata_resource_len,
1699                                   cur_offset, &cur_child);
1700                 if (ret)
1701                         break;
1702
1703                 /* Check for end of directory. */
1704                 if (cur_child.length == 0)
1705                         break;
1706
1707                 /* Not end of directory.  Allocate this child permanently and
1708                  * link it to the parent and previous child. */
1709                 child = memdup(&cur_child, sizeof(struct wim_dentry));
1710                 if (child == NULL) {
1711                         ERROR("Failed to allocate new dentry!");
1712                         ret = WIMLIB_ERR_NOMEM;
1713                         break;
1714                 }
1715
1716                 /* Advance to the offset of the next child.  Note: We need to
1717                  * advance by the TOTAL length of the dentry, not by the length
1718                  * cur_child.length, which although it does take into account
1719                  * the padding, it DOES NOT take into account alternate stream
1720                  * entries. */
1721                 cur_offset += dentry_in_total_length(child);
1722
1723                 if (unlikely(!dentry_has_long_name(child))) {
1724                         WARNING("Ignoring unnamed dentry in "
1725                                 "directory \"%"TS"\"",
1726                                 dentry_full_path(dentry));
1727                         free_dentry(child);
1728                         continue;
1729                 }
1730
1731                 duplicate = dentry_add_child(dentry, child);
1732                 if (unlikely(duplicate)) {
1733                         const tchar *child_type, *duplicate_type;
1734                         child_type = dentry_get_file_type_string(child);
1735                         duplicate_type = dentry_get_file_type_string(duplicate);
1736                         WARNING("Ignoring duplicate %"TS" \"%"TS"\" "
1737                                 "(the WIM image already contains a %"TS" "
1738                                 "at that path with the exact same name)",
1739                                 child_type, dentry_full_path(duplicate),
1740                                 duplicate_type);
1741                         free_dentry(child);
1742                         continue;
1743                 }
1744
1745                 inode_add_dentry(child, child->d_inode);
1746                 /* If there are children of this child, call this
1747                  * procedure recursively. */
1748                 if (child->subdir_offset != 0) {
1749                         if (likely(dentry_is_directory(child))) {
1750                                 ret = read_dentry_tree(metadata_resource,
1751                                                        metadata_resource_len,
1752                                                        child);
1753                                 if (ret)
1754                                         break;
1755                         } else {
1756                                 WARNING("Ignoring children of non-directory \"%"TS"\"",
1757                                         dentry_full_path(child));
1758                         }
1759                 }
1760         }
1761         return ret;
1762 }
1763
1764 /*
1765  * Writes a WIM alternate data stream (ADS) entry to an output buffer.
1766  *
1767  * @ads_entry:  The ADS entry structure.
1768  * @hash:       The hash field to use (instead of the one in the ADS entry).
1769  * @p:          The memory location to write the data to.
1770  *
1771  * Returns a pointer to the byte after the last byte written.
1772  */
1773 static u8 *
1774 write_ads_entry(const struct wim_ads_entry *ads_entry,
1775                 const u8 *hash, u8 * restrict p)
1776 {
1777         struct wim_ads_entry_on_disk *disk_ads_entry =
1778                         (struct wim_ads_entry_on_disk*)p;
1779         u8 *orig_p = p;
1780
1781         disk_ads_entry->reserved = cpu_to_le64(ads_entry->reserved);
1782         copy_hash(disk_ads_entry->hash, hash);
1783         disk_ads_entry->stream_name_nbytes = cpu_to_le16(ads_entry->stream_name_nbytes);
1784         p += sizeof(struct wim_ads_entry_on_disk);
1785         if (ads_entry->stream_name_nbytes) {
1786                 p = mempcpy(p, ads_entry->stream_name,
1787                             ads_entry->stream_name_nbytes + 2);
1788         }
1789         /* Align to 8-byte boundary */
1790         while ((uintptr_t)p & 7)
1791                 *p++ = 0;
1792         disk_ads_entry->length = cpu_to_le64(p - orig_p);
1793         return p;
1794 }
1795
1796 /*
1797  * Writes a WIM dentry to an output buffer.
1798  *
1799  * @dentry:  The dentry structure.
1800  * @p:       The memory location to write the data to.
1801  *
1802  * Returns the pointer to the byte after the last byte we wrote as part of the
1803  * dentry, including any alternate data stream entries.
