
WIMLIB-IMAGEX(1) User Commands WIMLIB-IMAGEX(1)

NAME
wimlib-imagex-apply − Extract one image, or all images, from a WIM archive

SYNOPSIS
wimlib-imagex apply WIMFILE [IMAGE] TARGET [OPTION...]

DESCRIPTION
wimlib-imagex apply extracts an image, or all images, from the Windows Imaging (WIM) file WIMFILE.

This command is also available as simply wimapply if the appropriate hard link or batch file has been

installed.

This command is designed to extract, or "apply", one or more full WIM images. If you instead want to

extract only certain files or directories contained in a WIM image, consider using wimlib-imagex extract

or wimlib-imagex mount instead. (wimlib-imagex mount is not supported on Windows.)

IMAGE specifies the WIM image in WIMFILE to extract. It may be a 1-based index of an image in WIM-

FILE, the name of an image in WIMFILE, or the keyword "all" to indicate that all images in WIMFILE are

to be extracted. Use the wimlib-imagex info (1) command to show what images a WIM file contains.

IMAGE may be omitted if WIMFILE contains only one image.

TARGET specifies where to extract the WIM image to. If TARGET specifies a directory, the WIM image is

extracted to that directory (see DIRECTORY EXTRACTION (UNIX) or DIRECTORY EXTRAC-

TION (WINDOWS)). Similarly, if TARGET specifies a non-existent file, a directory is created in that

location and the WIM image is extracted to that directory.

If IMAGE is specified as "all", then all the images in WIMFILE are actually extracted into subdirectories of

TARGET, each of which is given the name of the corresponding image, falling back to the image index in

the case of an image with no name or a name not valid as a filename.

Alternatively, on UNIX-like systems only, if TARGET specifies a regular file or block device, it is inter-

preted as an NTFS volume to which the WIM image is to be extracted (see NTFS VOLUME EXTRAC-

TION (UNIX)). Only a single image can be extracted in this mode, and only extracting to the root of the

NTFS volume (not a subdirectory thereof) is supported.

WIMFILE may be "-" to read the WIM from standard input rather than from a file, but see PIPABLE

WIMS for more information.

wimlib-imagex apply supports applying images from stand-alone WIMs as well as split WIMs. See

SPLIT WIMS.

DIRECTORY EXTRACTION (UNIX)
This section documents how wimlib-imagex apply (and also wimlib-imagex extract) extract a WIM

image (or a possibly a subset thereof, in the case of wimlib-imagex extract) to a directory on UNIX-like

systems. See DIRECTORY EXTRACTION (WINDOWS) for the corresponding documentation for

Windows.

As mentioned, a WIM image can be applied to a directory on a UNIX-like system by providing a TARGET

directory. Howev er, it is important to keep in mind that the WIM format was designed for Windows, and as

a result WIM files can contain data or metadata that cannot be represented on UNIX-like systems. The

main information that wimlib-imagex will not be able to extract on UNIX-like systems is the following:

• Windows security descriptors (which include the file owner, group, and ACLs).

• Named data streams.

• Reparse points other than symbolic links and junction points.

• Certain file attributes such as compression, encryption, and sparseness.

• Short (DOS) names for files.

• File creation timestamps.

Notes: Unsupported data and metadata is simply not extracted, but wimlib-imagex will attempt to warn

you when the contents of the WIM image can’t be exactly represented when extracted. Last access and last

wimlib 1.10.0 August 2016 1



WIMLIB-IMAGEX(1) User Commands WIMLIB-IMAGEX(1)

modification timestamps are specified to 100 nanosecond granularity in the WIM file, but will only be

extracted to the highest precision supported by the underlying operating system, C library, and filesystem.

Compressed files will be extracted as uncompressed, while encrypted files will not be extracted at all.

NTFS VOLUME EXTRACTION (UNIX)
This section documents how wimlib-imagex apply extracts a WIM image directly to an NTFS volume

image on UNIX-like systems.

As mentioned, wimlib-imagex running on a UNIX-like system can apply a WIM image directly to an

NTFS volume by specifying TARGET as a regular file or block device containing an NTFS filesystem. The

NTFS filesystem need not be empty, although it’s expected that it be empty for the intended use cases. A

new NTFS filesystem can be created using the mkntfs(8) command provided with ntfs-3g.

In this NTFS volume extraction mode, the WIM image is extracted to the root of the NTFS volume in a

way preserves almost all information contained in the WIM image. It therefore does not suffer from the

limitations described in DIRECTORY EXTRACTION (UNIX). This support relies on libntfs-3g to write

to the NTFS volume and handle NTFS-specific and Windows-specific data.

Please note that this NTFS volume extraction mode is not entered if TARGET is a directory, even if an

NTFS filesystem is mounted on TARGET. You must specify the NTFS volume itself (and it must be

unmounted, and you must have permission to write to it).

This NTFS volume extraction mode attempts to extract as much information as possible, including:

• All data streams of all files except encrypted files, including the unnamed data stream as well as all

named data streams.

• Reparse points, including symbolic links, junction points, and other reparse points.

• File and directory creation, access, and modification timestamps, using the native NTFS resolution of

100 nanoseconds.

• Windows security descriptors, including all components (owner, group, DACL, and SACL).

• DOS/Windows file attribute flags.

• All names of all files, including names in the Win32 namespace, DOS namespace, Win32+DOS

namespace, and POSIX namespace. This includes hard links.

• Object IDs.

However, there are also several known limitations of the NTFS volume extraction mode:

• Encrypted files will not be extracted.

• Sparse file attributes will not be extracted.

Regardless, since almost all information from the WIM image is restored in this mode, it is possible (and

fully supported) to restore an image of an actual Windows installation using wimlib-imagex on UNIX-like

systems as an alternative to using wimlib-imagex on Windows. In the examples at the end of this manual

page, there is an example of applying an image from the "install.wim" file contained in the installation

media for Windows (Vista or later) in the "sources" directory.

Note that to actually boot Windows (Vista or later) from an applied "install.wim" image, you also need to

mark the partition as "bootable" and set up various boot files, such as \BOOTMGR and \BOOT\BCD. The

latter task is most easily accomplished by running the "bcdboot.exe" program from a live Windows system

(such as Windows PE), but there are other options as well.

DIRECTORY EXTRACTION (WINDOWS)
On Windows, wimlib-imagex apply and wimlib-imagex extract natively support Windows-specific and

NTFS-specific data. For best results, the target directory should be located on an NTFS volume and wim-

lib-imagex should be run with Administrator privileges; however, non-NTFS filesystems and running with-

out Administrator privileges are also supported.

On Windows, wimlib-imagex apply and wimlib-imagex extract try to extract as much data and metadata

as possible, including:

wimlib 1.10.0 August 2016 2



WIMLIB-IMAGEX(1) User Commands WIMLIB-IMAGEX(1)

• All data streams of all files. This includes the default file contents, as well as named data streams if

supported by the target volume.

• Reparse points, including symbolic links, junction points, and other reparse points, if supported by the

target volume. (Note: see --rpfix and --norpfix for documentation on exactly how absolute symbolic

links and junctions are extracted.) However, as per the default security settings of Windows, it is

impossible to create a symbolic link or junction point without Administrator privileges; therefore, you

must run wimlib-imagex as the Administrator if you wish to fully restore an image containing sym-

bolic links and/or junction points. (Otherwise, merely a warning will be issued when a symbolic link

or junction point cannot be extracted due to insufficient privileges.)

• File and directory creation, access, and modification timestamps, to the highest resolution supported

by the target volume.

• Security descriptors, if supported by the filesystem and --no-acls is not specified. Furthermore, unless

--strict-acls is specified, the security descriptors for individual files or directories may be omitted or

only partially set if the user does not have permission to set them, which can be a problem if wimlib-

imagex is run as a non-Administrator.

• File attributes, including hidden, compressed, encrypted, etc, when supported by the filesystem.

• DOS names (8.3) names of files; however, the failure to set them is not considered an error condition.

• Hard links, if supported by the target filesystem.

• Object IDs, if supported by the target filesystem.

Additional notes about extracting files on Windows:

• wimlib-imagex will issue a warning when it is unable to extract the exact metadata and data of the

WIM image, for example due to features mentioned above not being supported by the target filesys-

tem.