1804  */
1805 static u8 *
1806 write_dentry(const struct wim_dentry * restrict dentry, u8 * restrict p)
1807 {
1808         const struct wim_inode *inode;
1809         struct wim_dentry_on_disk *disk_dentry;
1810         const u8 *orig_p;
1811         const u8 *hash;
1812         bool use_dummy_stream;
1813         u16 num_ads;
1814
1815         wimlib_assert(((uintptr_t)p & 7) == 0); /* 8 byte aligned */
1816         orig_p = p;
1817
1818         inode = dentry->d_inode;
1819         use_dummy_stream = inode_needs_dummy_stream(inode);
1820         disk_dentry = (struct wim_dentry_on_disk*)p;
1821
1822         disk_dentry->attributes = cpu_to_le32(inode->i_attributes);
1823         disk_dentry->security_id = cpu_to_le32(inode->i_security_id);
1824         disk_dentry->subdir_offset = cpu_to_le64(dentry->subdir_offset);
1825         disk_dentry->unused_1 = cpu_to_le64(dentry->d_unused_1);
1826         disk_dentry->unused_2 = cpu_to_le64(dentry->d_unused_2);
1827         disk_dentry->creation_time = cpu_to_le64(inode->i_creation_time);
1828         disk_dentry->last_access_time = cpu_to_le64(inode->i_last_access_time);
1829         disk_dentry->last_write_time = cpu_to_le64(inode->i_last_write_time);
1830         if (use_dummy_stream)
1831                 hash = zero_hash;
1832         else
1833                 hash = inode_stream_hash(inode, 0);
1834         copy_hash(disk_dentry->unnamed_stream_hash, hash);
1835         if (inode->i_attributes & FILE_ATTRIBUTE_REPARSE_POINT) {
1836                 disk_dentry->reparse.rp_unknown_1 = cpu_to_le32(inode->i_rp_unknown_1);
1837                 disk_dentry->reparse.reparse_tag = cpu_to_le32(inode->i_reparse_tag);
1838                 disk_dentry->reparse.rp_unknown_2 = cpu_to_le16(inode->i_rp_unknown_2);
1839                 disk_dentry->reparse.not_rpfixed = cpu_to_le16(inode->i_not_rpfixed);
1840         } else {
1841                 disk_dentry->nonreparse.rp_unknown_1 = cpu_to_le32(inode->i_rp_unknown_1);
1842                 disk_dentry->nonreparse.hard_link_group_id =
1843                         cpu_to_le64((inode->i_nlink == 1) ? 0 : inode->i_ino);
1844         }
1845         num_ads = inode->i_num_ads;
1846         if (use_dummy_stream)
1847                 num_ads++;
1848         disk_dentry->num_alternate_data_streams = cpu_to_le16(num_ads);
1849         disk_dentry->short_name_nbytes = cpu_to_le16(dentry->short_name_nbytes);
1850         disk_dentry->file_name_nbytes = cpu_to_le16(dentry->file_name_nbytes);
1851         p += sizeof(struct wim_dentry_on_disk);
1852
1853         wimlib_assert(dentry_is_root(dentry) != dentry_has_long_name(dentry));
1854
1855         if (dentry_has_long_name(dentry))
1856                 p = mempcpy(p, dentry->file_name, dentry->file_name_nbytes + 2);
1857
1858         if (dentry_has_short_name(dentry))
1859                 p = mempcpy(p, dentry->short_name, dentry->short_name_nbytes + 2);
1860
1861         /* Align to 8-byte boundary */
1862         while ((uintptr_t)p & 7)
1863                 *p++ = 0;
1864
1865         /* We calculate the correct length of the dentry ourselves because the
1866          * dentry->length field may been set to an unexpected value from when we
1867          * read the dentry in (for example, there may have been unknown data
1868          * appended to the end of the dentry...).  Furthermore, the dentry may
1869          * have been renamed, thus changing its needed length. */
1870         disk_dentry->length = cpu_to_le64(p - orig_p);
1871
1872         if (use_dummy_stream) {
1873                 hash = inode_unnamed_stream_hash(inode);
1874                 p = write_ads_entry(&(struct wim_ads_entry){}, hash, p);
1875         }
1876
1877         /* Write the alternate data streams entries, if any. */
1878         for (u16 i = 0; i < inode->i_num_ads; i++) {
1879                 hash = inode_stream_hash(inode, i + 1);
1880                 p = write_ads_entry(&inode->i_ads_entries[i], hash, p);
1881         }
1882
1883         return p;
1884 }
1885
1886 static int
1887 write_dentry_cb(struct wim_dentry *dentry, void *_p)
1888 {
1889         u8 **p = _p;
1890         *p = write_dentry(dentry, *p);
1891         return 0;
1892 }
1893
1894 static u8 *
1895 write_dentry_tree_recursive(const struct wim_dentry *parent, u8 *p);
1896
1897 static int
1898 write_dentry_tree_recursive_cb(struct wim_dentry *dentry, void *_p)
1899 {
1900         u8 **p = _p;
1901         *p = write_dentry_tree_recursive(dentry, *p);
1902         return 0;
1903 }
1904
1905 /* Recursive function that writes a dentry tree rooted at @parent, not including
1906  * @parent itself, which has already been written. */
1907 static u8 *
1908 write_dentry_tree_recursive(const struct wim_dentry *parent, u8 *p)
1909 {
1910         /* Nothing to do if this dentry has no children. */
1911         if (parent->subdir_offset == 0)
1912                 return p;
1913
1914         /* Write child dentries and end-of-directory entry.
1915          *
1916          * Note: we need to write all of this dentry's children before
1917          * recursively writing the directory trees rooted at each of the child
1918          * dentries, since the on-disk dentries for a dentry's children are
1919          * always located at consecutive positions in the metadata resource! */
1920         for_dentry_child(parent, write_dentry_cb, &p);
1921
1922         /* write end of directory entry */
1923         *(le64*)p = cpu_to_le64(0);
1924         p += 8;
1925
1926         /* Recurse on children. */
1927         for_dentry_child(parent, write_dentry_tree_recursive_cb, &p);
1928         return p;
1929 }
1930
1931 /* Writes a directory tree to the metadata resource.
1932  *
1933  * @root:       Root of the dentry tree.
1934  * @p:          Pointer to a buffer with enough space for the dentry tree.
1935  *
1936  * Returns pointer to the byte after the last byte we wrote.
1937  */
1938 u8 *
1939 write_dentry_tree(const struct wim_dentry * restrict root, u8 * restrict p)
1940 {
1941         DEBUG("Writing dentry tree.");
1942         wimlib_assert(dentry_is_root(root));
1943
1944         /* If we're the root dentry, we have no parent that already
1945          * wrote us, so we need to write ourselves. */
1946         p = write_dentry(root, p);
1947
1948         /* Write end of directory entry after the root dentry just to be safe;
1949          * however the root dentry obviously cannot have any siblings. */
1950         *(le64*)p = cpu_to_le64(0);
1951         p += 8;
1952
1953         /* Recursively write the rest of the dentry tree. */
1954         return write_dentry_tree_recursive(root, p);
1955 }