• Sparse file attributes will not be extracted.

• Since encrypted files (with FILE_ATTRIBUTE_ENCRYPTED) are not stored in plaintext in the WIM

image, wimlib-imagex cannot restore encrypted files to filesystems not supporting encryption. There-

fore, on such filesystems, encrypted files will not be extracted. Furthermore, ev en if encrypted files

are restored to a filesystem that supports encryption, they will only be decryptable if the decryption

key is available.

• Files with names that cannot be represented on Windows will not be extracted by default; see

--include-invalid-names.

• Files with full paths over 260 characters (the so-called MAX_PATH) will be extracted, but beware that

such files will be inaccessible to most Windows software and may not be able to be deleted easily.

• On Windows, unless the --no-acls option is specified, wimlib will attempt to restore files’ security

descriptors exactly as they are provided in the WIM image. Beware that typical Windows installations

contain files whose security descriptors do not allow the Administrator to delete them. Therefore,

such files will not be able to be deleted, or in some cases even read, after extracting, unless processed

with a specialized program that knows to acquire the SE_RESTORE_NAME and/or

SE_BACKUP_NAME privileges which allow overriding access control lists. This is not a bug in

wimlib, which works as designed to correctly restore the data that was archived, but rather a problem

with the access rights Windows uses on certain files. But if you just want the file data and don’t care

about security descriptors, use --no-acls to skip restoring all security descriptors.

• A similar caveat to the above applies to file attributes such as Readonly, Hidden, and System. By

design, on Windows wimlib will restore such file attributes; therefore, extracted files may have those

attributes. If this is not what you want, use the --no-attributes option.

SPLIT WIMS
You may use wimlib-imagex apply to apply images from a split WIM. The WIMFILE argument must

specify the first part of the split WIM, while the additional parts of the split WIM must be specified in one

wimlib 1.10.0 August 2016 3



WIMLIB-IMAGEX(1) User Commands WIMLIB-IMAGEX(1)

or more --ref="GLOB" options. Since globbing is built into the --ref option, typically only one --ref option

is necessary. For example, the names for the split WIM parts usually go something like:

mywim.swm

mywim2.swm

mywim3.swm

mywim4.swm

mywim5.swm

To apply the first image of this split WIM to the directory "dir", run:

wimlib-imagex apply mywim.swm 1 dir --ref="mywim*.swm"

As a special case, if you are applying an image from standard input from a split WIM that is also pipable

(as described in PIPABLE WIMS), the --ref option is unneeded; instead you must ensure that all the split

WIM parts are concatenated together on standard input. They can be provided in any order, with the excep-

tion of the first part, which must be first.

PIPABLE WIMS
Since wimlib v1.5.0, wimlib-imagex apply supports applying a WIM from a nonseekable file, such as a

pipe, provided that the WIM was captured with --pipable (see wimlib-imagex capture(1)). To use stan-

dard input as the WIM, specify "-" as WIMFILE. A useful use of this ability is to apply an image from a

WIM while streaming it from a server. For example, to apply the first image from a WIM file available on

a HTTP server to an NTFS volume on /dev/sda1, run something like:

wget -O - http://myserver/mywim.wim | wimapply - 1 /dev/sda1

(The above also used the wimapply abbreviation for wimlib-imagex apply.) Note: WIM files are not

pipable by default; you have to explicitly capture them with --pipable, and they are not compatible with

Microsoft’s software. See wimlib-imagex capture(1) for more information.

It is possible to apply an image from a pipable WIM split into multiple parts; see SPLIT WIMS.

OPTIONS
--check

When reading WIMFILE, verify its integrity if the integrity table is present.

--ref="GLOB"

File glob of additional WIMs or split WIM parts to reference resources from. See SPLIT_WIMS.

This option can be specified multiple times. Note: GLOB is listed in quotes because it is interpreted

by wimlib-imagex and may need to be quoted to protect against shell expansion.

--rpfix, --norpfix

Set whether to fix targets of absolute symbolic links (reparse points in Windows terminology) or

not. When enabled (--rpfix), extracted absolute symbolic links that are marked in the WIM image

as being fixed are assumed to have absolute targets relative to the image root, and therefore wimlib-

imagex apply prepends the absolute path to the extraction target directory to their targets. The

intention is that you can apply an image containing absolute symbolic links and still have them be

valid after it has been applied to any location.

The default behavior is --rpfix if any images in WIMFILE have been captured with reparse-point

fixups done. Otherwise, it is --norpfix.

Reparse point fixups are never done in the NTFS volume extraction mode on UNIX-like systems.

--unix-data

(UNIX-like systems only) Restore UNIX owners, groups, modes, and device IDs (major and minor

numbers) that were captured by wimlib-imagex capture with the --unix-data option. Since wimlib

v1.7.0, you can backup and restore not only the standard UNIX file permission information, but also

character device nodes, block device nodes, named pipes (FIFOs), and UNIX domain sockets.

wimlib 1.10.0 August 2016 4



WIMLIB-IMAGEX(1) User Commands WIMLIB-IMAGEX(1)

--no-acls

Do not restore security descriptors on extracted files and directories.

--strict-acls

Fail immediately if the full security descriptor of any file or directory cannot be set exactly as speci-

fied in the WIM file. If this option is not specified, when wimlib-imagex on Windows does not

have permission to set a security descriptor on an extracted file, it falls back to setting it only par-

tially (e.g. with SACL omitted), and in the worst case omits it entirely. Howev er, this should only

be a problem when running wimlib-imagex without Administrator rights. Also, on UNIX-like sys-

tems, this flag can also be combined with --unix-data to cause wimlib-imagex to fail immediately

if the UNIX owner, group, or mode on an extracted file cannot be set for any reason.

--no-attributes

Do not restore Windows file attributes such as readonly, hidden, etc.

--include-invalid-names

Extract files and directories with invalid names by replacing characters and appending a suffix rather

than ignoring them. Exactly what is considered an "invalid" name is platform-dependent.

On POSIX-compliant systems, filenames are case-sensitive and may contain any byte except ’\0’

and ´/’, so on a POSIX-compliant system this option will only have an effect in the unlikely case

that the WIM image for some reason has a filename containing one of these characters.

On Windows, filenames are case-insensitive(*), cannot include control characters, and cannot

include the characters ’/’, ´\0’, ’\’, ’:’, ’*’, ’?’, ´"’, ’<’, ’>’, or ’|’. Ordinarily, files in WIM images

should meet these conditions as well. However, it is not guaranteed, and in particular a WIM image

captured with wimlib-imagex on a POSIX-compliant system could contain such files. By default,

invalid names will be ignored, and if there are multiple names differing only in case, one will be

chosen to extract arbitrarily; however, with --include-invalid-names, all names will be sanitized

and extracted in some form.

(*) Unless the ObCaseInsensitive setting has been set to 0 in the Windows registry, in which case

certain software, including the Windows version of wimlib-imagex, will honor case-sensitive file-

names on NTFS and other compatible filesystems.

--wimboot

Windows only: Instead of extracting the files themselves, extract "pointer files" back to the WIM ar-

chive(s). This can result in significant space savings. However, it comes at several potential costs,

such as not being able to delete the WIM archive(s) and possibly having slower access to files. See

Microsoft’s documentation for "WIMBoot" for more information.

If it exists, the [PrepopulateList] section of the file \Windows\System32\WimBootCompress.ini in

the WIM image will be read. Files matching any of these patterns will be extracted normally, not as

WIMBoot "pointer files". This is helpful for certain files that Windows needs to read early in the

boot process.

This option only works when the program is run as an Administrator and the target volume is NTFS

or another filesystem that supports reparse points.

In addition, this option works best when running on Windows 8.1 Update 1 or later, since that is the

first version of Windows that contains the Windows Overlay Filesystem filter driver ("WOF"). If

the WOF driver is detected, wimlib will create the WIMBoot "pointer files" using documented ioctls

provided by WOF.

Otherwise, if the WOF driver is not detected, wimlib will create the reparse points and edit the file

"\System Volume Information\WimOverlay.dat" on the target volume manually. This is potentially

subject to problems, since although the code works in certain tested cases, neither of these data for-

mats is actually documented by Microsoft. Before overwriting this file, wimlib will save the previ-

ous version in "\System Volume Information\WimOverlay.wimlib_backup", which you potentially

could restore if you needed to.

wimlib 1.10.0 August 2016 5



WIMLIB-IMAGEX(1) User Commands WIMLIB-IMAGEX(1)

You actually can still do a --wimboot extraction even if the WIM image is not marked as "WIM-

Boot-compatible". This option causes the extracted files to be set as "externally backed" by the

WIM file. Microsoft’s driver which implements this "external backing" functionality seemingly

does not care whether the image(s) in the WIM are really marked as WIMBoot-compatible. There-

fore, the "WIMBoot-compatible" tag (<WIMBOOT> in the XML data) seems to be a marker for

intent only. In addition, the Microsoft driver can externally back files from WIM files that use

XPRESS chunks of size 8192, 16384, and 32768, or LZX chunks of size 32768, in addition to the

default XPRESS chunks of size 4096 that are created when wimlib-imagex capture is run with the

--wimboot option.

--compact=FORMAT

Windows-only: compress the extracted files using System Compression, when possible. This only

works on either Windows 10 or later, or on an older Windows to which Microsoft’s wofadk.sys

driver has been added. Several different compression formats may be used with System Compres-

sion, and one must be specified as FORMAT. The choices are: xpress4k, xpress8k, xpress16k, and

lzx.

Exclusions are handled in the same way as with the --wimboot option. That is: if it exists, the [Pre-

populateList] section of the file \Windows\System32\WimBootCompress.ini in the WIM image will

be read, and files matching any of the patterns in this section will not be compressed. In addition,

wimlib has a hardcoded list of files for which it knows, for compatibility with the Windows boot-

loader, to override the requested compression format.

NOTES
Data integrity: WIM files include SHA1 message digests for file data. wimlib-imagex apply calculates

the SHA1 message digest of every file it extracts and issues an error if it is not equal to the SHA1 message

digest provided in the WIM. (This default behavior seems equivalent to the /verify option of ImageX.)

Note that this is separate from the integrity table of the WIM, which provides SHA1 message digests over

raw chunks of the entire WIM file and is checked separately if the --check option is specified.

ESD files: wimlib v1.6.0 and later can extract files from version 3584 WIMs, which usually contain LZMS-

compressed solid resources and may carry the .esd file extension rather than .wim. Howev er, .esd files

downloaded directly by the Windows 8 web downloader have encrypted segments, and wimlib cannot

extract such files until they are first decrypted.

Directory traversal attacks: wimlib validates filenames before extracting them and is not vulnerable to

directory traversal attacks. This is in contrast to Microsoft WIMGAPI/ImageX/DISM which can overwrite

arbitrary files on the target drive when extracting a malicious WIM file containing files named .. or contain-

ing path separators.

EXAMPLES
Extract the first image from the Windows PE image on the Windows (Vista or later) installation media to

the directory "boot":

wimlib-imagex apply /mnt/windows/sources/boot.wim 1 boot

Same as above, but using the wimapply abbreviation:

wimapply /media/windows/sources/boot.wim 1 boot

On Windows, apply an image of an entire volume, for example from "install.wim" which can be found on

the Windows (Vista or later) installation media:

wimlib-imagex apply install.wim 1 E:\

Same as above, but running on a UNIX-like system where the corresponding partition is /dev/sda2:

wimlib-imagex apply install.wim 1 /dev/sda2

Note that before running either of the above commands, an NTFS filesystem may need to be created on the

partition, for example with format.exe on Windows or mkntfs(8) (part of NTFS-3G) on UNIX-like sys-

tems. For example, you might run:

wimlib 1.10.0 August 2016 6



WIMLIB-IMAGEX(1) User Commands WIMLIB-IMAGEX(1)

mkntfs /dev/sda2 && wimapply install.wim 1 /dev/sda2

(Of course don’t do that if you don’t want to destroy all existing data on the partition!)

An example of applying a pipable WIM from a pipe can be found in PIPABLE WIMS, and an example of

applying a split WIM can be found in SPLIT WIMS.

SEE ALSO
wimlib-imagex(1) wimlib-imagex-capture(1) wimlib-imagex-extract(1) wimlib-imagex-info(1)

wimlib 1.10.0 August 2016 7


